#include <kern/cpu_number.h>
#include <kern/kalloc.h>
#include <kern/cpu_data.h>
+#include <mach/mach_types.h>
#include <mach/machine.h>
+#include <mach/vm_map.h>
#include <vm/vm_kern.h>
+#include <vm/vm_map.h>
#include <i386/mp_desc.h>
#include <i386/lock.h>
#include <i386/misc_protos.h>
#include <i386/mp.h>
#include <i386/pmap.h>
+#include <i386/cpu_threads.h>
#include <kern/misc_protos.h>
/*
* First cpu`s interrupt stack.
*/
-extern char intstack[]; /* bottom */
-extern char eintstack[]; /* top */
+extern uint32_t low_intstack[]; /* bottom */
+extern uint32_t low_eintstack[]; /* top */
/*
* Per-cpu data area pointers.
unsigned int real_ncpus = 1;
unsigned int max_ncpus = MAX_CPUS;
+extern void *hi_remap_text;
+#define HI_TEXT(lo_text) \
+ (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE)
+
+extern void hi_sysenter(void);
+extern void hi64_sysenter(void);
+extern void hi64_syscall(void);
+
+
/*
* Multiprocessor i386/i486 systems use a separate copy of the
* GDT, IDT, LDT, and kernel TSS per processor. The first three
struct fake_descriptor ldt_desc_pattern = {
(unsigned int) 0,
- LDTSZ * sizeof(struct fake_descriptor) - 1,
+ LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
0,
ACC_P|ACC_PL_K|ACC_LDT
};
+
struct fake_descriptor tss_desc_pattern = {
(unsigned int) 0,
- sizeof(struct i386_tss),
+ sizeof(struct i386_tss) - 1,
0,
ACC_P|ACC_PL_K|ACC_TSS
};
ACC_P|ACC_PL_K|ACC_DATA_W
};
+struct fake_descriptor userwindow_desc_pattern = {
+ (unsigned int) 0,
+ ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1,
+ SZ_32 | SZ_G,
+ ACC_P|ACC_PL_U|ACC_DATA_W
+};
+
+struct fake_descriptor physwindow_desc_pattern = {
+ (unsigned int) 0,
+ PAGE_SIZE - 1,
+ SZ_32,
+ ACC_P|ACC_PL_K|ACC_DATA_W
+};
+
+/*
+ * This is the expanded, 64-bit variant of the kernel LDT descriptor.
+ * When switching to 64-bit mode this replaces KERNEL_LDT entry
+ * and the following empty slot. This enables the LDT to be referenced
+ * in the uber-space remapping window on the kernel.
+ */
+struct fake_descriptor64 kernel_ldt_desc64 = {
+ FAKE_UBER64(&master_ldt),
+ LDTSZ_MIN*sizeof(struct fake_descriptor)-1,
+ 0,
+ ACC_P|ACC_PL_K|ACC_LDT,
+ 0
+};
+
+/*
+ * This is the expanded, 64-bit variant of the kernel TSS descriptor.
+ * It is follows pattern of the KERNEL_LDT.
+ */
+struct fake_descriptor64 kernel_tss_desc64 = {
+ FAKE_UBER64(&master_ktss64),
+ sizeof(struct x86_64_tss)-1,
+ 0,
+ ACC_P|ACC_PL_K|ACC_TSS,
+ 0
+};
+
void
-mp_desc_init(
+cpu_desc_init(
cpu_data_t *cdp,
boolean_t is_boot_cpu)
{
- struct mp_desc_table *mpt = cdp->cpu_desc_tablep;
- cpu_desc_index_t *cdt = &cdp->cpu_desc_index;
+ cpu_desc_table_t *cdt = cdp->cpu_desc_tablep;
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
if (is_boot_cpu) {
/*
* Master CPU uses the tables built at boot time.
- * Just set the TSS and GDT pointers.
+ * Just set the index pointers to the high shared-mapping space.
+ * Note that the sysenter stack uses empty space above the ktss
+ * in the HIGH_FIXED_KTSS page. In this case we don't map the
+ * the real master_sstk in low memory.
