/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* Virtual memory object module.
*/
+#include <debug.h>
#include <mach_pagemap.h>
#include <task_swapper.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_protos.h>
+#include <vm/vm_purgeable_internal.h>
/*
* Virtual memory objects maintain the actual data
* memory object (kernel_object) to avoid wasting data structures.
*/
static struct vm_object kernel_object_store;
-__private_extern__ vm_object_t kernel_object = &kernel_object_store;
+vm_object_t kernel_object;
+
/*
* The submap object is used as a placeholder for vm_map_submap
return object;
}
+
+lck_grp_t vm_object_lck_grp;
+lck_grp_attr_t vm_object_lck_grp_attr;
+lck_attr_t vm_object_lck_attr;
+lck_attr_t kernel_object_lck_attr;
+
/*
* vm_object_bootstrap:
*
round_page_32(12*1024),
"vm objects");
+ queue_init(&vm_object_reaper_queue);
queue_init(&vm_object_cached_list);
mutex_init(&vm_object_cached_lock_data, 0);
for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
queue_init(&vm_object_hashtable[i]);
+ vm_object_init_lck_grp();
+
/*
* Fill in a template object, for quick initialization
*/
/* memq; Lock; init after allocation */
+ vm_object_template.memq.prev = NULL;
+ vm_object_template.memq.next = NULL;
+#if 0
+ /*
+ * We can't call vm_object_lock_init() here because that will
+ * allocate some memory and VM is not fully initialized yet.
+ * The lock will be initialized for each allocate object in
+ * _vm_object_allocate(), so we don't need to initialize it in
+ * the vm_object_template.
+ */
+ vm_object_lock_init(&vm_object_template);
+#endif
vm_object_template.size = 0;
vm_object_template.memq_hint = VM_PAGE_NULL;
vm_object_template.ref_count = 1;
vm_object_template.copy = VM_OBJECT_NULL;
vm_object_template.shadow = VM_OBJECT_NULL;
vm_object_template.shadow_offset = (vm_object_offset_t) 0;
- vm_object_template.cow_hint = ~(vm_offset_t)0;
- vm_object_template.true_share = FALSE;
-
vm_object_template.pager = MEMORY_OBJECT_NULL;
vm_object_template.paging_offset = 0;
vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
- /* msr_q; init after allocation */
-
vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC;
- vm_object_template.absent_count = 0;
vm_object_template.paging_in_progress = 0;
/* Begin bitfields */
vm_object_template.private = FALSE;
vm_object_template.pageout = FALSE;
vm_object_template.alive = TRUE;
- vm_object_template.purgable = VM_OBJECT_NONPURGABLE;
+ vm_object_template.purgable = VM_PURGABLE_DENY;
+ vm_object_template.shadowed = FALSE;
vm_object_template.silent_overwrite = FALSE;
vm_object_template.advisory_pageout = FALSE;
- vm_object_template.shadowed = FALSE;
+ vm_object_template.true_share = FALSE;
vm_object_template.terminating = FALSE;
+ vm_object_template.named = FALSE;
vm_object_template.shadow_severed = FALSE;
vm_object_template.phys_contiguous = FALSE;
vm_object_template.nophyscache = FALSE;
/* End bitfields */
- /* cache bitfields */
- vm_object_template.wimg_bits = VM_WIMG_DEFAULT;
-
- /* cached_list; init after allocation */
+ vm_object_template.cached_list.prev = NULL;
+ vm_object_template.cached_list.next = NULL;
+ vm_object_template.msr_q.prev = NULL;
+ vm_object_template.msr_q.next = NULL;
+
vm_object_template.last_alloc = (vm_object_offset_t) 0;
- vm_object_template.cluster_size = 0;
+ vm_object_template.sequential = (vm_object_offset_t) 0;
+ vm_object_template.pages_created = 0;
+ vm_object_template.pages_used = 0;
+
#if MACH_PAGEMAP
vm_object_template.existence_map = VM_EXTERNAL_NULL;
#endif /* MACH_PAGEMAP */
+ vm_object_template.cow_hint = ~(vm_offset_t)0;
#if MACH_ASSERT
vm_object_template.paging_object = VM_OBJECT_NULL;
#endif /* MACH_ASSERT */
+ /* cache bitfields */
+ vm_object_template.wimg_bits = VM_WIMG_DEFAULT;
+ vm_object_template.code_signed = FALSE;
+ vm_object_template.not_in_use = 0;
+#ifdef UPL_DEBUG
+ vm_object_template.uplq.prev = NULL;
+ vm_object_template.uplq.next = NULL;
+#endif /* UPL_DEBUG */
+#ifdef VM_PIP_DEBUG
+ bzero(&vm_object_template.pip_holders,
+ sizeof (vm_object_template.pip_holders));
+#endif /* VM_PIP_DEBUG */
+
+ vm_object_template.objq.next=NULL;
+ vm_object_template.objq.prev=NULL;
+
+
/*
* Initialize the "kernel object"
*/
kern_return_t kr;
thread_t thread;
- queue_init(&vm_object_reaper_queue);
kr = kernel_thread_start_priority(
(thread_continue_t) vm_object_reaper_thread,
NULL,
*/
}
-/* remove the typedef below when emergency work-around is taken out */
-typedef struct vnode_pager {
- memory_object_t pager;
- memory_object_t pager_handle; /* pager */
- memory_object_control_t control_handle; /* memory object's control handle */
- void *vnode_handle; /* vnode handle */
-} *vnode_pager_t;
+
+__private_extern__ void
+vm_object_init_lck_grp(void)
+{
+ /*
+ * initialze the vm_object lock world
+ */
+ lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
+ lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
+ lck_attr_setdefault(&vm_object_lck_attr);
+ lck_attr_setdefault(&kernel_object_lck_attr);
+ lck_attr_cleardebug(&kernel_object_lck_attr);
+}
+
#define MIGHT_NOT_CACHE_SHADOWS 1
#if MIGHT_NOT_CACHE_SHADOWS
*
* No object may be locked.
*/
+unsigned long vm_object_deallocate_shared_successes = 0;
+unsigned long vm_object_deallocate_shared_failures = 0;
+unsigned long vm_object_deallocate_shared_swap_failures = 0;
__private_extern__ void
vm_object_deallocate(
register vm_object_t object)
{
- boolean_t retry_cache_trim = FALSE;
- vm_object_t shadow = VM_OBJECT_NULL;
+ boolean_t retry_cache_trim = FALSE;
+ vm_object_t shadow = VM_OBJECT_NULL;
+ uint32_t try_failed_count = 0;
// if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */
// else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */
+ if (object == VM_OBJECT_NULL)
+ return;
+
+ if (object == kernel_object) {
+ vm_object_lock(kernel_object);
+ kernel_object->ref_count--;
+ if (kernel_object->ref_count == 0) {
+ panic("vm_object_deallocate: losing kernel_object\n");
+ }
+ vm_object_unlock(kernel_object);
+ return;
+ }
+
+ if (object->ref_count > 2 ||
+ (!object->named && object->ref_count > 1)) {
+ UInt32 original_ref_count;
+ volatile UInt32 *ref_count_p;
+ Boolean atomic_swap;
+
+ /*
+ * The object currently looks like it is not being
+ * kept alive solely by the reference we're about to release.
+ * Let's try and release our reference without taking
+ * all the locks we would need if we had to terminate the
+ * object (cache lock + exclusive object lock).
+ * Lock the object "shared" to make sure we don't race with
+ * anyone holding it "exclusive".
+ */
+ vm_object_lock_shared(object);
+ ref_count_p = (volatile UInt32 *) &object->ref_count;
+ original_ref_count = object->ref_count;
+ /*
+ * Test again as "ref_count" could have changed.
+ * "named" shouldn't change.
+ */
+ if (original_ref_count > 2 ||
+ (!object->named && original_ref_count > 1)) {
+ atomic_swap = OSCompareAndSwap(
+ original_ref_count,
+ original_ref_count - 1,
+ (UInt32 *) &object->ref_count);
+ if (atomic_swap == FALSE) {
+ vm_object_deallocate_shared_swap_failures++;
+ }
+
+ } else {
+ atomic_swap = FALSE;
+ }
+ vm_object_unlock(object);
+
+ if (atomic_swap) {
+ /* ref_count was updated atomically ! */
+ vm_object_deallocate_shared_successes++;
+ return;
+ }
+
+ /*
+ * Someone else updated the ref_count at the same
+ * time and we lost the race. Fall back to the usual
+ * slow but safe path...
+ */
+ vm_object_deallocate_shared_failures++;
+ }
while (object != VM_OBJECT_NULL) {
if (vm_object_lock_try(object))
break;
vm_object_cache_unlock();
- mutex_pause(); /* wait a bit */
+ try_failed_count++;
+
+ mutex_pause(try_failed_count); /* wait a bit */
}
assert(object->ref_count > 0);
memory_object_unmap(pager);
+ try_failed_count = 0;
for (;;) {
vm_object_cache_lock();
if (vm_object_lock_try(object))
break;
vm_object_cache_unlock();
- mutex_pause(); /* wait a bit */
+ try_failed_count++;
+
+ mutex_pause(try_failed_count); /* wait a bit */
}
assert(object->ref_count > 0);
}
/* terminate again. */
if ((object->ref_count > 1) || object->terminating) {
+ vm_object_lock_assert_exclusive(object);
object->ref_count--;
vm_object_res_deallocate(object);
vm_object_cache_unlock();
if (object->ref_count == 1 &&
object->shadow != VM_OBJECT_NULL) {
/*
- * We don't use this VM object anymore. We
- * would like to collapse it into its parent(s),
- * but we don't have any pointers back to these
- * parent object(s).
+ * There's only one reference left on this
+ * VM object. We can't tell if it's a valid
+ * one (from a mapping for example) or if this
+ * object is just part of a possibly stale and
+ * useless shadow chain.
+ * We would like to try and collapse it into
+ * its parent, but we don't have any pointers
+ * back to this parent object.
* But we can try and collapse this object with
* its own shadows, in case these are useless
* too...
+ * We can't bypass this object though, since we
+ * don't know if this last reference on it is
+ * meaningful or not.
*/
- vm_object_collapse(object, 0);
+ vm_object_collapse(object, 0, FALSE);
}
vm_object_unlock(object);
* Now it is safe to decrement reference count,
* and to return if reference count is > 0.
*/
+ vm_object_lock_assert_exclusive(object);
if (--object->ref_count > 0) {
vm_object_res_deallocate(object);
vm_object_unlock(object);
assert(object->pager_initialized);
assert(object->ref_count == 0);
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
/*
}
}
-boolean_t vm_object_terminate_remove_all = FALSE;
+#define VM_OBJ_TERM_STATS DEBUG
+#if VM_OBJ_TERM_STATS
+uint32_t vm_object_terminate_pages_freed = 0;
+uint32_t vm_object_terminate_pages_removed = 0;
+uint32_t vm_object_terminate_batches = 0;
+uint32_t vm_object_terminate_biggest_batch = 0;
+#endif /* VM_OBJ_TERM_STATS */
+
+#define V_O_T_MAX_BATCH 256
/*
* Routine: vm_object_terminate
{
register vm_page_t p;
vm_object_t shadow_object;
+ vm_page_t local_free_q;
+ int loop_count;
+#if VM_OBJ_TERM_STATS
+ uint32_t local_free_count;
+ uint32_t pages_removed;
+#endif /* VM_OBJ_TERM_STATS */
+
+#if VM_OBJ_TERM_STATS
+#define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count) \
+ MACRO_BEGIN \
+ if (_pages_removed) { \
+ hw_atomic_add(&vm_object_terminate_batches, 1); \
+ hw_atomic_add(&vm_object_terminate_pages_removed, \
+ _pages_removed); \
+ hw_atomic_add(&vm_object_terminate_pages_freed, \
+ _local_free_count); \
+ if (_local_free_count > \
+ vm_object_terminate_biggest_batch) { \
+ vm_object_terminate_biggest_batch = \
+ _local_free_count; \
+ } \
+ _local_free_count = 0; \
+ } \
+ MACRO_END
+#else /* VM_OBJ_TERM_STATS */
+#define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count)
+#endif /* VM_OBJ_TERM_STATS */
+
+#define VM_OBJ_TERM_FREELIST(_pages_removed, _local_free_count, _local_free_q) \
+ MACRO_BEGIN \
+ VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count); \
+ if (_local_free_q) { \
+ vm_page_free_list(_local_free_q); \
+ _local_free_q = VM_PAGE_NULL; \
+ } \
+ MACRO_END
+
+
XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n",
(integer_t)object, object->ref_count, 0, 0, 0);
+ local_free_q = VM_PAGE_NULL;
+#if VM_OBJ_TERM_STATS
+ local_free_count = 0;
+ pages_removed = 0;
+#endif /* VM_OBJ_TERM_STATS */
+
if (!object->pageout && (!object->temporary || object->can_persist)
&& (object->pager != NULL || object->shadow_severed)) {
vm_object_cache_unlock();
+ loop_count = V_O_T_MAX_BATCH;
+ vm_page_lock_queues();
while (!queue_empty(&object->memq)) {
+ if (--loop_count == 0) {
+ /*
+ * Free the pages we've reclaimed so far and
+ * take a little break to avoid hogging
+ * the page queues lock too long.
