* are met.
*/
/*
- * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * This file contains Original Code and/or Modifications of Original Code
- * as defined in and that are subject to the Apple Public Source License
- * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. The rights granted to you under the
- * License may not be used to create, or enable the creation or
- * redistribution of, unlawful or unlicensed copies of an Apple operating
- * system, or to circumvent, violate, or enable the circumvention or
- * violation of, any terms of an Apple operating system software license
- * agreement.
- *
- * Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- *
- * The Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- * Please see the License for the specific language governing rights and
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
* limitations under the License.
- *
- * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+/*
+ * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
*/
/*
* pipes scheme originally used in FreeBSD/4.4Lite. It does not support
* all features of sockets, but does do everything that pipes normally
* do.
+ *
+ * Pipes are implemented as circular buffers. Following are the valid states in pipes operations
+ *
+ * _________________________________
+ * 1. |_________________________________| r=w, c=0
+ *
+ * _________________________________
+ * 2. |__r:::::wc_______________________| r <= w , c > 0
+ *
+ * _________________________________
+ * 3. |::::wc_____r:::::::::::::::::::::| r>w , c > 0
+ *
+ * _________________________________
+ * 4. |:::::::wrc:::::::::::::::::::::::| w=r, c = Max size
+ *
+ *
+ * Nomenclature:-
+ * a-z define the steps in a program flow
+ * 1-4 are the states as defined aboe
+ * Action: is what file operation is done on the pipe
+ *
+ * Current:None Action: initialize with size M=200
+ * a. State 1 ( r=0, w=0, c=0)
+ *
+ * Current: a Action: write(100) (w < M)
+ * b. State 2 (r=0, w=100, c=100)
+ *
+ * Current: b Action: write(100) (w = M-w)
+ * c. State 4 (r=0,w=0,c=200)
+ *
+ * Current: b Action: read(70) ( r < c )
+ * d. State 2(r=70,w=100,c=30)
+ *
+ * Current: d Action: write(75) ( w < (m-w))
+ * e. State 2 (r=70,w=175,c=105)
+ *
+ * Current: d Action: write(110) ( w > (m-w))
+ * f. State 3 (r=70,w=10,c=140)
+ *
+ * Current: d Action: read(30) (r >= c )
+ * g. State 1 (r=100,w=100,c=0)
+ *
*/
/*
- * This code has two modes of operation, a small write mode and a large
- * write mode. The small write mode acts like conventional pipes with
- * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
- * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
- * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
- * the receiving process can copy it directly from the pages in the sending
- * process.
- *
- * If the sending process receives a signal, it is possible that it will
- * go away, and certainly its address space can change, because control
- * is returned back to the user-mode side. In that case, the pipe code
- * arranges to copy the buffer supplied by the user process, to a pageable
- * kernel buffer, and the receiving process will grab the data from the
- * pageable kernel buffer. Since signals don't happen all that often,
- * the copy operation is normally eliminated.
- *
- * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
- * happen for small transfers so that the system will not spend all of
- * its time context switching.
+ * This code create half duplex pipe buffers for facilitating file like
+ * operations on pipes. The initial buffer is very small, but this can
+ * dynamically change to larger sizes based on usage. The buffer size is never
+ * reduced. The total amount of kernel memory used is governed by maxpipekva.
+ * In case of dynamic expansion limit is reached, the output thread is blocked
+ * until the pipe buffer empties enough to continue.
*
* In order to limit the resource use of pipes, two sysctls exist:
*
* kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
- * address space available to us in pipe_map. Whenever the amount in use
- * exceeds half of this value, all new pipes will be created with size
- * SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
- * as well. This value is loader tunable only.
- *
- * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
- * be wired in order to facilitate direct copies using page flipping.
- * Whenever this value is exceeded, pipes will fall back to using regular
- * copies. This value is sysctl controllable at all times.
- *
- * These values are autotuned in subr_param.c.
+ * address space available to us in pipe_map.
*
* Memory usage may be monitored through the sysctls
- * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
+ * kern.ipc.pipes, kern.ipc.pipekva.
*
*/
#include <sys/signalvar.h>
#include <sys/pipe.h>
#include <sys/sysproto.h>
+#include <sys/proc_info.h>
-#include <bsm/audit_kernel.h>
+#include <security/audit/audit.h>
#include <sys/kdebug.h>
#include <kern/zalloc.h>
+#include <kern/kalloc.h>
#include <vm/vm_kern.h>
#include <libkern/OSAtomic.h>
+#include <libkern/section_keywords.h>
+
+#if CONFIG_MACF
+#include <security/mac_framework.h>
+#endif
#define f_flag f_fglob->fg_flag
-#define f_type f_fglob->fg_type
#define f_msgcount f_fglob->fg_msgcount
#define f_cred f_fglob->fg_cred
#define f_ops f_fglob->fg_ops
#define f_offset f_fglob->fg_offset
#define f_data f_fglob->fg_data
-/*
- * Use this define if you want to disable *fancy* VM things. Expect an
- * approx 30% decrease in transfer rate. This could be useful for
- * NetBSD or OpenBSD.
- *
- * this needs to be ported to X and the performance measured
- * before committing to supporting it
- */
-#define PIPE_NODIRECT 1
-
-#ifndef PIPE_NODIRECT
-
-#include <vm/vm.h>
-#include <vm/vm_param.h>
-#include <vm/vm_object.h>
-#include <vm/vm_kern.h>
-#include <vm/vm_extern.h>
-#include <vm/pmap.h>
-#include <vm/vm_map.h>
-#include <vm/vm_page.h>
-#include <vm/uma.h>
-
-#endif
-
/*
- * interfaces to the outside world
+ * interfaces to the outside world exported through file operations
*/
static int pipe_read(struct fileproc *fp, struct uio *uio,
- kauth_cred_t cred, int flags, struct proc *p);
-
+ int flags, vfs_context_t ctx);
static int pipe_write(struct fileproc *fp, struct uio *uio,
- kauth_cred_t cred, int flags, struct proc *p);
-
-static int pipe_close(struct fileglob *fg, struct proc *p);
-
-static int pipe_select(struct fileproc *fp, int which, void * wql, struct proc *p);
-
-static int pipe_kqfilter(struct fileproc *fp, struct knote *kn, struct proc *p);
-
-static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, struct proc *p);
-
-
-struct fileops pipeops =
- { pipe_read,
- pipe_write,
- pipe_ioctl,
- pipe_select,
- pipe_close,
- pipe_kqfilter,
- 0 };
-
-
-static void filt_pipedetach(struct knote *kn);
-static int filt_piperead(struct knote *kn, long hint);
-static int filt_pipewrite(struct knote *kn, long hint);
-
-static struct filterops pipe_rfiltops =
- { 1, NULL, filt_pipedetach, filt_piperead };
-static struct filterops pipe_wfiltops =
- { 1, NULL, filt_pipedetach, filt_pipewrite };
-
-/*
- * Default pipe buffer size(s), this can be kind-of large now because pipe
- * space is pageable. The pipe code will try to maintain locality of
- * reference for performance reasons, so small amounts of outstanding I/O
- * will not wipe the cache.
