/*
- * Copyright (c) 1999-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 1999-2008 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*
*/
-#undef DIAGNOSTIC
-#define DIAGNOSTIC 1
-
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kauth.h>
#include <sys/buf.h>
#include <sys/user.h>
+#include <sys/codesign.h>
#include <mach/mach_types.h>
#include <mach/memory_object_types.h>
#include <mach/upl.h>
#include <kern/kern_types.h>
+#include <kern/kalloc.h>
#include <kern/zalloc.h>
#include <kern/thread.h>
#include <vm/vm_kern.h>
#include <vm/vm_protos.h> /* last */
+#include <libkern/crypto/sha1.h>
+
+#include <security/mac_framework.h>
+
+/* XXX These should be in a BSD accessible Mach header, but aren't. */
+extern kern_return_t memory_object_pages_resident(memory_object_control_t,
+ boolean_t *);
+extern kern_return_t memory_object_signed(memory_object_control_t control,
+ boolean_t is_signed);
+extern void Debugger(const char *message);
+
+
+/* XXX no one uses this interface! */
+kern_return_t ubc_page_op_with_control(
+ memory_object_control_t control,
+ off_t f_offset,
+ int ops,
+ ppnum_t *phys_entryp,
+ int *flagsp);
+
+
#if DIAGNOSTIC
#if defined(assert)
#undef assert()
#endif
#define assert(cond) \
- ((void) ((cond) ? 0 : panic("%s:%d (%s)", __FILE__, __LINE__, # cond)))
+ ((void) ((cond) ? 0 : panic("Assert failed: %s", # cond)))
#else
#include <kern/assert.h>
#endif /* DIAGNOSTIC */
-int ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize);
+static int ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize);
static int ubc_umcallback(vnode_t, void *);
-int ubc_isinuse_locked(vnode_t, int, int);
static int ubc_msync_internal(vnode_t, off_t, off_t, off_t *, int, int *);
+static void ubc_cs_free(struct ubc_info *uip);
struct zone *ubc_info_zone;
+
+/*
+ * CODESIGNING
+ * Routines to navigate code signing data structures in the kernel...
+ */
+static boolean_t
+cs_valid_range(
+ const void *start,
+ const void *end,
+ const void *lower_bound,
+ const void *upper_bound)
+{
+ if (upper_bound < lower_bound ||
+ end < start) {
+ return FALSE;
+ }
+
+ if (start < lower_bound ||
+ end > upper_bound) {
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/*
+ * Magic numbers used by Code Signing
+ */
+enum {
+ CSMAGIC_REQUIREMENT = 0xfade0c00, /* single Requirement blob */
+ CSMAGIC_REQUIREMENTS = 0xfade0c01, /* Requirements vector (internal requirements) */
+ CSMAGIC_CODEDIRECTORY = 0xfade0c02, /* CodeDirectory blob */
+ CSMAGIC_EMBEDDED_SIGNATURE = 0xfade0cc0, /* embedded form of signature data */
+ CSMAGIC_EMBEDDED_SIGNATURE_OLD = 0xfade0b02, /* XXX */
+ CSMAGIC_DETACHED_SIGNATURE = 0xfade0cc1, /* multi-arch collection of embedded signatures */
+
+ CSSLOT_CODEDIRECTORY = 0, /* slot index for CodeDirectory */
+};
+
+
+/*
+ * Structure of an embedded-signature SuperBlob
+ */
+typedef struct __BlobIndex {
+ uint32_t type; /* type of entry */
+ uint32_t offset; /* offset of entry */
+} CS_BlobIndex;
+
+typedef struct __SuperBlob {
+ uint32_t magic; /* magic number */
+ uint32_t length; /* total length of SuperBlob */
+ uint32_t count; /* number of index entries following */
+ CS_BlobIndex index[]; /* (count) entries */
+ /* followed by Blobs in no particular order as indicated by offsets in index */
+} CS_SuperBlob;
+
+
+/*
+ * C form of a CodeDirectory.
+ */
+typedef struct __CodeDirectory {
+ uint32_t magic; /* magic number (CSMAGIC_CODEDIRECTORY) */
+ uint32_t length; /* total length of CodeDirectory blob */
+ uint32_t version; /* compatibility version */
+ uint32_t flags; /* setup and mode flags */
+ uint32_t hashOffset; /* offset of hash slot element at index zero */
+ uint32_t identOffset; /* offset of identifier string */
+ uint32_t nSpecialSlots; /* number of special hash slots */
+ uint32_t nCodeSlots; /* number of ordinary (code) hash slots */
+ uint32_t codeLimit; /* limit to main image signature range */
+ uint8_t hashSize; /* size of each hash in bytes */
+ uint8_t hashType; /* type of hash (cdHashType* constants) */
+ uint8_t spare1; /* unused (must be zero) */
+ uint8_t pageSize; /* log2(page size in bytes); 0 => infinite */
+ uint32_t spare2; /* unused (must be zero) */
+ /* followed by dynamic content as located by offset fields above */
+} CS_CodeDirectory;
+
+
+/*
+ * Locate the CodeDirectory from an embedded signature blob
+ */
+static const
+CS_CodeDirectory *findCodeDirectory(
+ const CS_SuperBlob *embedded,
+ char *lower_bound,
+ char *upper_bound)
+{
+ const CS_CodeDirectory *cd = NULL;
+
+ if (embedded &&
+ cs_valid_range(embedded, embedded + 1, lower_bound, upper_bound) &&
+ ntohl(embedded->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
+ const CS_BlobIndex *limit;
+ const CS_BlobIndex *p;
+
+ limit = &embedded->index[ntohl(embedded->count)];
+ if (!cs_valid_range(&embedded->index[0], limit,
+ lower_bound, upper_bound)) {
+ return NULL;
+ }
+ for (p = embedded->index; p < limit; ++p) {
+ if (ntohl(p->type) == CSSLOT_CODEDIRECTORY) {
+ const unsigned char *base;
+
+ base = (const unsigned char *)embedded;
+ cd = (const CS_CodeDirectory *)(base + ntohl(p->offset));
+ break;
+ }
+ }
+ } else {
+ /*
+ * Detached signatures come as a bare CS_CodeDirectory,
+ * without a blob.
+ */
+ cd = (const CS_CodeDirectory *) embedded;
+ }
+ if (cd &&
+ cs_valid_range(cd, cd + 1, lower_bound, upper_bound) &&
+ cs_valid_range(cd, (const char *) cd + ntohl(cd->length),
+ lower_bound, upper_bound) &&
+ cs_valid_range(cd, (const char *) cd + ntohl(cd->hashOffset),
+ lower_bound, upper_bound) &&
+ cs_valid_range(cd, (const char *) cd +
+ ntohl(cd->hashOffset) +
+ (ntohl(cd->nCodeSlots) * SHA1_RESULTLEN),
+ lower_bound, upper_bound) &&
+
+ ntohl(cd->magic) == CSMAGIC_CODEDIRECTORY) {
+ return cd;
+ }
+
+ // not found or not a valid code directory
+ return NULL;
+}
+
+
/*
- * Initialization of the zone for Unified Buffer Cache.
+ * Locating a page hash
+ */
+static const unsigned char *
+hashes(
+ const CS_CodeDirectory *cd,
+ unsigned page,
+ char *lower_bound,
+ char *upper_bound)
+{
+ const unsigned char *base, *top, *hash;
+ uint32_t nCodeSlots;
+
+ assert(cs_valid_range(cd, cd + 1, lower_bound, upper_bound));
+
+ base = (const unsigned char *)cd + ntohl(cd->hashOffset);
+ nCodeSlots = ntohl(cd->nCodeSlots);
+ top = base + nCodeSlots * SHA1_RESULTLEN;
+ if (!cs_valid_range(base, top,
+ lower_bound, upper_bound) ||
+ page > nCodeSlots) {
+ return NULL;
+ }
+ assert(page < nCodeSlots);
+
+ hash = base + page * SHA1_RESULTLEN;
+ if (!cs_valid_range(hash, hash + SHA1_RESULTLEN,
+ lower_bound, upper_bound)) {
+ hash = NULL;
+ }
+
+ return hash;
+}
+/*
+ * CODESIGNING
+ * End of routines to navigate code signing data structures in the kernel.
+ */
+
+
+/*
+ * ubc_init
+ *
+ * Initialization of the zone for Unified Buffer Cache.
+ *
+ * Parameters: (void)
+ *
+ * Returns: (void)
+ *
+ * Implicit returns:
+ * ubc_info_zone(global) initialized for subsequent allocations
*/
__private_extern__ void
-ubc_init()
+ubc_init(void)
{
int i;
i = (vm_size_t) sizeof (struct ubc_info);
- /* XXX the number of elements should be tied in to maxvnodes */
+
ubc_info_zone = zinit (i, 10000*i, 8192, "ubc_info zone");
- return;
}
+
/*
- * Initialize a ubc_info structure for a vnode.
+ * ubc_info_init
+ *
+ * Allocate and attach an empty ubc_info structure to a vnode
+ *
+ * Parameters: vp Pointer to the vnode
+ *
+ * Returns: 0 Success
+ * vnode_size:ENOMEM Not enough space
+ * vnode_size:??? Other error from vnode_getattr
+ *
*/
int
ubc_info_init(struct vnode *vp)
{
return(ubc_info_init_internal(vp, 0, 0));
}
+
+
+/*
+ * ubc_info_init_withsize
+ *
+ * Allocate and attach a sized ubc_info structure to a vnode
+ *
+ * Parameters: vp Pointer to the vnode
+ * filesize The size of the file
+ *
+ * Returns: 0 Success
+ * vnode_size:ENOMEM Not enough space
+ * vnode_size:??? Other error from vnode_getattr
+ */
int
ubc_info_init_withsize(struct vnode *vp, off_t filesize)
{
return(ubc_info_init_internal(vp, 1, filesize));
}
-int
-ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize)
+
+/*
+ * ubc_info_init_internal
+ *
+ * Allocate and attach a ubc_info structure to a vnode
+ *
+ * Parameters: vp Pointer to the vnode
+ * withfsize{0,1} Zero if the size should be obtained
+ * from the vnode; otherwise, use filesize
+ * filesize The size of the file, if withfsize == 1
+ *
+ * Returns: 0 Success
+ * vnode_size:ENOMEM Not enough space
+ * vnode_size:??? Other error from vnode_getattr
+ *
+ * Notes: We call a blocking zalloc(), and the zone was created as an
+ * expandable and collectable zone, so if no memory is available,
+ * it is possible for zalloc() to block indefinitely. zalloc()
+ * may also panic if the zone of zones is exhausted, since it's
+ * NOT expandable.
+ *
+ * We unconditionally call vnode_pager_setup(), even if this is
+ * a reuse of a ubc_info; in that case, we should probably assert
+ * that it does not already have a pager association, but do not.
+ *
+ * Since memory_object_create_named() can only fail from receiving
+ * an invalid pager argument, the explicit check and panic is
+ * merely precautionary.