+ */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ mutex_yield(&vm_page_queue_lock);
+ loop_count = V_O_T_MAX_BATCH;
+ }
/*
* Clear pager_trusted bit so that the pages get yanked
* out of the object instead of cleaned in place. This
if (p->busy || p->cleaning) {
if(p->cleaning || p->absent) {
+ /* free the pages reclaimed so far */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
vm_object_paging_wait(object, THREAD_UNINT);
+ vm_page_lock_queues();
continue;
} else {
- panic("vm_object_terminate.3 0x%x 0x%x", object, p);
+ panic("vm_object_terminate.3 %p %p", object, p);
}
}
- vm_page_lock_queues();
p->busy = TRUE;
VM_PAGE_QUEUES_REMOVE(p);
- vm_page_unlock_queues();
+#if VM_OBJ_TERM_STATS
+ pages_removed++;
+#endif /* VM_OBJ_TERM_STATS */
if (p->absent || p->private) {
goto free_page;
}
- if (p->fictitious)
- panic("vm_object_terminate.4 0x%x 0x%x", object, p);
+ if (p->fictitious) {
+ if (p->phys_page == vm_page_guard_addr) {
+ goto free_page;
+ }
+ panic("vm_object_terminate.4 %p %p", object, p);
+ }
- if (!p->dirty)
+ if (!p->dirty && p->wpmapped)
p->dirty = pmap_is_modified(p->phys_page);
if ((p->dirty || p->precious) && !p->error && object->alive) {
+ /* free the pages reclaimed so far */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
vm_pageout_cluster(p); /* flush page */
vm_object_paging_wait(object, THREAD_UNINT);
XPR(XPR_VM_OBJECT,
"vm_object_terminate restart, object 0x%X ref %d\n",
(integer_t)object, object->ref_count, 0, 0, 0);
+ vm_page_lock_queues();
} else {
free_page:
- VM_PAGE_FREE(p);
+ /*
+ * Add this page to our list of reclaimed pages,
+ * to be freed later.
+ */
+ vm_page_free_prepare(p);
+ p->pageq.next = (queue_entry_t) local_free_q;
+ local_free_q = p;
+#if VM_OBJ_TERM_STATS
+ local_free_count++;
+#endif /* VM_OBJ_TERM_STATS */
}
}
+
+ /*
+ * Free the remaining reclaimed pages.
+ */
+ VM_OBJ_TERM_FREELIST(pages_removed,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
vm_object_unlock(object);
vm_object_cache_lock();
vm_object_lock(object);
* Make sure the object isn't already being terminated
*/
if(object->terminating) {
- object->ref_count -= 1;
+ vm_object_lock_assert_exclusive(object);
+ object->ref_count--;
assert(object->ref_count > 0);
vm_object_cache_unlock();
vm_object_unlock(object);
* cleaning it?
*/
if(object->ref_count != 1) {
- object->ref_count -= 1;
+ vm_object_lock_assert_exclusive(object);
+ object->ref_count--;
assert(object->ref_count > 0);
vm_object_res_deallocate(object);
vm_object_cache_unlock();
vm_object_unlock(shadow_object);
}
- if (FALSE && object->paging_in_progress != 0) {
+ if (object->paging_in_progress != 0) {
/*
* There are still some paging_in_progress references
* on this object, meaning that there are some paging
vm_object_reap_async(object);
vm_object_cache_unlock();
vm_object_unlock(object);
- return KERN_SUCCESS;
+ /*
+ * Return KERN_FAILURE to let the caller know that we
+ * haven't completed the termination and it can't drop this
+ * object's reference on its shadow object yet.
+ * The reaper thread will take care of that once it has
+ * completed this object's termination.
+ */
+ return KERN_FAILURE;
}
+
/* complete the VM object termination */
vm_object_reap(object);
object = VM_OBJECT_NULL;
/* cache lock and object lock were released by vm_object_reap() */
+ /*
+ * KERN_SUCCESS means that this object has been terminated
+ * and no longer needs its shadow object but still holds a
+ * reference on it.
+ * The caller is responsible for dropping that reference.
+ * We can't call vm_object_deallocate() here because that
+ * would create a recursion.
+ */
return KERN_SUCCESS;
}
{
memory_object_t pager;
vm_page_t p;
+ vm_page_t local_free_q;
+ int loop_count;
+#if VM_OBJ_TERM_STATS
+ uint32_t local_free_count;
+#endif /* VM_OBJ_TERM_STATS */
#if DEBUG
mutex_assert(&vm_object_cached_lock_data, MA_OWNED);
- mutex_assert(&object->Lock, MA_OWNED);
#endif /* DEBUG */
+ vm_object_lock_assert_exclusive(object);
+ assert(object->paging_in_progress == 0);
vm_object_reap_count++;
- /*
- * The pageout daemon might be playing with our pages.
- * Now that the object is dead, it won't touch any more
- * pages, but some pages might already be on their way out.
- * Hence, we wait until the active paging activities have
- * ceased before we break the association with the pager
- * itself.
- */
- while (object->paging_in_progress != 0) {
- vm_object_cache_unlock();
- vm_object_wait(object,
- VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
- THREAD_UNINT);
- vm_object_cache_lock();
- vm_object_lock(object);
- }
+ local_free_q = VM_PAGE_NULL;
+#if VM_OBJ_TERM_STATS
+ local_free_count = 0;
+#endif /* VM_OBJ_TERM_STATS */
- assert(object->paging_in_progress == 0);
pager = object->pager;
object->pager = MEMORY_OBJECT_NULL;
memory_object_control_disable(object->pager_control);
vm_object_cache_unlock();
+ vm_object_lock_assert_exclusive(object);
object->ref_count--;
#if TASK_SWAPPER
assert(object->res_count == 0);
assert (object->ref_count == 0);
+ /* remove from purgeable queue if it's on */
+ if (object->objq.next || object->objq.prev) {
+ purgeable_q_t queue = vm_purgeable_object_remove(object);
+ assert(queue);
+
+ /* Must take page lock for this - using it to protect token queue */
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(queue);
+
+ assert(queue->debug_count_objects>=0);
+ vm_page_unlock_queues();
+ }
+
/*
* Clean or free the pages, as appropriate.
* It is possible for us to find busy/absent pages,
} else if ((object->temporary && !object->can_persist) ||
(pager == MEMORY_OBJECT_NULL)) {
+ loop_count = V_O_T_MAX_BATCH;
+ vm_page_lock_queues();
while (!queue_empty(&object->memq)) {
+ if (--loop_count == 0) {
+ /*
+ * Free the pages we reclaimed so far
+ * and take a little break to avoid
+ * hogging the page queue lock too long
+ */
+ VM_OBJ_TERM_FREELIST(local_free_count,
+ local_free_count,
+ local_free_q);
+ mutex_yield(&vm_page_queue_lock);
+ loop_count = V_O_T_MAX_BATCH;
+ }
p = (vm_page_t) queue_first(&object->memq);
- VM_PAGE_CHECK(p);
- VM_PAGE_FREE(p);
+ vm_page_free_prepare(p);
+
+ assert(p->pageq.next == NULL && p->pageq.prev == NULL);
+ p->pageq.next = (queue_entry_t) local_free_q;
+ local_free_q = p;
+#if VM_OBJ_TERM_STATS
+ local_free_count++;
+#endif /* VM_OBJ_TERM_STATS */
}
+ /*
+ * Free the remaining reclaimed pages
+ */
+ VM_OBJ_TERM_FREELIST(local_free_count,
+ local_free_count,
+ local_free_q);
+ vm_page_unlock_queues();
} else if (!queue_empty(&object->memq)) {
panic("vm_object_reap: queue just emptied isn't");
}
vm_external_destroy(object->existence_map, object->size);
#endif /* MACH_PAGEMAP */
+ object->shadow = VM_OBJECT_NULL;
+
+ vm_object_lock_destroy(object);
/*
* Free the space for the object.
*/
{
#if DEBUG
mutex_assert(&vm_object_cached_lock_data, MA_OWNED);
- mutex_assert(&object->Lock, MA_OWNED);
#endif /* DEBUG */
+ vm_object_lock_assert_exclusive(object);
vm_object_reap_count_async++;
void
vm_object_reaper_thread(void)
{
- vm_object_t object;
+ vm_object_t object, shadow_object;
vm_object_cache_lock();
assert(object->terminating);
assert(!object->alive);
+ /*
+ * The pageout daemon might be playing with our pages.
+ * Now that the object is dead, it won't touch any more
+ * pages, but some pages might already be on their way out.
+ * Hence, we wait until the active paging activities have
+ * ceased before we break the association with the pager
+ * itself.
+ */
+ while (object->paging_in_progress != 0) {
+ vm_object_cache_unlock();
+ vm_object_wait(object,
+ VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
+ THREAD_UNINT);
+ vm_object_cache_lock();
+ vm_object_lock(object);
+ }
+
+ shadow_object =
+ object->pageout ? VM_OBJECT_NULL : object->shadow;
+
vm_object_reap(object);
/* cache is unlocked and object is no longer valid */
object = VM_OBJECT_NULL;
+ if (shadow_object != VM_OBJECT_NULL) {
+ /*
+ * Drop the reference "object" was holding on
+ * its shadow object.