- */
-#define MINPIPESIZE (PIPE_SIZE/3)
-
-/*
- * Limit the number of "big" pipes
- */
-#define LIMITBIGPIPES 32
-static int nbigpipe;
-
-static int amountpipes;
-static int amountpipekva;
-
-#ifndef PIPE_NODIRECT
-static int amountpipekvawired;
-#endif
-int maxpipekva = 1024 * 1024 * 16;
+ int flags, vfs_context_t ctx);
+static int pipe_close(struct fileglob *fg, vfs_context_t ctx);
+static int pipe_select(struct fileproc *fp, int which, void * wql,
+ vfs_context_t ctx);
+static int pipe_kqfilter(struct fileproc *fp, struct knote *kn,
+ struct kevent_internal_s *kev, vfs_context_t ctx);
+static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data,
+ vfs_context_t ctx);
+static int pipe_drain(struct fileproc *fp,vfs_context_t ctx);
+
+static const struct fileops pipeops = {
+ .fo_type = DTYPE_PIPE,
+ .fo_read = pipe_read,
+ .fo_write = pipe_write,
+ .fo_ioctl = pipe_ioctl,
+ .fo_select = pipe_select,
+ .fo_close = pipe_close,
+ .fo_kqfilter = pipe_kqfilter,
+ .fo_drain = pipe_drain,
+};
+
+static void filt_pipedetach(struct knote *kn);
+
+static int filt_piperead(struct knote *kn, long hint);
+static int filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev);
+static int filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
+
+static int filt_pipewrite(struct knote *kn, long hint);
+static int filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev);
+static int filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
+
+SECURITY_READ_ONLY_EARLY(struct filterops) pipe_rfiltops = {
+ .f_isfd = 1,
+ .f_detach = filt_pipedetach,
+ .f_event = filt_piperead,
+ .f_touch = filt_pipereadtouch,
+ .f_process = filt_pipereadprocess,
+};
+
+SECURITY_READ_ONLY_EARLY(struct filterops) pipe_wfiltops = {
+ .f_isfd = 1,
+ .f_detach = filt_pipedetach,
+ .f_event = filt_pipewrite,
+ .f_touch = filt_pipewritetouch,
+ .f_process = filt_pipewriteprocess,
+};
+
+static int nbigpipe; /* for compatibility sake. no longer used */
+static int amountpipes; /* total number of pipes in system */
+static int amountpipekva; /* total memory used by pipes */
+
+int maxpipekva __attribute__((used)) = PIPE_KVAMAX; /* allowing 16MB max. */
#if PIPE_SYSCTLS
SYSCTL_DECL(_kern_ipc);
-SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD,
+SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD|CTLFLAG_LOCKED,
&maxpipekva, 0, "Pipe KVA limit");
-SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
+SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW|CTLFLAG_LOCKED,
&maxpipekvawired, 0, "Pipe KVA wired limit");
-SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
+SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD|CTLFLAG_LOCKED,
&amountpipes, 0, "Current # of pipes");
-SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
+SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD|CTLFLAG_LOCKED,
&nbigpipe, 0, "Current # of big pipes");
-SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
+SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD|CTLFLAG_LOCKED,
&amountpipekva, 0, "Pipe KVA usage");
-SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
+SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD|CTLFLAG_LOCKED,
&amountpipekvawired, 0, "Pipe wired KVA usage");
#endif
-void pipeinit(void *dummy __unused);
static void pipeclose(struct pipe *cpipe);
static void pipe_free_kmem(struct pipe *cpipe);
static int pipe_create(struct pipe **cpipep);
+static int pipespace(struct pipe *cpipe, int size);
+static int choose_pipespace(unsigned long current, unsigned long expected);
+static int expand_pipespace(struct pipe *p, int target_size);
static void pipeselwakeup(struct pipe *cpipe, struct pipe *spipe);
-static __inline int pipelock(struct pipe *cpipe, int catch);
-static __inline void pipeunlock(struct pipe *cpipe);
-
-#ifndef PIPE_NODIRECT
-static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
-static void pipe_destroy_write_buffer(struct pipe *wpipe);
-static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
-static void pipe_clone_write_buffer(struct pipe *wpipe);
-#endif
+static __inline int pipeio_lock(struct pipe *cpipe, int catch);
+static __inline void pipeio_unlock(struct pipe *cpipe);
extern int postpipeevent(struct pipe *, int);
extern void evpipefree(struct pipe *cpipe);
-
-static int pipespace(struct pipe *cpipe, int size);
-
static lck_grp_t *pipe_mtx_grp;
static lck_attr_t *pipe_mtx_attr;
static lck_grp_attr_t *pipe_mtx_grp_attr;
static zone_t pipe_zone;
+#define MAX_PIPESIZE(pipe) ( MAX(PIPE_SIZE, (pipe)->pipe_buffer.size) )
+
+#define PIPE_GARBAGE_AGE_LIMIT 5000 /* In milliseconds */
+#define PIPE_GARBAGE_QUEUE_LIMIT 32000
+
+struct pipe_garbage {
+ struct pipe *pg_pipe;
+ struct pipe_garbage *pg_next;
+ uint64_t pg_timestamp;
+};
+
+static zone_t pipe_garbage_zone;
+static struct pipe_garbage *pipe_garbage_head = NULL;
+static struct pipe_garbage *pipe_garbage_tail = NULL;
+static uint64_t pipe_garbage_age_limit = PIPE_GARBAGE_AGE_LIMIT;
+static int pipe_garbage_count = 0;
+static lck_mtx_t *pipe_garbage_lock;
+static void pipe_garbage_collect(struct pipe *cpipe);
+
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
+/* initial setup done at time of sysinit */
void
-pipeinit(void *dummy __unused)
+pipeinit(void)
{
- pipe_zone = (zone_t)zinit(sizeof(struct pipe), 8192 * sizeof(struct pipe), 4096, "pipe zone");
+ nbigpipe=0;
+ vm_size_t zone_size;
+
+ zone_size = 8192 * sizeof(struct pipe);
+ pipe_zone = zinit(sizeof(struct pipe), zone_size, 4096, "pipe zone");
- /*
- * allocate lock group attribute and group for pipe mutexes
- */
+
+ /* allocate lock group attribute and group for pipe mutexes */
pipe_mtx_grp_attr = lck_grp_attr_alloc_init();
- //lck_grp_attr_setstat(pipe_mtx_grp_attr);
pipe_mtx_grp = lck_grp_alloc_init("pipe", pipe_mtx_grp_attr);
+ /* allocate the lock attribute for pipe mutexes */
+ pipe_mtx_attr = lck_attr_alloc_init();
+
/*
- * allocate the lock attribute for pipe mutexes
+ * Set up garbage collection for dead pipes
*/
- pipe_mtx_attr = lck_attr_alloc_init();
- //lck_attr_setdebug(pipe_mtx_attr);
+ zone_size = (PIPE_GARBAGE_QUEUE_LIMIT + 20) *
+ sizeof(struct pipe_garbage);
+ pipe_garbage_zone = (zone_t)zinit(sizeof(struct pipe_garbage),
+ zone_size, 4096, "pipe garbage zone");
+ pipe_garbage_lock = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr);
+
}
+#ifndef CONFIG_EMBEDDED
+/* Bitmap for things to touch in pipe_touch() */
+#define PIPE_ATIME 0x00000001 /* time of last access */
+#define PIPE_MTIME 0x00000002 /* time of last modification */
+#define PIPE_CTIME 0x00000004 /* time of last status change */
+static void
+pipe_touch(struct pipe *tpipe, int touch)
+{
+ struct timespec now;
+
+ nanotime(&now);
+
+ if (touch & PIPE_ATIME) {
+ tpipe->st_atimespec.tv_sec = now.tv_sec;
+ tpipe->st_atimespec.tv_nsec = now.tv_nsec;
+ }
+
+ if (touch & PIPE_MTIME) {
+ tpipe->st_mtimespec.tv_sec = now.tv_sec;
+ tpipe->st_mtimespec.tv_nsec = now.tv_nsec;
+ }
+
+ if (touch & PIPE_CTIME) {
+ tpipe->st_ctimespec.tv_sec = now.tv_sec;
+ tpipe->st_ctimespec.tv_nsec = now.tv_nsec;
+ }
+}
+#endif
+
+static const unsigned int pipesize_blocks[] = {512,1024,2048,4096, 4096 * 2, PIPE_SIZE , PIPE_SIZE * 4 };
+
+/*
+ * finds the right size from possible sizes in pipesize_blocks
+ * returns the size which matches max(current,expected)
+ */
+static int
+choose_pipespace(unsigned long current, unsigned long expected)
+{
+ int i = sizeof(pipesize_blocks)/sizeof(unsigned int) -1;
+ unsigned long target;
+
+ /*
+ * assert that we always get an atomic transaction sized pipe buffer,
+ * even if the system pipe buffer high-water mark has been crossed.
+ */
+ assert(PIPE_BUF == pipesize_blocks[0]);
+
+ if (expected > current)
+ target = expected;
+ else
+ target = current;
+
+ while ( i >0 && pipesize_blocks[i-1] > target) {
+ i=i-1;
+
+ }
+
+ return pipesize_blocks[i];
+}
+
+
+/*
+ * expand the size of pipe while there is data to be read,
+ * and then free the old buffer once the current buffered
+ * data has been transferred to new storage.
+ * Required: PIPE_LOCK and io lock to be held by caller.
+ * returns 0 on success or no expansion possible
+ */
+static int
+expand_pipespace(struct pipe *p, int target_size)
+{
+ struct pipe tmp, oldpipe;
+ int error;
+ tmp.pipe_buffer.buffer = 0;
+
+ if (p->pipe_buffer.size >= (unsigned) target_size) {
+ return 0; /* the existing buffer is max size possible */
+ }
+
+ /* create enough space in the target */
+ error = pipespace(&tmp, target_size);
+ if (error != 0)
+ return (error);
+
+ oldpipe.pipe_buffer.buffer = p->pipe_buffer.buffer;
+ oldpipe.pipe_buffer.size = p->pipe_buffer.size;
+
+ memcpy(tmp.pipe_buffer.buffer, p->pipe_buffer.buffer, p->pipe_buffer.size);
+ if (p->pipe_buffer.cnt > 0 && p->pipe_buffer.in <= p->pipe_buffer.out ){
+ /* we are in State 3 and need extra copying for read to be consistent */
+ memcpy(&tmp.pipe_buffer.buffer[p->pipe_buffer.size], p->pipe_buffer.buffer, p->pipe_buffer.size);
+ p->pipe_buffer.in += p->pipe_buffer.size;
+ }
+
+ p->pipe_buffer.buffer = tmp.pipe_buffer.buffer;
+ p->pipe_buffer.size = tmp.pipe_buffer.size;
+
+
+ pipe_free_kmem(&oldpipe);
+ return 0;
+}
/*
* The pipe system call for the DTYPE_PIPE type of pipes
+ *
+ * returns:
+ * FREAD | fd0 | -->[struct rpipe] --> |~~buffer~~| \
+ * (pipe_mutex)
+ * FWRITE | fd1 | -->[struct wpipe] --X /
*/
/* ARGSUSED */
int
-pipe(struct proc *p, __unused struct pipe_args *uap, register_t *retval)
+pipe(proc_t p, __unused struct pipe_args *uap, int32_t *retval)
{
struct fileproc *rf, *wf;
struct pipe *rpipe, *wpipe;
/*
* allocate the space for the normal I/O direction up
* front... we'll delay the allocation for the other
- * direction until a write actually occurs (most
- * likely it won't)...