+ */
+static int
+ubc_info_init_internal(vnode_t vp, int withfsize, off_t filesize)
{
register struct ubc_info *uip;
void * pager;
- struct proc *p = current_proc();
int error = 0;
kern_return_t kret;
memory_object_control_t control;
uip = vp->v_ubcinfo;
+ /*
+ * If there is not already a ubc_info attached to the vnode, we
+ * attach one; otherwise, we will reuse the one that's there.
+ */
if (uip == UBC_INFO_NULL) {
uip = (struct ubc_info *) zalloc(ubc_info_zone);
uip->ui_flags = UI_INITED;
uip->ui_ucred = NOCRED;
}
-#if DIAGNOSTIC
- else
- Debugger("ubc_info_init: already");
-#endif /* DIAGNOSTIC */
-
assert(uip->ui_flags != UI_NONE);
assert(uip->ui_vnode == vp);
/* now set this ubc_info in the vnode */
vp->v_ubcinfo = uip;
+ /*
+ * Allocate a pager object for this vnode
+ *
+ * XXX The value of the pager parameter is currently ignored.
+ * XXX Presumably, this API changed to avoid the race between
+ * XXX setting the pager and the UI_HASPAGER flag.
+ */
pager = (void *)vnode_pager_setup(vp, uip->ui_pager);
assert(pager);
+ /*
+ * Explicitly set the pager into the ubc_info, after setting the
+ * UI_HASPAGER flag.
+ */
SET(uip->ui_flags, UI_HASPAGER);
uip->ui_pager = pager;
/*
* Note: We can not use VNOP_GETATTR() to get accurate
- * value of ui_size. Thanks to NFS.
- * nfs_getattr() can call vinvalbuf() and in this case
- * ubc_info is not set up to deal with that.
+ * value of ui_size because this may be an NFS vnode, and
+ * nfs_getattr() can call vinvalbuf(); if this happens,
+ * ubc_info is not set up to deal with that event.
* So use bogus size.
*/
assert(control);
uip->ui_control = control; /* cache the value of the mo control */
SET(uip->ui_flags, UI_HASOBJREF); /* with a named reference */
-#if 0
- /* create a pager reference on the vnode */
- error = vnode_pager_vget(vp);
- if (error)
- panic("ubc_info_init: vnode_pager_vget error = %d", error);
-#endif
+
if (withfsize == 0) {
- struct vfs_context context;
/* initialize the size */
- context.vc_proc = p;
- context.vc_ucred = kauth_cred_get();
- error = vnode_size(vp, &uip->ui_size, &context);
+ error = vnode_size(vp, &uip->ui_size, vfs_context_current());
if (error)
uip->ui_size = 0;
} else {
uip->ui_size = filesize;
}
- vp->v_lflag |= VNAMED_UBC;
+ vp->v_lflag |= VNAMED_UBC; /* vnode has a named ubc reference */
return (error);
}
-/* Free the ubc_info */
+
+/*
+ * ubc_info_free
+ *
+ * Free a ubc_info structure
+ *
+ * Parameters: uip A pointer to the ubc_info to free
+ *
+ * Returns: (void)
+ *
+ * Notes: If there is a credential that has subsequently been associated
+ * with the ubc_info via a call to ubc_setcred(), the reference
+ * to the credential is dropped.
+ *
+ * It's actually impossible for a ubc_info.ui_control to take the
+ * value MEMORY_OBJECT_CONTROL_NULL.
+ */
static void
ubc_info_free(struct ubc_info *uip)
{
memory_object_control_deallocate(uip->ui_control);
cluster_release(uip);
+ ubc_cs_free(uip);
- zfree(ubc_info_zone, (vm_offset_t)uip);
+ zfree(ubc_info_zone, uip);
return;
}
+
void
ubc_info_deallocate(struct ubc_info *uip)
{
ubc_info_free(uip);
}
+
/*
- * Communicate with VM the size change of the file
- * returns 1 on success, 0 on failure
+ * ubc_setsize
+ *
+ * Tell the VM that the the size of the file represented by the vnode has
+ * changed
+ *
+ * Parameters: vp The vp whose backing file size is
+ * being changed
+ * nsize The new size of the backing file
+ *
+ * Returns: 1 Success
+ * 0 Failure
+ *
+ * Notes: This function will indicate failure if the new size that's
+ * being attempted to be set is negative.
+ *
+ * This function will fail if there is no ubc_info currently
+ * associated with the vnode.
+ *
+ * This function will indicate success it the new size is the
+ * same or larger than the old size (in this case, the remainder
+ * of the file will require modification or use of an existing upl
+ * to access successfully).
+ *
+ * This function will fail if the new file size is smaller, and
+ * the memory region being invalidated was unable to actually be
+ * invalidated and/or the last page could not be flushed, if the
+ * new size is not aligned to a page boundary. This is usually
+ * indicative of an I/O error.
*/
int
ubc_setsize(struct vnode *vp, off_t nsize)
off_t lastpg, olastpgend, lastoff;
struct ubc_info *uip;
memory_object_control_t control;
- kern_return_t kret;
+ kern_return_t kret = KERN_SUCCESS;
if (nsize < (off_t)0)
return (0);
return (0);
uip = vp->v_ubcinfo;
- osize = uip->ui_size; /* call ubc_getsize() ??? */
- /* Update the size before flushing the VM */
+ osize = uip->ui_size;
+ /*
+ * Update the size before flushing the VM
+ */
uip->ui_size = nsize;
if (nsize >= osize) /* Nothing more to do */
/*
* When the file shrinks, invalidate the pages beyond the
* new size. Also get rid of garbage beyond nsize on the
- * last page. The ui_size already has the nsize. This
- * insures that the pageout would not write beyond the new
- * end of the file.
+ * last page. The ui_size already has the nsize, so any
+ * subsequent page-in will zero-fill the tail properly
*/
-
lastpg = trunc_page_64(nsize);
olastpgend = round_page_64(osize);
control = uip->ui_control;
assert(control);
lastoff = (nsize & PAGE_MASK_64);
- /*
- * If length is multiple of page size, we should not flush
- * invalidating is sufficient
- */
- if (!lastoff) {
- /* invalidate last page and old contents beyond nsize */
- kret = memory_object_lock_request(control,
- (memory_object_offset_t)lastpg,
- (memory_object_size_t)(olastpgend - lastpg), NULL, NULL,
- MEMORY_OBJECT_RETURN_NONE, MEMORY_OBJECT_DATA_FLUSH,
- VM_PROT_NO_CHANGE);
- if (kret != KERN_SUCCESS)
- printf("ubc_setsize: invalidate failed (error = %d)\n", kret);
-
- return ((kret == KERN_SUCCESS) ? 1 : 0);
- }
-
- /* flush the last page */
- kret = memory_object_lock_request(control,
- (memory_object_offset_t)lastpg,
- PAGE_SIZE_64, NULL, NULL,
- MEMORY_OBJECT_RETURN_DIRTY, FALSE,
- VM_PROT_NO_CHANGE);
-
- if (kret == KERN_SUCCESS) {
- /* invalidate last page and old contents beyond nsize */
- kret = memory_object_lock_request(control,
- (memory_object_offset_t)lastpg,
- (memory_object_size_t)(olastpgend - lastpg), NULL, NULL,
- MEMORY_OBJECT_RETURN_NONE, MEMORY_OBJECT_DATA_FLUSH,
- VM_PROT_NO_CHANGE);
+ if (lastoff) {
+ upl_t upl;
+ upl_page_info_t *pl;
+
+
+ /*
+ * new EOF ends up in the middle of a page
+ * zero the tail of this page if its currently
+ * present in the cache
+ */
+ kret = ubc_create_upl(vp, lastpg, PAGE_SIZE, &upl, &pl, UPL_SET_LITE);
+
if (kret != KERN_SUCCESS)
- printf("ubc_setsize: invalidate failed (error = %d)\n", kret);
- } else
- printf("ubc_setsize: flush failed (error = %d)\n", kret);
+ panic("ubc_setsize: ubc_create_upl (error = %d)\n", kret);
+
+ if (upl_valid_page(pl, 0))
+ cluster_zero(upl, (uint32_t)lastoff, PAGE_SIZE - (uint32_t)lastoff, NULL);
+ ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
+
+ lastpg += PAGE_SIZE_64;
+ }
+ if (olastpgend > lastpg) {
+ /*
+ * invalidate the pages beyond the new EOF page
+ *
+ */
+ kret = memory_object_lock_request(control,
+ (memory_object_offset_t)lastpg,
+ (memory_object_size_t)(olastpgend - lastpg), NULL, NULL,
+ MEMORY_OBJECT_RETURN_NONE, MEMORY_OBJECT_DATA_FLUSH,
+ VM_PROT_NO_CHANGE);
+ if (kret != KERN_SUCCESS)
+ printf("ubc_setsize: invalidate failed (error = %d)\n", kret);
+ }
return ((kret == KERN_SUCCESS) ? 1 : 0);
}
+
/*
- * Get the size of the file
+ * ubc_getsize
+ *
+ * Get the size of the file assocated with the specified vnode
+ *
+ * Parameters: vp The vnode whose size is of interest
+ *
+ * Returns: 0 There is no ubc_info associated with
+ * this vnode, or the size is zero
+ * !0 The size of the file
+ *
+ * Notes: Using this routine, it is not possible for a caller to
+ * successfully distinguish between a vnode associate with a zero
+ * length file, and a vnode with no associated ubc_info. The
+ * caller therefore needs to not care, or needs to ensure that
+ * they have previously successfully called ubc_info_init() or
+ * ubc_info_init_withsize().
*/
off_t
ubc_getsize(struct vnode *vp)
return (vp->v_ubcinfo->ui_size);
}
+
/*
- * call ubc_sync_range(vp, 0, EOF, UBC_PUSHALL) on all the vnodes
- * for this mount point.
- * returns 1 on success, 0 on failure
+ * ubc_umount
+ *
+ * Call ubc_sync_range(vp, 0, EOF, UBC_PUSHALL) on all the vnodes for this
+ * mount point
+ *
+ * Parameters: mp The mount point
+ *
+ * Returns: 0 Success
+ *
+ * Notes: There is no failure indication for this function.
+ *
+ * This function is used in the unmount path; since it may block
+ * I/O indefinitely, it should not be used in the forced unmount
+ * path, since a device unavailability could also block that
+ * indefinitely.
+ *
+ * Because there is no device ejection interlock on USB, FireWire,
+ * or similar devices, it's possible that an ejection that begins
+ * subsequent to the vnode_iterate() completing, either on one of
+ * those devices, or a network mount for which the server quits
+ * responding, etc., may cause the caller to block indefinitely.
*/
-
__private_extern__ int
ubc_umount(struct mount *mp)
{
return(0);
}
+
+/*
+ * ubc_umcallback
+ *
+ * Used by ubc_umount() as an internal implementation detail; see ubc_umount()
+ * and vnode_iterate() for details of implementation.
+ */
static int
ubc_umcallback(vnode_t vp, __unused void * args)
{
if (UBCINFOEXISTS(vp)) {
- cluster_push(vp, 0);
-
(void) ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL);
}
return (VNODE_RETURNED);
}
-
-/* Get the credentials */
+/*
+ * ubc_getcred
+ *
+ * Get the credentials currently active for the ubc_info associated with the
+ * vnode.