*/
- cdt->cdi_ktss = &ktss;
+ cdi->cdi_ktss = (struct i386_tss *)
+ pmap_index_to_virt(HIGH_FIXED_KTSS) ;
+ cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) +
+ (vm_offset_t) &master_sstk.top -
+ (vm_offset_t) &master_sstk;
#if MACH_KDB
- cdt->cdi_dbtss = &dbtss;
+ cdi->cdi_dbtss = (struct i386_tss *)
+ pmap_index_to_virt(HIGH_FIXED_DBTSS);
#endif /* MACH_KDB */
- cdt->cdi_gdt = gdt;
- cdt->cdi_idt = idt;
- cdt->cdi_ldt = ldt;
+ cdi->cdi_gdt = (struct fake_descriptor *)
+ pmap_index_to_virt(HIGH_FIXED_GDT);
+ cdi->cdi_idt = (struct fake_descriptor *)
+ pmap_index_to_virt(HIGH_FIXED_IDT);
+ cdi->cdi_ldt = (struct fake_descriptor *)
+ pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN);
} else {
- cdt->cdi_ktss = &mpt->ktss;
- cdt->cdi_gdt = mpt->gdt;
- cdt->cdi_idt = mpt->idt;
- cdt->cdi_ldt = mpt->ldt;
+ vm_offset_t cpu_hi_desc;
+
+ cpu_hi_desc = pmap_cpu_high_shared_remap(cdp->cpu_number,
+ HIGH_CPU_DESC,
+ (vm_offset_t) cdt, 1);
+
+ /*
+ * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one
+ * block (cpu_desc_table) and double-mapped into high shared space
+ * in one page window.
+ * Also, a transient stack for the fast sysenter path. The top of
+ * which is set at context switch time to point to the PCB using
+ * the high address.
+ */
+ cdi->cdi_gdt = (struct fake_descriptor *) (cpu_hi_desc +
+ offsetof(cpu_desc_table_t, gdt[0]));
+ cdi->cdi_idt = (struct fake_descriptor *) (cpu_hi_desc +
+ offsetof(cpu_desc_table_t, idt[0]));
+ cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc +
+ offsetof(cpu_desc_table_t, ktss));
+ cdi->cdi_sstk = cpu_hi_desc +
+ offsetof(cpu_desc_table_t, sstk.top);
+
+ /*
+ * LDT descriptors are mapped into a seperate area.
+ */
+ cdi->cdi_ldt = (struct fake_descriptor *)
+ pmap_cpu_high_shared_remap(
+ cdp->cpu_number,
+ HIGH_CPU_LDT_BEGIN,
+ (vm_offset_t) cdp->cpu_ldtp,
+ HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1);
/*
* Copy the tables
*/
- bcopy((char *)idt,
- (char *)mpt->idt,
- sizeof(idt));
- bcopy((char *)gdt,
- (char *)mpt->gdt,
- sizeof(gdt));
- bcopy((char *)ldt,
- (char *)mpt->ldt,
- sizeof(ldt));
- bzero((char *)&mpt->ktss,
+ bcopy((char *)master_idt,
+ (char *)cdt->idt,
+ sizeof(master_idt));
+ bcopy((char *)master_gdt,
+ (char *)cdt->gdt,
+ sizeof(master_gdt));
+ bcopy((char *)master_ldt,
+ (char *)cdp->cpu_ldtp,
+ sizeof(master_ldt));
+ bzero((char *)&cdt->ktss,
sizeof(struct i386_tss));
#if MACH_KDB
- cdt->cdi_dbtss = &dbtss;
- bcopy((char *)&dbtss,
- (char *)&mpt->dbtss,
+ cdi->cdi_dbtss = (struct i386_tss *) (cpu_hi_desc +
+ offsetof(cpu_desc_table_t, dbtss));
+ bcopy((char *)&master_dbtss,
+ (char *)&cdt->dbtss,
sizeof(struct i386_tss));
#endif /* MACH_KDB */
* Fix up the entries in the GDT to point to
* this LDT and this TSS.
