/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <vm/vm_object.h>
#include <vm/vm_protos.h>
-/* LP64todo - need large internal object support */
+
+/* todo - need large internal object support */
/*
* ALLOC_STRIDE... the maximum number of bytes allocated from
int physical_transfer_cluster_count = 0;
#define VM_SUPER_CLUSTER 0x40000
-#define VM_SUPER_PAGES 64
+#define VM_SUPER_PAGES (VM_SUPER_CLUSTER / PAGE_SIZE)
/*
* 0 means no shift to pages, so == 1 page/cluster. 1 would mean
* 2 pages/cluster, 2 means 4 pages/cluster, and so on.
*/
+#define VSTRUCT_MIN_CLSHIFT 0
+
#define VSTRUCT_DEF_CLSHIFT 2
-int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT;
int default_pager_clsize = 0;
+int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT;
+
/* statistics */
unsigned int clustered_writes[VM_SUPER_PAGES+1];
unsigned int clustered_reads[VM_SUPER_PAGES+1];
#define VS_ASYNC_REUSE 1
struct vs_async *vs_async_free_list;
-mutex_t default_pager_async_lock; /* Protects globals above */
+lck_mtx_t default_pager_async_lock; /* Protects globals above */
int vs_alloc_async_failed = 0; /* statistics */
#define VS_ALLOC_ASYNC() vs_alloc_async()
#define VS_FREE_ASYNC(vsa) vs_free_async(vsa)
-#define VS_ASYNC_LOCK() mutex_lock(&default_pager_async_lock)
-#define VS_ASYNC_UNLOCK() mutex_unlock(&default_pager_async_lock)
-#define VS_ASYNC_LOCK_INIT() mutex_init(&default_pager_async_lock, 0)
+#define VS_ASYNC_LOCK() lck_mtx_lock(&default_pager_async_lock)
+#define VS_ASYNC_UNLOCK() lck_mtx_unlock(&default_pager_async_lock)
+#define VS_ASYNC_LOCK_INIT() lck_mtx_init(&default_pager_async_lock, &default_pager_lck_grp, &default_pager_lck_attr)
#define VS_ASYNC_LOCK_ADDR() (&default_pager_async_lock)
/*
* Paging Space Hysteresis triggers and the target notification port
*
*/
-
+unsigned int dp_pages_free_drift_count = 0;
+unsigned int dp_pages_free_drifted_max = 0;
unsigned int minimum_pages_remaining = 0;
unsigned int maximum_pages_free = 0;
ipc_port_t min_pages_trigger_port = NULL;
ipc_port_t max_pages_trigger_port = NULL;
+boolean_t use_emergency_swap_file_first = FALSE;
boolean_t bs_low = FALSE;
int backing_store_release_trigger_disable = 0;
+boolean_t backing_store_stop_compaction = FALSE;
/* Have we decided if swap needs to be encrypted yet ? */
/* Should we encrypt swap ? */
boolean_t dp_encryption = FALSE;
+boolean_t dp_isssd = FALSE;
+
/*
* Object sizes are rounded up to the next power of 2,
/*
* List of all backing store and segments.
*/
+MACH_PORT_FACE emergency_segment_backing_store;
struct backing_store_list_head backing_store_list;
paging_segment_t paging_segments[MAX_NUM_PAGING_SEGMENTS];
-mutex_t paging_segments_lock;
+lck_mtx_t paging_segments_lock;
int paging_segment_max = 0;
int paging_segment_count = 0;
int ps_select_array[BS_MAXPRI+1] = { -1,-1,-1,-1,-1 };
* likely to be deprecated.
*/
unsigned int dp_pages_free = 0;
+unsigned int dp_pages_reserve = 0;
unsigned int cluster_transfer_minimum = 100;
/* forward declarations */
-kern_return_t ps_write_file(paging_segment_t, upl_t, upl_offset_t, vm_offset_t, unsigned int, int); /* forward */
-kern_return_t ps_read_file (paging_segment_t, upl_t, upl_offset_t, vm_offset_t, unsigned int, unsigned int *, int); /* forward */
+kern_return_t ps_write_file(paging_segment_t, upl_t, upl_offset_t, dp_offset_t, unsigned int, int); /* forward */
+kern_return_t ps_read_file (paging_segment_t, upl_t, upl_offset_t, dp_offset_t, unsigned int, unsigned int *, int); /* forward */
default_pager_thread_t *get_read_buffer( void );
kern_return_t ps_vstruct_transfer_from_segment(
vstruct_t vs,
paging_segment_t segment,
upl_t upl);
-kern_return_t ps_read_device(paging_segment_t, vm_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */
-kern_return_t ps_write_device(paging_segment_t, vm_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */
+kern_return_t ps_read_device(paging_segment_t, dp_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */
+kern_return_t ps_write_device(paging_segment_t, dp_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */
kern_return_t vs_cluster_transfer(
vstruct_t vs,
- upl_offset_t offset,
- upl_size_t cnt,
+ dp_offset_t offset,
+ dp_size_t cnt,
upl_t upl);
vs_map_t vs_get_map_entry(
vstruct_t vs,
- vm_offset_t offset);
+ dp_offset_t offset);
+kern_return_t
+default_pager_backing_store_delete_internal( MACH_PORT_FACE );
default_pager_thread_t *
get_read_buffer( void )
void
bs_global_info(
- vm_size_t *totalp,
- vm_size_t *freep)
+ uint64_t *totalp,
+ uint64_t *freep)
{
- vm_size_t pages_total, pages_free;
+ uint64_t pages_total, pages_free;
paging_segment_t ps;
int i;
kalloc(sizeof (struct vstruct_alias));
if(alias_struct != NULL) {
alias_struct->vs = (struct vstruct *)bs;
- alias_struct->name = ISVS;
- port->alias = (int) alias_struct;
+ alias_struct->name = &default_pager_ops;
+ port->alias = (uintptr_t) alias_struct;
}
else {
ipc_port_dealloc_kernel((MACH_PORT_FACE)(port));
}
int ps_delete(paging_segment_t); /* forward */
+boolean_t current_thread_aborted(void);
int
ps_delete(
error = KERN_FAILURE;
else {
vm_object_t transfer_object;
- int count;
+ unsigned int count;
upl_t upl;
transfer_object = vm_object_allocate((vm_object_size_t)VM_SUPER_CLUSTER);
error = vm_object_upl_request(transfer_object,
(vm_object_offset_t)0, VM_SUPER_CLUSTER,
&upl, NULL, &count,
- UPL_NO_SYNC | UPL_CLEAN_IN_PLACE
- | UPL_SET_INTERNAL);
+ UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_LITE | UPL_SET_INTERNAL);
+
if(error == KERN_SUCCESS) {
error = ps_vstruct_transfer_from_segment(
vs, ps, upl);
}
vm_object_deallocate(transfer_object);
}
- if(error) {
+ if(error || current_thread_aborted() || backing_store_stop_compaction) {
VS_LOCK(vs);
vs->vs_async_pending -= 1; /* release vs_async_wait */
if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
kern_return_t
-default_pager_backing_store_delete(
+default_pager_backing_store_delete_internal(
MACH_PORT_FACE backing_store)
{
backing_store_t bs;
paging_segment_t ps;
int error;
int interim_pages_removed = 0;
-// kern_return_t kr;
+ boolean_t dealing_with_emergency_segment = ( backing_store == emergency_segment_backing_store );
if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL)
return KERN_INVALID_ARGUMENT;
-#if 0
- /* not implemented */
- BS_UNLOCK(bs);
- return KERN_FAILURE;
-#endif
-
- restart:
+restart:
PSL_LOCK();
error = KERN_SUCCESS;
for (i = 0; i <= paging_segment_max; i++) {
ps = paging_segments[i];
if (ps != PAGING_SEGMENT_NULL &&
ps->ps_bs == bs &&
- ! ps->ps_going_away) {
+ ! IS_PS_GOING_AWAY(ps)) {
PS_LOCK(ps);
+
+ if( IS_PS_GOING_AWAY(ps) || !IS_PS_OK_TO_USE(ps)) {
+ /*
+ * Someone is already busy reclamining this paging segment.