+ *
+ * Parameters: vp The vnode whose ubc_info credentials
+ * are to be retrieved
+ *
+ * Returns: !NOCRED The credentials
+ * NOCRED If there is no ubc_info for the vnode,
+ * or if there is one, but it has not had
+ * any credentials associated with it via
+ * a call to ubc_setcred()
+ */
kauth_cred_t
ubc_getcred(struct vnode *vp)
{
return (NOCRED);
}
+
+/*
+ * ubc_setthreadcred
+ *
+ * If they are not already set, set the credentials of the ubc_info structure
+ * associated with the vnode to those of the supplied thread; otherwise leave
+ * them alone.
+ *
+ * Parameters: vp The vnode whose ubc_info creds are to
+ * be set
+ * p The process whose credentials are to
+ * be used, if not running on an assumed
+ * credential
+ * thread The thread whose credentials are to
+ * be used
+ *
+ * Returns: 1 This vnode has no associated ubc_info
+ * 0 Success
+ *
+ * Notes: This function takes a proc parameter to account for bootstrap
+ * issues where a task or thread may call this routine, either
+ * before credentials have been initialized by bsd_init(), or if
+ * there is no BSD info asscoiate with a mach thread yet. This
+ * is known to happen in both the initial swap and memory mapping
+ * calls.
+ *
+ * This function is generally used only in the following cases:
+ *
+ * o a memory mapped file via the mmap() system call
+ * o a memory mapped file via the deprecated map_fd() call
+ * o a swap store backing file
+ * o subsequent to a successful write via vn_write()
+ *
+ * The information is then used by the NFS client in order to
+ * cons up a wire message in either the page-in or page-out path.
+ *
+ * There are two potential problems with the use of this API:
+ *
+ * o Because the write path only set it on a successful
+ * write, there is a race window between setting the
+ * credential and its use to evict the pages to the
+ * remote file server
+ *
+ * o Because a page-in may occur prior to a write, the
+ * credential may not be set at this time, if the page-in
+ * is not the result of a mapping established via mmap()
+ * or map_fd().
+ *
+ * In both these cases, this will be triggered from the paging
+ * path, which will instead use the credential of the current
+ * process, which in this case is either the dynamic_pager or
+ * the kernel task, both of which utilize "root" credentials.
+ *
+ * This may potentially permit operations to occur which should
+ * be denied, or it may cause to be denied operations which
+ * should be permitted, depending on the configuration of the NFS
+ * server.
+ */
int
-ubc_setthreadcred(struct vnode *vp, struct proc *p, thread_t thread)
+ubc_setthreadcred(struct vnode *vp, proc_t p, thread_t thread)
{
struct ubc_info *uip;
kauth_cred_t credp;
- struct uthread *uthread = get_bsdthread_info(thread);
+ struct uthread *uthread = get_bsdthread_info(thread);
if (!UBCINFOEXISTS(vp))
- return (1);
+ return (1);
vnode_lock(vp);
uip->ui_ucred = uthread->uu_ucred;
kauth_cred_ref(uip->ui_ucred);
}
- }
+ }
vnode_unlock(vp);
return (0);
}
+
/*
- * Set the credentials
- * existing credentials are not changed
- * returns 1 on success and 0 on failure
+ * ubc_setcred
+ *
+ * If they are not already set, set the credentials of the ubc_info structure
+ * associated with the vnode to those of the process; otherwise leave them
+ * alone.
+ *
+ * Parameters: vp The vnode whose ubc_info creds are to
+ * be set
+ * p The process whose credentials are to
+ * be used
+ *
+ * Returns: 0 This vnode has no associated ubc_info
+ * 1 Success
+ *
+ * Notes: The return values for this function are inverted from nearly
+ * all other uses in the kernel.
+ *
+ * See also ubc_setthreadcred(), above.
+ *
+ * This function is considered deprecated, and generally should
+ * not be used, as it is incompatible with per-thread credentials;
+ * it exists for legacy KPI reasons.
+ *
+ * DEPRECATION: ubc_setcred() is being deprecated. Please use
+ * ubc_setthreadcred() instead.
*/
int
-ubc_setcred(struct vnode *vp, struct proc *p)
+ubc_setcred(struct vnode *vp, proc_t p)
{
struct ubc_info *uip;
kauth_cred_t credp;
- if ( !UBCINFOEXISTS(vp))
+ /* If there is no ubc_info, deny the operation */
+ if ( !UBCINFOEXISTS(vp))
return (0);
+ /*
+ * Check to see if there is already a credential reference in the
+ * ubc_info; if there is not, take one on the supplied credential.
+ */
vnode_lock(vp);
-
uip = vp->v_ubcinfo;
credp = uip->ui_ucred;
-
if (!IS_VALID_CRED(credp)) {
uip->ui_ucred = kauth_cred_proc_ref(p);
}
return (1);
}
-/* Get the pager */
+
+/*
+ * ubc_getpager
+ *
+ * Get the pager associated with the ubc_info associated with the vnode.
+ *
+ * Parameters: vp The vnode to obtain the pager from
+ *
+ * Returns: !VNODE_PAGER_NULL The memory_object_t for the pager
+ * VNODE_PAGER_NULL There is no ubc_info for this vnode
+ *
+ * Notes: For each vnode that has a ubc_info associated with it, that
+ * ubc_info SHALL have a pager associated with it, so in the
+ * normal case, it's impossible to return VNODE_PAGER_NULL for
+ * a vnode with an associated ubc_info.
+ */
__private_extern__ memory_object_t
ubc_getpager(struct vnode *vp)
{
return (0);
}
+
/*
- * Get the memory object associated with this vnode
- * If the vnode was reactivated, memory object would not exist.
- * Unless "do not rectivate" was specified, look it up using the pager.
- * If hold was requested create an object reference of one does not
- * exist already.
+ * ubc_getobject
+ *
+ * Get the memory object control associated with the ubc_info associated with
+ * the vnode
+ *
+ * Parameters: vp The vnode to obtain the memory object
+ * from
+ * flags DEPRECATED
+ *
+ * Returns: !MEMORY_OBJECT_CONTROL_NULL
+ * MEMORY_OBJECT_CONTROL_NULL
+ *
+ * Notes: Historically, if the flags were not "do not reactivate", this
+ * function would look up the memory object using the pager if
+ * it did not exist (this could be the case if the vnode had
+ * been previously reactivated). The flags would also permit a
+ * hold to be requested, which would have created an object
+ * reference, if one had not already existed. This usage is
+ * deprecated, as it would permit a race between finding and
+ * taking the reference vs. a single reference being dropped in
+ * another thread.
*/
-
memory_object_control_t
ubc_getobject(struct vnode *vp, __unused int flags)
{
if (UBCINFOEXISTS(vp))
return((vp->v_ubcinfo->ui_control));
- return (0);
+ return (MEMORY_OBJECT_CONTROL_NULL);
}
+/*
+ * ubc_blktooff
+ *
+ * Convert a given block number to a memory backing object (file) offset for a
+ * given vnode
+ *
+ * Parameters: vp The vnode in which the block is located
+ * blkno The block number to convert
+ *
+ * Returns: !-1 The offset into the backing object
+ * -1 There is no ubc_info associated with
+ * the vnode
+ * -1 An error occurred in the underlying VFS
+ * while translating the block to an
+ * offset; the most likely cause is that
+ * the caller specified a block past the
+ * end of the file, but this could also be
+ * any other error from VNOP_BLKTOOFF().
+ *
+ * Note: Representing the error in band loses some information, but does
+ * not occlude a valid offset, since an off_t of -1 is normally
+ * used to represent EOF. If we had a more reliable constant in
+ * our header files for it (i.e. explicitly cast to an off_t), we
+ * would use it here instead.
+ */
off_t
ubc_blktooff(vnode_t vp, daddr64_t blkno)
{
- off_t file_offset;
+ off_t file_offset = -1;
int error;
- if (UBCINVALID(vp))
- return ((off_t)-1);
-
- error = VNOP_BLKTOOFF(vp, blkno, &file_offset);
- if (error)
- file_offset = -1;
+ if (UBCINFOEXISTS(vp)) {
+ error = VNOP_BLKTOOFF(vp, blkno, &file_offset);
+ if (error)
+ file_offset = -1;
+ }
return (file_offset);
}
+
+/*
+ * ubc_offtoblk
+ *
+ * Convert a given offset in a memory backing object into a block number for a
+ * given vnode
+ *
+ * Parameters: vp The vnode in which the offset is
+ * located
+ * offset The offset into the backing object
+ *
+ * Returns: !-1 The returned block number
+ * -1 There is no ubc_info associated with
+ * the vnode
+ * -1 An error occurred in the underlying VFS
+ * while translating the block to an
+ * offset; the most likely cause is that
+ * the caller specified a block past the
+ * end of the file, but this could also be
+ * any other error from VNOP_OFFTOBLK().
+ *
+ * Note: Representing the error in band loses some information, but does
+ * not occlude a valid block number, since block numbers exceed
+ * the valid range for offsets, due to their relative sizes. If
+ * we had a more reliable constant than -1 in our header files
+ * for it (i.e. explicitly cast to an daddr64_t), we would use it
+ * here instead.
+ */
daddr64_t
ubc_offtoblk(vnode_t vp, off_t offset)
{
- daddr64_t blkno;
+ daddr64_t blkno = -1;
int error = 0;
- if (UBCINVALID(vp))
- return ((daddr64_t)-1);
-
- error = VNOP_OFFTOBLK(vp, offset, &blkno);
- if (error)
- blkno = -1;
+ if (UBCINFOEXISTS(vp)) {
+ error = VNOP_OFFTOBLK(vp, offset, &blkno);
+ if (error)
+ blkno = -1;
+ }
return (blkno);
}
+
+/*
+ * ubc_pages_resident
+ *
+ * Determine whether or not a given vnode has pages resident via the memory
+ * object control associated with the ubc_info associated with the vnode
+ *
+ * Parameters: vp The vnode we want to know about
+ *
+ * Returns: 1 Yes
+ * 0 No
+ */
int
ubc_pages_resident(vnode_t vp)
{
kern_return_t kret;
boolean_t has_pages_resident;
- if ( !UBCINFOEXISTS(vp))
+ if (!UBCINFOEXISTS(vp))
return (0);
+ /*
+ * The following call may fail if an invalid ui_control is specified,
+ * or if there is no VM object associated with the control object. In
+ * either case, reacting to it as if there were no pages resident will
+ * result in correct behavior.
+ */
kret = memory_object_pages_resident(vp->v_ubcinfo->ui_control, &has_pages_resident);
if (kret != KERN_SUCCESS)
}
-
/*
- * This interface will eventually be deprecated
+ * ubc_sync_range
+ *
+ * Clean and/or invalidate a range in the memory object that backs this vnode
+ *
+ * Parameters: vp The vnode whose associated ubc_info's
+ * associated memory object is to have a
+ * range invalidated within it
+ * beg_off The start of the range, as an offset
+ * end_off The end of the range, as an offset
+ * flags See ubc_msync_internal()
+ *
+ * Returns: 1 Success
+ * 0 Failure
*
- * clean and/or invalidate a range in the memory object that backs this
- * vnode. The start offset is truncated to the page boundary and the
- * size is adjusted to include the last page in the range.