*/
- mpt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern;
- mpt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) mpt->ldt;
- fix_desc(&mpt->gdt[sel_idx(KERNEL_LDT)], 1);
+ cdt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern;
+ cdt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) cdi->cdi_ldt;
+ fix_desc(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
+
+ cdt->gdt[sel_idx(USER_LDT)] = ldt_desc_pattern;
+ cdt->gdt[sel_idx(USER_LDT)].offset = (vm_offset_t) cdi->cdi_ldt;
+ fix_desc(&cdt->gdt[sel_idx(USER_LDT)], 1);
- mpt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
- mpt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) &mpt->ktss;
- fix_desc(&mpt->gdt[sel_idx(KERNEL_TSS)], 1);
+ cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
+ cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss;
+ fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
- mpt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
- mpt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
- fix_desc(&mpt->gdt[sel_idx(CPU_DATA_GS)], 1);
+ cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
+ cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
+ fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
#if MACH_KDB
- mpt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
- mpt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) &mpt->dbtss;
- fix_desc(&mpt->gdt[sel_idx(DEBUG_TSS)], 1);
-
- mpt->dbtss.esp0 = (int)(db_task_stack_store +
- (INTSTACK_SIZE * (cpu + 1)) - sizeof (natural_t));
- mpt->dbtss.esp = mpt->dbtss.esp0;
- mpt->dbtss.eip = (int)&db_task_start;
+ cdt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
+ cdt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) cdi->cdi_dbtss;
+ fix_desc(&cdt->gdt[sel_idx(DEBUG_TSS)], 1);
+
+ cdt->dbtss.esp0 = (int)(db_task_stack_store +
+ (INTSTACK_SIZE * (cdp->cpu_number)) - sizeof (natural_t));
+ cdt->dbtss.esp = cdt->dbtss.esp0;
+ cdt->dbtss.eip = (int)&db_task_start;
#endif /* MACH_KDB */
- mpt->ktss.ss0 = KERNEL_DS;
- mpt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */
+ cdt->ktss.ss0 = KERNEL_DS;
+ cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */
+
+ cpu_window_init(cdp->cpu_number);
+
}
+
+}
+
+void
+cpu_desc_init64(
+ cpu_data_t *cdp,
+ boolean_t is_boot_cpu)
+{
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *)
+ cdp->cpu_desc_tablep;
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+
+ if (is_boot_cpu) {
+ /*
+ * Master CPU uses the tables built at boot time.
+ * Just set the index pointers to the low memory space.
+ * Note that in 64-bit mode these are addressed in the
+ * double-mapped window (uber-space).
+ */
+ cdi->cdi_ktss = (struct i386_tss *) &master_ktss64;
+ cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
+ cdi->cdi_gdt = master_gdt;
+ cdi->cdi_idt = (struct fake_descriptor *) &master_idt64;
+ cdi->cdi_ldt = (struct fake_descriptor *) &master_ldt;
+
+ /* Replace the expanded LDT and TSS slots in the GDT: */
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
+ kernel_ldt_desc64;
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
+ kernel_tss_desc64;
+
+ /*
+ * Fix up the expanded descriptors for 64-bit.
+ */
+ fix_desc64((void *) &master_idt64, IDTSZ);
+ fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
+ fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
+
+ /*
+ * Set the double-fault stack as IST1 in the 64-bit TSS
+ */
+ master_ktss64.ist1 = UBER64(df_task_stack_end);
+
+ } else {
+ /*
+ * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
+ * heap (cpu_desc_table) and double-mapped in uber-space (over 4GB).
+ * LDT descriptors are mapped into a separate area.
+ */
+ cdi->cdi_gdt = cdt->gdt;
+ cdi->cdi_idt = (struct fake_descriptor *) cdt->idt;
+ cdi->cdi_ktss = (struct i386_tss *) &cdt->ktss;
+ cdi->cdi_sstk = (vm_offset_t) &cdt->sstk.top;
+ cdi->cdi_ldt = cdp->cpu_ldtp;
+
+ /*
+ * Copy the tables
+ */
+ bcopy((char *)master_idt64,
+ (char *)cdt->idt,
+ sizeof(master_idt64));
+ bcopy((char *)master_gdt,
+ (char *)cdt->gdt,
+ sizeof(master_gdt));
+ bcopy((char *)master_ldt,
+ (char *)cdp->cpu_ldtp,
+ sizeof(master_ldt));
+ bcopy((char *)&master_ktss64,
+ (char *)&cdt->ktss,
+ sizeof(struct x86_64_tss));
+
+ /*
+ * Fix up the entries in the GDT to point to
+ * this LDT and this TSS.
