/*
- * Copyright (c) 2004-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <kern/clock.h>
#include <kern/thread.h>
+#include <kern/processor.h>
#include <kern/macro_help.h>
#include <kern/spl.h>
-
-#include <kern/host_notify.h>
+#include <kern/pms.h>
#include <machine/commpage.h>
#include <machine/machine_routines.h>
#include <ppc/exception.h>
#include <ppc/proc_reg.h>
-#include <ppc/pms.h>
#include <ppc/rtclock.h>
-#include <IOKit/IOPlatformExpert.h>
-
#include <sys/kdebug.h>
-int sysclk_config(void);
-
-int sysclk_init(void);
-
-kern_return_t sysclk_gettime(
- mach_timespec_t *cur_time);
-
-kern_return_t sysclk_getattr(
- clock_flavor_t flavor,
- clock_attr_t attr,
- mach_msg_type_number_t *count);
-
-void sysclk_setalarm(
- mach_timespec_t *deadline);
-
-struct clock_ops sysclk_ops = {
- sysclk_config, sysclk_init,
- sysclk_gettime, 0,
- sysclk_getattr, 0,
- sysclk_setalarm,
-};
-
-int calend_config(void);
-
-kern_return_t calend_gettime(
- mach_timespec_t *cur_time);
-
-kern_return_t calend_getattr(
- clock_flavor_t flavor,
- clock_attr_t attr,
- mach_msg_type_number_t *count);
-
-struct clock_ops calend_ops = {
- calend_config, 0,
- calend_gettime, 0,
- calend_getattr, 0,
- 0,
-};
-
-/* local data declarations */
+int rtclock_config(void);
-static struct rtclock_calend {
- uint32_t epoch;
- uint32_t microepoch;
-
- uint64_t epoch1;
-
- int64_t adjtotal;
- int32_t adjdelta;
-} rtclock_calend;
-
-static uint32_t rtclock_boottime;
-
-#define TIME_ADD(rsecs, secs, rfrac, frac, unit) \
-MACRO_BEGIN \
- if (((rfrac) += (frac)) >= (unit)) { \
- (rfrac) -= (unit); \
- (rsecs) += 1; \
- } \
- (rsecs) += (secs); \
-MACRO_END
-
-#define TIME_SUB(rsecs, secs, rfrac, frac, unit) \
-MACRO_BEGIN \
- if ((int32_t)((rfrac) -= (frac)) < 0) { \
- (rfrac) += (unit); \
- (rsecs) -= 1; \
- } \
- (rsecs) -= (secs); \
-MACRO_END
+int rtclock_init(void);
#define NSEC_PER_HZ (NSEC_PER_SEC / 100)
-static uint32_t rtclock_tick_interval;
static uint32_t rtclock_sec_divisor;
static boolean_t rtclock_timebase_initialized;
-static clock_timer_func_t rtclock_timer_expire;
-
-static timer_call_data_t rtclock_alarm_timer;
-
-static void nanotime_to_absolutetime(
- uint32_t secs,
- uint32_t nanosecs,
- uint64_t *result);
-
-static void rtclock_alarm_expire(
- timer_call_param_t p0,
- timer_call_param_t p1);
-
-/* global data declarations */
+/* XXX this should really be in a header somewhere */
+extern clock_timer_func_t rtclock_timer_expire;
decl_simple_lock_data(static,rtclock_lock)
struct timebase_freq_t *freq)
{
uint32_t numer, denom;
- uint64_t abstime;
spl_t s;
if ( freq->timebase_den < 1 || freq->timebase_den > 4 ||
freq->timebase_num < freq->timebase_den )
- panic("rtclock timebase_callback: invalid constant %d / %d",
+ panic("rtclock timebase_callback: invalid constant %lu / %lu",
freq->timebase_num, freq->timebase_den);
denom = freq->timebase_num;
LOCK_RTC(s);
if (!rtclock_timebase_initialized) {
- commpage_set_timestamp(0,0,0,0);
+ commpage_set_timestamp(0,0,0);
rtclock_timebase_const.numer = numer;
rtclock_timebase_const.denom = denom;
rtclock_sec_divisor = freq->timebase_num / freq->timebase_den;
- nanoseconds_to_absolutetime(NSEC_PER_HZ, &abstime);
- rtclock_tick_interval = abstime;
-
ml_init_lock_timeout();
}
else {
}
/*
- * Configure the real-time clock device.