+ * If it's the emergency segment we are looking at then check
+ * that someone has not already recovered it and set the right
+ * state i.e. online but not activated.
+ */
+ PS_UNLOCK(ps);
+ continue;
+ }
+
/* disable access to this segment */
- ps->ps_going_away = TRUE;
+ ps->ps_state &= ~PS_CAN_USE;
+ ps->ps_state |= PS_GOING_AWAY;
PS_UNLOCK(ps);
/*
* The "ps" segment is "off-line" now,
ps = paging_segments[i];
if (ps != PAGING_SEGMENT_NULL &&
ps->ps_bs == bs &&
- ps->ps_going_away) {
+ IS_PS_GOING_AWAY(ps)) {
PS_LOCK(ps);
+
+ if( !IS_PS_GOING_AWAY(ps)) {
+ PS_UNLOCK(ps);
+ continue;
+ }
+ /* Handle the special clusters that came in while we let go the lock*/
+ if( ps->ps_special_clusters) {
+ dp_pages_free += ps->ps_special_clusters << ps->ps_clshift;
+ ps->ps_pgcount += ps->ps_special_clusters << ps->ps_clshift;
+ ps->ps_clcount += ps->ps_special_clusters;
+ if ( ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI) {
+ ps_select_array[ps->ps_bs->bs_priority] = 0;
+ }
+ ps->ps_special_clusters = 0;
+ }
/* re-enable access to this segment */
- ps->ps_going_away = FALSE;
+ ps->ps_state &= ~PS_GOING_AWAY;
+ ps->ps_state |= PS_CAN_USE;
PS_UNLOCK(ps);
}
}
ps = paging_segments[i];
if (ps != PAGING_SEGMENT_NULL &&
ps->ps_bs == bs) {
- if(ps->ps_going_away) {
- paging_segments[i] = PAGING_SEGMENT_NULL;
- paging_segment_count--;
- PS_LOCK(ps);
- kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls));
- kfree(ps, sizeof *ps);
+ if(IS_PS_GOING_AWAY(ps)) {
+ if(IS_PS_EMERGENCY_SEGMENT(ps)) {
+ PS_LOCK(ps);
+ ps->ps_state &= ~PS_GOING_AWAY;
+ ps->ps_special_clusters = 0;
+ ps->ps_pgcount = ps->ps_pgnum;
+ ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift;
+ dp_pages_reserve += ps->ps_pgcount;
+ PS_UNLOCK(ps);
+ } else {
+ paging_segments[i] = PAGING_SEGMENT_NULL;
+ paging_segment_count--;
+ PS_LOCK(ps);
+ kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls));
+ kfree(ps, sizeof *ps);
+ }
}
}
}
PSL_UNLOCK();
+ if( dealing_with_emergency_segment ) {
+ BS_UNLOCK(bs);
+ return KERN_SUCCESS;
+ }
+
/*
* All the segments have been deleted.
* We can remove the backing store.
return KERN_SUCCESS;
}
+kern_return_t
+default_pager_backing_store_delete(
+ MACH_PORT_FACE backing_store)
+{
+ if( backing_store != emergency_segment_backing_store ) {
+ default_pager_backing_store_delete_internal(emergency_segment_backing_store);
+ }
+ return(default_pager_backing_store_delete_internal(backing_store));
+}
+
int ps_enter(paging_segment_t); /* forward */
int
clrbit(ps->ps_bmap, i);
}
- ps->ps_going_away = FALSE;
+ if(paging_segment_count == 0) {
+ ps->ps_state = PS_EMERGENCY_SEGMENT;
+ if(use_emergency_swap_file_first) {
+ ps->ps_state |= PS_CAN_USE;
+ }
+ } else {
+ ps->ps_state = PS_CAN_USE;
+ }
+
ps->ps_bs = bs;
if ((error = ps_enter(ps)) != 0) {
BS_UNLOCK(bs);
PSL_LOCK();
- dp_pages_free += ps->ps_pgcount;
+ if(IS_PS_OK_TO_USE(ps)) {
+ dp_pages_free += ps->ps_pgcount;
+ } else {
+ dp_pages_reserve += ps->ps_pgcount;
+ }
PSL_UNLOCK();
bs_more_space(ps->ps_clcount);
kalloc(sizeof (struct vstruct_alias));
if(alias_struct != NULL) {
alias_struct->vs = (struct vstruct *)vsa;
- alias_struct->name = ISVS;
- reply_port->alias = (int) alias_struct;
+ alias_struct->name = &default_pager_ops;
+ reply_port->alias = (uintptr_t) alias_struct;
vsa->reply_port = reply_port;
vs_alloc_async_count++;
}
kalloc(sizeof (struct vstruct_alias));
if(alias_struct != NULL) {
alias_struct->vs = reply_port;
- alias_struct->name = ISVS;
+ alias_struct->name = &default_pager_ops;
reply_port->alias = (int) vsa;
vsa->reply_port = reply_port;
vs_alloc_async_count++;
vstruct_t
ps_vstruct_create(
- vm_size_t size)
+ dp_size_t size)
{
vstruct_t vs;
unsigned int i;
/*
* The following fields will be provided later.
*/
- vs->vs_mem_obj = NULL;
+ vs->vs_pager_ops = NULL;
vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
vs->vs_references = 1;
vs->vs_seqno = 0;
-#ifdef MACH_KERNEL
vs->vs_waiting_seqno = FALSE;
vs->vs_waiting_read = FALSE;
vs->vs_waiting_write = FALSE;
vs->vs_waiting_async = FALSE;
-#else
- mutex_init(&vs->vs_waiting_seqno, 0);
- mutex_init(&vs->vs_waiting_read, 0);
- mutex_init(&vs->vs_waiting_write, 0);
- mutex_init(&vs->vs_waiting_refs, 0);
- mutex_init(&vs->vs_waiting_async, 0);
-#endif
vs->vs_readers = 0;
vs->vs_writers = 0;
PSL_LOCK();
if (paging_segment_count == 1) {
- paging_segment_t lps; /* used to avoid extra PS_UNLOCK */
+ paging_segment_t lps = PAGING_SEGMENT_NULL; /* used to avoid extra PS_UNLOCK */
ipc_port_t trigger = IP_NULL;
ps = paging_segments[paging_segment_max];
*psindex = paging_segment_max;
PS_LOCK(ps);
- if (ps->ps_going_away) {
- /* this segment is being turned off */
- lps = PAGING_SEGMENT_NULL;
- } else {
- ASSERT(ps->ps_clshift >= shift);
+ if( !IS_PS_EMERGENCY_SEGMENT(ps) ) {
+ panic("Emergency paging segment missing\n");
+ }
+ ASSERT(ps->ps_clshift >= shift);
+ if(IS_PS_OK_TO_USE(ps)) {
if (ps->ps_clcount) {
ps->ps_clcount--;
dp_pages_free -= 1 << ps->ps_clshift;
+ ps->ps_pgcount -= 1 << ps->ps_clshift;
if(min_pages_trigger_port &&
(dp_pages_free < minimum_pages_remaining)) {
trigger = min_pages_trigger_port;
bs_low = TRUE;
}
lps = ps;
- } else
- lps = PAGING_SEGMENT_NULL;
- }
+ }
+ }
PS_UNLOCK(ps);
+
+ if( lps == PAGING_SEGMENT_NULL ) {
+ if(dp_pages_free) {
+ dp_pages_free_drift_count++;
+ if(dp_pages_free > dp_pages_free_drifted_max) {
+ dp_pages_free_drifted_max = dp_pages_free;
+ }
+ dprintf(("Emergency swap segment:dp_pages_free before zeroing out: %d\n",dp_pages_free));
+ }
+ dp_pages_free = 0;
+ }
+
PSL_UNLOCK();
if (trigger != IP_NULL) {
}
if (paging_segment_count == 0) {
+ if(dp_pages_free) {
+ dp_pages_free_drift_count++;
+ if(dp_pages_free > dp_pages_free_drifted_max) {
+ dp_pages_free_drifted_max = dp_pages_free;
+ }
+ dprintf(("No paging segments:dp_pages_free before zeroing out: %d\n",dp_pages_free));
+ }
+ dp_pages_free = 0;
PSL_UNLOCK();
return PAGING_SEGMENT_NULL;
}
* >= that of the vstruct.