- *
- * Reduce to 1/4th pipe size if we're over our global max.
+ * direction until a write actually occurs (most likely it won't)...
*/
- if (amountpipekva > maxpipekva / 2)
- error = pipespace(rpipe, SMALL_PIPE_SIZE);
- else
- error = pipespace(rpipe, PIPE_SIZE);
+ error = pipespace(rpipe, choose_pipespace(rpipe->pipe_buffer.size, 0));
if (error)
goto freepipes;
-#ifndef PIPE_NODIRECT
- rpipe->pipe_state |= PIPE_DIRECTOK;
- wpipe->pipe_state |= PIPE_DIRECTOK;
-#endif
TAILQ_INIT(&rpipe->pipe_evlist);
TAILQ_INIT(&wpipe->pipe_evlist);
- error = falloc(p, &rf, &fd);
+ error = falloc(p, &rf, &fd, vfs_context_current());
if (error) {
goto freepipes;
}
retval[0] = fd;
/*
- * for now we'll create half-duplex
- * pipes... this is what we've always
- * supported..
+ * for now we'll create half-duplex pipes(refer returns section above).
+ * this is what we've always supported..
*/
rf->f_flag = FREAD;
- rf->f_type = DTYPE_PIPE;
rf->f_data = (caddr_t)rpipe;
rf->f_ops = &pipeops;
- error = falloc(p, &wf, &fd);
+ error = falloc(p, &wf, &fd, vfs_context_current());
if (error) {
fp_free(p, retval[0], rf);
goto freepipes;
}
wf->f_flag = FWRITE;
- wf->f_type = DTYPE_PIPE;
wf->f_data = (caddr_t)wpipe;
wf->f_ops = &pipeops;
+ rpipe->pipe_peer = wpipe;
+ wpipe->pipe_peer = rpipe;
+ /* both structures share the same mutex */
+ rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
+
retval[1] = fd;
-#ifdef MAC
+#if CONFIG_MACF
/*
* XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
*
* struct pipe represents a pipe endpoint. The MAC label is shared
- * between the connected endpoints. As a result mac_init_pipe() and
- * mac_create_pipe() should only be called on one of the endpoints
+ * between the connected endpoints. As a result mac_pipe_label_init() and
+ * mac_pipe_label_associate() should only be called on one of the endpoints
* after they have been connected.
*/
- mac_init_pipe(rpipe);
- mac_create_pipe(td->td_ucred, rpipe);
+ mac_pipe_label_init(rpipe);
+ mac_pipe_label_associate(kauth_cred_get(), rpipe);
+ wpipe->pipe_label = rpipe->pipe_label;
#endif
- proc_fdlock(p);
- *fdflags(p, retval[0]) &= ~UF_RESERVED;
- *fdflags(p, retval[1]) &= ~UF_RESERVED;
+ proc_fdlock_spin(p);
+ procfdtbl_releasefd(p, retval[0], NULL);
+ procfdtbl_releasefd(p, retval[1], NULL);
fp_drop(p, retval[0], rf, 1);
fp_drop(p, retval[1], wf, 1);
proc_fdunlock(p);
- rpipe->pipe_peer = wpipe;
- wpipe->pipe_peer = rpipe;
-
- rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
return (0);
return (error);
}
-
int
-pipe_stat(struct pipe *cpipe, struct stat *ub)
+pipe_stat(struct pipe *cpipe, void *ub, int isstat64)
{
-#ifdef MAC
+#if CONFIG_MACF
int error;
#endif
- struct timeval now;
+ int pipe_size = 0;
+ int pipe_count;
+ struct stat *sb = (struct stat *)0; /* warning avoidance ; protected by isstat64 */
+ struct stat64 * sb64 = (struct stat64 *)0; /* warning avoidance ; protected by isstat64 */
if (cpipe == NULL)
return (EBADF);
-#ifdef MAC
PIPE_LOCK(cpipe);
- error = mac_check_pipe_stat(active_cred, cpipe);
- PIPE_UNLOCK(cpipe);
- if (error)
+
+#if CONFIG_MACF
+ error = mac_pipe_check_stat(kauth_cred_get(), cpipe);
+ if (error) {
+ PIPE_UNLOCK(cpipe);
return (error);
+ }
#endif
if (cpipe->pipe_buffer.buffer == 0) {
- /*
- * must be stat'ing the write fd
- */
- cpipe = cpipe->pipe_peer;
-
- if (cpipe == NULL)
- return (EBADF);
+ /* must be stat'ing the write fd */
+ if (cpipe->pipe_peer) {
+ /* the peer still exists, use it's info */
+ pipe_size = MAX_PIPESIZE(cpipe->pipe_peer);
+ pipe_count = cpipe->pipe_peer->pipe_buffer.cnt;
+ } else {
+ pipe_count = 0;
+ }
+ } else {
+ pipe_size = MAX_PIPESIZE(cpipe);
+ pipe_count = cpipe->pipe_buffer.cnt;
}
- bzero(ub, sizeof(*ub));
- ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
- ub->st_blksize = cpipe->pipe_buffer.size;
- ub->st_size = cpipe->pipe_buffer.cnt;
- ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
- ub->st_nlink = 1;
+ /*
+ * since peer's buffer is setup ouside of lock
+ * we might catch it in transient state
+ */
+ if (pipe_size == 0)
+ pipe_size = MAX(PIPE_SIZE, pipesize_blocks[0]);
+
+ if (isstat64 != 0) {
+ sb64 = (struct stat64 *)ub;
+
+ bzero(sb64, sizeof(*sb64));
+ sb64->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
+ sb64->st_blksize = pipe_size;
+ sb64->st_size = pipe_count;
+ sb64->st_blocks = (sb64->st_size + sb64->st_blksize - 1) / sb64->st_blksize;
+
+ sb64->st_uid = kauth_getuid();
+ sb64->st_gid = kauth_getgid();
+
+ sb64->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec;
+ sb64->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec;
+
+ sb64->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec;
+ sb64->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec;
+
+ sb64->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec;
+ sb64->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec;
- ub->st_uid = kauth_getuid();
- ub->st_gid = kauth_getgid();
+ /*
+ * Return a relatively unique inode number based on the current
+ * address of this pipe's struct pipe. This number may be recycled
+ * relatively quickly.
+ */
+ sb64->st_ino = (ino64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
+ } else {
+ sb = (struct stat *)ub;
- microtime(&now);
- ub->st_atimespec.tv_sec = now.tv_sec;
- ub->st_atimespec.tv_nsec = now.tv_usec * 1000;
+ bzero(sb, sizeof(*sb));
+ sb->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
+ sb->st_blksize = pipe_size;
+ sb->st_size = pipe_count;
+ sb->st_blocks = (sb->st_size + sb->st_blksize - 1) / sb->st_blksize;
+
+ sb->st_uid = kauth_getuid();
+ sb->st_gid = kauth_getgid();
+
+ sb->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec;
+ sb->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec;
+
+ sb->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec;
+ sb->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec;
- ub->st_mtimespec.tv_sec = now.tv_sec;
- ub->st_mtimespec.tv_nsec = now.tv_usec * 1000;
+ sb->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec;
+ sb->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec;
- ub->st_ctimespec.tv_sec = now.tv_sec;
- ub->st_ctimespec.tv_nsec = now.tv_usec * 1000;
+ /*
+ * Return a relatively unique inode number based on the current
+ * address of this pipe's struct pipe. This number may be recycled
+ * relatively quickly.
+ */
+ sb->st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
+ }
+ PIPE_UNLOCK(cpipe);
/*
- * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
- * XXX (st_dev, st_ino) should be unique.
+ * POSIX: Left as 0: st_dev, st_nlink, st_rdev, st_flags, st_gen,
+ * st_uid, st_gid.
+ *
+ * XXX (st_dev) should be unique, but there is no device driver that
+ * XXX is associated with pipes, since they are implemented via a
+ * XXX struct fileops indirection rather than as FS objects.