+ * Configure the system clock device.
*/
int
-sysclk_config(void)
+rtclock_config(void)
{
- timer_call_setup(&rtclock_alarm_timer, rtclock_alarm_expire, NULL);
-
simple_lock_init(&rtclock_lock, 0);
PE_register_timebase_callback(timebase_callback);
* Initialize the system clock device.
*/
int
-sysclk_init(void)
+rtclock_init(void)
{
- uint64_t abstime;
- struct per_proc_info *pp;
-
- pp = getPerProc();
-
- abstime = mach_absolute_time();
- pp->rtclock_tick_deadline = abstime + rtclock_tick_interval; /* Get the time we need to pop */
- pp->rtcPop = pp->rtclock_tick_deadline; /* Set the rtc pop time the same for now */
-
- (void)setTimerReq(); /* Start the timers going */
+ etimer_resync_deadlines(); /* Start the timers going */
return (1);
}
-kern_return_t
-sysclk_gettime(
- mach_timespec_t *time) /* OUT */
-{
- uint64_t now, t64;
- uint32_t divisor;
-
- now = mach_absolute_time();
-
- time->tv_sec = t64 = now / (divisor = rtclock_sec_divisor);
- now -= (t64 * divisor);
- time->tv_nsec = (now * NSEC_PER_SEC) / divisor;
-
- return (KERN_SUCCESS);
-}
-
void
clock_get_system_microtime(
uint32_t *secs,
*nanosecs = (now * NSEC_PER_SEC) / divisor;
}
-/*
- * Get clock device attributes.
- */
-kern_return_t
-sysclk_getattr(
- clock_flavor_t flavor,
- clock_attr_t attr, /* OUT */
- mach_msg_type_number_t *count) /* IN/OUT */
-{
- spl_t s;
-
- if (*count != 1)
- return (KERN_FAILURE);
-
- switch (flavor) {
-
- case CLOCK_GET_TIME_RES: /* >0 res */
- case CLOCK_ALARM_CURRES: /* =0 no alarm */
- case CLOCK_ALARM_MINRES:
- case CLOCK_ALARM_MAXRES:
- LOCK_RTC(s);
- *(clock_res_t *) attr = NSEC_PER_HZ;
- UNLOCK_RTC(s);
- break;
-
- default:
- return (KERN_INVALID_VALUE);
- }
-
- return (KERN_SUCCESS);
-}
-
-/*
- * Set deadline for the next alarm on the clock device. This call
- * always resets the time to deliver an alarm for the clock.
- */
void
-sysclk_setalarm(
- mach_timespec_t *deadline)
+clock_gettimeofday_set_commpage(
+ uint64_t abstime,
+ uint64_t epoch,
+ uint64_t offset,
+ uint32_t *secs,
+ uint32_t *microsecs)
{
- uint64_t abstime;
-
- nanotime_to_absolutetime(deadline->tv_sec, deadline->tv_nsec, &abstime);
- timer_call_enter(&rtclock_alarm_timer, abstime);
-}
-
-/*
- * Configure the calendar clock.
- */
-int
-calend_config(void)
-{
- return (1);
-}
-
-/*
- * Get the current clock time.
- */
-kern_return_t
-calend_gettime(
- mach_timespec_t *time) /* OUT */
-{
- clock_get_calendar_nanotime(
- &time->tv_sec, &time->tv_nsec);
-
- return (KERN_SUCCESS);
-}
-
-/*
- * Get clock device attributes.