*/
PS_LOCK(ps);
- if (ps->ps_going_away) {
- /* this segment is being turned off */
- } else if ((ps->ps_clcount) &&
- (ps->ps_clshift >= shift)) {
- ipc_port_t trigger = IP_NULL;
-
- ps->ps_clcount--;
- dp_pages_free -= 1 << ps->ps_clshift;
- if(min_pages_trigger_port &&
- (dp_pages_free <
- minimum_pages_remaining)) {
- trigger = min_pages_trigger_port;
- min_pages_trigger_port = NULL;
- }
- PS_UNLOCK(ps);
- /*
- * found one, quit looking.
- */
- ps_select_array[i] = j;
- PSL_UNLOCK();
-
- if (trigger != IP_NULL) {
- default_pager_space_alert(
- trigger,
- HI_WAT_ALERT);
- ipc_port_release_send(trigger);
+ if (IS_PS_OK_TO_USE(ps)) {
+ if ((ps->ps_clcount) &&
+ (ps->ps_clshift >= shift)) {
+ ipc_port_t trigger = IP_NULL;
+
+ ps->ps_clcount--;
+ dp_pages_free -= 1 << ps->ps_clshift;
+ ps->ps_pgcount -= 1 << ps->ps_clshift;
+ if(min_pages_trigger_port &&
+ (dp_pages_free <
+ minimum_pages_remaining)) {
+ trigger = min_pages_trigger_port;
+ min_pages_trigger_port = NULL;
+ }
+ PS_UNLOCK(ps);
+ /*
+ * found one, quit looking.
+ */
+ ps_select_array[i] = j;
+ PSL_UNLOCK();
+
+ if (trigger != IP_NULL) {
+ default_pager_space_alert(
+ trigger,
+ HI_WAT_ALERT);
+ ipc_port_release_send(trigger);
+ }
+ *psindex = j;
+ return ps;
}
- *psindex = j;
- return ps;
}
PS_UNLOCK(ps);
}
j++;
}
}
+
+ if(dp_pages_free) {
+ dp_pages_free_drift_count++;
+ if(dp_pages_free > dp_pages_free_drifted_max) {
+ dp_pages_free_drifted_max = dp_pages_free;
+ }
+ dprintf(("%d Paging Segments: dp_pages_free before zeroing out: %d\n",paging_segment_count,dp_pages_free));
+ }
+ dp_pages_free = 0;
PSL_UNLOCK();
return PAGING_SEGMENT_NULL;
}
-vm_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/
+dp_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/
-vm_offset_t
+dp_offset_t
ps_allocate_cluster(
vstruct_t vs,
int *psindex,
unsigned int byte_num;
int bit_num = 0;
paging_segment_t ps;
- vm_offset_t cluster;
+ dp_offset_t cluster;
ipc_port_t trigger = IP_NULL;
/*
* This and the ordering of the paging segment "going_away" bit setting
* protects us.
*/
+retry:
if (use_ps != PAGING_SEGMENT_NULL) {
ps = use_ps;
PSL_LOCK();
ps->ps_clcount--;
dp_pages_free -= 1 << ps->ps_clshift;
+ ps->ps_pgcount -= 1 << ps->ps_clshift;
if(min_pages_trigger_port &&
(dp_pages_free < minimum_pages_remaining)) {
trigger = min_pages_trigger_port;
} else if ((ps = ps_select_segment(vs->vs_clshift, psindex)) ==
PAGING_SEGMENT_NULL) {
- static uint32_t lastnotify = 0;
- uint32_t now, nanoseconds_dummy;
+ static clock_sec_t lastnotify = 0;
+ clock_sec_t now;
+ clock_nsec_t nanoseconds_dummy;
+
+ /*
+ * Don't immediately jump to the emergency segment. Give the
+ * dynamic pager a chance to create it's first normal swap file.
+ * Unless, of course the very first normal swap file can't be
+ * created due to some problem and we didn't expect that problem
+ * i.e. use_emergency_swap_file_first was never set to true initially.
+ * It then gets set in the swap file creation error handling.
+ */
+ if(paging_segment_count > 1 || use_emergency_swap_file_first == TRUE) {
+
+ ps = paging_segments[EMERGENCY_PSEG_INDEX];
+ if(IS_PS_EMERGENCY_SEGMENT(ps) && !IS_PS_GOING_AWAY(ps)) {
+ PSL_LOCK();
+ PS_LOCK(ps);
+
+ if(IS_PS_GOING_AWAY(ps)) {
+ /* Someone de-activated the emergency paging segment*/
+ PS_UNLOCK(ps);
+ PSL_UNLOCK();
+ } else if(dp_pages_free) {
+ /*
+ * Someone has already activated the emergency paging segment
+ * OR
+ * Between us having rec'd a NULL segment from ps_select_segment
+ * and reaching here a new normal segment could have been added.
+ * E.g. we get NULL segment and another thread just added the
+ * new swap file. Hence check to see if we have more dp_pages_free
+ * before activating the emergency segment.
+ */
+ PS_UNLOCK(ps);
+ PSL_UNLOCK();
+ goto retry;
+
+ } else if(!IS_PS_OK_TO_USE(ps) && ps->ps_clcount) {
+ /*
+ * PS_CAN_USE is only reset from the emergency segment when it's
+ * been successfully recovered. So it's legal to have an emergency
+ * segment that has PS_CAN_USE but no clusters because it's recovery
+ * failed.
+ */
+ backing_store_t bs = ps->ps_bs;
+ ps->ps_state |= PS_CAN_USE;
+ if(ps_select_array[bs->bs_priority] == BS_FULLPRI ||
+ ps_select_array[bs->bs_priority] == BS_NOPRI) {
+ ps_select_array[bs->bs_priority] = 0;
+ }
+ dp_pages_free += ps->ps_pgcount;
+ dp_pages_reserve -= ps->ps_pgcount;
+ PS_UNLOCK(ps);
+ PSL_UNLOCK();
+ dprintf(("Switching ON Emergency paging segment\n"));
+ goto retry;
+ }
+
+ PS_UNLOCK(ps);
+ PSL_UNLOCK();
+ }
+ }
+
/*
* Emit a notification of the low-paging resource condition
* but don't issue it more than once every five seconds. This
* repetitions of the message.
*/
clock_get_system_nanotime(&now, &nanoseconds_dummy);
- if (now > lastnotify + 5) {
- dprintf(("no space in available paging segments\n"));
+ if (paging_segment_count > 1 && (now > lastnotify + 5)) {
+ /* With an activated emergency paging segment we still
+ * didn't get any clusters. This could mean that the
+ * emergency paging segment is exhausted.