*/
return (0);
}
{
vm_offset_t buffer;
- size = round_page(size);
+ if (size <= 0)
+ return(EINVAL);
- if (kmem_alloc(kernel_map, &buffer, size) != KERN_SUCCESS)
- return(ENOMEM);
+ if ((buffer = (vm_offset_t)kalloc(size)) == 0 )
+ return(ENOMEM);
/* free old resources if we're resizing */
pipe_free_kmem(cpipe);
cpipe->pipe_buffer.out = 0;
cpipe->pipe_buffer.cnt = 0;
- OSAddAtomic(1, (SInt32 *)&amountpipes);
- OSAddAtomic(cpipe->pipe_buffer.size, (SInt32 *)&amountpipekva);
+ OSAddAtomic(1, &amountpipes);
+ OSAddAtomic(cpipe->pipe_buffer.size, &amountpipekva);
return (0);
}
pipe_create(struct pipe **cpipep)
{
struct pipe *cpipe;
-
cpipe = (struct pipe *)zalloc(pipe_zone);
if ((*cpipep = cpipe) == NULL)
*/
bzero(cpipe, sizeof *cpipe);
+#ifndef CONFIG_EMBEDDED
+ /* Initial times are all the time of creation of the pipe */
+ pipe_touch(cpipe, PIPE_ATIME | PIPE_MTIME | PIPE_CTIME);
+#endif
return (0);
}
/*
* lock a pipe for I/O, blocking other access
*/
-static __inline int
-pipelock(cpipe, catch)
- struct pipe *cpipe;
- int catch;
+static inline int
+pipeio_lock(struct pipe *cpipe, int catch)
{
int error;
-
while (cpipe->pipe_state & PIPE_LOCKFL) {
cpipe->pipe_state |= PIPE_LWANT;
-
error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO,
"pipelk", 0);
if (error != 0)
return (error);
}
cpipe->pipe_state |= PIPE_LOCKFL;
-
return (0);
}
/*
* unlock a pipe I/O lock
*/
-static __inline void
-pipeunlock(cpipe)
- struct pipe *cpipe;
+static inline void
+pipeio_unlock(struct pipe *cpipe)
{
-
cpipe->pipe_state &= ~PIPE_LOCKFL;
-
if (cpipe->pipe_state & PIPE_LWANT) {
cpipe->pipe_state &= ~PIPE_LWANT;
wakeup(cpipe);
}
}
+/*
+ * wakeup anyone whos blocked in select
+ */
static void
-pipeselwakeup(cpipe, spipe)
- struct pipe *cpipe;
- struct pipe *spipe;
+pipeselwakeup(struct pipe *cpipe, struct pipe *spipe)
{
-
if (cpipe->pipe_state & PIPE_SEL) {
cpipe->pipe_state &= ~PIPE_SEL;
selwakeup(&cpipe->pipe_sel);
postpipeevent(cpipe, EV_RWBYTES);
if (spipe && (spipe->pipe_state & PIPE_ASYNC) && spipe->pipe_pgid) {
- struct proc *p;
-
if (spipe->pipe_pgid < 0)
gsignal(-spipe->pipe_pgid, SIGIO);
- else if ((p = pfind(spipe->pipe_pgid)) != (struct proc *)0)
- psignal(p, SIGIO);
+ else
+ proc_signal(spipe->pipe_pgid, SIGIO);
}
}
+/*
+ * Read n bytes from the buffer. Semantics are similar to file read.
+ * returns: number of bytes read from the buffer
+ */
/* ARGSUSED */
static int
-pipe_read(struct fileproc *fp, struct uio *uio, __unused kauth_cred_t active_cred, __unused int flags, __unused struct proc *p)
+pipe_read(struct fileproc *fp, struct uio *uio, __unused int flags,
+ __unused vfs_context_t ctx)
{
struct pipe *rpipe = (struct pipe *)fp->f_data;
int error;
PIPE_LOCK(rpipe);
++rpipe->pipe_busy;
- error = pipelock(rpipe, 1);
+ error = pipeio_lock(rpipe, 1);
if (error)
goto unlocked_error;
-#ifdef MAC
- error = mac_check_pipe_read(active_cred, rpipe);
+#if CONFIG_MACF
+ error = mac_pipe_check_read(kauth_cred_get(), rpipe);
if (error)
goto locked_error;
#endif
+
while (uio_resid(uio)) {
/*
* normal pipe buffer receive
*/
if (rpipe->pipe_buffer.cnt > 0) {
+ /*
+ * # bytes to read is min( bytes from read pointer until end of buffer,
+ * total unread bytes,
+ * user requested byte count)
+ */
size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
if (size > rpipe->pipe_buffer.cnt)
size = rpipe->pipe_buffer.cnt;
if (size > (u_int) uio_resid(uio))
size = (u_int) uio_resid(uio);
- PIPE_UNLOCK(rpipe);
+ PIPE_UNLOCK(rpipe); /* we still hold io lock.*/
error = uiomove(
&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
size, uio);
rpipe->pipe_buffer.out = 0;
rpipe->pipe_buffer.cnt -= size;
-
+
/*
* If there is no more to read in the pipe, reset
* its pointers to the beginning. This improves
rpipe->pipe_buffer.out = 0;
}
nread += size;
-#ifndef PIPE_NODIRECT
- /*
- * Direct copy, bypassing a kernel buffer.
- */
- } else if ((size = rpipe->pipe_map.cnt) &&
- (rpipe->pipe_state & PIPE_DIRECTW)) {
- caddr_t va;
- // LP64todo - fix this!
- if (size > (u_int) uio_resid(uio))
- size = (u_int) uio_resid(uio);
-
- va = (caddr_t) rpipe->pipe_map.kva +
- rpipe->pipe_map.pos;
- PIPE_UNLOCK(rpipe);
- error = uiomove(va, size, uio);
- PIPE_LOCK(rpipe);
- if (error)
- break;
- nread += size;
- rpipe->pipe_map.pos += size;
- rpipe->pipe_map.cnt -= size;
- if (rpipe->pipe_map.cnt == 0) {
- rpipe->pipe_state &= ~PIPE_DIRECTW;
- wakeup(rpipe);
- }
-#endif
} else {
/*
* detect EOF condition
* read returns 0 on EOF, no need to set error
*/
- if (rpipe->pipe_state & PIPE_EOF)
+ if (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
break;
+ }
/*
* If the "write-side" has been blocked, wake it up now.
}
/*
- * Break if some data was read.
+ * Break if some data was read in previous iteration.
*/
if (nread > 0)
break;
* We will either break out with an error or we will
* sleep and relock to loop.
*/
- pipeunlock(rpipe);
+ pipeio_unlock(rpipe);
/*
* Handle non-blocking mode operation or
error = EAGAIN;
} else {
rpipe->pipe_state |= PIPE_WANTR;
-
error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd", 0);
-
if (error == 0)
- error = pipelock(rpipe, 1);
+ error = pipeio_lock(rpipe, 1);
}
if (error)
goto unlocked_error;
}
}
-#ifdef MAC
+#if CONFIG_MACF
locked_error:
#endif
- pipeunlock(rpipe);
+ pipeio_unlock(rpipe);
unlocked_error:
--rpipe->pipe_busy;
if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
wakeup(rpipe);
- } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
+ } else if (rpipe->pipe_buffer.cnt < rpipe->pipe_buffer.size) {
/*
* Handle write blocking hysteresis.
*/
}
}
- if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
+ if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) > 0)
pipeselwakeup(rpipe, rpipe->pipe_peer);
+#ifndef CONFIG_EMBEDDED
+ /* update last read time */
+ pipe_touch(rpipe, PIPE_ATIME);
+#endif
+
PIPE_UNLOCK(rpipe);
return (error);
}
-
-
-#ifndef PIPE_NODIRECT
/*
- * Map the sending processes' buffer into kernel space and wire it.
- * This is similar to a physical write operation.
+ * perform a write of n bytes into the read side of buffer. Since
+ * pipes are unidirectional a write is meant to be read by the otherside only.
*/
static int
-pipe_build_write_buffer(wpipe, uio)
- struct pipe *wpipe;
- struct uio *uio;
+pipe_write(struct fileproc *fp, struct uio *uio, __unused int flags,
+ __unused vfs_context_t ctx)
{
- pmap_t pmap;
- u_int size;
- int i, j;
- vm_offset_t addr, endaddr;
+ int error = 0;
+ int orig_resid;
+ int pipe_size;
+ struct pipe *wpipe, *rpipe;
+ // LP64todo - fix this!
+ orig_resid = uio_resid(uio);
+ int space;
+ rpipe = (struct pipe *)fp->f_data;
- size = (u_int) uio->uio_iov->iov_len;
- if (size > wpipe->pipe_buffer.size)
- size = wpipe->pipe_buffer.size;
+ PIPE_LOCK(rpipe);
+ wpipe = rpipe->pipe_peer;
- pmap = vmspace_pmap(curproc->p_vmspace);
- endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
- addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
- for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
- /*
- * vm_fault_quick() can sleep. Consequently,
- * vm_page_lock_queue() and vm_page_unlock_queue()
- * should not be performed outside of this loop.
- */
- race:
- if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
- vm_page_lock_queues();
- for (j = 0; j < i; j++)
- vm_page_unhold(wpipe->pipe_map.ms[j]);
- vm_page_unlock_queues();
- return (EFAULT);
- }
- wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
- VM_PROT_READ);
- if (wpipe->pipe_map.ms[i] == NULL)
- goto race;
+ /*
+ * detect loss of pipe read side, issue SIGPIPE if lost.
+ */
+ if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
+ PIPE_UNLOCK(rpipe);
+ return (EPIPE);
+ }
+#if CONFIG_MACF
+ error = mac_pipe_check_write(kauth_cred_get(), wpipe);
+ if (error) {
+ PIPE_UNLOCK(rpipe);
+ return (error);
}
+#endif
+ ++wpipe->pipe_busy;
-/*
- * set up the control block
- */
- wpipe->pipe_map.npages = i;
- wpipe->pipe_map.pos =
- ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
- wpipe->pipe_map.cnt = size;
+ pipe_size = 0;
-/*
- * and map the buffer
- */
- if (wpipe->pipe_map.kva == 0) {
- /*
- * We need to allocate space for an extra page because the
- * address range might (will) span pages at times.