- */
-kern_return_t
-calend_getattr(
- clock_flavor_t flavor,
- clock_attr_t attr, /* OUT */
- mach_msg_type_number_t *count) /* IN/OUT */
-{
- spl_t s;
-
- if (*count != 1)
- return (KERN_FAILURE);
-
- switch (flavor) {
-
- case CLOCK_GET_TIME_RES: /* >0 res */
- LOCK_RTC(s);
- *(clock_res_t *) attr = NSEC_PER_HZ;
- UNLOCK_RTC(s);
- break;
-
- case CLOCK_ALARM_CURRES: /* =0 no alarm */
- case CLOCK_ALARM_MINRES:
- case CLOCK_ALARM_MAXRES:
- *(clock_res_t *) attr = 0;
- break;
-
- default:
- return (KERN_INVALID_VALUE);
- }
-
- return (KERN_SUCCESS);
-}
-
-void
-clock_get_calendar_microtime(
- uint32_t *secs,
- uint32_t *microsecs)
-{
- uint32_t epoch, microepoch;
- uint64_t now, t64;
- spl_t s = splclock();
+ uint64_t t64, now = abstime;
simple_lock(&rtclock_lock);
- if (rtclock_calend.adjdelta >= 0) {
- uint32_t divisor;
-
- now = mach_absolute_time();
+ now += offset;
- epoch = rtclock_calend.epoch;
- microepoch = rtclock_calend.microepoch;
+ *secs = t64 = now / rtclock_sec_divisor;
+ now -= (t64 * rtclock_sec_divisor);
+ *microsecs = (now * USEC_PER_SEC) / rtclock_sec_divisor;
- simple_unlock(&rtclock_lock);
+ *secs += epoch;
- *secs = t64 = now / (divisor = rtclock_sec_divisor);
- now -= (t64 * divisor);
- *microsecs = (now * USEC_PER_SEC) / divisor;
-
- TIME_ADD(*secs, epoch, *microsecs, microepoch, USEC_PER_SEC);
- }
- else {
- uint32_t delta, t32;
-
- delta = -rtclock_calend.adjdelta;
-
- now = mach_absolute_time();
-
- *secs = rtclock_calend.epoch;
- *microsecs = rtclock_calend.microepoch;
-
- if (now > rtclock_calend.epoch1) {
- t64 = now - rtclock_calend.epoch1;
-
- t32 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- if (t32 > delta)
- TIME_ADD(*secs, 0, *microsecs, (t32 - delta), USEC_PER_SEC);
- }
-
- simple_unlock(&rtclock_lock);
- }
-
- splx(s);
-}
-
-/* This is only called from the gettimeofday() syscall. As a side
- * effect, it updates the commpage timestamp. Otherwise it is
- * identical to clock_get_calendar_microtime(). Because most
- * gettimeofday() calls are handled by the commpage in user mode,
- * this routine should be infrequently used except when slowing down
- * the clock.
- */
-void
-clock_gettimeofday(
- uint32_t *secs_p,
- uint32_t *microsecs_p)
-{
- uint32_t epoch, microepoch;
- uint32_t secs, microsecs;
- uint64_t now, t64, secs_64, usec_64;
- spl_t s = splclock();
-
- simple_lock(&rtclock_lock);
-
- if (rtclock_calend.adjdelta >= 0) {
- now = mach_absolute_time();
-
- epoch = rtclock_calend.epoch;
- microepoch = rtclock_calend.microepoch;
-
- secs = secs_64 = now / rtclock_sec_divisor;
- t64 = now - (secs_64 * rtclock_sec_divisor);
- microsecs = usec_64 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- TIME_ADD(secs, epoch, microsecs, microepoch, USEC_PER_SEC);
-
- /* adjust "now" to be absolute time at _start_ of usecond */
- now -= t64 - ((usec_64 * rtclock_sec_divisor) / USEC_PER_SEC);
-
- commpage_set_timestamp(now,secs,microsecs,rtclock_sec_divisor);
- }
- else {
- uint32_t delta, t32;
-
- delta = -rtclock_calend.adjdelta;
-
- now = mach_absolute_time();
-
- secs = rtclock_calend.epoch;
- microsecs = rtclock_calend.microepoch;
-
- if (now > rtclock_calend.epoch1) {
- t64 = now - rtclock_calend.epoch1;
-