+ */
+ kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
+ kernel_ldt_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
+
+ kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
+ kernel_ldt_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
+
+ kernel_tss_desc64.offset[0] = (vm_offset_t) cdi->cdi_ktss;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
+ kernel_tss_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
+
+ cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
+ cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
+ fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
+
+ /* Set double-fault stack as IST1 */
+ cdt->ktss.ist1 = UBER64(cdt->dfstk + sizeof(cdt->dfstk));
+
+ /*
+ * Allocate copyio windows.
+ */
+ cpu_window_init(cdp->cpu_number);
+
+ }
+
+ /* Require that the top of the sysenter stack is 16-byte aligned */
+ if ((cdi->cdi_sstk % 16) != 0)
+ panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
+}
+
+/*
+ * Set MSRs for sysenter/sysexit for 64-bit.
+ */
+void
+fast_syscall_init64(void)
+{
+ wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
+ wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64(hi64_sysenter));
+ wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));
+
+ /* Enable syscall/sysret */
+ wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
+
+ /*
+ * MSRs for 64-bit syscall/sysret
+ * Note USER_CS because sysret uses this + 16 when returning to
+ * 64-bit code.
+ */
+ wrmsr64(MSR_IA32_LSTAR, UBER64(hi64_syscall));
+ wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
+ (((uint64_t)KERNEL64_CS) << 32));
+ /*
+ * Emulate eflags cleared by sysenter but note that
+ * we also clear the trace trap to avoid the complications
+ * of single-stepping into a syscall. We also clear
+ * the nested task bit to avoid a spurious "task switch"
+ * on IRET.
+ */
+ wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
+
+ /*
+ * Set the Kermel GS base MSR to point to per-cpu data in uber-space.
+ * The uber-space handler (hi64_syscall) uses the swapgs instruction.
+ */
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, UBER64(current_cpu_datap()));
+ kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n",
+ rdmsr64(MSR_IA32_KERNEL_GS_BASE));
+}
+
+/*
+ * Set MSRs for sysenter/sysexit
+ */
+void
+fast_syscall_init(void)
+{
+ wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0);
+ wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0);
+ wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0);
}
cpu_data_t *
cdp->cpu_processor = cpu_processor_alloc(TRUE);
cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
cdp->cpu_this = cdp;
- cdp->cpu_int_stack_top = (vm_offset_t) eintstack;
- mp_desc_init(cdp, TRUE);
+ cdp->cpu_is64bit = FALSE;
+ cdp->cpu_int_stack_top = (vm_offset_t) low_eintstack;
+ cpu_desc_init(cdp, TRUE);
+ fast_syscall_init();
}
return cdp;
}
bzero((void*) cdp, sizeof(cpu_data_t));
cdp->cpu_this = cdp;
+ /* Propagate mode */
+ cdp->cpu_is64bit = cpu_mode_is64bit();
+
/*
* Allocate interrupt stack:
*/
/*
* Allocate descriptor table:
+ * Size depends on cpu mode.