+ /*
+ * need to allocate some storage... we delay the allocation
+ * until the first write on fd[0] to avoid allocating storage for both
+ * 'pipe ends'... most pipes are half-duplex with the writes targeting
+ * fd[1], so allocating space for both ends is a waste...
+ */
+
+ if ( wpipe->pipe_buffer.buffer == 0 || (
+ (unsigned)orig_resid > wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt &&
+ amountpipekva < maxpipekva ) ) {
+
+ pipe_size = choose_pipespace(wpipe->pipe_buffer.size, wpipe->pipe_buffer.cnt + orig_resid);
+ }
+ if (pipe_size) {
+ /*
+ * need to do initial allocation or resizing of pipe
+ * holding both structure and io locks.
*/
- wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
- wpipe->pipe_buffer.size + PAGE_SIZE);
- atomic_add_int(&amountpipekvawired,
- wpipe->pipe_buffer.size + PAGE_SIZE);
+ if ((error = pipeio_lock(wpipe, 1)) == 0) {
+ if (wpipe->pipe_buffer.cnt == 0)
+ error = pipespace(wpipe, pipe_size);
+ else
+ error = expand_pipespace(wpipe, pipe_size);
+
+ pipeio_unlock(wpipe);
+
+ /* allocation failed */
+ if (wpipe->pipe_buffer.buffer == 0)
+ error = ENOMEM;
+ }
+ if (error) {
+ /*
+ * If an error occurred unbusy and return, waking up any pending
+ * readers.
+ */
+ --wpipe->pipe_busy;
+ if ((wpipe->pipe_busy == 0) &&
+ (wpipe->pipe_state & PIPE_WANT)) {
+ wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
+ wakeup(wpipe);
+ }
+ PIPE_UNLOCK(rpipe);
+ return(error);
+ }
}
- pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
- wpipe->pipe_map.npages);
-/*
- * and update the uio data
- */
+ while (uio_resid(uio)) {
- uio->uio_iov->iov_len -= size;
- uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
- if (uio->uio_iov->iov_len == 0)
- uio->uio_iov++;
- uio_setresid(uio, (uio_resid(uio) - size));
- uio->uio_offset += size;
- return (0);
-}
+ retrywrite:
+ space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
-/*
- * unmap and unwire the process buffer
- */
-static void
-pipe_destroy_write_buffer(wpipe)
- struct pipe *wpipe;
-{
- int i;
-
- if (wpipe->pipe_map.kva) {
- pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
-
- if (amountpipekvawired > maxpipekvawired / 2) {
- /* Conserve address space */
- vm_offset_t kva = wpipe->pipe_map.kva;
- wpipe->pipe_map.kva = 0;
- kmem_free(kernel_map, kva,
- wpipe->pipe_buffer.size + PAGE_SIZE);
- atomic_subtract_int(&amountpipekvawired,
- wpipe->pipe_buffer.size + PAGE_SIZE);
- }
- }
- vm_page_lock_queues();
- for (i = 0; i < wpipe->pipe_map.npages; i++) {
- vm_page_unhold(wpipe->pipe_map.ms[i]);
- }
- vm_page_unlock_queues();
- wpipe->pipe_map.npages = 0;
-}
-
-/*
- * In the case of a signal, the writing process might go away. This
- * code copies the data into the circular buffer so that the source
- * pages can be freed without loss of data.
- */
-static void
-pipe_clone_write_buffer(wpipe)
- struct pipe *wpipe;
-{
- int size;
- int pos;
-
- size = wpipe->pipe_map.cnt;
- pos = wpipe->pipe_map.pos;
-
- wpipe->pipe_buffer.in = size;
- wpipe->pipe_buffer.out = 0;
- wpipe->pipe_buffer.cnt = size;
- wpipe->pipe_state &= ~PIPE_DIRECTW;
-
- PIPE_UNLOCK(wpipe);
- bcopy((caddr_t) wpipe->pipe_map.kva + pos,
- wpipe->pipe_buffer.buffer, size);
- pipe_destroy_write_buffer(wpipe);
- PIPE_LOCK(wpipe);
-}
-
-/*
- * This implements the pipe buffer write mechanism. Note that only
- * a direct write OR a normal pipe write can be pending at any given time.
- * If there are any characters in the pipe buffer, the direct write will
- * be deferred until the receiving process grabs all of the bytes from
- * the pipe buffer. Then the direct mapping write is set-up.
- */
-static int
-pipe_direct_write(wpipe, uio)
- struct pipe *wpipe;
- struct uio *uio;
-{
- int error;
-
-retry:
- while (wpipe->pipe_state & PIPE_DIRECTW) {
- if (wpipe->pipe_state & PIPE_WANTR) {
- wpipe->pipe_state &= ~PIPE_WANTR;
- wakeup(wpipe);
- }
- wpipe->pipe_state |= PIPE_WANTW;
- error = msleep(wpipe, PIPE_MTX(wpipe),
- PRIBIO | PCATCH, "pipdww", 0);
- if (error)
- goto error1;
- if (wpipe->pipe_state & PIPE_EOF) {
- error = EPIPE;
- goto error1;
- }
- }
- wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
- if (wpipe->pipe_buffer.cnt > 0) {
- if (wpipe->pipe_state & PIPE_WANTR) {
- wpipe->pipe_state &= ~PIPE_WANTR;
- wakeup(wpipe);
- }
-
- wpipe->pipe_state |= PIPE_WANTW;
- error = msleep(wpipe, PIPE_MTX(wpipe),
- PRIBIO | PCATCH, "pipdwc", 0);
- if (error)
- goto error1;
- if (wpipe->pipe_state & PIPE_EOF) {
- error = EPIPE;
- goto error1;
- }
- goto retry;
- }
-
- wpipe->pipe_state |= PIPE_DIRECTW;
-
- pipelock(wpipe, 0);
- PIPE_UNLOCK(wpipe);
- error = pipe_build_write_buffer(wpipe, uio);
- PIPE_LOCK(wpipe);
- pipeunlock(wpipe);
- if (error) {
- wpipe->pipe_state &= ~PIPE_DIRECTW;
- goto error1;
- }
-
- error = 0;
- while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
- if (wpipe->pipe_state & PIPE_EOF) {
- pipelock(wpipe, 0);
- PIPE_UNLOCK(wpipe);
- pipe_destroy_write_buffer(wpipe);
- PIPE_LOCK(wpipe);
- pipeselwakeup(wpipe, wpipe);
- pipeunlock(wpipe);
- error = EPIPE;
- goto error1;
- }
- if (wpipe->pipe_state & PIPE_WANTR) {
- wpipe->pipe_state &= ~PIPE_WANTR;
- wakeup(wpipe);
- }
- pipeselwakeup(wpipe, wpipe);
- error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
- "pipdwt", 0);
- }
-
- pipelock(wpipe,0);
- if (wpipe->pipe_state & PIPE_DIRECTW) {
- /*
- * this bit of trickery substitutes a kernel buffer for
- * the process that might be going away.
- */
- pipe_clone_write_buffer(wpipe);
- } else {
- PIPE_UNLOCK(wpipe);
- pipe_destroy_write_buffer(wpipe);
- PIPE_LOCK(wpipe);
- }
- pipeunlock(wpipe);
- return (error);
-
-error1:
- wakeup(wpipe);
- return (error);
-}
-#endif
-
-
-
-static int
-pipe_write(struct fileproc *fp, struct uio *uio, __unused kauth_cred_t active_cred, __unused int flags, __unused struct proc *p)
-{
- int error = 0;
- int orig_resid;
- int pipe_size;
- struct pipe *wpipe, *rpipe;
-
- rpipe = (struct pipe *)fp->f_data;
-
- PIPE_LOCK(rpipe);
- wpipe = rpipe->pipe_peer;
-
- /*
- * detect loss of pipe read side, issue SIGPIPE if lost.
- */
- if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)) {
- PIPE_UNLOCK(rpipe);
- return (EPIPE);
- }
-#ifdef MAC
- error = mac_check_pipe_write(active_cred, wpipe);
- if (error) {
- PIPE_UNLOCK(rpipe);
- return (error);
- }
-#endif
- ++wpipe->pipe_busy;
-
- pipe_size = 0;
-
- if (wpipe->pipe_buffer.buffer == 0) {
- /*
- * need to allocate some storage... we delay the allocation
- * until the first write on fd[0] to avoid allocating storage for both
- * 'pipe ends'... most pipes are half-duplex with the writes targeting
- * fd[1], so allocating space for both ends is a waste...
- *
- * Reduce to 1/4th pipe size if we're over our global max.
- */
- if (amountpipekva > maxpipekva / 2)
- pipe_size = SMALL_PIPE_SIZE;
- else
- pipe_size = PIPE_SIZE;
- }
-
- /*
- * If it is advantageous to resize the pipe buffer, do
- * so.