+ * Notes: see ubc_msync_internal() for more detailed information.
*
- * returns 1 for success, 0 for failure
+ * DEPRECATED: This interface is obsolete due to a failure to return error
+ * information needed in order to correct failures. The currently
+ * recommended interface is ubc_msync().
*/
int
ubc_sync_range(vnode_t vp, off_t beg_off, off_t end_off, int flags)
/*
- * clean and/or invalidate a range in the memory object that backs this
- * vnode. The start offset is truncated to the page boundary and the
- * size is adjusted to include the last page in the range.
- * if a
+ * ubc_msync
+ *
+ * Clean and/or invalidate a range in the memory object that backs this vnode
+ *
+ * Parameters: vp The vnode whose associated ubc_info's
+ * associated memory object is to have a
+ * range invalidated within it
+ * beg_off The start of the range, as an offset
+ * end_off The end of the range, as an offset
+ * resid_off The address of an off_t supplied by the
+ * caller; may be set to NULL to ignore
+ * flags See ubc_msync_internal()
+ *
+ * Returns: 0 Success
+ * !0 Failure; an errno is returned
+ *
+ * Implicit Returns:
+ * *resid_off, modified If non-NULL, the contents are ALWAYS
+ * modified; they are initialized to the
+ * beg_off, and in case of an I/O error,
+ * the difference between beg_off and the
+ * current value will reflect what was
+ * able to be written before the error
+ * occurred. If no error is returned, the
+ * value of the resid_off is undefined; do
+ * NOT use it in place of end_off if you
+ * intend to increment from the end of the
+ * last call and call iteratively.
+ *
+ * Notes: see ubc_msync_internal() for more detailed information.
+ *
*/
errno_t
ubc_msync(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags)
}
-
/*
- * clean and/or invalidate a range in the memory object that backs this
- * vnode. The start offset is truncated to the page boundary and the
- * size is adjusted to include the last page in the range.
+ * Clean and/or invalidate a range in the memory object that backs this vnode
+ *
+ * Parameters: vp The vnode whose associated ubc_info's
+ * associated memory object is to have a
+ * range invalidated within it
+ * beg_off The start of the range, as an offset
+ * end_off The end of the range, as an offset
+ * resid_off The address of an off_t supplied by the
+ * caller; may be set to NULL to ignore
+ * flags MUST contain at least one of the flags
+ * UBC_INVALIDATE, UBC_PUSHDIRTY, or
+ * UBC_PUSHALL; if UBC_PUSHDIRTY is used,
+ * UBC_SYNC may also be specified to cause
+ * this function to block until the
+ * operation is complete. The behavior
+ * of UBC_SYNC is otherwise undefined.
+ * io_errno The address of an int to contain the
+ * errno from a failed I/O operation, if
+ * one occurs; may be set to NULL to
+ * ignore
+ *
+ * Returns: 1 Success
+ * 0 Failure
+ *
+ * Implicit Returns:
+ * *resid_off, modified The contents of this offset MAY be
+ * modified; in case of an I/O error, the
+ * difference between beg_off and the
+ * current value will reflect what was
+ * able to be written before the error
+ * occurred.
+ * *io_errno, modified The contents of this offset are set to
+ * an errno, if an error occurs; if the
+ * caller supplies an io_errno parameter,
+ * they should be careful to initialize it
+ * to 0 before calling this function to
+ * enable them to distinguish an error
+ * with a valid *resid_off from an invalid
+ * one, and to avoid potentially falsely
+ * reporting an error, depending on use.
+ *
+ * Notes: If there is no ubc_info associated with the vnode supplied,
+ * this function immediately returns success.
+ *
+ * If the value of end_off is less than or equal to beg_off, this
+ * function immediately returns success; that is, end_off is NOT
+ * inclusive.
+ *
+ * IMPORTANT: one of the flags UBC_INVALIDATE, UBC_PUSHDIRTY, or
+ * UBC_PUSHALL MUST be specified; that is, it is NOT possible to
+ * attempt to block on in-progress I/O by calling this function
+ * with UBC_PUSHDIRTY, and then later call it with just UBC_SYNC
+ * in order to block pending on the I/O already in progress.
+ *
+ * The start offset is truncated to the page boundary and the
+ * size is adjusted to include the last page in the range; that
+ * is, end_off on exactly a page boundary will not change if it
+ * is rounded, and the range of bytes written will be from the
+ * truncate beg_off to the rounded (end_off - 1).
*/
static int
ubc_msync_internal(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags, int *io_errno)
if ( !UBCINFOEXISTS(vp))
return (0);
- if (end_off <= beg_off)
- return (0);
if ((flags & (UBC_INVALIDATE | UBC_PUSHDIRTY | UBC_PUSHALL)) == 0)
return (0);
+ if (end_off <= beg_off)
+ return (1);
if (flags & UBC_INVALIDATE)
/*
if (flags & UBC_PUSHALL)
/*
- * then return all the interesting pages in the range (both dirty and precious)
- * to the pager
+ * then return all the interesting pages in the range (both
+ * dirty and precious) to the pager
*/
flush_flags = MEMORY_OBJECT_RETURN_ALL;
/* flush and/or invalidate pages in the range requested */
kret = memory_object_lock_request(vp->v_ubcinfo->ui_control,
- beg_off, tsize, resid_off, io_errno,
- flush_flags, request_flags, VM_PROT_NO_CHANGE);
+ beg_off, tsize,
+ (memory_object_offset_t *)resid_off,
+ io_errno, flush_flags, request_flags,
+ VM_PROT_NO_CHANGE);
return ((kret == KERN_SUCCESS) ? 1 : 0);
}
/*
- * The vnode is mapped explicitly, mark it so.
+ * ubc_msync_internal
+ *
+ * Explicitly map a vnode that has an associate ubc_info, and add a reference
+ * to it for the ubc system, if there isn't one already, so it will not be
+ * recycled while it's in use, and set flags on the ubc_info to indicate that
+ * we have done this
+ *
+ * Parameters: vp The vnode to map
+ * flags The mapping flags for the vnode; this
+ * will be a combination of one or more of
+ * PROT_READ, PROT_WRITE, and PROT_EXEC
+ *
+ * Returns: 0 Success
+ * EPERM Permission was denied
+ *
+ * Notes: An I/O reference on the vnode must already be held on entry
+ *
+ * If there is no ubc_info associated with the vnode, this function
+ * will return success.
+ *
+ * If a permission error occurs, this function will return
+ * failure; all other failures will cause this function to return
+ * success.
+ *
+ * IMPORTANT: This is an internal use function, and its symbols
+ * are not exported, hence its error checking is not very robust.
+ * It is primarily used by:
+ *
+ * o mmap(), when mapping a file
+ * o The deprecated map_fd() interface, when mapping a file
+ * o When mapping a shared file (a shared library in the
+ * shared segment region)
+ * o When loading a program image during the exec process
+ *
+ * ...all of these uses ignore the return code, and any fault that
+ * results later because of a failure is handled in the fix-up path
+ * of the fault handler. The interface exists primarily as a
+ * performance hint.
+ *
+ * Given that third party implementation of the type of interfaces
+ * that would use this function, such as alternative executable
+ * formats, etc., are unsupported, this function is not exported
+ * for general use.
+ *
+ * The extra reference is held until the VM system unmaps the
+ * vnode from its own context to maintain a vnode reference in
+ * cases like open()/mmap()/close(), which leave the backing
+ * object referenced by a mapped memory region in a process
+ * address space.
*/
__private_extern__ int
ubc_map(vnode_t vp, int flags)
struct ubc_info *uip;
int error = 0;
int need_ref = 0;
- struct vfs_context context;
-
- if (vnode_getwithref(vp))
- return (0);
+ int need_wakeup = 0;
if (UBCINFOEXISTS(vp)) {
- context.vc_proc = current_proc();
- context.vc_ucred = kauth_cred_get();
- error = VNOP_MMAP(vp, flags, &context);
+ vnode_lock(vp);
+ uip = vp->v_ubcinfo;
+
+ while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
+ SET(uip->ui_flags, UI_MAPWAITING);
+ (void) msleep(&uip->ui_flags, &vp->v_lock,
+ PRIBIO, "ubc_map", NULL);
+ }
+ SET(uip->ui_flags, UI_MAPBUSY);
+ vnode_unlock(vp);
+
+ error = VNOP_MMAP(vp, flags, vfs_context_current());
if (error != EPERM)
error = 0;
- if (error == 0) {
- vnode_lock(vp);
-
- uip = vp->v_ubcinfo;
+ vnode_lock_spin(vp);
+ if (error == 0) {
if ( !ISSET(uip->ui_flags, UI_ISMAPPED))
need_ref = 1;
SET(uip->ui_flags, (UI_WASMAPPED | UI_ISMAPPED));
+ }
+ CLR(uip->ui_flags, UI_MAPBUSY);
- vnode_unlock(vp);
-
- if (need_ref)
- vnode_ref(vp);
+ if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
+ CLR(uip->ui_flags, UI_MAPWAITING);
+ need_wakeup = 1;
}
- }
- vnode_put(vp);
+ vnode_unlock(vp);
+
+ if (need_wakeup)
+ wakeup(&uip->ui_flags);
+ if (need_ref)
+ vnode_ref(vp);
+ }
return (error);
}
+
/*
- * destroy the named reference for a given vnode
+ * ubc_destroy_named
+ *
+ * Destroy the named memory object associated with the ubc_info control object
+ * associated with the designated vnode, if there is a ubc_info associated
+ * with the vnode, and a control object is associated with it
+ *
+ * Parameters: vp The designated vnode
+ *
+ * Returns: (void)
+ *
+ * Notes: This function is called on vnode termination for all vnodes,
+ * and must therefore not assume that there is a ubc_info that is
+ * associated with the vnode, nor that there is a control object
+ * associated with the ubc_info.
+ *
+ * If all the conditions necessary are present, this function
+ * calls memory_object_destory(), which will in turn end up
+ * calling ubc_unmap() to release any vnode references that were
+ * established via ubc_map().
+ *
+ * IMPORTANT: This is an internal use function that is used
+ * exclusively by the internal use function vclean().
*/
-__private_extern__ int
-ubc_destroy_named(struct vnode *vp)
+__private_extern__ void
+ubc_destroy_named(vnode_t vp)
{
memory_object_control_t control;
struct ubc_info *uip;
kern_return_t kret;
- /*
- * We may already have had the object terminated
- * and the ubcinfo released as a side effect of
- * some earlier processing. If so, pretend we did
- * it, because it probably was a result of our
- * efforts.
- */
- if (!UBCINFOEXISTS(vp))
- return (1);
-
- uip = vp->v_ubcinfo;
-
- /*
- * Terminate the memory object.