+ */
+ dprintf(("System is out of paging space.\n"));
lastnotify = now;
}
- /* the count got off maybe, reset to zero */
PSL_LOCK();
- dp_pages_free = 0;
+
if(min_pages_trigger_port) {
trigger = min_pages_trigger_port;
min_pages_trigger_port = NULL;
default_pager_space_alert(trigger, HI_WAT_ALERT);
ipc_port_release_send(trigger);
}
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
}
/*
return cluster;
}
-void ps_deallocate_cluster(paging_segment_t, vm_offset_t); /* forward */
+void ps_deallocate_cluster(paging_segment_t, dp_offset_t); /* forward */
void
ps_deallocate_cluster(
paging_segment_t ps,
- vm_offset_t cluster)
+ dp_offset_t cluster)
{
- if (cluster >= (vm_offset_t) ps->ps_ncls)
+ if (cluster >= ps->ps_ncls)
panic("ps_deallocate_cluster: Invalid cluster number");
/*
PSL_LOCK();
PS_LOCK(ps);
clrbit(ps->ps_bmap, cluster);
- ++ps->ps_clcount;
- dp_pages_free += 1 << ps->ps_clshift;
- PSL_UNLOCK();
+ if( IS_PS_OK_TO_USE(ps)) {
+ ++ps->ps_clcount;
+ ps->ps_pgcount += 1 << ps->ps_clshift;
+ dp_pages_free += 1 << ps->ps_clshift;
+ } else {
+ ps->ps_special_clusters += 1;
+ }
/*
* Move the hint down to the freed cluster if it is
ps->ps_hint = (cluster/NBBY);
}
- PS_UNLOCK(ps);
/*
* If we're freeing space on a full priority, reset the array.
*/
- PSL_LOCK();
- if (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)
+ if ( IS_PS_OK_TO_USE(ps) && ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)
ps_select_array[ps->ps_bs->bs_priority] = 0;
+ PS_UNLOCK(ps);
PSL_UNLOCK();
return;
}
-void ps_dealloc_vsmap(struct vs_map *, vm_size_t); /* forward */
+void ps_dealloc_vsmap(struct vs_map *, dp_size_t); /* forward */
void
ps_dealloc_vsmap(
struct vs_map *vsmap,
- vm_size_t size)
+ dp_size_t size)
{
unsigned int i;
for (i = 0; i < size; i++)
return 0;
}
-vm_offset_t
+dp_offset_t
ps_clmap(
vstruct_t vs,
- vm_offset_t offset,
+ dp_offset_t offset,
struct clmap *clmap,
int flag,
- vm_size_t size,
+ dp_size_t size,
int error)
{
- vm_offset_t cluster; /* The cluster of offset. */
- vm_offset_t newcl; /* The new cluster allocated. */
- vm_offset_t newoff;
+ dp_offset_t cluster; /* The cluster of offset. */
+ dp_offset_t newcl; /* The new cluster allocated. */
+ dp_offset_t newoff;
unsigned int i;
struct vs_map *vsmap;
if (flag == CL_FIND) {
/* Do not allocate if just doing a lookup */
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
}
if (ps_map_extend(vs, cluster + 1)) {
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
}
}
if (vsmap == NULL) {
if (flag == CL_FIND) {
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
}
/* Allocate the indirect block */
vsmap = (struct vs_map *) kalloc(CLMAP_THRESHOLD);
if (vsmap == NULL) {
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
}
/* Initialize the cluster offsets */
for (i = 0; i < CLMAP_ENTRIES; i++)
if (VSM_ISERR(*vsmap)) {
clmap->cl_error = VSM_GETERR(*vsmap);
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
} else if (VSM_ISCLR(*vsmap)) {
int psindex;
VSM_SETERR(*vsmap, error);
}
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
} else {
/*
* Attempt to allocate a cluster from the paging segment
*/
newcl = ps_allocate_cluster(vs, &psindex,
PAGING_SEGMENT_NULL);
- if (newcl == (vm_offset_t) -1) {
+ if (newcl == (dp_offset_t) -1) {
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) -1;
+ return (dp_offset_t) -1;
}
VSM_CLR(*vsmap);
VSM_SETCLOFF(*vsmap, newcl);
* entire cluster is in error.
*/
if (size && flag == CL_FIND) {
- vm_offset_t off = (vm_offset_t) 0;
+ dp_offset_t off = (dp_offset_t) 0;
if (!error) {
for (i = VSCLSIZE(vs) - clmap->cl_numpages; size > 0;
* Deallocate cluster if error, and no valid pages
* already present.
*/
- if (off != (vm_offset_t) 0)
+ if (off != (dp_offset_t) 0)
ps_deallocate_cluster(clmap->cl_ps, off);
VS_MAP_UNLOCK(vs);
- return (vm_offset_t) 0;
+ return (dp_offset_t) 0;
} else
VS_MAP_UNLOCK(vs);
return (newcl + newoff);
}
-void ps_clunmap(vstruct_t, vm_offset_t, vm_size_t); /* forward */
+void ps_clunmap(vstruct_t, dp_offset_t, dp_size_t); /* forward */
void
ps_clunmap(
vstruct_t vs,
- vm_offset_t offset,
- vm_size_t length)
+ dp_offset_t offset,
+ dp_size_t length)
{
- vm_offset_t cluster; /* The cluster number of offset */
+ dp_offset_t cluster; /* The cluster number of offset */
struct vs_map *vsmap;
VS_MAP_LOCK(vs);
* clusters and map entries as encountered.
*/
while (length > 0) {
- vm_offset_t newoff;
+ dp_offset_t newoff;
unsigned int i;
cluster = atop_32(offset) >> vs->vs_clshift;
VS_MAP_UNLOCK(vs);
}
-void ps_vs_write_complete(vstruct_t, vm_offset_t, vm_size_t, int); /* forward */
+void ps_vs_write_complete(vstruct_t, dp_offset_t, dp_size_t, int); /* forward */
void
ps_vs_write_complete(
vstruct_t vs,
- vm_offset_t offset,
- vm_size_t size,
+ dp_offset_t offset,
+ dp_size_t size,
int error)
{
struct clmap clmap;
(void) ps_clmap(vs, offset, &clmap, CL_FIND, size, error);
}
-void vs_cl_write_complete(vstruct_t, paging_segment_t, vm_offset_t, vm_offset_t, vm_size_t, boolean_t, int); /* forward */
+void vs_cl_write_complete(vstruct_t, paging_segment_t, dp_offset_t, vm_offset_t, dp_size_t, boolean_t, int); /* forward */
void
vs_cl_write_complete(
- vstruct_t vs,
+ vstruct_t vs,
__unused paging_segment_t ps,
- vm_offset_t offset,
+ dp_offset_t offset,
__unused vm_offset_t addr,
- vm_size_t size,
- boolean_t async,
- int error)
+ dp_size_t size,
+ boolean_t async,
+ int error)
{
// kern_return_t kr;
if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
vs->vs_waiting_async = FALSE;
VS_UNLOCK(vs);
- /* mutex_unlock(&vs->vs_waiting_async); */
thread_wakeup(&vs->vs_async_pending);
} else {
VS_UNLOCK(vs);
vsa->vsa_addr = (vm_offset_t)data;
vsa->vsa_size = (vm_size_t)dataCnt;
vsa->vsa_error = return_code;
- thread_wakeup(&vsa->vsa_lock);
+ thread_wakeup(&vsa);
return KERN_SUCCESS;
}
kern_return_t
ps_read_device(
paging_segment_t ps,
- vm_offset_t offset,
+ dp_offset_t offset,
vm_offset_t *bufferp,
unsigned int size,