- */
- if ((uio_resid(uio) > PIPE_SIZE) &&
- (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
- (amountpipekva < maxpipekva / 2) &&
- (nbigpipe < LIMITBIGPIPES) &&
-#ifndef PIPE_NODIRECT
- (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
-#endif
- (wpipe->pipe_buffer.cnt == 0)) {
-
- pipe_size = BIG_PIPE_SIZE;
-
- }
- if (pipe_size) {
- /*
- * need to do initial allocation or resizing of pipe
- */
- if ((error = pipelock(wpipe, 1)) == 0) {
- PIPE_UNLOCK(wpipe);
- if (pipespace(wpipe, pipe_size) == 0)
- OSAddAtomic(1, (SInt32 *)&nbigpipe);
- PIPE_LOCK(wpipe);
- pipeunlock(wpipe);
-
- if (wpipe->pipe_buffer.buffer == 0) {
- /*
- * initial allocation failed
- */
- error = ENOMEM;
- }
- }
- if (error) {
- /*
- * If an error occurred unbusy and return, waking up any pending
- * readers.
- */
- --wpipe->pipe_busy;
- if ((wpipe->pipe_busy == 0) &&
- (wpipe->pipe_state & PIPE_WANT)) {
- wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
- wakeup(wpipe);
- }
- PIPE_UNLOCK(rpipe);
- return(error);
- }
- }
- // LP64todo - fix this!
- orig_resid = uio_resid(uio);
-
- while (uio_resid(uio)) {
- int space;
-
-#ifndef PIPE_NODIRECT
- /*
- * If the transfer is large, we can gain performance if
- * we do process-to-process copies directly.
- * If the write is non-blocking, we don't use the
- * direct write mechanism.
- *
- * The direct write mechanism will detect the reader going
- * away on us.
- */
- if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
- (fp->f_flag & FNONBLOCK) == 0 &&
- amountpipekvawired + uio->uio_resid < maxpipekvawired) {
- error = pipe_direct_write(wpipe, uio);
- if (error)
- break;
- continue;
- }
-
- /*
- * Pipe buffered writes cannot be coincidental with
- * direct writes. We wait until the currently executing
- * direct write is completed before we start filling the
- * pipe buffer. We break out if a signal occurs or the
- * reader goes away.
- */
- retrywrite:
- while (wpipe->pipe_state & PIPE_DIRECTW) {
- if (wpipe->pipe_state & PIPE_WANTR) {
- wpipe->pipe_state &= ~PIPE_WANTR;
- wakeup(wpipe);
- }
- error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipbww", 0);
-
- if (wpipe->pipe_state & PIPE_EOF)
- break;
- if (error)
- break;
- }
-#else
- retrywrite:
-#endif
- space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
-
- /*
- * Writes of size <= PIPE_BUF must be atomic.
- */
+ /* Writes of size <= PIPE_BUF must be atomic. */
if ((space < uio_resid(uio)) && (orig_resid <= PIPE_BUF))
space = 0;
if (space > 0) {
- if ((error = pipelock(wpipe,1)) == 0) {
+ if ((error = pipeio_lock(wpipe,1)) == 0) {
int size; /* Transfer size */
int segsize; /* first segment to transfer */
- if (wpipe->pipe_state & PIPE_EOF) {
- pipeunlock(wpipe);
+ if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
+ pipeio_unlock(wpipe);
error = EPIPE;
break;
}
-#ifndef PIPE_NODIRECT
- /*
- * It is possible for a direct write to
- * slip in on us... handle it here...
- */
- if (wpipe->pipe_state & PIPE_DIRECTW) {
- pipeunlock(wpipe);
- goto retrywrite;
- }
-#endif
/*
- * If a process blocked in pipelock, our
+ * If a process blocked in pipeio_lock, our
* value for space might be bad... the mutex
* is dropped while we're blocked
*/
if (space > (int)(wpipe->pipe_buffer.size -
wpipe->pipe_buffer.cnt)) {
- pipeunlock(wpipe);
+ pipeio_unlock(wpipe);
goto retrywrite;
}
/*
* Transfer remaining part now, to
* support atomic writes. Wraparound
- * happened.
+ * happened. (State 3)
*/
if (wpipe->pipe_buffer.in + segsize !=
wpipe->pipe_buffer.size)
size - segsize, uio);
PIPE_LOCK(rpipe);
}
+ /*
+ * readers never know to read until count is updated.
+ */
if (error == 0) {
wpipe->pipe_buffer.in += size;
- if (wpipe->pipe_buffer.in >=
+ if (wpipe->pipe_buffer.in >
wpipe->pipe_buffer.size) {
if (wpipe->pipe_buffer.in !=
size - segsize +
panic("Pipe buffer overflow");
}
- pipeunlock(wpipe);
+ pipeio_unlock(wpipe);
}
if (error)
break;
error = EAGAIN;
break;
}
+
+ /*
+ * If read side wants to go away, we just issue a signal
+ * to ourselves.
+ */
+ if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
+ error = EPIPE;
+ break;
+ }
+
/*
* We have no more space and have something to offer,
* wake up select/poll.
if (error != 0)
break;
- /*
- * If read side wants to go away, we just issue a signal
- * to ourselves.
- */
- if (wpipe->pipe_state & PIPE_EOF) {
- error = EPIPE;
- break;
- }
}
}
--wpipe->pipe_busy;
*/
pipeselwakeup(wpipe, wpipe);
}
+
+#ifndef CONFIG_EMBEDDED
+ /* Update modification, status change (# of bytes in pipe) times */
+ pipe_touch(rpipe, PIPE_MTIME | PIPE_CTIME);
+ pipe_touch(wpipe, PIPE_MTIME | PIPE_CTIME);
+#endif
PIPE_UNLOCK(rpipe);
return (error);
*/
/* ARGSUSED 3 */
static int
-pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, __unused struct proc *p)
+pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data,
+ __unused vfs_context_t ctx)
{
struct pipe *mpipe = (struct pipe *)fp->f_data;
-#ifdef MAC
+#if CONFIG_MACF
int error;
#endif
PIPE_LOCK(mpipe);
-#ifdef MAC
- error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
+#if CONFIG_MACF
+ error = mac_pipe_check_ioctl(kauth_cred_get(), mpipe, cmd);
if (error) {
PIPE_UNLOCK(mpipe);
return (0);
case FIONREAD:
-#ifndef PIPE_NODIRECT
- if (mpipe->pipe_state & PIPE_DIRECTW)
- *(int *)data = mpipe->pipe_map.cnt;
- else
-#endif
- *(int *)data = mpipe->pipe_buffer.cnt;
+ *(int *)data = mpipe->pipe_buffer.cnt;
PIPE_UNLOCK(mpipe);
return (0);
static int
-pipe_select(struct fileproc *fp, int which, void *wql, struct proc *p)
+pipe_select(struct fileproc *fp, int which, void *wql, vfs_context_t ctx)
{
struct pipe *rpipe = (struct pipe *)fp->f_data;
struct pipe *wpipe;
PIPE_LOCK(rpipe);
wpipe = rpipe->pipe_peer;
+
+#if CONFIG_MACF
+ /*
+ * XXX We should use a per thread credential here; minimally, the
+ * XXX process credential should have a persistent reference on it
+ * XXX before being passed in here.
+ */
+ if (mac_pipe_check_select(vfs_context_ucred(ctx), rpipe, which)) {
+ PIPE_UNLOCK(rpipe);
+ return (0);
+ }
+#endif
switch (which) {
case FREAD:
if ((rpipe->pipe_state & PIPE_DIRECTW) ||
(rpipe->pipe_buffer.cnt > 0) ||
- (rpipe->pipe_state & PIPE_EOF)) {
+ (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
retnum = 1;
} else {
rpipe->pipe_state |= PIPE_SEL;
- selrecord(p, &rpipe->pipe_sel, wql);
+ selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql);
}
break;
case FWRITE:
- if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
+ if (wpipe)
+ wpipe->pipe_state |= PIPE_WSELECT;
+ if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) ||
(((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
- (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) {
+ (MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) {
retnum = 1;
} else {
wpipe->pipe_state |= PIPE_SEL;
- selrecord(p, &wpipe->pipe_sel, wql);
+ selrecord(vfs_context_proc(ctx), &wpipe->pipe_sel, wql);
}
break;
case 0:
rpipe->pipe_state |= PIPE_SEL;
- selrecord(p, &rpipe->pipe_sel, wql);
+ selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql);
break;
}
PIPE_UNLOCK(rpipe);
/* ARGSUSED 1 */
static int
-pipe_close(struct fileglob *fg, __unused struct proc *p)
+pipe_close(struct fileglob *fg, __unused vfs_context_t ctx)
{
struct pipe *cpipe;
- proc_fdlock(p);
+ proc_fdlock_spin(vfs_context_proc(ctx));
cpipe = (struct pipe *)fg->fg_data;
fg->fg_data = NULL;
- proc_fdunlock(p);
-
+ proc_fdunlock(vfs_context_proc(ctx));
if (cpipe)
pipeclose(cpipe);
static void
pipe_free_kmem(struct pipe *cpipe)
{
-
if (cpipe->pipe_buffer.buffer != NULL) {
- if (cpipe->pipe_buffer.size > PIPE_SIZE)
- OSAddAtomic(-1, (SInt32 *)&nbigpipe);
- OSAddAtomic(cpipe->pipe_buffer.size, (SInt32 *)&amountpipekva);
- OSAddAtomic(-1, (SInt32 *)&amountpipes);
-
- kmem_free(kernel_map, (vm_offset_t)cpipe->pipe_buffer.buffer,
+ OSAddAtomic(-(cpipe->pipe_buffer.size), &amountpipekva);
+ OSAddAtomic(-1, &amountpipes);
+ kfree((void *)cpipe->pipe_buffer.buffer,
cpipe->pipe_buffer.size);
cpipe->pipe_buffer.buffer = NULL;
+ cpipe->pipe_buffer.size = 0;
}
-#ifndef PIPE_NODIRECT
- if (cpipe->pipe_map.kva != 0) {
- atomic_subtract_int(&amountpipekvawired,
- cpipe->pipe_buffer.size + PAGE_SIZE);
- kmem_free(kernel_map,
- cpipe->pipe_map.kva,
- cpipe->pipe_buffer.size + PAGE_SIZE);
- cpipe->pipe_map.cnt = 0;
- cpipe->pipe_map.kva = 0;
- cpipe->pipe_map.pos = 0;
- cpipe->pipe_map.npages = 0;
- }
-#endif
}
/*
if (cpipe == NULL)
return;
-
/* partially created pipes won't have a valid mutex. */
if (PIPE_MTX(cpipe) != NULL)
PIPE_LOCK(cpipe);
- pipeselwakeup(cpipe, cpipe);
/*
* If the other side is blocked, wake it up saying that
* we want to close it down.