- t32 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- if (t32 > delta)
- TIME_ADD(secs, 0, microsecs, (t32 - delta), USEC_PER_SEC);
- }
-
- /* no need to disable timestamp, it is already off */
- }
-
- simple_unlock(&rtclock_lock);
- splx(s);
-
- *secs_p = secs;
- *microsecs_p = microsecs;
-}
-
-void
-clock_get_calendar_nanotime(
- uint32_t *secs,
- uint32_t *nanosecs)
-{
- uint32_t epoch, nanoepoch;
- uint64_t now, t64;
- spl_t s = splclock();
-
- simple_lock(&rtclock_lock);
-
- if (rtclock_calend.adjdelta >= 0) {
- uint32_t divisor;
-
- now = mach_absolute_time();
-
- epoch = rtclock_calend.epoch;
- nanoepoch = rtclock_calend.microepoch * NSEC_PER_USEC;
-
- simple_unlock(&rtclock_lock);
-
- *secs = t64 = now / (divisor = rtclock_sec_divisor);
- now -= (t64 * divisor);
- *nanosecs = ((now * USEC_PER_SEC) / divisor) * NSEC_PER_USEC;
-
- TIME_ADD(*secs, epoch, *nanosecs, nanoepoch, NSEC_PER_SEC);
- }
- else {
- uint32_t delta, t32;
-
- delta = -rtclock_calend.adjdelta;
-
- now = mach_absolute_time();
-
- *secs = rtclock_calend.epoch;
- *nanosecs = rtclock_calend.microepoch * NSEC_PER_USEC;
-
- if (now > rtclock_calend.epoch1) {
- t64 = now - rtclock_calend.epoch1;
-
- t32 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- if (t32 > delta)
- TIME_ADD(*secs, 0, *nanosecs, ((t32 - delta) * NSEC_PER_USEC), NSEC_PER_SEC);
- }
-
- simple_unlock(&rtclock_lock);
- }
-
- splx(s);
-}
-
-void
-clock_set_calendar_microtime(
- uint32_t secs,
- uint32_t microsecs)
-{
- uint32_t sys, microsys;
- uint32_t newsecs;
- spl_t s;
-
- newsecs = (microsecs < 500*USEC_PER_SEC)?
- secs: secs + 1;
-
- s = splclock();
- simple_lock(&rtclock_lock);
-
- commpage_set_timestamp(0,0,0,0);
-
- /*
- * Cancel any adjustment in progress.
- */
- if (rtclock_calend.adjdelta < 0) {
- uint64_t now, t64;
- uint32_t delta, t32;
-
- delta = -rtclock_calend.adjdelta;
-
- sys = rtclock_calend.epoch;
- microsys = rtclock_calend.microepoch;
-
- now = mach_absolute_time();
-
- if (now > rtclock_calend.epoch1)
- t64 = now - rtclock_calend.epoch1;
- else
- t64 = 0;
-
- t32 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- if (t32 > delta)
- TIME_ADD(sys, 0, microsys, (t32 - delta), USEC_PER_SEC);
-
- rtclock_calend.epoch = sys;
- rtclock_calend.microepoch = microsys;
-
- sys = t64 = now / rtclock_sec_divisor;
- now -= (t64 * rtclock_sec_divisor);
- microsys = (now * USEC_PER_SEC) / rtclock_sec_divisor;
-
- TIME_SUB(rtclock_calend.epoch, sys, rtclock_calend.microepoch, microsys, USEC_PER_SEC);
- }
-
- rtclock_calend.epoch1 = 0;
- rtclock_calend.adjdelta = rtclock_calend.adjtotal = 0;
-
- /*
- * Calculate the new calendar epoch based on
- * the new value and the system clock.
- */
- clock_get_system_microtime(&sys, µsys);
- TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC);
-
- /*
- * Adjust the boottime based on the delta.
- */
- rtclock_boottime += secs - rtclock_calend.epoch;
-
- /*
- * Set the new calendar epoch.
- */
- rtclock_calend.epoch = secs;
- rtclock_calend.microepoch = microsecs;
+ commpage_set_timestamp(abstime - now, *secs, rtclock_sec_divisor);
simple_unlock(&rtclock_lock);
-
- /*
- * Set the new value for the platform clock.
- */
- PESetGMTTimeOfDay(newsecs);
-
- splx(s);
-
- /*
- * Send host notifications.