- * memory_object_destroy() will result in
- * vnode_pager_no_senders().
- * That will release the pager reference
- * and the vnode will move to the free list.
- */
- control = ubc_getobject(vp, UBC_HOLDOBJECT);
- if (control != MEMORY_OBJECT_CONTROL_NULL) {
-
- /*
- * XXXXX - should we hold the vnode lock here?
- */
- if (ISSET(vp->v_flag, VTERMINATE))
- panic("ubc_destroy_named: already teminating");
- SET(vp->v_flag, VTERMINATE);
-
- kret = memory_object_destroy(control, 0);
- if (kret != KERN_SUCCESS)
- return (0);
-
- /*
- * memory_object_destroy() is asynchronous
- * with respect to vnode_pager_no_senders().
- * wait for vnode_pager_no_senders() to clear
- * VTERMINATE
- */
- vnode_lock(vp);
- while (ISSET(vp->v_lflag, VNAMED_UBC)) {
- (void)msleep((caddr_t)&vp->v_lflag, &vp->v_lock,
- PINOD, "ubc_destroy_named", 0);
+ if (UBCINFOEXISTS(vp)) {
+ uip = vp->v_ubcinfo;
+
+ /* Terminate the memory object */
+ control = ubc_getobject(vp, UBC_HOLDOBJECT);
+ if (control != MEMORY_OBJECT_CONTROL_NULL) {
+ kret = memory_object_destroy(control, 0);
+ if (kret != KERN_SUCCESS)
+ panic("ubc_destroy_named: memory_object_destroy failed");
}
- vnode_unlock(vp);
}
- return (1);
}
/*
- * Find out whether a vnode is in use by UBC
- * Returns 1 if file is in use by UBC, 0 if not
+ * ubc_isinuse
+ *
+ * Determine whether or not a vnode is currently in use by ubc at a level in
+ * excess of the requested busycount
+ *
+ * Parameters: vp The vnode to check
+ * busycount The threshold busy count, used to bias
+ * the count usually already held by the
+ * caller to avoid races
+ *
+ * Returns: 1 The vnode is in use over the threshold
+ * 0 The vnode is not in use over the
+ * threshold
+ *
+ * Notes: Because the vnode is only held locked while actually asking
+ * the use count, this function only represents a snapshot of the
+ * current state of the vnode. If more accurate information is
+ * required, an additional busycount should be held by the caller
+ * and a non-zero busycount used.
+ *
+ * If there is no ubc_info associated with the vnode, this
+ * function will report that the vnode is not in use by ubc.
*/
int
ubc_isinuse(struct vnode *vp, int busycount)
}
+/*
+ * ubc_isinuse_locked
+ *
+ * Determine whether or not a vnode is currently in use by ubc at a level in
+ * excess of the requested busycount
+ *
+ * Parameters: vp The vnode to check
+ * busycount The threshold busy count, used to bias
+ * the count usually already held by the
+ * caller to avoid races
+ * locked True if the vnode is already locked by
+ * the caller
+ *
+ * Returns: 1 The vnode is in use over the threshold
+ * 0 The vnode is not in use over the
+ * threshold
+ *
+ * Notes: If the vnode is not locked on entry, it is locked while
+ * actually asking the use count. If this is the case, this
+ * function only represents a snapshot of the current state of
+ * the vnode. If more accurate information is required, the
+ * vnode lock should be held by the caller, otherwise an
+ * additional busycount should be held by the caller and a
+ * non-zero busycount used.
+ *
+ * If there is no ubc_info associated with the vnode, this
+ * function will report that the vnode is not in use by ubc.
+ */
int
ubc_isinuse_locked(struct vnode *vp, int busycount, int locked)
{
/*
- * MUST only be called by the VM
+ * ubc_unmap
+ *
+ * Reverse the effects of a ubc_map() call for a given vnode
+ *
+ * Parameters: vp vnode to unmap from ubc
+ *
+ * Returns: (void)
+ *
+ * Notes: This is an internal use function used by vnode_pager_unmap().
+ * It will attempt to obtain a reference on the supplied vnode,
+ * and if it can do so, and there is an associated ubc_info, and
+ * the flags indicate that it was mapped via ubc_map(), then the
+ * flag is cleared, the mapping removed, and the reference taken
+ * by ubc_map() is released.
+ *
+ * IMPORTANT: This MUST only be called by the VM
+ * to prevent race conditions.
*/
__private_extern__ void
ubc_unmap(struct vnode *vp)
{
- struct vfs_context context;
struct ubc_info *uip;
int need_rele = 0;
-
+ int need_wakeup = 0;
+
if (vnode_getwithref(vp))
return;
if (UBCINFOEXISTS(vp)) {
vnode_lock(vp);
-
uip = vp->v_ubcinfo;
+
+ while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
+ SET(uip->ui_flags, UI_MAPWAITING);
+ (void) msleep(&uip->ui_flags, &vp->v_lock,
+ PRIBIO, "ubc_unmap", NULL);
+ }
+ SET(uip->ui_flags, UI_MAPBUSY);
+
if (ISSET(uip->ui_flags, UI_ISMAPPED)) {
- CLR(uip->ui_flags, UI_ISMAPPED);
+ CLR(uip->ui_flags, UI_ISMAPPED);
need_rele = 1;
}
vnode_unlock(vp);
-
+
if (need_rele) {
- context.vc_proc = current_proc();
- context.vc_ucred = kauth_cred_get();
- (void)VNOP_MNOMAP(vp, &context);
+ (void) VNOP_MNOMAP(vp, vfs_context_current());
+ vnode_rele(vp);
+ }
- vnode_rele(vp);
+ vnode_lock_spin(vp);
+
+ CLR(uip->ui_flags, UI_MAPBUSY);
+ if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
+ CLR(uip->ui_flags, UI_MAPWAITING);
+ need_wakeup = 1;
}
+ vnode_unlock(vp);
+
+ if (need_wakeup)
+ wakeup(&uip->ui_flags);
+
}
/*
* the drop of the vnode ref will cleanup
vnode_put(vp);
}
+
+/*
+ * ubc_page_op
+ *
+ * Manipulate individual page state for a vnode with an associated ubc_info
+ * with an associated memory object control.
+ *
+ * Parameters: vp The vnode backing the page
+ * f_offset A file offset interior to the page
+ * ops The operations to perform, as a bitmap
+ * (see below for more information)
+ * phys_entryp The address of a ppnum_t; may be NULL
+ * to ignore
+ * flagsp A pointer to an int to contain flags;
+ * may be NULL to ignore
+ *
+ * Returns: KERN_SUCCESS Success
+ * KERN_INVALID_ARGUMENT If the memory object control has no VM
+ * object associated
+ * KERN_INVALID_OBJECT If UPL_POP_PHYSICAL and the object is
+ * not physically contiguous
+ * KERN_INVALID_OBJECT If !UPL_POP_PHYSICAL and the object is
+ * physically contiguous
+ * KERN_FAILURE If the page cannot be looked up
+ *
+ * Implicit Returns:
+ * *phys_entryp (modified) If phys_entryp is non-NULL and
+ * UPL_POP_PHYSICAL
+ * *flagsp (modified) If flagsp is non-NULL and there was
+ * !UPL_POP_PHYSICAL and a KERN_SUCCESS
+ *
+ * Notes: For object boundaries, it is considerably more efficient to
+ * ensure that f_offset is in fact on a page boundary, as this
+ * will avoid internal use of the hash table to identify the
+ * page, and would therefore skip a number of early optimizations.
+ * Since this is a page operation anyway, the caller should try
+ * to pass only a page aligned offset because of this.
+ *
+ * *flagsp may be modified even if this function fails. If it is
+ * modified, it will contain the condition of the page before the
+ * requested operation was attempted; these will only include the
+ * bitmap flags, and not the PL_POP_PHYSICAL, UPL_POP_DUMP,
+ * UPL_POP_SET, or UPL_POP_CLR bits.
+ *
+ * The flags field may contain a specific operation, such as
+ * UPL_POP_PHYSICAL or UPL_POP_DUMP:
+ *
+ * o UPL_POP_PHYSICAL Fail if not contiguous; if
+ * *phys_entryp and successful, set
+ * *phys_entryp
+ * o UPL_POP_DUMP Dump the specified page
+ *
+ * Otherwise, it is treated as a bitmap of one or more page
+ * operations to perform on the final memory object; allowable
+ * bit values are:
+ *
+ * o UPL_POP_DIRTY The page is dirty
+ * o UPL_POP_PAGEOUT The page is paged out
+ * o UPL_POP_PRECIOUS The page is precious
+ * o UPL_POP_ABSENT The page is absent
+ * o UPL_POP_BUSY The page is busy
+ *
+ * If the page status is only being queried and not modified, then
+ * not other bits should be specified. However, if it is being
+ * modified, exactly ONE of the following bits should be set:
+ *
+ * o UPL_POP_SET Set the current bitmap bits
+ * o UPL_POP_CLR Clear the current bitmap bits
+ *
+ * Thus to effect a combination of setting an clearing, it may be
+ * necessary to call this function twice. If this is done, the
+ * set should be used before the clear, since clearing may trigger
+ * a wakeup on the destination page, and if the page is backed by
+ * an encrypted swap file, setting will trigger the decryption
+ * needed before the wakeup occurs.
+ */
kern_return_t
ubc_page_op(
struct vnode *vp,
phys_entryp,
flagsp));
}
-
-__private_extern__ kern_return_t
-ubc_page_op_with_control(
- memory_object_control_t control,
- off_t f_offset,
- int ops,
- ppnum_t *phys_entryp,
- int *flagsp)
-{
- return (memory_object_page_op(control,
- (memory_object_offset_t)f_offset,
- ops,
- phys_entryp,
- flagsp));
-}
-
+
+
+/*
+ * ubc_range_op
+ *
+ * Manipulate page state for a range of memory for a vnode with an associated
+ * ubc_info with an associated memory object control, when page level state is
+ * not required to be returned from the call (i.e. there are no phys_entryp or
+ * flagsp parameters to this call, and it takes a range which may contain
+ * multiple pages, rather than an offset interior to a single page).
+ *
+ * Parameters: vp The vnode backing the page
+ * f_offset_beg A file offset interior to the start page
+ * f_offset_end A file offset interior to the end page
+ * ops The operations to perform, as a bitmap
+ * (see below for more information)
+ * range The address of an int; may be NULL to
+ * ignore
+ *
+ * Returns: KERN_SUCCESS Success
+ * KERN_INVALID_ARGUMENT If the memory object control has no VM
+ * object associated
+ * KERN_INVALID_OBJECT If the object is physically contiguous
+ *
+ * Implicit Returns:
+ * *range (modified) If range is non-NULL, its contents will
+ * be modified to contain the number of
+ * bytes successfully operated upon.
+ *
+ * Notes: IMPORTANT: This function cannot be used on a range that
+ * consists of physically contiguous pages.