unsigned int *residualp,
vm_offset_t buf_ptr;
unsigned int records_read;
struct vs_async *vsa;
- mutex_t vs_waiting_read_reply;
device_t device;
vm_map_copy_t device_data = NULL;
vsa->vsa_size = 0;
vsa->vsa_ps = NULL;
}
- mutex_init(&vsa->vsa_lock, 0);
ip_lock(vsa->reply_port);
vsa->reply_port->ip_sorights++;
ip_reference(vsa->reply_port);
(io_buf_ptr_t *) &dev_buffer,
(mach_msg_type_number_t *) &bytes_read);
if(kr == MIG_NO_REPLY) {
- assert_wait(&vsa->vsa_lock, THREAD_UNINT);
+ assert_wait(&vsa, THREAD_UNINT);
thread_block(THREAD_CONTINUE_NULL);
dev_buffer = vsa->vsa_addr;
kern_return_t
ps_write_device(
paging_segment_t ps,
- vm_offset_t offset,
+ dp_offset_t offset,
vm_offset_t addr,
unsigned int size,
struct vs_async *vsa)
kern_return_t
ps_read_device(
__unused paging_segment_t ps,
- __unused vm_offset_t offset,
+ __unused dp_offset_t offset,
__unused vm_offset_t *bufferp,
__unused unsigned int size,
__unused unsigned int *residualp,
__unused int flags)
{
panic("ps_read_device not supported");
+ return KERN_FAILURE;
}
kern_return_t
ps_write_device(
__unused paging_segment_t ps,
- __unused vm_offset_t offset,
+ __unused dp_offset_t offset,
__unused vm_offset_t addr,
__unused unsigned int size,
__unused struct vs_async *vsa)
{
panic("ps_write_device not supported");
+ return KERN_FAILURE;
}
#endif /* DEVICE_PAGING */
}
+static memory_object_offset_t last_start;
+static vm_size_t last_length;
+
kern_return_t
pvs_cluster_read(
vstruct_t vs,
- vm_offset_t vs_offset,
- vm_size_t cnt)
+ dp_offset_t vs_offset,
+ dp_size_t cnt,
+ void *fault_info)
{
- upl_t upl;
kern_return_t error = KERN_SUCCESS;
- int size;
- int residual;
+ unsigned int size;
+ unsigned int residual;
unsigned int request_flags;
- int seg_index;
- int pages_in_cl;
+ int io_flags = 0;
+ int seg_index;
+ int pages_in_cl;
int cl_size;
int cl_mask;
- int cl_index;
- int xfer_size;
- vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT];
- paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT];
+ int cl_index;
+ unsigned int xfer_size;
+ dp_offset_t orig_vs_offset;
+ dp_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT];
+ paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT];
struct clmap clmap;
+ upl_t upl;
+ unsigned int page_list_count;
+ memory_object_offset_t cluster_start;
+ vm_size_t cluster_length;
+ uint32_t io_streaming;
pages_in_cl = 1 << vs->vs_clshift;
cl_size = pages_in_cl * vm_page_size;
cl_mask = cl_size - 1;
- /*
- * This loop will be executed multiple times until the entire
- * request has been satisfied... if the request spans cluster
- * boundaries, the clusters will be checked for logical continunity,
- * if contiguous the I/O request will span multiple clusters, otherwise
- * it will be broken up into the minimal set of I/O's
- *
- * If there are holes in a request (either unallocated pages in a paging
- * segment or an unallocated paging segment), we stop
- * reading at the hole, inform the VM of any data read, inform
- * the VM of an unavailable range, then loop again, hoping to
- * find valid pages later in the requested range. This continues until
- * the entire range has been examined, and read, if present.
- */
-
#if USE_PRECIOUS
- request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_PRECIOUS | UPL_RET_ONLY_ABSENT;
+ request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_PRECIOUS | UPL_RET_ONLY_ABSENT | UPL_SET_LITE;
#else
- request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_RET_ONLY_ABSENT;
+ request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_RET_ONLY_ABSENT | UPL_SET_LITE;
#endif
+ cl_index = (vs_offset & cl_mask) / vm_page_size;
+
+ if ((ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0) == (dp_offset_t)-1) ||
+ !CLMAP_ISSET(clmap, cl_index)) {
+ /*
+ * the needed page doesn't exist in the backing store...
+ * we don't want to try to do any I/O, just abort the
+ * page and let the fault handler provide a zero-fill
+ */
+ if (cnt == 0) {
+ /*
+ * The caller was just poking at us to see if
+ * the page has been paged out. No need to
+ * mess with the page at all.
+ * Just let the caller know we don't have that page.
+ */
+ return KERN_FAILURE;
+ }
+
+ page_list_count = 0;
+
+ memory_object_super_upl_request(vs->vs_control, (memory_object_offset_t)vs_offset,
+ PAGE_SIZE, PAGE_SIZE,
+ &upl, NULL, &page_list_count,
+ request_flags);
+ if (clmap.cl_error)
+ upl_abort(upl, UPL_ABORT_ERROR);
+ else
+ upl_abort(upl, UPL_ABORT_UNAVAILABLE);
+ upl_deallocate(upl);
+
+ return KERN_SUCCESS;
+ }
+
+ if (cnt == 0) {
+ /*
+ * The caller was just poking at us to see if
+ * the page has been paged out. No need to
+ * mess with the page at all.
+ * Just let the caller know we do have that page.
+ */
+ return KERN_SUCCESS;
+ }
+
assert(dp_encryption_inited);
if (dp_encryption) {
/*
*/
request_flags |= UPL_ENCRYPT;
}
+ orig_vs_offset = vs_offset;
- while (cnt && (error == KERN_SUCCESS)) {
+ assert(cnt != 0);
+ cnt = VM_SUPER_CLUSTER;
+ cluster_start = (memory_object_offset_t) vs_offset;
+ cluster_length = (vm_size_t) cnt;
+ io_streaming = 0;
+
+ /*
+ * determine how big a speculative I/O we should try for...
+ */
+ if (memory_object_cluster_size(vs->vs_control, &cluster_start, &cluster_length, &io_streaming, (memory_object_fault_info_t)fault_info) == KERN_SUCCESS) {
+ assert(vs_offset >= (dp_offset_t) cluster_start &&
+ vs_offset < (dp_offset_t) (cluster_start + cluster_length));
+ vs_offset = (dp_offset_t) cluster_start;
+ cnt = (dp_size_t) cluster_length;
+ } else {
+ cluster_length = PAGE_SIZE;
+ cnt = PAGE_SIZE;
+ }
+
+ if (io_streaming)
+ io_flags |= UPL_IOSTREAMING;
+
+ last_start = cluster_start;
+ last_length = cluster_length;
+
+ /*
+ * This loop will be executed multiple times until the entire
+ * range has been looked at or we issue an I/O... if the request spans cluster
+ * boundaries, the clusters will be checked for logical continunity,
+ * if contiguous the I/O request will span multiple clusters...