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_desc_tablep,
- sizeof(struct mp_desc_table));
+ cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t)
+ : sizeof(cpu_desc_table_t));
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
goto abort;
}
+ /*
+ * Allocate LDT
+ */
+ ret = kmem_alloc(kernel_map,
+ (vm_offset_t *) &cdp->cpu_ldtp,
+ sizeof(struct real_descriptor) * LDTSZ);
+ if (ret != KERN_SUCCESS) {
+ printf("cpu_data_alloc() ldt failed, ret=%d\n", ret);
+ goto abort;
+ }
+
simple_lock(&cpu_lock);
if (real_ncpus >= max_ncpus) {
simple_unlock(&cpu_lock);
cdp->cpu_number = real_ncpus;
real_ncpus++;
simple_unlock(&cpu_lock);
-
+
kprintf("cpu_data_alloc(%d) 0x%x desc_table: 0x%x "
+ "ldt: 0x%x "
"int_stack: 0x%x-0x%x\n",
- cdp->cpu_number, cdp, cdp->cpu_desc_tablep,
+ cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
cdp->cpu_int_stack_top - INTSTACK_SIZE, cdp->cpu_int_stack_top);
return cdp;
valid_user_data_selector(gs);
}
+
+static vm_offset_t user_window_base = 0;
+static vm_offset_t phys_window_base = 0;
+
+void
+cpu_window_init(int cpu)
+{
+ cpu_data_t *cdp = cpu_data_ptr[cpu];
+ cpu_desc_index_t *cdi;
+ vm_offset_t user_window;
+ vm_offset_t phys_window;
+ vm_offset_t vaddr;
+ int num_cpus;
+
+ num_cpus = ml_get_max_cpus();
+
+ if (cpu >= num_cpus)
+ panic("copy_window_init: cpu > num_cpus");
+
+ if (user_window_base == 0) {
+
+ if (vm_allocate(kernel_map, &vaddr,
+ (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
+ VM_FLAGS_ANYWHERE) != KERN_SUCCESS)
+ panic("copy_window_init: "
+ "couldn't allocate user map window");
+
+ /*
+ * window must start on a page table boundary
+ * in the virtual address space
+ */
+ user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1);
+
+ /*
+ * get rid of any allocation leading up to our
+ * starting boundary
+ */
+ vm_deallocate(kernel_map, vaddr, user_window_base - vaddr);
+
+ /*
+ * get rid of tail that we don't need
+ */
+ user_window = user_window_base +
+ (NBPDE * NCOPY_WINDOWS * num_cpus);
+
+ vm_deallocate(kernel_map, user_window,
+ (vaddr +
+ ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
+ user_window);
+
+ if (vm_allocate(kernel_map, &phys_window_base,
+ PAGE_SIZE * num_cpus, VM_FLAGS_ANYWHERE)
+ != KERN_SUCCESS)
+ panic("copy_window_init: "
+ "couldn't allocate phys map window");
+ }
+
+ user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
+ phys_window = phys_window_base + (cpu * PAGE_SIZE);
+
+ cdi = &cdp->cpu_desc_index;
+
+ cdp->cpu_copywindow_base = user_window;
+ cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
+
+ cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern;
+ cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)].offset = user_window;
+
+ fix_desc(&cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)], 1);
+
+ cdp->cpu_physwindow_base = phys_window;
+
+ /*
+ * make sure the page that encompasses the
+ * pte pointer we're interested in actually
+ * exists in the page table
+ */
+ pmap_expand(kernel_pmap, phys_window);
+
+ cdp->cpu_physwindow_ptep = vtopte(phys_window);
+
+ cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern;
+ cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window;
+
+ fix_desc(&cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)], 1);
+}
+
+
+typedef struct {
+ uint16_t length;
+ uint32_t offset[2];
+} __attribute__((__packed__)) table_descriptor64_t;
+
+extern table_descriptor64_t gdtptr64;
+extern table_descriptor64_t idtptr64;
+/*
+ * Load the segment descriptor tables for the current processor.
+ */
+void
+cpu_desc_load64(cpu_data_t *cdp)
+{
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+
+ /*
+ * Load up the new descriptors etc
+ * ml_load_desc64() expects these global pseudo-descriptors:
+ * gdtptr64 -> master_gdt
+ * idtptr64 -> master_idt64
+ * These are 10-byte descriptors with 64-bit addresses into
+ * uber-space.
+ */
+ gdtptr64.length = sizeof(master_gdt) - 1;
+ gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt;
+ gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
+ idtptr64.length = sizeof(master_idt64) - 1;
+ idtptr64.offset[0] = (uint32_t) cdi->cdi_idt;
+ idtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
+
+ /* Make sure busy bit is cleared in the TSS */
+ gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
+
+ ml_load_desc64();
+
+ kprintf("64-bit descriptor tables loaded\n");
+}