+ *
+ * For object boundaries, it is considerably more efficient to
+ * ensure that f_offset_beg and f_offset_end are in fact on page
+ * boundaries, as this will avoid internal use of the hash table
+ * to identify the page, and would therefore skip a number of
+ * early optimizations. Since this is an operation on a set of
+ * pages anyway, the caller should try to pass only a page aligned
+ * offsets because of this.
+ *
+ * *range will be modified only if this function succeeds.
+ *
+ * The flags field MUST contain a specific operation; allowable
+ * values are:
+ *
+ * o UPL_ROP_ABSENT Returns the extent of the range
+ * presented which is absent, starting
+ * with the start address presented
+ *
+ * o UPL_ROP_PRESENT Returns the extent of the range
+ * presented which is present (resident),
+ * starting with the start address
+ * presented
+ * o UPL_ROP_DUMP Dump the pages which are found in the
+ * target object for the target range.
+ *
+ * IMPORTANT: For UPL_ROP_ABSENT and UPL_ROP_PRESENT; if there are
+ * multiple regions in the range, only the first matching region
+ * is returned.
+ */
kern_return_t
ubc_range_op(
struct vnode *vp,
ops,
range));
}
-
+
+
+/*
+ * ubc_create_upl
+ *
+ * Given a vnode, cause the population of a portion of the vm_object; based on
+ * the nature of the request, the pages returned may contain valid data, or
+ * they may be uninitialized.
+ *
+ * Parameters: vp The vnode from which to create the upl
+ * f_offset The start offset into the backing store
+ * represented by the vnode
+ * bufsize The size of the upl to create
+ * uplp Pointer to the upl_t to receive the
+ * created upl; MUST NOT be NULL
+ * plp Pointer to receive the internal page
+ * list for the created upl; MAY be NULL
+ * to ignore
+ *
+ * Returns: KERN_SUCCESS The requested upl has been created
+ * KERN_INVALID_ARGUMENT The bufsize argument is not an even
+ * multiple of the page size
+ * KERN_INVALID_ARGUMENT There is no ubc_info associated with
+ * the vnode, or there is no memory object
+ * control associated with the ubc_info
+ * memory_object_upl_request:KERN_INVALID_VALUE
+ * The supplied upl_flags argument is
+ * invalid
+ * Implicit Returns:
+ * *uplp (modified)
+ * *plp (modified) If non-NULL, the value of *plp will be
+ * modified to point to the internal page
+ * list; this modification may occur even
+ * if this function is unsuccessful, in
+ * which case the contents may be invalid
+ *
+ * Note: If successful, the returned *uplp MUST subsequently be freed
+ * via a call to ubc_upl_commit(), ubc_upl_commit_range(),
+ * ubc_upl_abort(), or ubc_upl_abort_range().
+ */
kern_return_t
ubc_create_upl(
struct vnode *vp,
- off_t f_offset,
- long bufsize,
- upl_t *uplp,
+ off_t f_offset,
+ long bufsize,
+ upl_t *uplp,
upl_page_info_t **plp,
- int uplflags)
+ int uplflags)
{
memory_object_control_t control;
- int count;
+ mach_msg_type_number_t count;
int ubcflags;
kern_return_t kr;
} else
uplflags |= (UPL_NO_SYNC|UPL_CLEAN_IN_PLACE|UPL_SET_INTERNAL);
count = 0;
- kr = memory_object_upl_request(control, f_offset, bufsize,
- uplp, NULL, &count, uplflags);
+
+ kr = memory_object_upl_request(control, f_offset, bufsize, uplp, NULL, &count, uplflags);
if (plp != NULL)
*plp = UPL_GET_INTERNAL_PAGE_LIST(*uplp);
return kr;
}
-
+
+
+/*
+ * ubc_upl_maxbufsize
+ *
+ * Return the maximum bufsize ubc_create_upl( ) will take.
+ *
+ * Parameters: none
+ *
+ * Returns: maximum size buffer (in bytes) ubc_create_upl( ) will take.
+ */
+upl_size_t
+ubc_upl_maxbufsize(
+ void)
+{
+ return(MAX_UPL_SIZE * PAGE_SIZE);
+}
+/*
+ * ubc_upl_map
+ *
+ * Map the page list assocated with the supplied upl into the kernel virtual
+ * address space at the virtual address indicated by the dst_addr argument;
+ * the entire upl is mapped
+ *
+ * Parameters: upl The upl to map
+ * dst_addr The address at which to map the upl
+ *
+ * Returns: KERN_SUCCESS The upl has been mapped
+ * KERN_INVALID_ARGUMENT The upl is UPL_NULL
+ * KERN_FAILURE The upl is already mapped
+ * vm_map_enter:KERN_INVALID_ARGUMENT
+ * A failure code from vm_map_enter() due
+ * to an invalid argument
+ */
kern_return_t
ubc_upl_map(
upl_t upl,
}
+/*
+ * ubc_upl_unmap
+ *
+ * Unmap the page list assocated with the supplied upl from the kernel virtual
+ * address space; the entire upl is unmapped.
+ *
+ * Parameters: upl The upl to unmap
+ *
+ * Returns: KERN_SUCCESS The upl has been unmapped
+ * KERN_FAILURE The upl is not currently mapped
+ * KERN_INVALID_ARGUMENT If the upl is UPL_NULL
+ */
kern_return_t
ubc_upl_unmap(
upl_t upl)
return(vm_upl_unmap(kernel_map, upl));
}
+
+/*
+ * ubc_upl_commit
+ *
+ * Commit the contents of the upl to the backing store
+ *
+ * Parameters: upl The upl to commit
+ *
+ * Returns: KERN_SUCCESS The upl has been committed
+ * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
+ * KERN_FAILURE The supplied upl does not represent
+ * device memory, and the offset plus the
+ * size would exceed the actual size of
+ * the upl
+ *
+ * Notes: In practice, the only return value for this function should be
+ * KERN_SUCCESS, unless there has been data structure corruption;
+ * since the upl is deallocated regardless of success or failure,
+ * there's really nothing to do about this other than panic.
+ *
+ * IMPORTANT: Use of this function should not be mixed with use of
+ * ubc_upl_commit_range(), due to the unconditional deallocation
+ * by this function.
+ */
kern_return_t
ubc_upl_commit(
upl_t upl)
kern_return_t kr;
pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
- kr = upl_commit(upl, pl, MAX_UPL_TRANSFER);
+ kr = upl_commit(upl, pl, MAX_UPL_SIZE);
upl_deallocate(upl);
return kr;
}
+/*
+ * ubc_upl_commit
+ *
+ * Commit the contents of the specified range of the upl to the backing store
+ *
+ * Parameters: upl The upl to commit
+ * offset The offset into the upl
+ * size The size of the region to be committed,
+ * starting at the specified offset
+ * flags commit type (see below)
+ *
+ * Returns: KERN_SUCCESS The range has been committed
+ * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
+ * KERN_FAILURE The supplied upl does not represent
+ * device memory, and the offset plus the
+ * size would exceed the actual size of
+ * the upl
+ *
+ * Notes: IMPORTANT: If the commit is successful, and the object is now
+ * empty, the upl will be deallocated. Since the caller cannot
+ * check that this is the case, the UPL_COMMIT_FREE_ON_EMPTY flag
+ * should generally only be used when the offset is 0 and the size
+ * is equal to the upl size.
+ *
+ * The flags argument is a bitmap of flags on the rage of pages in
+ * the upl to be committed; allowable flags are:
+ *
+ * o UPL_COMMIT_FREE_ON_EMPTY Free the upl when it is
+ * both empty and has been
+ * successfully committed
+ * o UPL_COMMIT_CLEAR_DIRTY Clear each pages dirty
+ * bit; will prevent a
+ * later pageout
+ * o UPL_COMMIT_SET_DIRTY Set each pages dirty
+ * bit; will cause a later
+ * pageout
+ * o UPL_COMMIT_INACTIVATE Clear each pages
+ * reference bit; the page
+ * will not be accessed
+ * o UPL_COMMIT_ALLOW_ACCESS Unbusy each page; pages
+ * become busy when an
+ * IOMemoryDescriptor is
+ * mapped or redirected,
+ * and we have to wait for
+ * an IOKit driver
+ *
+ * The flag UPL_COMMIT_NOTIFY_EMPTY is used internally, and should
+ * not be specified by the caller.
+ *
+ * The UPL_COMMIT_CLEAR_DIRTY and UPL_COMMIT_SET_DIRTY flags are
+ * mutually exclusive, and should not be combined.
+ */
kern_return_t
ubc_upl_commit_range(
upl_t upl,
if (flags & UPL_COMMIT_FREE_ON_EMPTY)
flags |= UPL_COMMIT_NOTIFY_EMPTY;
+ if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
kr = upl_commit_range(upl, offset, size, flags,
- pl, MAX_UPL_TRANSFER, &empty);
+ pl, MAX_UPL_SIZE, &empty);
if((flags & UPL_COMMIT_FREE_ON_EMPTY) && empty)
upl_deallocate(upl);
return kr;
}
-
+
+
+/*
+ * ubc_upl_abort_range
+ *
+ * Abort the contents of the specified range of the specified upl
+ *
+ * Parameters: upl The upl to abort
+ * offset The offset into the upl
+ * size The size of the region to be aborted,
+ * starting at the specified offset
+ * abort_flags abort type (see below)
+ *
+ * Returns: KERN_SUCCESS The range has been aborted
+ * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
+ * KERN_FAILURE The supplied upl does not represent
+ * device memory, and the offset plus the
+ * size would exceed the actual size of
+ * the upl
+ *
+ * Notes: IMPORTANT: If the abort is successful, and the object is now
+ * empty, the upl will be deallocated. Since the caller cannot
+ * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
+ * should generally only be used when the offset is 0 and the size
+ * is equal to the upl size.
+ *
+ * The abort_flags argument is a bitmap of flags on the range of
+ * pages in the upl to be aborted; allowable flags are:
+ *
+ * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
+ * empty and has been successfully
+ * aborted
+ * o UPL_ABORT_RESTART The operation must be restarted
+ * o UPL_ABORT_UNAVAILABLE The pages are unavailable
+ * o UPL_ABORT_ERROR An I/O error occurred
+ * o UPL_ABORT_DUMP_PAGES Just free the pages
+ * o UPL_ABORT_NOTIFY_EMPTY RESERVED
+ * o UPL_ABORT_ALLOW_ACCESS RESERVED
+ *
+ * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
+ * not be specified by the caller. It is intended to fulfill the
+ * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
+ * ubc_upl_commit_range(), but is never referenced internally.
+ *
+ * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
+ * referenced; do not use it.
+ */
kern_return_t
ubc_upl_abort_range(
upl_t upl,
return kr;
}
+
+/*
+ * ubc_upl_abort
+ *
+ * Abort the contents of the specified upl
+ *
+ * Parameters: upl The upl to abort
+ * abort_type abort type (see below)
+ *
+ * Returns: KERN_SUCCESS The range has been aborted
+ * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
+ * KERN_FAILURE The supplied upl does not represent
+ * device memory, and the offset plus the
+ * size would exceed the actual size of
+ * the upl
+ *
+ * Notes: IMPORTANT: If the abort is successful, and the object is now
+ * empty, the upl will be deallocated. Since the caller cannot
+ * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
+ * should generally only be used when the offset is 0 and the size
+ * is equal to the upl size.