+ * at most only 1 I/O will be issued... it will encompass the original offset
+ */
+ while (cnt && error == KERN_SUCCESS) {
int ps_info_valid;
- int page_list_count;
- if((vs_offset & cl_mask) &&
- (cnt > (VM_SUPER_CLUSTER -
- (vs_offset & cl_mask)))) {
+ if ((vs_offset & cl_mask) && (cnt > (VM_SUPER_CLUSTER - (vs_offset & cl_mask)))) {
size = VM_SUPER_CLUSTER;
size -= vs_offset & cl_mask;
- } else if (cnt > VM_SUPER_CLUSTER) {
+ } else if (cnt > VM_SUPER_CLUSTER)
size = VM_SUPER_CLUSTER;
- } else {
+ else
size = cnt;
- }
+
cnt -= size;
ps_info_valid = 0;
seg_index = 0;
while (size > 0 && error == KERN_SUCCESS) {
- int abort_size;
+ unsigned int abort_size;
int failed_size;
int beg_pseg;
int beg_indx;
- vm_offset_t cur_offset;
-
+ dp_offset_t cur_offset;
if ( !ps_info_valid) {
ps_offset[seg_index] = ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0);
/*
* skip over unallocated physical segments
*/
- if (ps_offset[seg_index] == (vm_offset_t) -1) {
+ if (ps_offset[seg_index] == (dp_offset_t) -1) {
abort_size = cl_size - (vs_offset & cl_mask);
abort_size = MIN(abort_size, size);
- page_list_count = 0;
- memory_object_super_upl_request(
- vs->vs_control,
- (memory_object_offset_t)vs_offset,
- abort_size, abort_size,
- &upl, NULL, &page_list_count,
- request_flags);
-
- if (clmap.cl_error) {
- upl_abort(upl, UPL_ABORT_ERROR);
- } else {
- upl_abort(upl, UPL_ABORT_UNAVAILABLE);
- }
- upl_deallocate(upl);
-
- size -= abort_size;
- vs_offset += abort_size;
+ size -= abort_size;
+ vs_offset += abort_size;
seg_index++;
ps_info_valid = 0;
+
continue;
}
cl_index = (vs_offset & cl_mask) / vm_page_size;
abort_size += vm_page_size;
}
if (abort_size) {
- /*
- * Let VM system know about holes in clusters.
- */
- GSTAT(global_stats.gs_pages_unavail += atop_32(abort_size));
-
- page_list_count = 0;
- memory_object_super_upl_request(
- vs->vs_control,
- (memory_object_offset_t)vs_offset,
- abort_size, abort_size,
- &upl, NULL, &page_list_count,
- request_flags);
-
- upl_abort(upl, UPL_ABORT_UNAVAILABLE);
- upl_deallocate(upl);
-
- size -= abort_size;
- vs_offset += abort_size;
+ size -= abort_size;
+ vs_offset += abort_size;
if (cl_index == pages_in_cl) {
/*
*/
seg_index++;
ps_info_valid = 0;
+
continue;
}
if (size == 0)
*/
for (xfer_size = 0; xfer_size < size; ) {
- while (cl_index < pages_in_cl
- && xfer_size < size) {
+ while (cl_index < pages_in_cl && xfer_size < size) {
/*
* accumulate allocated pages within
* a physical segment
} else
break;
}
- if (cl_index < pages_in_cl
- || xfer_size >= size) {
+ if (cl_index < pages_in_cl || xfer_size >= size) {
/*
* we've hit an unallocated page or
- * the end of this request... go fire
- * the I/O
+ * the end of this request... see if
+ * it's time to fire the I/O
*/
break;
}
*/
seg_index++;
- ps_offset[seg_index] =
- ps_clmap(vs,
- cur_offset & ~cl_mask,
- &clmap, CL_FIND, 0, 0);
+ ps_offset[seg_index] = ps_clmap(vs, cur_offset & ~cl_mask, &clmap, CL_FIND, 0, 0);
psp[seg_index] = CLMAP_PS(clmap);
ps_info_valid = 1;
* the one we're currently in, or it's
* in a different paging file, or
* it hasn't been allocated....
- * we stop here and generate the I/O
+ * we stop this run and go check
+ * to see if it's time to fire the I/O
*/
break;
}
/*
* start with first page of the next physical
- * segment
+ * segment
*/
cl_index = 0;
}
- if (xfer_size) {
+ if (xfer_size == 0) {
/*
- * we have a contiguous range of allocated pages
- * to read from
+ * no I/O to generate for this segment
*/
- page_list_count = 0;
- memory_object_super_upl_request(vs->vs_control,
- (memory_object_offset_t)vs_offset,
- xfer_size, xfer_size,
- &upl, NULL, &page_list_count,
- request_flags | UPL_SET_INTERNAL);
-
- error = ps_read_file(psp[beg_pseg],
- upl, (upl_offset_t) 0,
- ps_offset[beg_pseg] +
- (beg_indx * vm_page_size),
- xfer_size, &residual, 0);
- } else
continue;
+ }
+ if (cur_offset <= orig_vs_offset) {
+ /*
+ * we've hit a hole in our speculative cluster
+ * before the offset that we're really after...
+ * don't issue the I/O since it doesn't encompass
+ * the original offset and we're looking to only
+ * pull in the speculative pages if they can be
+ * made part of a single I/O
+ */
+ size -= xfer_size;
+ vs_offset += xfer_size;
+ continue;
+ }
+ /*
+ * we have a contiguous range of allocated pages
+ * to read from that encompasses the original offset
+ */
+ page_list_count = 0;
+ memory_object_super_upl_request(vs->vs_control, (memory_object_offset_t)vs_offset,
+ xfer_size, xfer_size,
+ &upl, NULL, &page_list_count,
+ request_flags | UPL_SET_INTERNAL | UPL_NOBLOCK);
+
+ error = ps_read_file(psp[beg_pseg],
+ upl, (upl_offset_t) 0,
+ ps_offset[beg_pseg] + (beg_indx * vm_page_size),
+ xfer_size, &residual, io_flags);
+
failed_size = 0;
/*
* supplied data is deallocated from the pager's
* address space.
*/
- pvs_object_data_provided(
- vs, upl, vs_offset, xfer_size);
+ pvs_object_data_provided(vs, upl, vs_offset, xfer_size);
} else {
failed_size = xfer_size;
if (error == KERN_SUCCESS) {
if (residual == xfer_size) {
- /*
- * If a read operation returns no error
- * and no data moved, we turn it into
- * an error, assuming we're reading at
- * or beyong EOF.
- * Fall through and error the entire
- * range.
- */
+ /*
+ * If a read operation returns no error
+ * and no data moved, we turn it into
+ * an error, assuming we're reading at
+ * or beyong EOF.
+ * Fall through and error the entire range.
+ */
error = KERN_FAILURE;
} else {
- /*
- * Otherwise, we have partial read. If
- * the part read is a integral number
- * of pages supply it. Otherwise round
- * it up to a page boundary, zero fill
- * the unread part, and supply it.
- * Fall through and error the remainder
- * of the range, if any.
- */
- int fill, lsize;
+ /*
+ * Otherwise, we have partial read. If
+ * the part read is a integral number
+ * of pages supply it. Otherwise round
+ * it up to a page boundary, zero fill
+ * the unread part, and supply it.
+ * Fall through and error the remainder
+ * of the range, if any.
+ */
+ int fill;
+ unsigned int lsize;
- fill = residual
- & ~vm_page_size;
- lsize = (xfer_size - residual)
- + fill;
- pvs_object_data_provided(
- vs, upl,
- vs_offset, lsize);
+ fill = residual & ~vm_page_size;
+ lsize = (xfer_size - residual) + fill;
+
+ pvs_object_data_provided(vs, upl, vs_offset, lsize);
if (lsize < xfer_size) {
- failed_size =
- xfer_size - lsize;
+ failed_size = xfer_size - lsize;
error = KERN_FAILURE;
}
}
}
}
- /*
- * If there was an error in any part of the range, tell
- * the VM. Note that error is explicitly checked again
- * since it can be modified above.
- */
if (error != KERN_SUCCESS) {
+ /*
+ * There was an error in some part of the range, tell
+ * the VM. Note that error is explicitly checked again
+ * since it can be modified above.