+ */
+ vm_object_deallocate(shadow_object);
+ shadow_object = VM_OBJECT_NULL;
+ }
+
vm_object_cache_lock();
}
return(KERN_SUCCESS);
}
+#define VM_OBJ_DEACT_ALL_STATS DEBUG
+#if VM_OBJ_DEACT_ALL_STATS
+uint32_t vm_object_deactivate_all_pages_batches = 0;
+uint32_t vm_object_deactivate_all_pages_pages = 0;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
/*
* vm_object_deactivate_pages
*
register vm_object_t object)
{
register vm_page_t p;
-
+ int loop_count;
+#if VM_OBJ_DEACT_ALL_STATS
+ int pages_count;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+#define V_O_D_A_P_MAX_BATCH 256
+
+ loop_count = V_O_D_A_P_MAX_BATCH;
+#if VM_OBJ_DEACT_ALL_STATS
+ pages_count = 0;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+ vm_page_lock_queues();
queue_iterate(&object->memq, p, vm_page_t, listq) {
- vm_page_lock_queues();
- if (!p->busy)
+ if (--loop_count == 0) {
+#if VM_OBJ_DEACT_ALL_STATS
+ hw_atomic_add(&vm_object_deactivate_all_pages_batches,
+ 1);
+ hw_atomic_add(&vm_object_deactivate_all_pages_pages,
+ pages_count);
+ pages_count = 0;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+ mutex_yield(&vm_page_queue_lock);
+ loop_count = V_O_D_A_P_MAX_BATCH;
+ }
+ if (!p->busy && !p->throttled) {
+#if VM_OBJ_DEACT_ALL_STATS
+ pages_count++;
+#endif /* VM_OBJ_DEACT_ALL_STATS */
vm_page_deactivate(p);
- vm_page_unlock_queues();
+ }
+ }
+#if VM_OBJ_DEACT_ALL_STATS
+ if (pages_count) {
+ hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1);
+ hw_atomic_add(&vm_object_deactivate_all_pages_pages,
+ pages_count);
+ pages_count = 0;
}
+#endif /* VM_OBJ_DEACT_ALL_STATS */
+ vm_page_unlock_queues();
}
__private_extern__ void
m->precious = FALSE;
m->dirty = FALSE;
pmap_clear_modify(m->phys_page);
+#if MACH_PAGEMAP
vm_external_state_clr(object->existence_map, offset);
+#endif /* MACH_PAGEMAP */
}
- VM_PAGE_QUEUES_REMOVE(m);
- assert(!m->laundry);
- assert(m->object != kernel_object);
- assert(m->pageq.next == NULL &&
- m->pageq.prev == NULL);
- if(m->zero_fill) {
- queue_enter_first(
+ if (!m->throttled) {
+ VM_PAGE_QUEUES_REMOVE(m);
+
+ assert(!m->laundry);
+ assert(m->object != kernel_object);
+ assert(m->pageq.next == NULL &&
+ m->pageq.prev == NULL);
+
+ if(m->zero_fill) {
+ queue_enter_first(
&vm_page_queue_zf,
m, vm_page_t, pageq);
- } else {
- queue_enter_first(
- &vm_page_queue_inactive,
- m, vm_page_t, pageq);
- }
+ vm_zf_queue_count++;
+ } else {
+ queue_enter_first(
+ &vm_page_queue_inactive,
+ m, vm_page_t, pageq);
+ }
- m->inactive = TRUE;
- if (!m->fictitious)
- vm_page_inactive_count++;
+ m->inactive = TRUE;
+ if (!m->fictitious) {
+ vm_page_inactive_count++;
+ token_new_pagecount++;
+ } else {
+ assert(m->phys_page == vm_page_fictitious_addr);
+ }
- pages_moved++;
+ pages_moved++;
+ }
}
}
}
vm_object_lock(object);
+ if (object->phys_contiguous) {
+ if (pmap != NULL) {
+ vm_object_unlock(object);
+ pmap_protect(pmap, pmap_start, pmap_start + size, prot);
+ } else {
+ vm_object_offset_t phys_start, phys_end, phys_addr;
+
+ phys_start = object->shadow_offset + offset;
+ phys_end = phys_start + size;
+ assert(phys_start <= phys_end);
+ assert(phys_end <= object->shadow_offset + object->size);
+ vm_object_unlock(object);
+
+ for (phys_addr = phys_start;
+ phys_addr < phys_end;
+ phys_addr += PAGE_SIZE_64) {
+ pmap_page_protect(phys_addr >> 12, prot);
+ }
+ }
+ return;
+ }
+
assert(object->internal);
while (TRUE) {
if (!p->fictitious &&
(offset <= p->offset) && (p->offset < end)) {
- pmap_page_protect(p->phys_page,
- prot & ~p->page_lock);
+ pmap_page_protect(p->phys_page, prot);
}
}
}
target_off < end; target_off += PAGE_SIZE) {
p = vm_page_lookup(object, target_off);
if (p != VM_PAGE_NULL) {
- pmap_page_protect(p->phys_page,
- prot & ~p->page_lock);
+ pmap_page_protect(p->phys_page, prot);
}
}
}
vm_object_t new_object;
vm_object_offset_t new_offset;
- vm_object_offset_t src_lo_offset = src_offset;
- vm_object_offset_t src_hi_offset = src_offset + size;
+ struct vm_object_fault_info fault_info;
XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n",
src_object, src_offset, size, 0, 0);
* Prevent destruction of the source object while we copy.
*/
- assert(src_object->ref_count > 0);
- src_object->ref_count++;
- VM_OBJ_RES_INCR(src_object);
+ vm_object_reference_locked(src_object);
vm_object_unlock(src_object);
/*
new_object = vm_object_allocate(size);
new_offset = 0;
- vm_object_lock(new_object);
assert(size == trunc_page_64(size)); /* Will the loop terminate? */
+ fault_info.interruptible = interruptible;
+ fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info.user_tag = 0;
+ fault_info.lo_offset = src_offset;
+ fault_info.hi_offset = src_offset + size;
+ fault_info.no_cache = FALSE;
+
for ( ;
size != 0 ;
src_offset += PAGE_SIZE_64,
vm_page_t new_page;
vm_fault_return_t result;
+ vm_object_lock(new_object);
+
while ((new_page = vm_page_alloc(new_object, new_offset))
== VM_PAGE_NULL) {
+
+ vm_object_unlock(new_object);
+
if (!vm_page_wait(interruptible)) {
- vm_object_unlock(new_object);
vm_object_deallocate(new_object);
vm_object_deallocate(src_object);
*_result_object = VM_OBJECT_NULL;
return(MACH_SEND_INTERRUPTED);
}
+ vm_object_lock(new_object);
}
+ vm_object_unlock(new_object);
do {
vm_prot_t prot = VM_PROT_READ;
vm_object_lock(src_object);
vm_object_paging_begin(src_object);
+ fault_info.cluster_size = size;
+
XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0);
result = vm_fault_page(src_object, src_offset,
- VM_PROT_READ, FALSE, interruptible,
- src_lo_offset, src_hi_offset,
- VM_BEHAVIOR_SEQUENTIAL,
+ VM_PROT_READ, FALSE,
&prot, &_result_page, &top_page,
(int *)0,
- &error_code, FALSE, FALSE, NULL, 0);
+ &error_code, FALSE, FALSE, &fault_info);
switch(result) {
case VM_FAULT_SUCCESS:
* Let go of both pages (make them
* not busy, perform wakeup, activate).
*/
-
- new_page->busy = FALSE;
+ vm_object_lock(new_object);
new_page->dirty = TRUE;
+ PAGE_WAKEUP_DONE(new_page);
+ vm_object_unlock(new_object);
+
vm_object_lock(result_page->object);
PAGE_WAKEUP_DONE(result_page);
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
if (!result_page->active &&
- !result_page->inactive)
+ !result_page->inactive &&
+ !result_page->throttled)
vm_page_activate(result_page);
vm_page_activate(new_page);
vm_page_unlock_queues();
case VM_FAULT_INTERRUPTED:
vm_page_free(new_page);
- vm_object_unlock(new_object);
vm_object_deallocate(new_object);
vm_object_deallocate(src_object);
*_result_object = VM_OBJECT_NULL;
vm_page_lock_queues();
vm_page_free(new_page);
vm_page_unlock_queues();
- vm_object_unlock(new_object);
+
vm_object_deallocate(new_object);
vm_object_deallocate(src_object);
*_result_object = VM_OBJECT_NULL;
/*
* Lose the extra reference, and return our object.
*/
-
- vm_object_unlock(new_object);
vm_object_deallocate(src_object);
*_result_object = new_object;
return(KERN_SUCCESS);
* Leave object/offset unchanged.
*/
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
+ vm_object_reference_locked(object);
object->shadowed = TRUE;
vm_object_unlock(object);
kern_return_t kr;
vm_object_t copy;
boolean_t check_ready = FALSE;
+ uint32_t try_failed_count = 0;
/*
* If a copy is already in progress, wait and retry.
copy = src_object->copy;
if (!vm_object_lock_try(copy)) {
vm_object_unlock(src_object);
- mutex_pause(); /* wait a bit */
+
+ try_failed_count++;
+ mutex_pause(try_failed_count); /* wait a bit */
+
vm_object_lock(src_object);
goto Retry;
}
vm_object_copy_delayed(
vm_object_t src_object,
vm_object_offset_t src_offset,
- vm_object_size_t size)
+ vm_object_size_t size,
+ boolean_t src_object_shared)
{
vm_object_t new_copy = VM_OBJECT_NULL;
vm_object_t old_copy;
vm_page_t p;
vm_object_size_t copy_size = src_offset + size;
+
int collisions = 0;
/*
* The user-level memory manager wants to see all of the changes
/*
* Wait for paging in progress.
*/
- if (!src_object->true_share)
+ if (!src_object->true_share && src_object->paging_in_progress) {
+ if (src_object_shared == TRUE) {
+ vm_object_unlock(src_object);
+
+ vm_object_lock(src_object);
+ src_object_shared = FALSE;
+ }
vm_object_paging_wait(src_object, THREAD_UNINT);
-
+ }
/*
* See whether we can reuse the result of a previous
* copy operation.
old_copy = src_object->copy;
if (old_copy != VM_OBJECT_NULL) {
+ int lock_granted;
+
/*
* Try to get the locks (out of order)
*/
- if (!vm_object_lock_try(old_copy)) {
+ if (src_object_shared == TRUE)
+ lock_granted = vm_object_lock_try_shared(old_copy);
+ else
+ lock_granted = vm_object_lock_try(old_copy);
+
+ if (!lock_granted) {
vm_object_unlock(src_object);
- mutex_pause();
- /* Heisenberg Rules */
- copy_delayed_lock_collisions++;
if (collisions++ == 0)
copy_delayed_lock_contention++;
+ mutex_pause(collisions);
+
+ /* Heisenberg Rules */
+ copy_delayed_lock_collisions++;
if (collisions > copy_delayed_max_collisions)
copy_delayed_max_collisions = collisions;
- vm_object_lock(src_object);
+ if (src_object_shared == TRUE)
+ vm_object_lock_shared(src_object);
+ else
+ vm_object_lock(src_object);
+
goto Retry;
}
*/
if (old_copy->size < copy_size) {
+ if (src_object_shared == TRUE) {
+ vm_object_unlock(old_copy);
+ vm_object_unlock(src_object);
+
+ vm_object_lock(src_object);
+ src_object_shared = FALSE;
+ goto Retry;
+ }
/*
* We can't perform a delayed copy if any of the
* pages in the extended range are wired (because
* go ahead and protect them.
*/
copy_delayed_protect_iterate++;
+
queue_iterate(&src_object->memq, p, vm_page_t, listq) {
if (!p->fictitious &&
p->offset >= old_copy->size &&
return VM_OBJECT_NULL;
} else {
pmap_page_protect(p->phys_page,
- (VM_PROT_ALL & ~VM_PROT_WRITE &
- ~p->page_lock));
+ (VM_PROT_ALL & ~VM_PROT_WRITE));
}
}
}
old_copy->size = copy_size;
}
-
- vm_object_reference_locked(old_copy);
+ if (src_object_shared == TRUE)
+ vm_object_reference_shared(old_copy);
+ else
+ vm_object_reference_locked(old_copy);
vm_object_unlock(old_copy);
vm_object_unlock(src_object);
vm_object_unlock(new_copy);
vm_object_deallocate(new_copy);
}
-
return(old_copy);
}
+
+
/*
* Adjust the size argument so that the newly-created
new_copy = vm_object_allocate(copy_size);
vm_object_lock(src_object);
vm_object_lock(new_copy);
+
+ src_object_shared = FALSE;
goto Retry;
}
new_copy->size = copy_size;
new_copy = vm_object_allocate(copy_size);
vm_object_lock(src_object);
vm_object_lock(new_copy);
+
+ src_object_shared = FALSE;
goto Retry;
}
* wired, then go ahead and protect them.
*/
copy_delayed_protect_iterate++;
+
queue_iterate(&src_object->memq, p, vm_page_t, listq) {
if (!p->fictitious && p->offset < copy_size) {
if (p->wire_count > 0) {
return VM_OBJECT_NULL;
} else {
pmap_page_protect(p->phys_page,
- (VM_PROT_ALL & ~VM_PROT_WRITE &
- ~p->page_lock));
+ (VM_PROT_ALL & ~VM_PROT_WRITE));
}
}
}
-
if (old_copy != VM_OBJECT_NULL) {
/*
* Make the old copy-object shadow the new one.