+ *
+ * The abort_type is a bitmap of flags on the range of
+ * pages in the upl to be aborted; allowable flags are:
+ *
+ * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
+ * empty and has been successfully
+ * aborted
+ * o UPL_ABORT_RESTART The operation must be restarted
+ * o UPL_ABORT_UNAVAILABLE The pages are unavailable
+ * o UPL_ABORT_ERROR An I/O error occurred
+ * o UPL_ABORT_DUMP_PAGES Just free the pages
+ * o UPL_ABORT_NOTIFY_EMPTY RESERVED
+ * o UPL_ABORT_ALLOW_ACCESS RESERVED
+ *
+ * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
+ * not be specified by the caller. It is intended to fulfill the
+ * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
+ * ubc_upl_commit_range(), but is never referenced internally.
+ *
+ * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
+ * referenced; do not use it.
+ */
kern_return_t
ubc_upl_abort(
upl_t upl,
return kr;
}
+
+/*
+ * ubc_upl_pageinfo
+ *
+ * Retrieve the internal page list for the specified upl
+ *
+ * Parameters: upl The upl to obtain the page list from
+ *
+ * Returns: !NULL The (upl_page_info_t *) for the page
+ * list internal to the upl
+ * NULL Error/no page list associated
+ *
+ * Notes: IMPORTANT: The function is only valid on internal objects
+ * where the list request was made with the UPL_INTERNAL flag.
+ *
+ * This function is a utility helper function, since some callers
+ * may not have direct access to the header defining the macro,
+ * due to abstraction layering constraints.
+ */
upl_page_info_t *
ubc_upl_pageinfo(
upl_t upl)
return (UPL_GET_INTERNAL_PAGE_LIST(upl));
}
-/************* UBC APIS **************/
int
-UBCINFOMISSING(struct vnode * vp)
+UBCINFOEXISTS(struct vnode * vp)
{
- return((vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo == UBC_INFO_NULL));
+ return((vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo != UBC_INFO_NULL));
}
-int
-UBCINFORECLAIMED(struct vnode * vp)
+
+/*
+ * CODE SIGNING
+ */
+#define CS_BLOB_PAGEABLE 0
+static volatile SInt32 cs_blob_size = 0;
+static volatile SInt32 cs_blob_count = 0;
+static SInt32 cs_blob_size_peak = 0;
+static UInt32 cs_blob_size_max = 0;
+static SInt32 cs_blob_count_peak = 0;
+extern int cs_debug;
+
+int cs_validation = 1;
+
+SYSCTL_INT(_vm, OID_AUTO, cs_validation, CTLFLAG_RW, &cs_validation, 0, "Do validate code signatures");
+SYSCTL_INT(_vm, OID_AUTO, cs_blob_count, CTLFLAG_RD, &cs_blob_count, 0, "Current number of code signature blobs");
+SYSCTL_INT(_vm, OID_AUTO, cs_blob_size, CTLFLAG_RD, &cs_blob_size, 0, "Current size of all code signature blobs");
+SYSCTL_INT(_vm, OID_AUTO, cs_blob_count_peak, CTLFLAG_RD, &cs_blob_count_peak, 0, "Peak number of code signature blobs");
+SYSCTL_INT(_vm, OID_AUTO, cs_blob_size_peak, CTLFLAG_RD, &cs_blob_size_peak, 0, "Peak size of code signature blobs");
+SYSCTL_INT(_vm, OID_AUTO, cs_blob_size_max, CTLFLAG_RD, &cs_blob_size_max, 0, "Size of biggest code signature blob");
+
+kern_return_t
+ubc_cs_blob_allocate(
+ vm_offset_t *blob_addr_p,
+ vm_size_t *blob_size_p)
{
- return((vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo == UBC_INFO_NULL));
+ kern_return_t kr;
+
+#if CS_BLOB_PAGEABLE
+ *blob_size_p = round_page(*blob_size_p);
+ kr = kmem_alloc(kernel_map, blob_addr_p, *blob_size_p);
+#else /* CS_BLOB_PAGEABLE */
+ *blob_addr_p = (vm_offset_t) kalloc(*blob_size_p);
+ if (*blob_addr_p == 0) {
+ kr = KERN_NO_SPACE;
+ } else {
+ kr = KERN_SUCCESS;
+ }
+#endif /* CS_BLOB_PAGEABLE */
+ return kr;
}
+void
+ubc_cs_blob_deallocate(
+ vm_offset_t blob_addr,
+ vm_size_t blob_size)
+{
+#if CS_BLOB_PAGEABLE
+ kmem_free(kernel_map, blob_addr, blob_size);
+#else /* CS_BLOB_PAGEABLE */
+ kfree((void *) blob_addr, blob_size);
+#endif /* CS_BLOB_PAGEABLE */
+}
+
+int
+ubc_cs_blob_add(
+ struct vnode *vp,
+ cpu_type_t cputype,
+ off_t base_offset,
+ vm_address_t addr,
+ vm_size_t size)
+{
+ kern_return_t kr;
+ struct ubc_info *uip;
+ struct cs_blob *blob, *oblob;
+ int error;
+ ipc_port_t blob_handle;
+ memory_object_size_t blob_size;
+ const CS_CodeDirectory *cd;
+ off_t blob_start_offset, blob_end_offset;
+ SHA1_CTX sha1ctxt;
+
+ blob_handle = IPC_PORT_NULL;
+
+ blob = (struct cs_blob *) kalloc(sizeof (struct cs_blob));
+ if (blob == NULL) {
+ return ENOMEM;
+ }
-int
-UBCINFOEXISTS(struct vnode * vp)
+#if CS_BLOB_PAGEABLE
+ /* get a memory entry on the blob */
+ blob_size = (memory_object_size_t) size;
+ kr = mach_make_memory_entry_64(kernel_map,
+ &blob_size,
+ addr,
+ VM_PROT_READ,
+ &blob_handle,
+ IPC_PORT_NULL);
+ if (kr != KERN_SUCCESS) {
+ error = ENOMEM;
+ goto out;
+ }
+ if (memory_object_round_page(blob_size) !=
+ (memory_object_size_t) round_page(size)) {
+ printf("ubc_cs_blob_add: size mismatch 0x%llx 0x%x !?\n",
+ blob_size, size);
+ panic("XXX FBDP size mismatch 0x%llx 0x%x\n", blob_size, size);
+ error = EINVAL;
+ goto out;
+ }
+#else
+ blob_size = (memory_object_size_t) size;
+ blob_handle = IPC_PORT_NULL;
+#endif
+
+ /* fill in the new blob */
+ blob->csb_cpu_type = cputype;
+ blob->csb_base_offset = base_offset;
+ blob->csb_mem_size = size;
+ blob->csb_mem_offset = 0;
+ blob->csb_mem_handle = blob_handle;
+ blob->csb_mem_kaddr = addr;
+
+ /*
+ * Validate the blob's contents
+ */
+ cd = findCodeDirectory(
+ (const CS_SuperBlob *) addr,
+ (char *) addr,
+ (char *) addr + blob->csb_mem_size);
+ if (cd == NULL) {
+ /* no code directory => useless blob ! */
+ blob->csb_flags = 0;
+ blob->csb_start_offset = 0;
+ blob->csb_end_offset = 0;
+ } else {
+ unsigned char *sha1_base;
+ int sha1_size;
+
+ blob->csb_flags = ntohl(cd->flags) | CS_VALID;
+ blob->csb_end_offset = round_page(ntohl(cd->codeLimit));
+ blob->csb_start_offset = (blob->csb_end_offset -
+ (ntohl(cd->nCodeSlots) * PAGE_SIZE));
+ /* compute the blob's SHA1 hash */
+ sha1_base = (const unsigned char *) cd;
+ sha1_size = ntohl(cd->length);
+ SHA1Init(&sha1ctxt);
+ SHA1Update(&sha1ctxt, sha1_base, sha1_size);
+ SHA1Final(blob->csb_sha1, &sha1ctxt);
+ }
+
+ /*
+ * Let policy module check whether the blob's signature is accepted.
+ */
+#if CONFIG_MACF
+ error = mac_vnode_check_signature(vp, blob->csb_sha1, (void*)addr, size);
+ if (error)
+ goto out;
+#endif
+
+ /*
+ * Validate the blob's coverage
+ */
+ blob_start_offset = blob->csb_base_offset + blob->csb_start_offset;
+ blob_end_offset = blob->csb_base_offset + blob->csb_end_offset;
+
+ if (blob_start_offset >= blob_end_offset ||
+ blob_start_offset < 0 ||
+ blob_end_offset <= 0) {
+ /* reject empty or backwards blob */
+ error = EINVAL;
+ goto out;
+ }
+
+ vnode_lock(vp);
+ if (! UBCINFOEXISTS(vp)) {
+ vnode_unlock(vp);
+ error = ENOENT;
+ goto out;
+ }
+ uip = vp->v_ubcinfo;
+
+ /* check if this new blob overlaps with an existing blob */
+ for (oblob = uip->cs_blobs;
+ oblob != NULL;
+ oblob = oblob->csb_next) {
+ off_t oblob_start_offset, oblob_end_offset;
+
+ oblob_start_offset = (oblob->csb_base_offset +
+ oblob->csb_start_offset);
+ oblob_end_offset = (oblob->csb_base_offset +
+ oblob->csb_end_offset);
+ if (blob_start_offset >= oblob_end_offset ||
+ blob_end_offset <= oblob_start_offset) {
+ /* no conflict with this existing blob */
+ } else {
+ /* conflict ! */
+ if (blob_start_offset == oblob_start_offset &&
+ blob_end_offset == oblob_end_offset &&
+ blob->csb_mem_size == oblob->csb_mem_size &&
+ blob->csb_flags == oblob->csb_flags &&
+ (blob->csb_cpu_type == CPU_TYPE_ANY ||
+ oblob->csb_cpu_type == CPU_TYPE_ANY ||
+ blob->csb_cpu_type == oblob->csb_cpu_type) &&
+ !bcmp(blob->csb_sha1,
+ oblob->csb_sha1,
+ SHA1_RESULTLEN)) {
+ /*
+ * We already have this blob:
+ * we'll return success but
+ * throw away the new blob.
+ */
+ if (oblob->csb_cpu_type == CPU_TYPE_ANY) {
+ /*
+ * The old blob matches this one
+ * but doesn't have any CPU type.
+ * Update it with whatever the caller
+ * provided this time.
+ */
+ oblob->csb_cpu_type = cputype;
+ }
+ vnode_unlock(vp);
+ error = EAGAIN;
+ goto out;
+ } else {
+ /* different blob: reject the new one */
+ vnode_unlock(vp);
+ error = EALREADY;
+ goto out;
+ }
+ }
+
+ }
+
+
+ /* mark this vnode's VM object as having "signed pages" */
+ kr = memory_object_signed(uip->ui_control, TRUE);
+ if (kr != KERN_SUCCESS) {
+ vnode_unlock(vp);
+ error = ENOENT;
+ goto out;
+ }
+
+ /*
+ * Add this blob to the list of blobs for this vnode.