+ */
BS_STAT(psp[beg_pseg]->ps_bs,
- psp[beg_pseg]->ps_bs->bs_pages_in_fail
- += atop_32(failed_size));
+ psp[beg_pseg]->ps_bs->bs_pages_in_fail += atop_32(failed_size));
}
- size -= xfer_size;
- vs_offset += xfer_size;
+ /*
+ * we've issued a single I/O that encompassed the original offset
+ * at this point we either met our speculative request length or
+ * we ran into a 'hole' (i.e. page not present in the cluster, cluster
+ * not present or not physically contiguous to the previous one), so
+ * we're done issuing I/O at this point
+ */
+ return (error);
}
-
- } /* END while (cnt && (error == 0)) */
+ }
return error;
}
int error = 0;
struct clmap clmap;
- vm_offset_t actual_offset; /* Offset within paging segment */
+ dp_offset_t actual_offset; /* Offset within paging segment */
paging_segment_t ps;
- vm_offset_t mobj_base_addr;
- vm_offset_t mobj_target_addr;
+ dp_offset_t mobj_base_addr;
+ dp_offset_t mobj_target_addr;
upl_t upl;
upl_page_info_t *pl;
int page_index;
+ unsigned int page_max_index;
int list_size;
int pages_in_cl;
unsigned int cl_size;
int base_index;
unsigned int seg_size;
+ unsigned int upl_offset_in_object;
+ boolean_t minimal_clustering = FALSE;
+ boolean_t found_dirty;
pages_in_cl = 1 << vs->vs_clshift;
cl_size = pages_in_cl * vm_page_size;
+#if CONFIG_FREEZE
+ minimal_clustering = TRUE;
+#endif
+ if (dp_isssd == TRUE)
+ minimal_clustering = TRUE;
+
if (!dp_internal) {
- int page_list_count;
+ unsigned int page_list_count;
int request_flags;
unsigned int super_size;
int first_dirty;
int num_of_pages;
int seg_index;
upl_offset_t upl_offset;
- vm_offset_t seg_offset;
- vm_offset_t ps_offset[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT) + 1];
- paging_segment_t psp[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT) + 1];
+ upl_offset_t upl_offset_aligned;
+ dp_offset_t seg_offset;
+ dp_offset_t ps_offset[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT) + 1];
+ paging_segment_t psp[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT) + 1];
- if (bs_low) {
+ if (bs_low)
super_size = cl_size;
-
- request_flags = UPL_NOBLOCK |
- UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM |
- UPL_NO_SYNC | UPL_SET_INTERNAL;
- } else {
+ else
super_size = VM_SUPER_CLUSTER;
- request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE |
- UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM |
- UPL_NO_SYNC | UPL_SET_INTERNAL;
- }
+ request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE |
+ UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM |
+ UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE;
if (!dp_encryption_inited) {
/*
request_flags |= UPL_ENCRYPT;
flags |= UPL_PAGING_ENCRYPTED;
}
-
page_list_count = 0;
memory_object_super_upl_request(vs->vs_control,
(memory_object_offset_t)offset,
&upl, NULL, &page_list_count,
request_flags | UPL_FOR_PAGEOUT);
+ /*
+ * The default pager does not handle objects larger than
+ * 4GB, so it does not deal with offset that don't fit in
+ * 32-bit. Cast down upl->offset now and make sure we
+ * did not lose any valuable bits.
+ */
+ upl_offset_in_object = (unsigned int) upl->offset;
+ assert(upl->offset == upl_offset_in_object);
+
pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
- seg_size = cl_size - (upl->offset % cl_size);
- upl_offset = upl->offset & ~(cl_size - 1);
+ seg_size = cl_size - (upl_offset_in_object % cl_size);
+ upl_offset_aligned = upl_offset_in_object & ~(cl_size - 1);
+ page_index = 0;
+ page_max_index = upl->size / PAGE_SIZE;
+ found_dirty = TRUE;
- for (seg_index = 0, transfer_size = upl->size;
- transfer_size > 0; ) {
- ps_offset[seg_index] =
- ps_clmap(vs,
- upl_offset,
- &clmap, CL_ALLOC,
- cl_size, 0);
+ for (seg_index = 0, transfer_size = upl->size; transfer_size > 0; ) {
+ unsigned int seg_pgcnt;
- if (ps_offset[seg_index] == (vm_offset_t) -1) {
- upl_abort(upl, 0);
- upl_deallocate(upl);
-
- return KERN_FAILURE;
+ seg_pgcnt = seg_size / PAGE_SIZE;
+
+ if (minimal_clustering == TRUE) {
+ unsigned int non_dirty;
+ non_dirty = 0;
+ found_dirty = FALSE;
+
+ for (; non_dirty < seg_pgcnt; non_dirty++) {
+ if ((page_index + non_dirty) >= page_max_index)
+ break;
+
+ if (UPL_DIRTY_PAGE(pl, page_index + non_dirty) ||
+ UPL_PRECIOUS_PAGE(pl, page_index + non_dirty)) {
+ found_dirty = TRUE;
+ break;
+ }
+ }
}
- psp[seg_index] = CLMAP_PS(clmap);
+ if (found_dirty == TRUE) {
+ ps_offset[seg_index] =
+ ps_clmap(vs,
+ upl_offset_aligned,
+ &clmap, CL_ALLOC,
+ cl_size, 0);
+ if (ps_offset[seg_index] == (dp_offset_t) -1) {
+ upl_abort(upl, 0);
+ upl_deallocate(upl);
+
+ return KERN_FAILURE;
+ }
+ psp[seg_index] = CLMAP_PS(clmap);
+ }
if (transfer_size > seg_size) {
+ page_index += seg_pgcnt;
transfer_size -= seg_size;
- upl_offset += cl_size;
+ upl_offset_aligned += cl_size;
seg_size = cl_size;
seg_index++;
} else
break;
num_of_pages = page_index + 1;
- base_index = (upl->offset % cl_size) / PAGE_SIZE;
+ base_index = (upl_offset_in_object % cl_size) / PAGE_SIZE;
for (page_index = 0; page_index < num_of_pages; ) {
/*
while (transfer_size) {
if ((seg_size = cl_size -
- ((upl->offset + upl_offset) % cl_size))
+ ((upl_offset_in_object +
+ upl_offset) % cl_size))
> transfer_size)
seg_size = transfer_size;
- ps_vs_write_complete(vs,
- upl->offset + upl_offset,
+ ps_vs_write_complete(
+ vs,
+ (upl_offset_in_object +
+ upl_offset),
seg_size, error);
transfer_size -= seg_size;
transfer_size = num_dirty * vm_page_size;
seg_index = (base_index + first_dirty) / pages_in_cl;
- seg_offset = (upl->offset + upl_offset) % cl_size;
+ seg_offset = (upl_offset_in_object + upl_offset) % cl_size;
error = ps_write_file(psp[seg_index],
upl, upl_offset,
}
} else {
- assert(cnt <= (vm_page_size << vs->vs_clshift));
+ assert(cnt <= (unsigned) (vm_page_size << vs->vs_clshift));
list_size = cnt;
page_index = 0;
&clmap, CL_ALLOC,
transfer_size < cl_size ?