* object.
*/
- src_object->ref_count--; /* remove ref. from old_copy */
+ /* remove ref. from old_copy */
+ vm_object_lock_assert_exclusive(src_object);
+ src_object->ref_count--;
assert(src_object->ref_count > 0);
+ vm_object_lock_assert_exclusive(old_copy);
old_copy->shadow = new_copy;
+ vm_object_lock_assert_exclusive(new_copy);
assert(new_copy->ref_count > 0);
new_copy->ref_count++; /* for old_copy->shadow ref. */
/*
* Point the new copy at the existing object.
*/
+ vm_object_lock_assert_exclusive(new_copy);
new_copy->shadow = src_object;
new_copy->shadow_offset = 0;
new_copy->shadowed = TRUE; /* caller must set needs_copy */
- assert(src_object->ref_count > 0);
- src_object->ref_count++;
- VM_OBJ_RES_INCR(src_object);
+
+ vm_object_lock_assert_exclusive(src_object);
+ vm_object_reference_locked(src_object);
src_object->copy = new_copy;
vm_object_unlock(src_object);
vm_object_unlock(new_copy);
"vm_object_copy_delayed: used copy object %X for source %X\n",
(integer_t)new_copy, (integer_t)src_object, 0, 0, 0);
- return(new_copy);
+ return new_copy;
}
/*
{
boolean_t result;
boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */
+ boolean_t object_lock_shared = FALSE;
memory_object_copy_strategy_t copy_strategy;
assert(src_object != VM_OBJECT_NULL);
- vm_object_lock(src_object);
+ copy_strategy = src_object->copy_strategy;
+
+ if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
+ vm_object_lock_shared(src_object);
+ object_lock_shared = TRUE;
+ } else
+ vm_object_lock(src_object);
/*
* The copy strategy is only valid if the memory manager
while (!src_object->internal && !src_object->pager_ready) {
wait_result_t wait_result;
+ if (object_lock_shared == TRUE) {
+ vm_object_unlock(src_object);
+ vm_object_lock(src_object);
+ object_lock_shared = FALSE;
+ continue;
+ }
wait_result = vm_object_sleep( src_object,
VM_OBJECT_EVENT_PAGER_READY,
interruptible);
}
}
- copy_strategy = src_object->copy_strategy;
-
/*
* Use the appropriate copy strategy.
*/
switch (copy_strategy) {
case MEMORY_OBJECT_COPY_DELAY:
*dst_object = vm_object_copy_delayed(src_object,
- src_offset, size);
+ src_offset, size, object_lock_shared);
if (*dst_object != VM_OBJECT_NULL) {
*dst_offset = src_offset;
*dst_needs_copy = TRUE;
register vm_object_t result;
source = *object;
+#if 0
+ /*
+ * XXX FBDP
+ * This assertion is valid but it gets triggered by Rosetta for example
+ * due to a combination of vm_remap() that changes a VM object's
+ * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY)
+ * that then sets "needs_copy" on its map entry. This creates a
+ * mapping situation that VM should never see and doesn't know how to
+ * handle.
+ * It's not clear if this can create any real problem but we should
+ * look into fixing this, probably by having vm_protect(VM_PROT_COPY)
+ * do more than just set "needs_copy" to handle the copy-on-write...
+ * In the meantime, let's disable the assertion.
+ */
assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
+#endif
/*
* Determine if we really need a shadow.
* termination routines and vm_object_collapse.]
*/
-#if 0
-static void vm_object_abort_activity(
- vm_object_t object);
/*
- * Routine: vm_object_abort_activity [internal use only]
+ * Routine: vm_object_enter
* Purpose:
- * Abort paging requests pending on this object.
- * In/out conditions:
- * The object is locked on entry and exit.
+ * Find a VM object corresponding to the given
+ * pager; if no such object exists, create one,
+ * and initialize the pager.
*/
-static void
-vm_object_abort_activity(
- vm_object_t object)
+vm_object_t
+vm_object_enter(
+ memory_object_t pager,
+ vm_object_size_t size,
+ boolean_t internal,
+ boolean_t init,
+ boolean_t named)
{
- register
- vm_page_t p;
- vm_page_t next;
-
- XPR(XPR_VM_OBJECT, "vm_object_abort_activity, object 0x%X\n",
- (integer_t)object, 0, 0, 0, 0);
-
- /*
- * Abort all activity that would be waiting
- * for a result on this memory object.
- *
- * We could also choose to destroy all pages
- * that we have in memory for this object, but
- * we don't.
- */
-
- p = (vm_page_t) queue_first(&object->memq);
- while (!queue_end(&object->memq, (queue_entry_t) p)) {
- next = (vm_page_t) queue_next(&p->listq);
+ register vm_object_t object;
+ vm_object_t new_object;
+ boolean_t must_init;
+ vm_object_hash_entry_t entry, new_entry;
+ uint32_t try_failed_count = 0;
- /*
- * If it's being paged in, destroy it.
- * If an unlock has been requested, start it again.
- */
+ if (pager == MEMORY_OBJECT_NULL)
+ return(vm_object_allocate(size));
- if (p->busy && p->absent) {
- VM_PAGE_FREE(p);
- }
- else {
- if (p->unlock_request != VM_PROT_NONE)
- p->unlock_request = VM_PROT_NONE;
- PAGE_WAKEUP(p);
- }
-
- p = next;
- }
+ new_object = VM_OBJECT_NULL;
+ new_entry = VM_OBJECT_HASH_ENTRY_NULL;
+ must_init = init;
/*
- * Wake up threads waiting for the memory object to
- * become ready.
+ * Look for an object associated with this port.
*/
-
- object->pager_ready = TRUE;
- vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
-}
-
-/*
- * Routine: vm_object_pager_dead
- *
- * Purpose:
- * A port is being destroy, and the IPC kobject code
- * can't tell if it represents a pager port or not.
- * So this function is called each time it sees a port
- * die.
- * THIS IS HORRIBLY INEFFICIENT. We should only call
- * this routine if we had requested a notification on
- * the port.
- */
-
-__private_extern__ void
-vm_object_pager_dead(
- ipc_port_t pager)
-{
- vm_object_t object;
- vm_object_hash_entry_t entry;
-
- /*
- * Perform essentially the same operations as in vm_object_lookup,
- * except that this time we look up based on the memory_object
- * port, not the control port.
- */
- vm_object_cache_lock();
- entry = vm_object_hash_lookup(pager, FALSE);
- if (entry == VM_OBJECT_HASH_ENTRY_NULL ||
- entry->object == VM_OBJECT_NULL) {
- vm_object_cache_unlock();
- return;
- }
-
- object = entry->object;
- entry->object = VM_OBJECT_NULL;
-
- vm_object_lock(object);
- if (object->ref_count == 0) {
- XPR(XPR_VM_OBJECT_CACHE,
- "vm_object_destroy: removing %x from cache, head (%x, %x)\n",
- (integer_t)object,
- (integer_t)vm_object_cached_list.next,
- (integer_t)vm_object_cached_list.prev, 0,0);
-
- queue_remove(&vm_object_cached_list, object,
- vm_object_t, cached_list);
- vm_object_cached_count--;
- }
- object->ref_count++;
- vm_object_res_reference(object);
-
- object->can_persist = FALSE;
-
- assert(object->pager == pager);
-
- /*
- * Remove the pager association.
- *
- * Note that the memory_object itself is dead, so
- * we don't bother with it.
- */
-
- object->pager = MEMORY_OBJECT_NULL;
-
- vm_object_unlock(object);
- vm_object_cache_unlock();
-
- vm_object_pager_wakeup(pager);
-
- /*
- * Release the pager reference. Note that there's no
- * point in trying the memory_object_terminate call
- * because the memory_object itself is dead. Also
- * release the memory_object_control reference, since
- * the pager didn't do that either.
- */
-
- memory_object_deallocate(pager);
- memory_object_control_deallocate(object->pager_request);
-
-
- /*
- * Restart pending page requests
- */
- vm_object_lock(object);
- vm_object_abort_activity(object);
- vm_object_unlock(object);
-
- /*
- * Lose the object reference.
- */
-
- vm_object_deallocate(object);
-}
-#endif
-
-/*
- * Routine: vm_object_enter
- * Purpose:
- * Find a VM object corresponding to the given
- * pager; if no such object exists, create one,
- * and initialize the pager.
- */
-vm_object_t
-vm_object_enter(
- memory_object_t pager,
- vm_object_size_t size,
- boolean_t internal,
- boolean_t init,
- boolean_t named)
-{
- register vm_object_t object;
- vm_object_t new_object;
- boolean_t must_init;
- vm_object_hash_entry_t entry, new_entry;
-
- if (pager == MEMORY_OBJECT_NULL)
- return(vm_object_allocate(size));
-
- new_object = VM_OBJECT_NULL;
- new_entry = VM_OBJECT_HASH_ENTRY_NULL;
- must_init = init;
-
- /*
- * Look for an object associated with this port.
- */
-
+Retry:
vm_object_cache_lock();
do {
entry = vm_object_hash_lookup(pager, FALSE);
assert(object != VM_OBJECT_NULL);
if (!must_init) {
- vm_object_lock(object);
+ if (!vm_object_lock_try(object)) {
+
+ vm_object_cache_unlock();
+
+ try_failed_count++;
+ mutex_pause(try_failed_count); /* wait a bit */
+
+ goto Retry;
+ }
assert(!internal || object->internal);
if (named) {
assert(!object->named);
vm_object_t, cached_list);
vm_object_cached_count--;
}
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
vm_object_res_reference(object);
vm_object_unlock(object);
- VM_STAT(hits++);
+ VM_STAT_INCR(hits);
}
assert(object->ref_count > 0);
- VM_STAT(lookups++);
+ VM_STAT_INCR(lookups);
vm_object_cache_unlock();
*/
{
memory_object_default_t dmm;
- vm_size_t cluster_size;
/* acquire a reference for the default memory manager */
- dmm = memory_manager_default_reference(&cluster_size);
- assert(cluster_size >= PAGE_SIZE);
+ dmm = memory_manager_default_reference();
- object->cluster_size = cluster_size; /* XXX ??? */
assert(object->temporary);
/* create our new memory object */
static boolean_t vm_object_collapse_allowed = TRUE;
static boolean_t vm_object_bypass_allowed = TRUE;
+#if MACH_PAGEMAP
static int vm_external_discarded;
static int vm_external_collapsed;
+#endif
unsigned long vm_object_collapse_encrypted = 0;
/*
* ENCRYPTED SWAP:
* The encryption key includes the "pager" and the
- * "paging_offset". These might not be the same in
- * the new object, so we can't just move an encrypted
- * page from one object to the other. We can't just
- * decrypt the page here either, because that would drop
+ * "paging_offset". These will not change during the
+ * object collapse, so we can just move an encrypted
+ * page from one object to the other in this case.
+ * We can't decrypt the page here, since we can't drop
* the object lock.
- * The caller should check for encrypted pages before
- * attempting to collapse.
*/
- ASSERT_PAGE_DECRYPTED(p);
-
+ if (p->encrypted) {
+ vm_object_collapse_encrypted++;
+ }
pp = vm_page_lookup(object, new_offset);
if (pp == VM_PAGE_NULL) {
* Move the backing object's page up.
*/
- vm_page_rename(p, object, new_offset);
+ vm_page_rename(p, object, new_offset, TRUE);
#if MACH_PAGEMAP
} else if (pp->absent) {
*/
VM_PAGE_FREE(pp);
- vm_page_rename(p, object, new_offset);
+ vm_page_rename(p, object, new_offset, TRUE);
#endif /* MACH_PAGEMAP */
} else {
assert(! pp->absent);
}
#if !MACH_PAGEMAP
- assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL
+ assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL))
|| (!backing_object->pager_created
- && backing_object->pager == MEMORY_OBJECT_NULL));
+ && (backing_object->pager == MEMORY_OBJECT_NULL)));
#else
assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL);
#endif /* !MACH_PAGEMAP */
object->pager_control = backing_object->pager_control;
object->pager_ready = backing_object->pager_ready;
object->pager_initialized = backing_object->pager_initialized;
- object->cluster_size = backing_object->cluster_size;
object->paging_offset =
backing_object->paging_offset + backing_offset;
if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n",
(integer_t)backing_object, 0,0,0,0);
+ vm_object_lock_destroy(backing_object);
+
zfree(vm_object_zone, backing_object);
object_collapses++;
* in the chain.