*/
+ cpipe->pipe_state &= ~PIPE_DRAIN;
+ cpipe->pipe_state |= PIPE_EOF;
+ pipeselwakeup(cpipe, cpipe);
+
while (cpipe->pipe_busy) {
- cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
+ cpipe->pipe_state |= PIPE_WANT;
wakeup(cpipe);
-
msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
}
-#ifdef MAC
+#if CONFIG_MACF
+ /*
+ * Free the shared pipe label only after the two ends are disconnected.
+ */
if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
- mac_destroy_pipe(cpipe);
+ mac_pipe_label_destroy(cpipe);
#endif
/*
*/
if ((ppipe = cpipe->pipe_peer) != NULL) {
+ ppipe->pipe_state &= ~(PIPE_DRAIN);
ppipe->pipe_state |= PIPE_EOF;
pipeselwakeup(ppipe, ppipe);
* free resources
*/
if (PIPE_MTX(cpipe) != NULL) {
- if (ppipe != NULL) {
- /*
+ if (ppipe != NULL) {
+ /*
* since the mutex is shared and the peer is still
* alive, we need to release the mutex, not free it
*/
- PIPE_UNLOCK(cpipe);
+ PIPE_UNLOCK(cpipe);
} else {
- /*
+ /*
* peer is gone, so we're the sole party left with
- * interest in this mutex... we can just free it
+ * interest in this mutex... unlock and free it
*/
+ PIPE_UNLOCK(cpipe);
lck_mtx_free(PIPE_MTX(cpipe), pipe_mtx_grp);
}
}
pipe_free_kmem(cpipe);
+ if (cpipe->pipe_state & PIPE_WSELECT) {
+ pipe_garbage_collect(cpipe);
+ } else {
+ zfree(pipe_zone, cpipe);
+ pipe_garbage_collect(NULL);
+ }
+
+}
+
+/*ARGSUSED*/
+static int
+filt_piperead_common(struct knote *kn, struct pipe *rpipe)
+{
+ struct pipe *wpipe;
+ int retval;
+
+ /*
+ * we're being called back via the KNOTE post
+ * we made in pipeselwakeup, and we already hold the mutex...
+ */
+
+ wpipe = rpipe->pipe_peer;
+ kn->kn_data = rpipe->pipe_buffer.cnt;
+ if ((rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) ||
+ (wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
+ kn->kn_flags |= EV_EOF;
+ retval = 1;
+ } else {
+ int64_t lowwat = 1;
+ if (kn->kn_sfflags & NOTE_LOWAT) {
+ if (rpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(rpipe))
+ lowwat = MAX_PIPESIZE(rpipe);
+ else if (kn->kn_sdata > lowwat)
+ lowwat = kn->kn_sdata;
+ }
+ retval = kn->kn_data >= lowwat;
+ }
+ return (retval);
+}
- zfree(pipe_zone, cpipe);
+static int
+filt_piperead(struct knote *kn, long hint)
+{
+#pragma unused(hint)
+ struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
+
+ return filt_piperead_common(kn, rpipe);
}
+
+static int
+filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev)
+{
+ struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
+ int retval;
+ PIPE_LOCK(rpipe);
+
+ /* accept new inputs (and save the low water threshold and flag) */
+ kn->kn_sdata = kev->data;
+ kn->kn_sfflags = kev->fflags;
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
+ kn->kn_udata = kev->udata;
+
+ /* identify if any events are now fired */
+ retval = filt_piperead_common(kn, rpipe);
+
+ PIPE_UNLOCK(rpipe);
+
+ return retval;
+}
+
+static int
+filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
+{
+#pragma unused(data)
+ struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
+ int retval;
+
+ PIPE_LOCK(rpipe);
+ retval = filt_piperead_common(kn, rpipe);
+ if (retval) {
+ *kev = kn->kn_kevent;
+ if (kn->kn_flags & EV_CLEAR) {
+ kn->kn_fflags = 0;
+ kn->kn_data = 0;
+ }
+ }
+ PIPE_UNLOCK(rpipe);
+
+ return (retval);
+}
/*ARGSUSED*/
static int
-pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused struct proc *p)
+filt_pipewrite_common(struct knote *kn, struct pipe *rpipe)
{
- struct pipe *cpipe;
+ struct pipe *wpipe;
+
+ /*
+ * we're being called back via the KNOTE post
+ * we made in pipeselwakeup, and we already hold the mutex...
+ */
+ wpipe = rpipe->pipe_peer;
+
+ if ((wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
+ kn->kn_data = 0;
+ kn->kn_flags |= EV_EOF;
+ return (1);
+ }
+ kn->kn_data = MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt;
+
+ int64_t lowwat = PIPE_BUF;
+ if (kn->kn_sfflags & NOTE_LOWAT) {
+ if (wpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(wpipe))
+ lowwat = MAX_PIPESIZE(wpipe);
+ else if (kn->kn_sdata > lowwat)
+ lowwat = kn->kn_sdata;
+ }
+
+ return (kn->kn_data >= lowwat);
+}
+
+/*ARGSUSED*/
+static int
+filt_pipewrite(struct knote *kn, long hint)
+{
+#pragma unused(hint)
+ struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
+
+ return filt_pipewrite_common(kn, rpipe);
+}
+
+
+static int
+filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev)
+{
+ struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
+ int res;
+
+ PIPE_LOCK(rpipe);
+
+ /* accept new kevent data (and save off lowat threshold and flag) */
+ kn->kn_sfflags = kev->fflags;
+ kn->kn_sdata = kev->data;
+ if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
+ kn->kn_udata = kev->udata;
+
+ /* determine if any event is now deemed fired */
+ res = filt_pipewrite_common(kn, rpipe);
+
+ PIPE_UNLOCK(rpipe);
+
+ return res;
+}
+
+static int
+filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
+{
+#pragma unused(data)
+ struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
+ int res;
+
+ PIPE_LOCK(rpipe);
+ res = filt_pipewrite_common(kn, rpipe);
+ if (res) {
+ *kev = kn->kn_kevent;
+ if (kn->kn_flags & EV_CLEAR) {
+ kn->kn_fflags = 0;
+ kn->kn_data = 0;
+ }
+ }
+ PIPE_UNLOCK(rpipe);
- cpipe = (struct pipe *)kn->kn_fp->f_data;
+ return res;
+}
+
+/*ARGSUSED*/
+static int
+pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn,
+ __unused struct kevent_internal_s *kev, __unused vfs_context_t ctx)
+{
+ struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
+ int res;
PIPE_LOCK(cpipe);
+#if CONFIG_MACF
+ /*
+ * XXX We should use a per thread credential here; minimally, the
+ * XXX process credential should have a persistent reference on it
+ * XXX before being passed in here.