- */
- host_notify_calendar_change();
-}
-
-#define tickadj (40) /* "standard" skew, us / tick */
-#define bigadj (USEC_PER_SEC) /* use 10x skew above bigadj us */
-
-uint32_t
-clock_set_calendar_adjtime(
- int32_t *secs,
- int32_t *microsecs)
-{
- int64_t total, ototal;
- uint32_t interval = 0;
- spl_t s;
-
- total = (int64_t)*secs * USEC_PER_SEC + *microsecs;
-
- LOCK_RTC(s);
- commpage_set_timestamp(0,0,0,0);
-
- ototal = rtclock_calend.adjtotal;
-
- if (rtclock_calend.adjdelta < 0) {
- uint64_t now, t64;
- uint32_t delta, t32;
- uint32_t sys, microsys;
-
- delta = -rtclock_calend.adjdelta;
-
- sys = rtclock_calend.epoch;
- microsys = rtclock_calend.microepoch;
-
- now = mach_absolute_time();
-
- if (now > rtclock_calend.epoch1)
- t64 = now - rtclock_calend.epoch1;
- else
- t64 = 0;
-
- t32 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- if (t32 > delta)
- TIME_ADD(sys, 0, microsys, (t32 - delta), USEC_PER_SEC);
-
- rtclock_calend.epoch = sys;
- rtclock_calend.microepoch = microsys;
-
- sys = t64 = now / rtclock_sec_divisor;
- now -= (t64 * rtclock_sec_divisor);
- microsys = (now * USEC_PER_SEC) / rtclock_sec_divisor;
-
- TIME_SUB(rtclock_calend.epoch, sys, rtclock_calend.microepoch, microsys, USEC_PER_SEC);
- }
-
- if (total != 0) {
- int32_t delta = tickadj;
-
- if (total > 0) {
- if (total > bigadj)
- delta *= 10;
- if (delta > total)
- delta = total;
-
- rtclock_calend.epoch1 = 0;
- }
- else {
- uint64_t now, t64;
- uint32_t sys, microsys;
-
- if (total < -bigadj)
- delta *= 10;
- delta = -delta;
- if (delta < total)
- delta = total;
-
- rtclock_calend.epoch1 = now = mach_absolute_time();
-
- sys = t64 = now / rtclock_sec_divisor;
- now -= (t64 * rtclock_sec_divisor);
- microsys = (now * USEC_PER_SEC) / rtclock_sec_divisor;
-
- TIME_ADD(rtclock_calend.epoch, sys, rtclock_calend.microepoch, microsys, USEC_PER_SEC);
- }
-
- rtclock_calend.adjtotal = total;
- rtclock_calend.adjdelta = delta;
-
- interval = rtclock_tick_interval;
- }
- else {
- rtclock_calend.epoch1 = 0;
- rtclock_calend.adjdelta = rtclock_calend.adjtotal = 0;
- }
-
- UNLOCK_RTC(s);
-
- if (ototal == 0)
- *secs = *microsecs = 0;
- else {
- *secs = ototal / USEC_PER_SEC;
- *microsecs = ototal % USEC_PER_SEC;
- }
-
- return (interval);
-}
-
-uint32_t
-clock_adjust_calendar(void)
-{
- uint32_t interval = 0;
- int32_t delta;
- spl_t s;
-
- LOCK_RTC(s);
- commpage_set_timestamp(0,0,0,0);
-
- delta = rtclock_calend.adjdelta;
-
- if (delta > 0) {
- TIME_ADD(rtclock_calend.epoch, 0, rtclock_calend.microepoch, delta, USEC_PER_SEC);
-
- rtclock_calend.adjtotal -= delta;
- if (delta > rtclock_calend.adjtotal)
- rtclock_calend.adjdelta = rtclock_calend.adjtotal;
- }
- else
- if (delta < 0) {
- uint64_t now, t64;
- uint32_t t32;
-
- now = mach_absolute_time();
-
- if (now > rtclock_calend.epoch1)
- t64 = now - rtclock_calend.epoch1;
- else
- t64 = 0;
-
- rtclock_calend.epoch1 = now;
-
- t32 = (t64 * USEC_PER_SEC) / rtclock_sec_divisor;
-
- TIME_ADD(rtclock_calend.epoch, 0, rtclock_calend.microepoch, (t32 + delta), USEC_PER_SEC);
-
- rtclock_calend.adjtotal -= delta;
- if (delta < rtclock_calend.adjtotal)
- rtclock_calend.adjdelta = rtclock_calend.adjtotal;
-
- if (rtclock_calend.adjdelta == 0) {
- uint32_t sys, microsys;
-
- sys = t64 = now / rtclock_sec_divisor;
- now -= (t64 * rtclock_sec_divisor);
- microsys = (now * USEC_PER_SEC) / rtclock_sec_divisor;
-
- TIME_SUB(rtclock_calend.epoch, sys, rtclock_calend.microepoch, microsys, USEC_PER_SEC);
-
- rtclock_calend.epoch1 = 0;
- }
- }
-
- if (rtclock_calend.adjdelta != 0)
- interval = rtclock_tick_interval;
-
- UNLOCK_RTC(s);
-
- return (interval);
-}
-
-/*
- * clock_initialize_calendar:
- *
- * Set the calendar and related clocks
- * from the platform clock at boot or
- * wake event.