*/
+ vm_object_lock_assert_exclusive(backing_object);
+
#if TASK_SWAPPER
/*
* Do object reference in-line to
*/
if (backing_object->shadow != VM_OBJECT_NULL) {
vm_object_lock(backing_object->shadow);
+ vm_object_lock_assert_exclusive(backing_object->shadow);
backing_object->shadow->ref_count++;
if (object->res_count != 0)
vm_object_res_reference(backing_object->shadow);
#endif
*/
if (backing_object->ref_count > 1) {
+ vm_object_lock_assert_exclusive(backing_object);
backing_object->ref_count--;
#if TASK_SWAPPER
if (object->res_count != 0)
static unsigned long vm_object_collapse_objects = 0;
static unsigned long vm_object_collapse_do_collapse = 0;
static unsigned long vm_object_collapse_do_bypass = 0;
+static unsigned long vm_object_collapse_delays = 0;
__private_extern__ void
vm_object_collapse(
register vm_object_t object,
- register vm_object_offset_t hint_offset)
+ register vm_object_offset_t hint_offset,
+ boolean_t can_bypass)
{
register vm_object_t backing_object;
register unsigned int rcount;
register unsigned int size;
- vm_object_offset_t collapse_min_offset;
- vm_object_offset_t collapse_max_offset;
- vm_page_t page;
vm_object_t original_object;
vm_object_collapse_calls++;
- if (! vm_object_collapse_allowed && ! vm_object_bypass_allowed) {
+ if (! vm_object_collapse_allowed &&
+ ! (can_bypass && vm_object_bypass_allowed)) {
return;
}
* No pages in the object are currently
* being paged out, and
*/
- if (object->paging_in_progress != 0 ||
- object->absent_count != 0) {
+ if (object->paging_in_progress != 0) {
/* try and collapse the rest of the shadow chain */
vm_object_lock(backing_object);
if (object != original_object) {
return;
}
- /*
- * ENCRYPTED SWAP
- * We can't collapse the object if it contains
- * any encypted page, because the encryption key
- * includes the <object,offset> info. We can't
- * drop the object lock in vm_object_do_collapse()
- * so we can't decrypt the page there either.
- */
- if (vm_pages_encrypted) {
- collapse_min_offset = object->shadow_offset;
- collapse_max_offset =
- object->shadow_offset + object->size;
- queue_iterate(&backing_object->memq,
- page, vm_page_t, listq) {
- if (page->encrypted &&
- (page->offset >=
- collapse_min_offset) &&
- (page->offset <
- collapse_max_offset)) {
- /*
- * We found an encrypted page
- * in the backing object,
- * within the range covered
- * by the parent object: we can
- * not collapse them.
- */
- vm_object_collapse_encrypted++;
- vm_object_cache_unlock();
- goto try_bypass;
- }
- }
- }
-
/*
* Collapse the object with its backing
* object, and try again with the object's
continue;
}
- try_bypass:
/*
* Collapsing the backing object was not possible
* or permitted, so let's try bypassing it.
*/
- if (! vm_object_bypass_allowed) {
+ if (! (can_bypass && vm_object_bypass_allowed)) {
/* try and collapse the rest of the shadow chain */
if (object != original_object) {
vm_object_unlock(object);
backing_offset = object->shadow_offset;
backing_rcount = backing_object->resident_page_count;
+#if MACH_PAGEMAP
#define EXISTS_IN_OBJECT(obj, off, rc) \
(vm_external_state_get((obj)->existence_map, \
(vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \
((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
+#else
+#define EXISTS_IN_OBJECT(obj, off, rc) \
+ (((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
+#endif /* MACH_PAGEMAP */
/*
* Check the hint location first
* double-decrement the rcount. We also may or
* may not have found the
*/
- if (backing_rcount && size >
- ((backing_object->existence_map) ?
- backing_rcount : (backing_rcount >> 1))) {
+ if (backing_rcount &&
+#if MACH_PAGEMAP
+ size > ((backing_object->existence_map) ?
+ backing_rcount : (backing_rcount >> 1))
+#else
+ size > (backing_rcount >> 1)
+#endif /* MACH_PAGEMAP */
+ ) {
unsigned int rc = rcount;
vm_page_t p;
do {
/* Until we get more than one lookup lock */
if (lookups > 256) {
+ vm_object_collapse_delays++;
lookups = 0;
- delay(1);
+ mutex_pause(0);
}
offset = (p->offset - backing_offset);
* Walk through the offsets looking for pages in the
* backing object that show through to the object.
*/
+#if MACH_PAGEMAP
if (backing_rcount || backing_object->existence_map) {
+#else
+ if (backing_rcount) {
+#endif /* MACH_PAGEMAP */
offset = hint_offset;
while((offset =
/* Until we get more than one lookup lock */
if (lookups > 256) {
+ vm_object_collapse_delays++;
lookups = 0;
- delay(1);
+ mutex_pause(0);
}
if (EXISTS_IN_OBJECT(backing_object, offset +
p = vm_page_lookup(object, start);
if (p != VM_PAGE_NULL) {
assert(!p->cleaning && !p->pageout);
- if (!p->fictitious)
+ if (!p->fictitious && p->pmapped)
pmap_disconnect(p->phys_page);
VM_PAGE_FREE(p);
}
next = (vm_page_t) queue_next(&p->listq);
if ((start <= p->offset) && (p->offset < end)) {
assert(!p->cleaning && !p->pageout);
- if (!p->fictitious)
+ if (!p->fictitious && p->pmapped)
pmap_disconnect(p->phys_page);
VM_PAGE_FREE(p);
}
/*
* Try to collapse the object first
*/
- vm_object_collapse(prev_object, prev_offset);
+ vm_object_collapse(prev_object, prev_offset, TRUE);
/*
* Can't coalesce if pages not mapped to
* . paged out
* . shadows another object
* . has a copy elsewhere
- * . is purgable
+ * . is purgeable
* . paging references (pages might be in page-list)
*/
(prev_object->shadow != VM_OBJECT_NULL) ||
(prev_object->copy != VM_OBJECT_NULL) ||
(prev_object->true_share != FALSE) ||
- (prev_object->purgable != VM_OBJECT_NONPURGABLE) ||
+ (prev_object->purgable != VM_PURGABLE_DENY) ||
(prev_object->paging_in_progress != 0)) {
vm_object_unlock(prev_object);
return(FALSE);
* vm_object_print: [ debug ]
*/
void
-vm_object_print(
- db_addr_t db_addr,
- __unused boolean_t have_addr,
- __unused int arg_count,
- __unused char *modif)
+vm_object_print(db_expr_t db_addr, __unused boolean_t have_addr,
+ __unused db_expr_t arg_count, __unused char *modif)
{
vm_object_t object;
register vm_page_t p;
db_indent += 2;
iprintf("size=0x%x", object->size);
- printf(", cluster=0x%x", object->cluster_size);
printf(", memq_hint=%p", object->memq_hint);
printf(", ref_count=%d\n", object->ref_count);
iprintf("");
printf("?");
}
printf("]");
- printf(", absent_count=%d\n", object->absent_count);
iprintf("all_wanted=0x%x<", object->all_wanted);
s = "";
printf("%spaging", s);
s = ",";
}
- if (vm_object_wanted(object, VM_OBJECT_EVENT_ABSENT_COUNT)) {
- printf("%sabsent", s);
- s = ",";
- }
if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) {
printf("%slock", s);
s = ",";
(object->pageout ? "" : "!"),
(object->internal ? "internal" : "external"),
(object->temporary ? "temporary" : "permanent"));
- iprintf("%salive, %spurgable, %spurgable_volatile, %spurgable_empty, %sshadowed, %scached, %sprivate\n",
+ iprintf("%salive, %spurgeable, %spurgeable_volatile, %spurgeable_empty, %sshadowed, %scached, %sprivate\n",
(object->alive ? "" : "!"),
- ((object->purgable != VM_OBJECT_NONPURGABLE) ? "" : "!"),
- ((object->purgable == VM_OBJECT_PURGABLE_VOLATILE) ? "" : "!"),
- ((object->purgable == VM_OBJECT_PURGABLE_EMPTY) ? "" : "!"),
+ ((object->purgable != VM_PURGABLE_DENY) ? "" : "!"),
+ ((object->purgable == VM_PURGABLE_VOLATILE) ? "" : "!"),
+ ((object->purgable == VM_PURGABLE_EMPTY) ? "" : "!"),
(object->shadowed ? "" : "!"),
(vm_object_cached(object) ? "" : "!"),
(object->private ? "" : "!"));
task_t task;
vm_map_t map;
vm_map_entry_t entry;
- processor_set_t pset = &default_pset;
boolean_t found = FALSE;
- queue_iterate(&pset->tasks, task, task_t, pset_tasks) {
+ queue_iterate(&tasks, task, task_t, tasks) {
map = task->map;
for (entry = vm_map_first_entry(map);
entry && entry != vm_map_to_entry(map);
m = vm_page_lookup(object, base_offset);
if(m != VM_PAGE_NULL) {
if(m->fictitious) {
- vm_page_lock_queues();
- m->fictitious = FALSE;
- m->private = TRUE;
- m->phys_page = base_page;
- if(!m->busy) {
- m->busy = TRUE;
- }
- if(!m->absent) {
- m->absent = TRUE;
- object->absent_count++;
+ if (m->phys_page !=
+ vm_page_guard_addr) {
+ vm_page_lockspin_queues();
+ m->fictitious = FALSE;
+ m->private = TRUE;
+ m->phys_page = base_page;
+ if(!m->busy) {
+ m->busy = TRUE;
+ }
+ if(!m->absent) {
+ m->absent = TRUE;
+ }
+ m->list_req_pending = TRUE;
+ vm_page_unlock_queues();
}
- m->list_req_pending = TRUE;
- vm_page_unlock_queues();
} else if (m->phys_page != base_page) {
- /* pmap call to clear old mapping */
- pmap_disconnect(m->phys_page);
+ if (m->pmapped) {
+ /*
+ * pmap call to clear old mapping
+ */
+ pmap_disconnect(m->phys_page);
+ }
m->phys_page = base_page;
}
while ((m = vm_page_grab_fictitious())
== VM_PAGE_NULL)
vm_page_more_fictitious();
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
m->fictitious = FALSE;
m->private = TRUE;
m->phys_page = base_page;
m->list_req_pending = TRUE;
m->absent = TRUE;
m->unusual = TRUE;
- object->absent_count++;
vm_page_unlock_queues();
vm_page_insert(m, object, base_offset);
}
* memory_object_free_from_cache:
*
* Walk the vm_object cache list, removing and freeing vm_objects
- * which are backed by the pager identified by the caller, (pager_id).
+ * which are backed by the pager identified by the caller, (pager_ops).
* Remove up to "count" objects, if there are that may available
* in the cache.
*
__private_extern__ kern_return_t
memory_object_free_from_cache(
__unused host_t host,
- int *pager_id,
+ memory_object_pager_ops_t pager_ops,
int *count)
{
queue_iterate(&vm_object_cached_list, object,
vm_object_t, cached_list) {
- if (object->pager && (pager_id == object->pager->pager)) {
+ if (object->pager &&
+ (pager_ops == object->pager->mo_pager_ops)) {
vm_object_lock(object);
queue_remove(&vm_object_cached_list, object,
vm_object_t, cached_list);
assert(object->pager_initialized);
assert(object->ref_count == 0);
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
/*
vm_object_cache_unlock();
object->named = TRUE;
+ vm_object_lock_assert_exclusive(object);
object->ref_count++;
vm_object_res_reference(object);
while (!object->pager_ready) {
}
return KERN_SUCCESS;
} else {
+ vm_object_lock_assert_exclusive(object);
object->ref_count--;
assert(object->ref_count > 0);
if(original_object)
}
/*
- * Empty a purgable object by grabbing the physical pages assigned to it and
+ * Empty a purgeable object by grabbing the physical pages assigned to it and
* putting them on the free queue without writing them to backing store, etc.