transfer_size : cl_size, 0);
- if(actual_offset == (vm_offset_t) -1) {
+ if(actual_offset == (dp_offset_t) -1) {
error = 1;
break;
}
cnt = MIN(transfer_size,
- CLMAP_NPGS(clmap) * vm_page_size);
+ (unsigned) CLMAP_NPGS(clmap) * vm_page_size);
ps = CLMAP_PS(clmap);
/* Assume that the caller has given us contiguous */
/* pages */
return ptoa_32(num_pages);
}
-size_t
+unsigned int
ps_vstruct_allocated_pages(
vstruct_t vs,
default_pager_page_t *pages,
- size_t pages_size)
+ unsigned int pages_size)
{
unsigned int num_pages;
struct vs_map *vsmap;
- vm_offset_t offset;
+ dp_offset_t offset;
unsigned int i, j, k;
num_pages = 0;
vs_finish_write(vs);
VS_LOCK(vs);
vs->vs_xfer_pending = TRUE;
- VS_UNLOCK(vs);
vs_wait_for_sync_writers(vs);
vs_start_write(vs);
vs_wait_for_readers(vs);
+ VS_UNLOCK(vs);
if (vs->vs_indirect) {
goto vs_changed;
}
vs_map_t
vs_get_map_entry(
vstruct_t vs,
- vm_offset_t offset)
+ dp_offset_t offset)
{
struct vs_map *vsmap;
- vm_offset_t cluster;
+ dp_offset_t cluster;
cluster = atop_32(offset) >> vs->vs_clshift;
if (vs->vs_indirect) {
kern_return_t
vs_cluster_transfer(
vstruct_t vs,
- vm_offset_t offset,
- vm_size_t cnt,
+ dp_offset_t offset,
+ dp_size_t cnt,
upl_t upl)
{
- vm_offset_t actual_offset;
+ dp_offset_t actual_offset;
paging_segment_t ps;
struct clmap clmap;
kern_return_t error = KERN_SUCCESS;
unsigned int size, size_wanted;
int i;
- unsigned int residual;
+ unsigned int residual = 0;
unsigned int unavail_size;
// default_pager_thread_t *dpt;
// boolean_t dealloc;
vsmap_ptr = vs_get_map_entry(vs, offset);
actual_offset = ps_clmap(vs, offset, &clmap, CL_FIND, 0, 0);
- if (actual_offset == (vm_offset_t) -1) {
+ if (actual_offset == (dp_offset_t) -1) {
/*
* Nothing left to write in this cluster at least
if (size == 0) {
ASSERT(unavail_size);
+ ps_clunmap(vs, offset, unavail_size);
cnt -= unavail_size;
offset += unavail_size;
if((offset & ((vm_page_size << vs->vs_clshift) - 1))
original_read_vsmap = *vsmap_ptr;
if(ps->ps_segtype == PS_PARTITION) {
+ panic("swap partition not supported\n");
+ /*NOTREACHED*/
+ error = KERN_FAILURE;
+ residual = size;
/*
NEED TO ISSUE WITH SYNC & NO COMMIT
error = ps_read_device(ps, actual_offset, &buffer,
*/
write_vsmap = *vsmap_ptr;
*vsmap_ptr = read_vsmap;
+ ps_clunmap(vs, offset, size);
} else {
/* discard the old backing object */
write_vsmap = *vsmap_ptr;
ps->ps_vnode = (struct vnode *)vp;
ps->ps_offset = 0;
ps->ps_record_shift = local_log2(vm_page_size / record_size);
- ps->ps_recnum = size;
- ps->ps_pgnum = size >> ps->ps_record_shift;
+ assert((dp_size_t) size == size);
+ ps->ps_recnum = (dp_size_t) size;
+ ps->ps_pgnum = ((dp_size_t) size) >> ps->ps_record_shift;
ps->ps_pgcount = ps->ps_pgnum;
ps->ps_clshift = local_log2(bs->bs_clsize);
ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift;
+ ps->ps_special_clusters = 0;
ps->ps_hint = 0;
PS_LOCK_INIT(ps);
clrbit(ps->ps_bmap, j);
}
- ps->ps_going_away = FALSE;
+ if(paging_segment_count == 0) {
+ ps->ps_state = PS_EMERGENCY_SEGMENT;
+ if(use_emergency_swap_file_first) {
+ ps->ps_state |= PS_CAN_USE;
+ }
+ emergency_segment_backing_store = backing_store;
+ } else {
+ ps->ps_state = PS_CAN_USE;
+ }
+
ps->ps_bs = bs;
if ((error = ps_enter(ps)) != 0) {
bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift;
bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift;
PSL_LOCK();
- dp_pages_free += ps->ps_pgcount;
+ if(IS_PS_OK_TO_USE(ps)) {
+ dp_pages_free += ps->ps_pgcount;
+ } else {
+ dp_pages_reserve += ps->ps_pgcount;
+ }
PSL_UNLOCK();
BS_UNLOCK(bs);
bs_more_space(ps->ps_clcount);
+ /*
+ * If the paging segment being activated is not the emergency
+ * segment and we notice that the emergency segment is being
+ * used then we help recover it. If all goes well, the
+ * emergency segment will be back to its original state of
+ * online but not activated (till it's needed the next time).
+ */
+ ps = paging_segments[EMERGENCY_PSEG_INDEX];
+ if(IS_PS_EMERGENCY_SEGMENT(ps) && IS_PS_OK_TO_USE(ps)) {
+ if(default_pager_backing_store_delete(emergency_segment_backing_store)) {
+ dprintf(("Failed to recover emergency paging segment\n"));
+ } else {
+ dprintf(("Recovered emergency paging segment\n"));
+ }
+ }
+
DP_DEBUG(DEBUG_BS_INTERNAL,
("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n",
- device, offset, size, record_size,
+ device, offset, (dp_size_t) size, record_size,
ps->ps_record_shift, ps->ps_pgnum));
return KERN_SUCCESS;
paging_segment_t ps,
upl_t upl,
upl_offset_t upl_offset,
- vm_offset_t offset,
+ dp_offset_t offset,
upl_size_t size,
unsigned int *residualp,
int flags)
f_offset = (vm_object_offset_t)(ps->ps_offset + offset);
- /* for transfer case we need to pass uploffset and flags */
- error = vnode_pagein(ps->ps_vnode,
- upl, upl_offset, f_offset, (vm_size_t)size, flags | UPL_NORDAHEAD, NULL);
+ /*
+ * for transfer case we need to pass uploffset and flags
+ */
+ assert((upl_size_t) size == size);
+ error = vnode_pagein(ps->ps_vnode, upl, upl_offset, f_offset, (upl_size_t)size, flags, NULL);
/* The vnode_pagein semantic is somewhat at odds with the existing */
/* device_read semantic. Partial reads are not experienced at this */
paging_segment_t ps,
upl_t upl,
upl_offset_t upl_offset,
- vm_offset_t offset,
+ dp_offset_t offset,
unsigned int size,
int flags)
{
*/
upl_encrypt(upl, upl_offset, size);
}
-
- if (vnode_pageout(ps->ps_vnode,
- upl, upl_offset, f_offset, (vm_size_t)size, flags, NULL))
+ assert((upl_size_t) size == size);
+ if (vnode_pageout(ps->ps_vnode, upl, upl_offset, f_offset, (upl_size_t)size, flags, NULL))
result = KERN_FAILURE;
else
result = KERN_SUCCESS;
{
MACH_PORT_FACE release;
kern_return_t kr;
+ clock_sec_t now;
+ clock_nsec_t nanoseconds_dummy;
+ static clock_sec_t error_notify = 0;
PSL_LOCK();
if (flags == SWAP_ENCRYPT_ON) {
max_pages_trigger_port = trigger_port;
maximum_pages_free = lo_wat/vm_page_size;
kr = KERN_SUCCESS;
+ } else if (flags == USE_EMERGENCY_SWAP_FILE_FIRST) {
+ use_emergency_swap_file_first = TRUE;
+ release = trigger_port;
+ kr = KERN_SUCCESS;
+ } else if (flags == SWAP_FILE_CREATION_ERROR) {
+ release = trigger_port;
+ kr = KERN_SUCCESS;
+ if( paging_segment_count == 1) {
+ use_emergency_swap_file_first = TRUE;
+ }
+ no_paging_space_action();
+ clock_get_system_nanotime(&now, &nanoseconds_dummy);
+ if (now > error_notify + 5) {
+ dprintf(("Swap File Error.\n"));
+ error_notify = now;
+ }
} else {
release = trigger_port;
kr = KERN_INVALID_ARGUMENT;