- */
-void
-clock_initialize_calendar(void)
-{
- uint32_t sys, microsys;
- uint32_t microsecs = 0, secs = PEGetGMTTimeOfDay();
- spl_t s;
-
- LOCK_RTC(s);
- commpage_set_timestamp(0,0,0,0);
-
- if ((int32_t)secs >= (int32_t)rtclock_boottime) {
- /*
- * Initialize the boot time based on the platform clock.
- */
- if (rtclock_boottime == 0)
- rtclock_boottime = secs;
-
- /*
- * Calculate the new calendar epoch based
- * on the platform clock and the system
- * clock.
- */
- clock_get_system_microtime(&sys, µsys);
- TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC);
-
- /*
- * Set the new calendar epoch.
- */
- rtclock_calend.epoch = secs;
- rtclock_calend.microepoch = microsecs;
-
- /*
- * Cancel any adjustment in progress.
- */
- rtclock_calend.epoch1 = 0;
- rtclock_calend.adjdelta = rtclock_calend.adjtotal = 0;
- }
-
- UNLOCK_RTC(s);
-
- /*
- * Send host notifications.
- */
- host_notify_calendar_change();
-}
-
-void
-clock_get_boottime_nanotime(
- uint32_t *secs,
- uint32_t *nanosecs)
-{
- *secs = rtclock_boottime;
- *nanosecs = 0;
}
void
spl_t s;
LOCK_RTC(s);
- rtclock_timebase_initialized = TRUE;
*info = rtclock_timebase_const;
+ rtclock_timebase_initialized = TRUE;
UNLOCK_RTC(s);
}
-void
-clock_set_timer_deadline(
- uint64_t deadline)
-{
- int decr;
- uint64_t abstime;
- rtclock_timer_t *mytimer;
- struct per_proc_info *pp;
- spl_t s;
-
- s = splclock();
- pp = getPerProc();
- mytimer = &pp->rtclock_timer;
- mytimer->deadline = deadline;
-
- if (!mytimer->has_expired && (deadline < pp->rtclock_tick_deadline)) { /* Has the timer already expired or is less that set? */
- pp->rtcPop = deadline; /* Yes, set the new rtc pop time */
- decr = setTimerReq(); /* Start the timers going */
-
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_DECI, 1)
- | DBG_FUNC_NONE, decr, 2, 0, 0, 0);
- }
-
- splx(s);
-}
-
void
clock_set_timer_func(
clock_timer_func_t func)
UNLOCK_RTC(s);
}
-/*
- * Real-time clock device interrupt.