* When the pages are next touched they will be demand zero-fill pages. We
* skip pages which are busy, being paged in/out, wired, etc. We do _not_
* skip referenced/dirty pages, pages on the active queue, etc. We're more
- * than happy to grab these since this is a purgable object. We mark the
+ * than happy to grab these since this is a purgeable object. We mark the
* object as "empty" after reaping its pages.
*
* On entry the object and page queues are locked, the object must be a
- * purgable object with no delayed copies pending.
+ * purgeable object with no delayed copies pending.
*/
unsigned int
vm_object_purge(vm_object_t object)
#define PURGE_LOOP_QUOTA 100
num_purged_pages = 0;
- if (object->purgable == VM_OBJECT_NONPURGABLE)
+ if (object->purgable == VM_PURGABLE_DENY)
return num_purged_pages;
- object->purgable = VM_OBJECT_PURGABLE_EMPTY;
+ assert(object->purgable != VM_PURGABLE_NONVOLATILE);
+ object->purgable = VM_PURGABLE_EMPTY;
assert(object->copy == VM_OBJECT_NULL);
assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
local_freeq = VM_PAGE_NULL;
local_freed = 0;
}
- vm_page_unlock_queues();
- mutex_pause();
- vm_page_lock_queues();
+ mutex_yield(&vm_page_queue_lock);
/* resume with the current page and a new quota */
purge_loop_quota = PURGE_LOOP_QUOTA;
continue;
}
- if (p->tabled) {
- /* clean up the object/offset table */
- vm_page_remove(p);
- }
- if (p->absent) {
- /* update the object's count of absent pages */
- vm_object_absent_release(object);
- }
+ assert(!p->laundry);
+ assert(p->object != kernel_object);
/* we can discard this page */
/* advertize that this page is in a transition state */
p->busy = TRUE;
- if (p->no_isync == TRUE) {
- /* the page hasn't been mapped yet */
- /* (optimization to delay the i-cache sync) */
- } else {
+ if (p->pmapped == TRUE) {
/* unmap the page */
int refmod_state;
vm_page_purged_count++;
}
- /* remove page from active or inactive queue... */
- VM_PAGE_QUEUES_REMOVE(p);
+ vm_page_free_prepare(p);
/* ... and put it on our queue of pages to free */
- assert(!p->laundry);
- assert(p->object != kernel_object);
assert(p->pageq.next == NULL &&
p->pageq.prev == NULL);
p->pageq.next = (queue_entry_t) local_freeq;
}
/*
- * vm_object_purgable_control() allows the caller to control and investigate the
- * state of a purgable object. A purgable object is created via a call to
- * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgable object will
- * never be coalesced with any other object -- even other purgable objects --
- * and will thus always remain a distinct object. A purgable object has
+ * vm_object_purgeable_control() allows the caller to control and investigate the
+ * state of a purgeable object. A purgeable object is created via a call to
+ * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will
+ * never be coalesced with any other object -- even other purgeable objects --
+ * and will thus always remain a distinct object. A purgeable object has
* special semantics when its reference count is exactly 1. If its reference
- * count is greater than 1, then a purgable object will behave like a normal
+ * count is greater than 1, then a purgeable object will behave like a normal
* object and attempts to use this interface will result in an error return
* of KERN_INVALID_ARGUMENT.
*
- * A purgable object may be put into a "volatile" state which will make the
+ * A purgeable object may be put into a "volatile" state which will make the
* object's pages elligable for being reclaimed without paging to backing
* store if the system runs low on memory. If the pages in a volatile
- * purgable object are reclaimed, the purgable object is said to have been
- * "emptied." When a purgable object is emptied the system will reclaim as
+ * purgeable object are reclaimed, the purgeable object is said to have been
+ * "emptied." When a purgeable object is emptied the system will reclaim as
* many pages from the object as it can in a convenient manner (pages already
* en route to backing store or busy for other reasons are left as is). When
- * a purgable object is made volatile, its pages will generally be reclaimed
+ * a purgeable object is made volatile, its pages will generally be reclaimed
* before other pages in the application's working set. This semantic is
* generally used by applications which can recreate the data in the object
* faster than it can be paged in. One such example might be media assets
* which can be reread from a much faster RAID volume.
*
- * A purgable object may be designated as "non-volatile" which means it will
+ * A purgeable object may be designated as "non-volatile" which means it will
* behave like all other objects in the system with pages being written to and
* read from backing store as needed to satisfy system memory needs. If the
* object was emptied before the object was made non-volatile, that fact will
- * be returned as the old state of the purgable object (see
+ * be returned as the old state of the purgeable object (see
* VM_PURGABLE_SET_STATE below). In this case, any pages of the object which
* were reclaimed as part of emptying the object will be refaulted in as
* zero-fill on demand. It is up to the application to note that an object
* was emptied and recreate the objects contents if necessary. When a
- * purgable object is made non-volatile, its pages will generally not be paged
- * out to backing store in the immediate future. A purgable object may also
+ * purgeable object is made non-volatile, its pages will generally not be paged
+ * out to backing store in the immediate future. A purgeable object may also
* be manually emptied.
*
* Finally, the current state (non-volatile, volatile, volatile & empty) of a
- * volatile purgable object may be queried at any time. This information may
+ * volatile purgeable object may be queried at any time. This information may
* be used as a control input to let the application know when the system is
* experiencing memory pressure and is reclaiming memory.
*
- * The specified address may be any address within the purgable object. If
+ * The specified address may be any address within the purgeable object. If
* the specified address does not represent any object in the target task's
* virtual address space, then KERN_INVALID_ADDRESS will be returned. If the
- * object containing the specified address is not a purgable object, then
+ * object containing the specified address is not a purgeable object, then
* KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be
* returned.
*
* The control parameter may be any one of VM_PURGABLE_SET_STATE or
* VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter
- * state is used to set the new state of the purgable object and return its
- * old state. For VM_PURGABLE_GET_STATE, the current state of the purgable
+ * state is used to set the new state of the purgeable object and return its
+ * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable
* object is returned in the parameter state.
*
* The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
* VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent
* the non-volatile, volatile and volatile/empty states described above.
- * Setting the state of a purgable object to VM_PURGABLE_EMPTY will
+ * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
* immediately reclaim as many pages in the object as can be conveniently
* collected (some may have already been written to backing store or be
* otherwise busy).
*
- * The process of making a purgable object non-volatile and determining its
- * previous state is atomic. Thus, if a purgable object is made
+ * The process of making a purgeable object non-volatile and determining its
+ * previous state is atomic. Thus, if a purgeable object is made
* VM_PURGABLE_NONVOLATILE and the old state is returned as
- * VM_PURGABLE_VOLATILE, then the purgable object's previous contents are
+ * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
* completely intact and will remain so until the object is made volatile
* again. If the old state is returned as VM_PURGABLE_EMPTY then the object
* was reclaimed while it was in a volatile state and its previous contents
int *state)
{
int old_state;
- vm_page_t p;
+ int new_state;
if (object == VM_OBJECT_NULL) {
/*
- * Object must already be present or it can't be purgable.
+ * Object must already be present or it can't be purgeable.
*/
return KERN_INVALID_ARGUMENT;
}
/*
- * Get current state of the purgable object.
+ * Get current state of the purgeable object.
*/
- switch (object->purgable) {
- case VM_OBJECT_NONPURGABLE:
+ old_state = object->purgable;
+ if (old_state == VM_PURGABLE_DENY)
return KERN_INVALID_ARGUMENT;
- case VM_OBJECT_PURGABLE_NONVOLATILE:
- old_state = VM_PURGABLE_NONVOLATILE;
- break;
-
- case VM_OBJECT_PURGABLE_VOLATILE:
- old_state = VM_PURGABLE_VOLATILE;
- break;
-
- case VM_OBJECT_PURGABLE_EMPTY:
- old_state = VM_PURGABLE_EMPTY;
- break;
-
- default:
- old_state = VM_PURGABLE_NONVOLATILE;
- panic("Bad state (%d) for purgable object!\n",
- object->purgable);
- /*NOTREACHED*/
- }
-
- /* purgable cant have delayed copies - now or in the future */
+ /* purgeable cant have delayed copies - now or in the future */
assert(object->copy == VM_OBJECT_NULL);
assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
return KERN_SUCCESS;
}
- switch (*state) {
+ new_state = *state & VM_PURGABLE_STATE_MASK;
+ switch (new_state) {
+ case VM_PURGABLE_DENY:
case VM_PURGABLE_NONVOLATILE:
- vm_page_lock_queues();
- if (object->purgable != VM_OBJECT_PURGABLE_NONVOLATILE) {
+ object->purgable = new_state;
+
+ if (old_state != VM_PURGABLE_NONVOLATILE) {
+ vm_page_lock_queues();
assert(vm_page_purgeable_count >=
object->resident_page_count);
vm_page_purgeable_count -= object->resident_page_count;
- }
- object->purgable = VM_OBJECT_PURGABLE_NONVOLATILE;
+ if (old_state==VM_PURGABLE_VOLATILE) {
+ assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
+ purgeable_q_t queue = vm_purgeable_object_remove(object);
+ assert(queue);
- /*
- * If the object wasn't emptied, then mark all pages of the
- * object as referenced in order to give them a complete turn
- * of the virtual memory "clock" before becoming candidates
- * for paging out (if the system is suffering from memory
- * pressure). We don't really need to set the pmap reference
- * bits (which would be expensive) since the software copies
- * are believed if they're set to true ...
- */
- if (old_state != VM_PURGABLE_EMPTY) {
- for (p = (vm_page_t)queue_first(&object->memq);
- !queue_end(&object->memq, (queue_entry_t)p);
- p = (vm_page_t)queue_next(&p->listq))
- p->reference = TRUE;
+ vm_purgeable_token_delete_first(queue);
+ assert(queue->debug_count_objects>=0);
+ };
+ vm_page_unlock_queues();
}
-
- vm_page_unlock_queues();
-
break;
case VM_PURGABLE_VOLATILE:
- vm_page_lock_queues();
- if (object->purgable != VM_OBJECT_PURGABLE_VOLATILE &&
- object->purgable != VM_OBJECT_PURGABLE_EMPTY) {
- vm_page_purgeable_count += object->resident_page_count;
+ if ((old_state != VM_PURGABLE_NONVOLATILE) && (old_state != VM_PURGABLE_VOLATILE))
+ break;
+ purgeable_q_t queue;
+
+ /* find the correct queue */
+ if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE)
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ else {
+ if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO)
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ else
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
}
+
+ if (old_state == VM_PURGABLE_NONVOLATILE) {
+ /* try to add token... this can fail */
+ vm_page_lock_queues();
+
+ kern_return_t result = vm_purgeable_token_add(queue);
+ if (result != KERN_SUCCESS) {
+ vm_page_unlock_queues();
+ return result;
+ }
+ vm_page_purgeable_count += object->resident_page_count;
- object->purgable = VM_OBJECT_PURGABLE_VOLATILE;
+ vm_page_unlock_queues();
- /*
- * We want the newly volatile purgable object to be a
- * candidate for the pageout scan before other pages in the
- * application if the system is suffering from memory
- * pressure. To do this, we move a page of the object from
- * the active queue onto the inactive queue in order to
- * promote the object for early reclaim. We only need to move
- * a single page since the pageout scan will reap the entire
- * purgable object if it finds a single page in a volatile
- * state. Obviously we don't do this if there are no pages
- * associated with the object or we find a page of the object
- * already on the inactive queue.