+ */
+ if (mac_pipe_check_kqfilter(vfs_context_ucred(ctx), kn, cpipe) != 0) {
+ PIPE_UNLOCK(cpipe);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = EPERM;
+ return 0;
+ }
+#endif
switch (kn->kn_filter) {
case EVFILT_READ:
- kn->kn_fop = &pipe_rfiltops;
+ kn->kn_filtid = EVFILTID_PIPE_R;
+
+ /* determine initial state */
+ res = filt_piperead_common(kn, cpipe);
break;
+
case EVFILT_WRITE:
- kn->kn_fop = &pipe_wfiltops;
+ kn->kn_filtid = EVFILTID_PIPE_W;
if (cpipe->pipe_peer == NULL) {
/*
* other end of pipe has been closed
*/
PIPE_UNLOCK(cpipe);
- return (EPIPE);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = EPIPE;
+ return 0;
}
+ if (cpipe->pipe_peer)
cpipe = cpipe->pipe_peer;
+
+ /* determine inital state */
+ res = filt_pipewrite_common(kn, cpipe);
break;
default:
PIPE_UNLOCK(cpipe);
- return (1);
+ kn->kn_flags = EV_ERROR;
+ kn->kn_data = EINVAL;
+ return 0;
}
if (KNOTE_ATTACH(&cpipe->pipe_sel.si_note, kn))
cpipe->pipe_state |= PIPE_KNOTE;
PIPE_UNLOCK(cpipe);
- return (0);
+ return res;
}
static void
PIPE_UNLOCK(cpipe);
}
-/*ARGSUSED*/
-static int
-filt_piperead(struct knote *kn, long hint)
+int
+fill_pipeinfo(struct pipe * cpipe, struct pipe_info * pinfo)
{
- struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
- struct pipe *wpipe;
- int retval;
+#if CONFIG_MACF
+ int error;
+#endif
+ struct timespec now;
+ struct vinfo_stat * ub;
+ int pipe_size = 0;
+ int pipe_count;
+ if (cpipe == NULL)
+ return (EBADF);
+ PIPE_LOCK(cpipe);
+
+#if CONFIG_MACF
+ error = mac_pipe_check_stat(kauth_cred_get(), cpipe);
+ if (error) {
+ PIPE_UNLOCK(cpipe);
+ return (error);
+ }
+#endif
+ if (cpipe->pipe_buffer.buffer == 0) {
+ /*
+ * must be stat'ing the write fd
+ */
+ if (cpipe->pipe_peer) {
+ /*
+ * the peer still exists, use it's info
+ */
+ pipe_size = MAX_PIPESIZE(cpipe->pipe_peer);
+ pipe_count = cpipe->pipe_peer->pipe_buffer.cnt;
+ } else {
+ pipe_count = 0;
+ }
+ } else {
+ pipe_size = MAX_PIPESIZE(cpipe);
+ pipe_count = cpipe->pipe_buffer.cnt;
+ }
/*
- * if hint == 0, then we've been called from the kevent
- * world directly and do not currently hold the pipe mutex...
- * if hint == 1, we're being called back via the KNOTE post
- * we made in pipeselwakeup, and we already hold the mutex...
+ * since peer's buffer is setup ouside of lock
+ * we might catch it in transient state
*/
- if (hint == 0)
- PIPE_LOCK(rpipe);
+ if (pipe_size == 0)
+ pipe_size = PIPE_SIZE;
- wpipe = rpipe->pipe_peer;
- kn->kn_data = rpipe->pipe_buffer.cnt;
+ ub = &pinfo->pipe_stat;
-#ifndef PIPE_NODIRECT
- if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
- kn->kn_data = rpipe->pipe_map.cnt;
-#endif
- if ((rpipe->pipe_state & PIPE_EOF) ||
- (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
- kn->kn_flags |= EV_EOF;
- retval = 1;
- } else
- retval = (kn->kn_sfflags & NOTE_LOWAT) ?
- (kn->kn_data >= kn->kn_sdata) : (kn->kn_data > 0);
+ bzero(ub, sizeof(*ub));
+ ub->vst_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
+ ub->vst_blksize = pipe_size;
+ ub->vst_size = pipe_count;
+ if (ub->vst_blksize != 0)
+ ub->vst_blocks = (ub->vst_size + ub->vst_blksize - 1) / ub->vst_blksize;
+ ub->vst_nlink = 1;
- if (hint == 0)
- PIPE_UNLOCK(rpipe);
+ ub->vst_uid = kauth_getuid();
+ ub->vst_gid = kauth_getgid();
- return (retval);
-}
+ nanotime(&now);
+ ub->vst_atime = now.tv_sec;
+ ub->vst_atimensec = now.tv_nsec;
-/*ARGSUSED*/
-static int
-filt_pipewrite(struct knote *kn, long hint)
-{
- struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
- struct pipe *wpipe;
+ ub->vst_mtime = now.tv_sec;
+ ub->vst_mtimensec = now.tv_nsec;
+
+ ub->vst_ctime = now.tv_sec;
+ ub->vst_ctimensec = now.tv_nsec;
/*
- * if hint == 0, then we've been called from the kevent
- * world directly and do not currently hold the pipe mutex...
- * if hint == 1, we're being called back via the KNOTE post
- * we made in pipeselwakeup, and we already hold the mutex...
+ * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
+ * XXX (st_dev, st_ino) should be unique.
*/
- if (hint == 0)
- PIPE_LOCK(rpipe);
- wpipe = rpipe->pipe_peer;
+ pinfo->pipe_handle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
+ pinfo->pipe_peerhandle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(cpipe->pipe_peer));
+ pinfo->pipe_status = cpipe->pipe_state;
- if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
- kn->kn_data = 0;
- kn->kn_flags |= EV_EOF;
+ PIPE_UNLOCK(cpipe);
- if (hint == 0)
- PIPE_UNLOCK(rpipe);
- return (1);
+ return (0);
+}
+
+
+static int
+pipe_drain(struct fileproc *fp, __unused vfs_context_t ctx)
+{
+
+ /* Note: fdlock already held */
+ struct pipe *ppipe, *cpipe = (struct pipe *)(fp->f_fglob->fg_data);
+
+ if (cpipe) {
+ PIPE_LOCK(cpipe);
+ cpipe->pipe_state |= PIPE_DRAIN;
+ cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
+ wakeup(cpipe);
+
+ /* Must wake up peer: a writer sleeps on the read side */
+ if ((ppipe = cpipe->pipe_peer)) {
+ ppipe->pipe_state |= PIPE_DRAIN;
+ ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
+ wakeup(ppipe);
+ }
+
+ PIPE_UNLOCK(cpipe);
+ return 0;
}
- kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
-#ifndef PIPE_NODIRECT
- if (wpipe->pipe_state & PIPE_DIRECTW)
- kn->kn_data = 0;
-#endif
- if (hint == 0)
- PIPE_UNLOCK(rpipe);
+ return 1;
+}
+
+
+ /*
+ * When a thread sets a write-select on a pipe, it creates an implicit,
+ * untracked dependency between that thread and the peer of the pipe
+ * on which the select is set. If the peer pipe is closed and freed
+ * before the select()ing thread wakes up, the system will panic as
+ * it attempts to unwind the dangling select(). To avoid that panic,
+ * we notice whenever a dangerous select() is set on a pipe, and
+ * defer the final deletion of the pipe until that select()s are all
+ * resolved. Since we can't currently detect exactly when that
+ * resolution happens, we use a simple garbage collection queue to
+ * reap the at-risk pipes 'later'.
+ */
+static void
+pipe_garbage_collect(struct pipe *cpipe)
+{
+ uint64_t old, now;
+ struct pipe_garbage *pgp;
+
+ /* Convert msecs to nsecs and then to abstime */
+ old = pipe_garbage_age_limit * 1000000;
+ nanoseconds_to_absolutetime(old, &old);
+
+ lck_mtx_lock(pipe_garbage_lock);
+
+ /* Free anything that's been on the queue for <mumble> seconds */
+ now = mach_absolute_time();
+ old = now - old;
+ while ((pgp = pipe_garbage_head) && pgp->pg_timestamp < old) {
+ pipe_garbage_head = pgp->pg_next;
+ if (pipe_garbage_head == NULL)
+ pipe_garbage_tail = NULL;
+ pipe_garbage_count--;
+ zfree(pipe_zone, pgp->pg_pipe);
+ zfree(pipe_garbage_zone, pgp);
+ }
+
+ /* Add the new pipe (if any) to the tail of the garbage queue */
+ if (cpipe) {
+ cpipe->pipe_state = PIPE_DEAD;
+ pgp = (struct pipe_garbage *)zalloc(pipe_garbage_zone);
+ if (pgp == NULL) {
+ /*
+ * We're too low on memory to garbage collect the
+ * pipe. Freeing it runs the risk of panicing the
+ * system. All we can do is leak it and leave
+ * a breadcrumb behind. The good news, such as it
+ * is, is that this will probably never happen.
+ * We will probably hit the panic below first.
+ */
+ printf("Leaking pipe %p - no room left in the queue",
+ cpipe);
+ lck_mtx_unlock(pipe_garbage_lock);
+ return;
+ }
+
+ pgp->pg_pipe = cpipe;
+ pgp->pg_timestamp = now;
+ pgp->pg_next = NULL;
- return (kn->kn_data >= ((kn->kn_sfflags & NOTE_LOWAT) ?
- kn->kn_sdata : PIPE_BUF));
+ if (pipe_garbage_tail)
+ pipe_garbage_tail->pg_next = pgp;
+ pipe_garbage_tail = pgp;
+ if (pipe_garbage_head == NULL)
+ pipe_garbage_head = pipe_garbage_tail;
+
+ if (pipe_garbage_count++ >= PIPE_GARBAGE_QUEUE_LIMIT)
+ panic("Length of pipe garbage queue exceeded %d",
+ PIPE_GARBAGE_QUEUE_LIMIT);
+ }
+ lck_mtx_unlock(pipe_garbage_lock);
}
+