- */
void
-rtclock_intr(struct savearea *ssp) {
-
- uint64_t abstime;
- int decr;
- rtclock_timer_t *mytimer;
- struct per_proc_info *pp;
-
- pp = getPerProc();
- mytimer = &pp->rtclock_timer;
-
- abstime = mach_absolute_time();
- if (pp->rtclock_tick_deadline <= abstime) { /* Have we passed the pop time? */
- clock_deadline_for_periodic_event(rtclock_tick_interval, abstime,
- &pp->rtclock_tick_deadline);
- hertz_tick(USER_MODE(ssp->save_srr1), ssp->save_srr0);
- abstime = mach_absolute_time(); /* Refresh the current time since we went away */
- }
-
- if (mytimer->deadline <= abstime) { /* Have we expired the deadline? */
- mytimer->has_expired = TRUE; /* Remember that we popped */
- mytimer->deadline = EndOfAllTime; /* Set timer request to the end of all time in case we have no more events */
- (*rtclock_timer_expire)(abstime); /* Process pop */
- mytimer->has_expired = FALSE;
- }
-
- pp->rtcPop = (pp->rtclock_tick_deadline < mytimer->deadline) ? /* Get shortest pop */
- pp->rtclock_tick_deadline : /* It was the periodic timer */
- mytimer->deadline; /* Actually, an event request */
-
- decr = setTimerReq(); /* Request the timer pop */
-
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_DECI, 1)
- | DBG_FUNC_NONE, decr, 3, 0, 0, 0);
-}
-
-/*
- * Request an interruption at a specific time
- *
- * Sets the decrementer to pop at the right time based on the timebase.
- * The value is chosen by comparing the rtc request with the power management.
- * request. We may add other values at a future time.
- *
- */
-
-int setTimerReq(void) {
-
- struct per_proc_info *pp;
- int decr;
- uint64_t nexttime;
-
- pp = getPerProc(); /* Get per_proc */
-
- nexttime = pp->rtcPop; /* Assume main timer */
-
- decr = setPop((pp->pms.pmsPop < nexttime) ? pp->pms.pmsPop : nexttime); /* Schedule timer pop */
-
- return decr; /* Pass back what we actually set */
-}
-
-static void
-rtclock_alarm_expire(
- __unused void *p0,
- __unused void *p1)
-{
- mach_timespec_t timestamp;
-
- (void) sysclk_gettime(×tamp);
-
- clock_alarm_intr(SYSTEM_CLOCK, ×tamp);
-}
-
-static void
-nanotime_to_absolutetime(
- uint32_t secs,
- uint32_t nanosecs,
+clock_interval_to_absolutetime_interval(
+ uint32_t interval,
+ uint32_t scale_factor,
uint64_t *result)
{
- uint32_t divisor = rtclock_sec_divisor;
+ uint64_t nanosecs = (uint64_t)interval * scale_factor;
+ uint64_t t64;
+ uint32_t divisor;
- *result = ((uint64_t)secs * divisor) +
- ((uint64_t)nanosecs * divisor) / NSEC_PER_SEC;
+ *result = (t64 = nanosecs / NSEC_PER_SEC) *
+ (divisor = rtclock_sec_divisor);
+ nanosecs -= (t64 * NSEC_PER_SEC);
+ *result += (nanosecs * divisor) / NSEC_PER_SEC;
}
void
}
void
-clock_interval_to_deadline(
- uint32_t interval,
- uint32_t scale_factor,
- uint64_t *result)
-{
- uint64_t abstime;
-
- clock_get_uptime(result);
-
- clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
-
- *result += abstime;
-}
-
-void
-clock_interval_to_absolutetime_interval(
- uint32_t interval,
- uint32_t scale_factor,
- uint64_t *result)
+absolutetime_to_nanotime(
+ uint64_t abstime,
+ uint32_t *secs,
+ uint32_t *nanosecs)
{
- uint64_t nanosecs = (uint64_t)interval * scale_factor;
- uint64_t t64;
- uint32_t divisor;
+ uint64_t t64;
+ uint32_t divisor;
- *result = (t64 = nanosecs / NSEC_PER_SEC) *
- (divisor = rtclock_sec_divisor);
- nanosecs -= (t64 * NSEC_PER_SEC);
- *result += (nanosecs * divisor) / NSEC_PER_SEC;
+ *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
+ abstime -= (t64 * divisor);
+ *nanosecs = (abstime * NSEC_PER_SEC) / divisor;
}
void
-clock_absolutetime_interval_to_deadline(
- uint64_t abstime,
+nanotime_to_absolutetime(
+ uint32_t secs,
+ uint32_t nanosecs,
uint64_t *result)
{
- clock_get_uptime(result);
+ uint32_t divisor = rtclock_sec_divisor;
- *result += abstime;
+ *result = ((uint64_t)secs * divisor) +
+ ((uint64_t)nanosecs * divisor) / NSEC_PER_SEC;
}
void
now = mach_absolute_time();
} while (now < deadline);
}
-