- */
- for (p = (vm_page_t)queue_first(&object->memq);
- !queue_end(&object->memq, (queue_entry_t)p);
- p = (vm_page_t)queue_next(&p->listq)) {
- if (p->inactive) {
- /* already a page on the inactive queue */
- break;
- }
- if (p->active && !p->busy) {
- /* found one we can move */
- vm_page_deactivate(p);
- break;
- }
+ object->purgable = new_state;
+
+ /* object should not be on a queue */
+ assert(object->objq.next == NULL && object->objq.prev == NULL);
}
- vm_page_unlock_queues();
+ else if (old_state == VM_PURGABLE_VOLATILE) {
+ /*
+ * if reassigning priorities / purgeable groups, we don't change the
+ * token queue. So moving priorities will not make pages stay around longer.
+ * Reasoning is that the algorithm gives most priority to the most important
+ * object. If a new token is added, the most important object' priority is boosted.
+ * This biases the system already for purgeable queues that move a lot.
+ * It doesn't seem more biasing is neccessary in this case, where no new object is added.
+ */
+ assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
+
+ purgeable_q_t old_queue=vm_purgeable_object_remove(object);
+ assert(old_queue);
+
+ if (old_queue != queue) {
+ kern_return_t result;
+
+ /* Changing queue. Have to move token. */
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(old_queue);
+ result = vm_purgeable_token_add(queue);
+ vm_page_unlock_queues();
+ assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */
+ }
+ };
+ vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT );
+
+ assert(queue->debug_count_objects>=0);
+
break;
case VM_PURGABLE_EMPTY:
- vm_page_lock_queues();
- if (object->purgable != VM_OBJECT_PURGABLE_VOLATILE &&
- object->purgable != VM_OBJECT_PURGABLE_EMPTY) {
- vm_page_purgeable_count += object->resident_page_count;
+ if (old_state != new_state)
+ {
+ assert(old_state==VM_PURGABLE_NONVOLATILE || old_state==VM_PURGABLE_VOLATILE);
+ if(old_state==VM_PURGABLE_VOLATILE) {
+ assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
+ purgeable_q_t old_queue=vm_purgeable_object_remove(object);
+ assert(old_queue);
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(old_queue);
+ }
+
+ if (old_state==VM_PURGABLE_NONVOLATILE) {
+ vm_page_purgeable_count += object->resident_page_count;
+ vm_page_lock_queues();
+ }
+ (void) vm_object_purge(object);
+ vm_page_unlock_queues();
}
- (void) vm_object_purge(object);
- vm_page_unlock_queues();
break;
}
vm_object_lock(object1);
object1_locked = TRUE;
- if (object1->copy || object1->shadow || object1->shadowed ||
- object1->purgable != VM_OBJECT_NONPURGABLE) {
+ if (!object1->alive || object1->terminating ||
+ object1->copy || object1->shadow || object1->shadowed ||
+ object1->purgable != VM_PURGABLE_DENY) {
/*
* We don't deal with copy or shadow objects (yet).
*/
*/
vm_object_lock(object2);
object2_locked = TRUE;
- if (object2->copy || object2->shadow || object2->shadowed ||
- object2->purgable != VM_OBJECT_NONPURGABLE) {
+ if (! object2->alive || object2->terminating ||
+ object2->copy || object2->shadow || object2->shadowed ||
+ object2->purgable != VM_PURGABLE_DENY) {
retval = KERN_INVALID_VALUE;
goto done;
}
/*
* Transpose the lists of resident pages.
+ * This also updates the resident_page_count and the memq_hint.
*/
if (object1->phys_contiguous || queue_empty(&object1->memq)) {
/*
*/
while (!queue_empty(&object2->memq)) {
page = (vm_page_t) queue_first(&object2->memq);
- vm_page_rename(page, object1, page->offset);
+ vm_page_rename(page, object1, page->offset, FALSE);
}
assert(queue_empty(&object2->memq));
} else if (object2->phys_contiguous || queue_empty(&object2->memq)) {
*/
while (!queue_empty(&object1->memq)) {
page = (vm_page_t) queue_first(&object1->memq);
- vm_page_rename(page, object2, page->offset);
+ vm_page_rename(page, object2, page->offset, FALSE);
}
assert(queue_empty(&object1->memq));
} else {
/* transfer object2's pages to object1 */
while (!queue_empty(&object2->memq)) {
page = (vm_page_t) queue_first(&object2->memq);
- vm_page_rename(page, object1, page->offset);
+ vm_page_rename(page, object1, page->offset, FALSE);
}
assert(queue_empty(&object2->memq));
/* transfer tmp_object's pages to object1 */
assert(queue_empty(&tmp_object->memq));
}
- /* no need to transpose the size: they should be identical */
- assert(object1->size == object2->size);
-
#define __TRANSPOSE_FIELD(field) \
MACRO_BEGIN \
tmp_object->field = object1->field; \
object2->field = tmp_object->field; \
MACRO_END
+ /* "size" should be identical */
+ assert(object1->size == object2->size);
+ /* "Lock" refers to the object not its contents */
+ /* "ref_count" refers to the object not its contents */
+#if TASK_SWAPPER
+ /* "res_count" refers to the object not its contents */
+#endif
+ /* "resident_page_count" was updated above when transposing pages */
+ /* there should be no "copy" */
assert(!object1->copy);
assert(!object2->copy);
-
+ /* there should be no "shadow" */
assert(!object1->shadow);
assert(!object2->shadow);
-
__TRANSPOSE_FIELD(shadow_offset); /* used by phys_contiguous objects */
__TRANSPOSE_FIELD(pager);
__TRANSPOSE_FIELD(paging_offset);
-
__TRANSPOSE_FIELD(pager_control);
/* update the memory_objects' pointers back to the VM objects */
if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
memory_object_control_collapse(object2->pager_control,
object2);
}
-
- __TRANSPOSE_FIELD(absent_count);
-
+ __TRANSPOSE_FIELD(copy_strategy);
+ /* "paging_in_progress" refers to the object not its contents */
assert(object1->paging_in_progress);
assert(object2->paging_in_progress);
-
+ /* "all_wanted" refers to the object not its contents */
__TRANSPOSE_FIELD(pager_created);
__TRANSPOSE_FIELD(pager_initialized);
__TRANSPOSE_FIELD(pager_ready);
__TRANSPOSE_FIELD(pager_trusted);
+ __TRANSPOSE_FIELD(can_persist);
__TRANSPOSE_FIELD(internal);
__TRANSPOSE_FIELD(temporary);
__TRANSPOSE_FIELD(private);
__TRANSPOSE_FIELD(pageout);
+ /* "alive" should be set */
+ assert(object1->alive);
+ assert(object2->alive);
+ /* "purgeable" should be non-purgeable */
+ assert(object1->purgable == VM_PURGABLE_DENY);
+ assert(object2->purgable == VM_PURGABLE_DENY);
+ /* "shadowed" refers to the the object not its contents */
+ __TRANSPOSE_FIELD(silent_overwrite);
+ __TRANSPOSE_FIELD(advisory_pageout);
__TRANSPOSE_FIELD(true_share);
+ /* "terminating" should not be set */
+ assert(!object1->terminating);
+ assert(!object2->terminating);
+ __TRANSPOSE_FIELD(named);
+ /* "shadow_severed" refers to the object not its contents */
__TRANSPOSE_FIELD(phys_contiguous);
__TRANSPOSE_FIELD(nophyscache);
+ /* "cached_list" should be NULL */
+ assert(object1->cached_list.prev == NULL);
+ assert(object1->cached_list.next == NULL);
+ assert(object2->cached_list.prev == NULL);
+ assert(object2->cached_list.next == NULL);
+ /* "msr_q" is linked to the object not its contents */
+ assert(queue_empty(&object1->msr_q));
+ assert(queue_empty(&object2->msr_q));
__TRANSPOSE_FIELD(last_alloc);
__TRANSPOSE_FIELD(sequential);
- __TRANSPOSE_FIELD(cluster_size);
+ __TRANSPOSE_FIELD(pages_created);
+ __TRANSPOSE_FIELD(pages_used);
+#if MACH_PAGEMAP
__TRANSPOSE_FIELD(existence_map);
+#endif
__TRANSPOSE_FIELD(cow_hint);
+#if MACH_ASSERT
+ __TRANSPOSE_FIELD(paging_object);
+#endif
__TRANSPOSE_FIELD(wimg_bits);
+ __TRANSPOSE_FIELD(code_signed);
+ __TRANSPOSE_FIELD(not_in_use);
+#ifdef UPL_DEBUG
+ /* "uplq" refers to the object not its contents (see upl_transpose()) */
+#endif
#undef __TRANSPOSE_FIELD
return retval;
}
+
+
+/*
+ * vm_object_build_cluster
+ *
+ * Determine how big a cluster we should issue an I/O for...
+ *
+ * Inputs: *start == offset of page needed
+ * *length == maximum cluster pager can handle
+ * Outputs: *start == beginning offset of cluster
+ * *length == length of cluster to try
+ *
+ * The original *start will be encompassed by the cluster
+ *
+ */
+extern int speculative_reads_disabled;
+
+uint32_t pre_heat_scaling[MAX_UPL_TRANSFER];
+uint32_t pre_heat_cluster[MAX_UPL_TRANSFER];
+
+#define PRE_HEAT_MULTIPLIER 4
+
+__private_extern__ void
+vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
+ vm_size_t *length, vm_object_fault_info_t fault_info)
+{
+ vm_size_t pre_heat_size;
+ vm_size_t tail_size;
+ vm_size_t head_size;
+ vm_size_t max_length;
+ vm_size_t cluster_size;
+ vm_object_offset_t object_size;
+ vm_object_offset_t orig_start;
+ vm_object_offset_t target_start;
+ vm_object_offset_t offset;
+ vm_behavior_t behavior;
+ boolean_t look_behind = TRUE;
+ boolean_t look_ahead = TRUE;
+ int sequential_run;
+ int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+
+ assert( !(*length & PAGE_MASK));
+ assert( !(*start & PAGE_MASK_64));
+
+ if ( (max_length = *length) > (MAX_UPL_TRANSFER * PAGE_SIZE) )
+ max_length = (MAX_UPL_TRANSFER * PAGE_SIZE);
+ /*
+ * we'll always return a cluster size of at least
+ * 1 page, since the original fault must always
+ * be processed
+ */
+ *length = PAGE_SIZE;
+
+ if (speculative_reads_disabled || fault_info == NULL || max_length == 0) {
+ /*
+ * no cluster... just fault the page in
+ */
+ return;
+ }
+ orig_start = *start;
+ target_start = orig_start;
+ cluster_size = round_page_32(fault_info->cluster_size);
+ behavior = fault_info->behavior;
+
+ vm_object_lock(object);
+
+ if (object->internal)
+ object_size = object->size;
+ else if (object->pager != MEMORY_OBJECT_NULL)
+ vnode_pager_get_object_size(object->pager, &object_size);
+ else
+ goto out; /* pager is gone for this object, nothing more to do */
+
+ object_size = round_page_64(object_size);
+
+ if (orig_start >= object_size) {
+ /*
+ * fault occurred beyond the EOF...
+ * we need to punt w/o changing the
+ * starting offset
+ */
+ goto out;
+ }
+ if (object->pages_used > object->pages_created) {
+ /*
+ * must have wrapped our 32 bit counters
+ * so reset
+ */
+ object->pages_used = object->pages_created = 0;
+ }
+ if ((sequential_run = object->sequential)) {
+ if (sequential_run < 0) {
+ sequential_behavior = VM_BEHAVIOR_RSEQNTL;
+ sequential_run = 0 - sequential_run;
+ } else {
+ sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ }
+ }
+ switch(behavior) {
+
+ default:
+ behavior = VM_BEHAVIOR_DEFAULT;
+
+ case VM_BEHAVIOR_DEFAULT:
+ if (object->internal && fault_info->user_tag == VM_MEMORY_STACK)
+ goto out;
+
+ if (sequential_run >= (3 * PAGE_SIZE)) {
+ pre_heat_size = sequential_run + PAGE_SIZE;
+
+ if ((behavior = sequential_behavior) == VM_BEHAVIOR_SEQUENTIAL)
+ look_behind = FALSE;
+ else
+ look_ahead = FALSE;
+ } else {
+ uint32_t pages_unused;
+
+ if (object->pages_created < 32 * PRE_HEAT_MULTIPLIER) {
+ /*
+ * prime the pump
+ */
+ pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER;
+ break;
+ }
+ pages_unused = object->pages_created - object->pages_used;
+
+ if (pages_unused < (object->pages_created / 8)) {
+ pre_heat_size = PAGE_SIZE * 32 * PRE_HEAT_MULTIPLIER;
+ } else if (pages_unused < (object->pages_created / 4)) {
+ pre_heat_size = PAGE_SIZE * 16 * PRE_HEAT_MULTIPLIER;
+ } else if (pages_unused < (object->pages_created / 2)) {
+ pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER;
+ } else {
+ pre_heat_size = PAGE_SIZE * 4 * PRE_HEAT_MULTIPLIER;
+ }
+ }
+ break;
+
+ case VM_BEHAVIOR_RANDOM:
+ if ((pre_heat_size = cluster_size) <= PAGE_SIZE)
+ goto out;
+ break;
+
+ case VM_BEHAVIOR_SEQUENTIAL:
+ if ((pre_heat_size = cluster_size) == 0)
+ pre_heat_size = sequential_run + PAGE_SIZE;
+ look_behind = FALSE;
+
+ break;
+
+ case VM_BEHAVIOR_RSEQNTL:
+ if ((pre_heat_size = cluster_size) == 0)
+ pre_heat_size = sequential_run + PAGE_SIZE;
+ look_ahead = FALSE;
+
+ break;
+
+ }
+ if (pre_heat_size > max_length)
+ pre_heat_size = max_length;
+
+ if (behavior == VM_BEHAVIOR_DEFAULT && vm_page_free_count < vm_page_free_target)
+ pre_heat_size /= 2;
+
+ if (look_ahead == TRUE) {
+ if (look_behind == TRUE)
+ target_start &= ~(pre_heat_size - 1);
+
+ if ((target_start + pre_heat_size) > object_size)
+ pre_heat_size = (vm_size_t)(trunc_page_64(object_size - target_start));
+
+ tail_size = pre_heat_size - (orig_start - target_start) - PAGE_SIZE;
+ } else {
+ if (pre_heat_size > target_start)
+ pre_heat_size = target_start;
+ tail_size = 0;
+ }
+ pre_heat_scaling[pre_heat_size / PAGE_SIZE]++;
+
+ if (pre_heat_size <= PAGE_SIZE)
+ goto out;
+
+ if (look_behind == TRUE) {
+ /*
+ * take a look at the pages before the original
+ * faulting offset
+ */
+ head_size = pre_heat_size - tail_size - PAGE_SIZE;
+
+ for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
+ /*
+ * don't poke below the lowest offset
+ */
+ if (offset < fault_info->lo_offset)
+ break;
+ /*
+ * for external objects and internal objects w/o an existence map
+ * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
+ */
+#if MACH_PAGEMAP
+ if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
+ /*
+ * we know for a fact that the pager can't provide the page
+ * so don't include it or any pages beyond it in this cluster
+ */
+ break;
+ }
+#endif
+ if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
+ /*
+ * don't bridge resident pages
+ */
+ break;
+ }
+ *start = offset;
+ *length += PAGE_SIZE;
+ }
+ }
+ if (look_ahead == TRUE) {
+ for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
+ /*
+ * don't poke above the highest offset
+ */
+ if (offset >= fault_info->hi_offset)
+ break;
+ /*
+ * for external objects and internal objects w/o an existence map
+ * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
+ */
+#if MACH_PAGEMAP
+ if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
+ /*
+ * we know for a fact that the pager can't provide the page
+ * so don't include it or any pages beyond it in this cluster
+ */
+ break;
+ }
+#endif
+ if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
+ /*
+ * don't bridge resident pages
+ */
+ break;
+ }
+ *length += PAGE_SIZE;
+ }
+ }
+out:
+ pre_heat_cluster[*length / PAGE_SIZE]++;
+
+ vm_object_unlock(object);
+}
+
+
+/*
+ * Allow manipulation of individual page state. This is actually part of
+ * the UPL regimen but takes place on the VM object rather than on a UPL
+ */
+
+kern_return_t
+vm_object_page_op(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ int ops,
+ ppnum_t *phys_entry,
+ int *flags)
+{
+ vm_page_t dst_page;
+
+ vm_object_lock(object);
+
+ if(ops & UPL_POP_PHYSICAL) {
+ if(object->phys_contiguous) {
+ if (phys_entry) {
+ *phys_entry = (ppnum_t)
+ (object->shadow_offset >> 12);
+ }
+ vm_object_unlock(object);
+ return KERN_SUCCESS;
+ } else {
+ vm_object_unlock(object);
+ return KERN_INVALID_OBJECT;
+ }
+ }
+ if(object->phys_contiguous) {
+ vm_object_unlock(object);
+ return KERN_INVALID_OBJECT;
+ }
+
+ while(TRUE) {
+ if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) {
+ vm_object_unlock(object);
+ return KERN_FAILURE;
+ }
+
+ /* Sync up on getting the busy bit */
+ if((dst_page->busy || dst_page->cleaning) &&
+ (((ops & UPL_POP_SET) &&
+ (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
+ /* someone else is playing with the page, we will */
+ /* have to wait */
+ PAGE_SLEEP(object, dst_page, THREAD_UNINT);
+ continue;
+ }
+
+ if (ops & UPL_POP_DUMP) {
+ if (dst_page->pmapped == TRUE)
+ pmap_disconnect(dst_page->phys_page);
+
+ vm_page_lock_queues();
+ vm_page_free(dst_page);
+ vm_page_unlock_queues();
+
+ break;
+ }
+
+ if (flags) {
+ *flags = 0;
+
+ /* Get the condition of flags before requested ops */
+ /* are undertaken */
+
+ if(dst_page->dirty) *flags |= UPL_POP_DIRTY;
+ if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT;
+ if(dst_page->precious) *flags |= UPL_POP_PRECIOUS;
+ if(dst_page->absent) *flags |= UPL_POP_ABSENT;
+ if(dst_page->busy) *flags |= UPL_POP_BUSY;
+ }
+
+ /* The caller should have made a call either contingent with */
+ /* or prior to this call to set UPL_POP_BUSY */
+ if(ops & UPL_POP_SET) {
+ /* The protection granted with this assert will */
+ /* not be complete. If the caller violates the */
+ /* convention and attempts to change page state */
+ /* without first setting busy we may not see it */
+ /* because the page may already be busy. However */
+ /* if such violations occur we will assert sooner */
+ /* or later. */
+ assert(dst_page->busy || (ops & UPL_POP_BUSY));
+ if (ops & UPL_POP_DIRTY) dst_page->dirty = TRUE;
+ if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE;
+ if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE;
+ if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE;
+ if (ops & UPL_POP_BUSY) dst_page->busy = TRUE;
+ }
+
+ if(ops & UPL_POP_CLR) {
+ assert(dst_page->busy);
+ if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE;
+ if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE;
+ if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE;
+ if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE;
+ if (ops & UPL_POP_BUSY) {
+ dst_page->busy = FALSE;
+ PAGE_WAKEUP(dst_page);
+ }
+ }
+
+ if (dst_page->encrypted) {
+ /*
+ * ENCRYPTED SWAP:
+ * We need to decrypt this encrypted page before the
+ * caller can access its contents.
+ * But if the caller really wants to access the page's
+ * contents, they have to keep the page "busy".
+ * Otherwise, the page could get recycled or re-encrypted
+ * at any time.
+ */
+ if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) &&
+ dst_page->busy) {
+ /*
+ * The page is stable enough to be accessed by
+ * the caller, so make sure its contents are
+ * not encrypted.
+ */
+ vm_page_decrypt(dst_page, 0);
+ } else {
+ /*
+ * The page is not busy, so don't bother
+ * decrypting it, since anything could
+ * happen to it between now and when the
+ * caller wants to access it.
+ * We should not give the caller access
+ * to this page.
+ */
+ assert(!phys_entry);
+ }
+ }
+
+ if (phys_entry) {
+ /*
+ * The physical page number will remain valid
+ * only if the page is kept busy.
+ * ENCRYPTED SWAP: make sure we don't let the
+ * caller access an encrypted page.
+ */
+ assert(dst_page->busy);
+ assert(!dst_page->encrypted);
+ *phys_entry = dst_page->phys_page;
+ }
+
+ break;
+ }
+
+ vm_object_unlock(object);
+ return KERN_SUCCESS;
+
+}
+
+/*
+ * vm_object_range_op offers performance enhancement over
+ * vm_object_page_op for page_op functions which do not require page
+ * level state to be returned from the call. Page_op was created to provide
+ * a low-cost alternative to page manipulation via UPLs when only a single
+ * page was involved. The range_op call establishes the ability in the _op
+ * family of functions to work on multiple pages where the lack of page level
+ * state handling allows the caller to avoid the overhead of the upl structures.
+ */
+
+kern_return_t
+vm_object_range_op(
+ vm_object_t object,
+ vm_object_offset_t offset_beg,
+ vm_object_offset_t offset_end,
+ int ops,
+ int *range)
+{
+ vm_object_offset_t offset;
+ vm_page_t dst_page;
+
+ if (object->resident_page_count == 0) {
+ if (range) {
+ if (ops & UPL_ROP_PRESENT)
+ *range = 0;
+ else
+ *range = offset_end - offset_beg;
+ }
+ return KERN_SUCCESS;
+ }
+ vm_object_lock(object);
+
+ if (object->phys_contiguous) {
+ vm_object_unlock(object);
+ return KERN_INVALID_OBJECT;
+ }
+
+ offset = offset_beg & ~PAGE_MASK_64;
+
+ while (offset < offset_end) {
+ dst_page = vm_page_lookup(object, offset);
+ if (dst_page != VM_PAGE_NULL) {
+ if (ops & UPL_ROP_DUMP) {
+ if (dst_page->busy || dst_page->cleaning) {
+ /*
+ * someone else is playing with the
+ * page, we will have to wait
+ */
+ PAGE_SLEEP(object, dst_page, THREAD_UNINT);
+ /*
+ * need to relook the page up since it's
+ * state may have changed while we slept
+ * it might even belong to a different object
+ * at this point
+ */
+ continue;
+ }
+ if (dst_page->pmapped == TRUE)
+ pmap_disconnect(dst_page->phys_page);
+
+ vm_page_lock_queues();
+ vm_page_free(dst_page);
+ vm_page_unlock_queues();
+
+ } else if (ops & UPL_ROP_ABSENT)
+ break;
+ } else if (ops & UPL_ROP_PRESENT)
+ break;
+
+ offset += PAGE_SIZE;
+ }
+ vm_object_unlock(object);
+
+ if (range) {
+ if (offset > offset_end)
+ offset = offset_end;
+ if(offset > offset_beg)
+ *range = offset - offset_beg;
+ else *range=0;
+ }
+ return KERN_SUCCESS;
+}
+
+
+uint32_t scan_object_collision = 0;
+
+void
+vm_object_lock(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ lck_rw_lock_exclusive(&object->Lock);
+}
+
+boolean_t
+vm_object_lock_try(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ return (lck_rw_try_lock_exclusive(&object->Lock));
+}
+
+void
+vm_object_lock_shared(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ lck_rw_lock_shared(&object->Lock);
+}
+
+boolean_t
+vm_object_lock_try_shared(vm_object_t object)
+{
+ if (object == vm_pageout_scan_wants_object) {
+ scan_object_collision++;
+ mutex_pause(2);
+ }
+ return (lck_rw_try_lock_shared(&object->Lock));
+}