+ * We always add at the front of the list and we never remove a
+ * blob from the list, so ubc_cs_get_blobs() can return whatever
+ * the top of the list was and that list will remain valid
+ * while we validate a page, even after we release the vnode's lock.
+ */
+ blob->csb_next = uip->cs_blobs;
+ uip->cs_blobs = blob;
+
+ OSAddAtomic(+1, &cs_blob_count);
+ if (cs_blob_count > cs_blob_count_peak) {
+ cs_blob_count_peak = cs_blob_count; /* XXX atomic ? */
+ }
+ OSAddAtomic(+blob->csb_mem_size, &cs_blob_size);
+ if (cs_blob_size > cs_blob_size_peak) {
+ cs_blob_size_peak = cs_blob_size; /* XXX atomic ? */
+ }
+ if (blob->csb_mem_size > cs_blob_size_max) {
+ cs_blob_size_max = blob->csb_mem_size;
+ }
+
+ if (cs_debug) {
+ proc_t p;
+
+ p = current_proc();
+ printf("CODE SIGNING: proc %d(%s) "
+ "loaded %s signatures for file (%s) "
+ "range 0x%llx:0x%llx flags 0x%x\n",
+ p->p_pid, p->p_comm,
+ blob->csb_cpu_type == -1 ? "detached" : "embedded",
+ vnode_name(vp),
+ blob->csb_base_offset + blob->csb_start_offset,
+ blob->csb_base_offset + blob->csb_end_offset,
+ blob->csb_flags);
+ }
+
+ vnode_unlock(vp);
+
+ error = 0; /* success ! */
+
+out:
+ if (error) {
+ /* we failed; release what we allocated */
+ if (blob) {
+ kfree(blob, sizeof (*blob));
+ blob = NULL;
+ }
+ if (blob_handle != IPC_PORT_NULL) {
+ mach_memory_entry_port_release(blob_handle);
+ blob_handle = IPC_PORT_NULL;
+ }
+ }
+
+ if (error == EAGAIN) {
+ /*
+ * See above: error is EAGAIN if we were asked
+ * to add an existing blob again. We cleaned the new
+ * blob and we want to return success.
+ */
+ error = 0;
+ /*
+ * Since we're not failing, consume the data we received.
+ */
+ ubc_cs_blob_deallocate(addr, size);
+ }
+
+ return error;
+}
+
+
+struct cs_blob *
+ubc_cs_blob_get(
+ struct vnode *vp,
+ cpu_type_t cputype,
+ off_t offset)
{
- return((vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo != UBC_INFO_NULL));
+ struct ubc_info *uip;
+ struct cs_blob *blob;
+ off_t offset_in_blob;
+
+ vnode_lock_spin(vp);
+
+ if (! UBCINFOEXISTS(vp)) {
+ blob = NULL;
+ goto out;
+ }
+
+ uip = vp->v_ubcinfo;
+ for (blob = uip->cs_blobs;
+ blob != NULL;
+ blob = blob->csb_next) {
+ if (cputype != -1 && blob->csb_cpu_type == cputype) {
+ break;
+ }
+ if (offset != -1) {
+ offset_in_blob = offset - blob->csb_base_offset;
+ if (offset_in_blob >= blob->csb_start_offset &&
+ offset_in_blob < blob->csb_end_offset) {
+ /* our offset is covered by this blob */
+ break;
+ }
+ }
+ }
+
+out:
+ vnode_unlock(vp);
+
+ return blob;
}
-int
-UBCISVALID(struct vnode * vp)
+
+static void
+ubc_cs_free(
+ struct ubc_info *uip)
{
- return((vp) && ((vp)->v_type == VREG) && !((vp)->v_flag & VSYSTEM));
+ struct cs_blob *blob, *next_blob;
+
+ for (blob = uip->cs_blobs;
+ blob != NULL;
+ blob = next_blob) {
+ next_blob = blob->csb_next;
+ if (blob->csb_mem_kaddr != 0) {
+ ubc_cs_blob_deallocate(blob->csb_mem_kaddr,
+ blob->csb_mem_size);
+ blob->csb_mem_kaddr = 0;
+ }
+ if (blob->csb_mem_handle != IPC_PORT_NULL) {
+ mach_memory_entry_port_release(blob->csb_mem_handle);
+ }
+ blob->csb_mem_handle = IPC_PORT_NULL;
+ OSAddAtomic(-1, &cs_blob_count);
+ OSAddAtomic(-blob->csb_mem_size, &cs_blob_size);
+ kfree(blob, sizeof (*blob));
+ }
+ uip->cs_blobs = NULL;
}
-int
-UBCINVALID(struct vnode * vp)
+
+struct cs_blob *
+ubc_get_cs_blobs(
+ struct vnode *vp)
{
- return(((vp) == NULL) || ((vp) && ((vp)->v_type != VREG))
- || ((vp) && ((vp)->v_flag & VSYSTEM)));
+ struct ubc_info *uip;
+ struct cs_blob *blobs;
+
+ vnode_lock_spin(vp);
+
+ if (! UBCINFOEXISTS(vp)) {
+ blobs = NULL;
+ goto out;
+ }
+
+ uip = vp->v_ubcinfo;
+ blobs = uip->cs_blobs;
+
+out:
+ vnode_unlock(vp);
+
+ return blobs;
}
-int
-UBCINFOCHECK(const char * fun, struct vnode * vp)
+
+unsigned long cs_validate_page_no_hash = 0;
+unsigned long cs_validate_page_bad_hash = 0;
+boolean_t
+cs_validate_page(
+ void *_blobs,
+ memory_object_offset_t page_offset,
+ const void *data,
+ boolean_t *tainted)
{
- if ((vp) && ((vp)->v_type == VREG) &&
- ((vp)->v_ubcinfo == UBC_INFO_NULL)) {
- panic("%s: lost ubc_info", (fun));
- return(1);
- } else
- return(0);
+ SHA1_CTX sha1ctxt;
+ unsigned char actual_hash[SHA1_RESULTLEN];
+ unsigned char expected_hash[SHA1_RESULTLEN];
+ boolean_t found_hash;
+ struct cs_blob *blobs, *blob;
+ const CS_CodeDirectory *cd;
+ const CS_SuperBlob *embedded;
+ off_t start_offset, end_offset;
+ const unsigned char *hash;
+ boolean_t validated;
+ off_t offset; /* page offset in the file */
+ size_t size;
+ off_t codeLimit = 0;
+ char *lower_bound, *upper_bound;
+ vm_offset_t kaddr, blob_addr;
+ vm_size_t ksize;
+ kern_return_t kr;
+
+ offset = page_offset;
+
+ /* retrieve the expected hash */
+ found_hash = FALSE;
+ blobs = (struct cs_blob *) _blobs;
+
+ for (blob = blobs;
+ blob != NULL;
+ blob = blob->csb_next) {
+ offset = page_offset - blob->csb_base_offset;
+ if (offset < blob->csb_start_offset ||
+ offset >= blob->csb_end_offset) {
+ /* our page is not covered by this blob */
+ continue;
+ }
+
+ /* map the blob in the kernel address space */
+ kaddr = blob->csb_mem_kaddr;
+ if (kaddr == 0) {
+ ksize = (vm_size_t) (blob->csb_mem_size +
+ blob->csb_mem_offset);
+ kr = vm_map(kernel_map,
+ &kaddr,
+ ksize,
+ 0,
+ VM_FLAGS_ANYWHERE,
+ blob->csb_mem_handle,
+ 0,
+ TRUE,
+ VM_PROT_READ,
+ VM_PROT_READ,
+ VM_INHERIT_NONE);
+ if (kr != KERN_SUCCESS) {
+ /* XXX FBDP what to do !? */
+ printf("cs_validate_page: failed to map blob, "
+ "size=0x%x kr=0x%x\n",
+ blob->csb_mem_size, kr);
+ break;
+ }
+ }
+ blob_addr = kaddr + blob->csb_mem_offset;
+
+ lower_bound = CAST_DOWN(char *, blob_addr);
+ upper_bound = lower_bound + blob->csb_mem_size;
+
+ embedded = (const CS_SuperBlob *) blob_addr;
+ cd = findCodeDirectory(embedded, lower_bound, upper_bound);
+ if (cd != NULL) {
+ if (cd->pageSize != PAGE_SHIFT ||
+ cd->hashType != 0x1 ||
+ cd->hashSize != SHA1_RESULTLEN) {
+ /* bogus blob ? */
+ continue;
+ }
+
+ end_offset = round_page(ntohl(cd->codeLimit));
+ start_offset = end_offset - (ntohl(cd->nCodeSlots) * PAGE_SIZE);
+ offset = page_offset - blob->csb_base_offset;
+ if (offset < start_offset ||
+ offset >= end_offset) {
+ /* our page is not covered by this blob */
+ continue;
+ }
+
+ codeLimit = ntohl(cd->codeLimit);
+ hash = hashes(cd, atop(offset),
+ lower_bound, upper_bound);
+ if (hash != NULL) {
+ bcopy(hash, expected_hash,
+ sizeof (expected_hash));
+ found_hash = TRUE;
+ }
+
+ break;
+ }
+ }
+
+ if (found_hash == FALSE) {
+ /*
+ * We can't verify this page because there is no signature
+ * for it (yet). It's possible that this part of the object
+ * is not signed, or that signatures for that part have not
+ * been loaded yet.
+ * Report that the page has not been validated and let the
+ * caller decide if it wants to accept it or not.
+ */
+ cs_validate_page_no_hash++;
+ if (cs_debug > 1) {
+ printf("CODE SIGNING: cs_validate_page: "
+ "off 0x%llx: no hash to validate !?\n",
+ page_offset);
+ }
+ validated = FALSE;
+ *tainted = FALSE;
+ } else {
+
+ size = PAGE_SIZE;
+ const uint32_t *asha1, *esha1;
+ if (offset + size > codeLimit) {
+ /* partial page at end of segment */
+ assert(offset < codeLimit);
+ size = codeLimit & PAGE_MASK;
+ }
+ /* compute the actual page's SHA1 hash */
+ SHA1Init(&sha1ctxt);
+ SHA1UpdateUsePhysicalAddress(&sha1ctxt, data, size);
+ SHA1Final(actual_hash, &sha1ctxt);
+
+ asha1 = (const uint32_t *) actual_hash;
+ esha1 = (const uint32_t *) expected_hash;
+
+ if (bcmp(expected_hash, actual_hash, SHA1_RESULTLEN) != 0) {
+ if (cs_debug) {
+ printf("CODE SIGNING: cs_validate_page: "
+ "off 0x%llx size 0x%lx: "
+ "actual [0x%x 0x%x 0x%x 0x%x 0x%x] != "
+ "expected [0x%x 0x%x 0x%x 0x%x 0x%x]\n",
+ page_offset, size,
+ asha1[0], asha1[1], asha1[2],
+ asha1[3], asha1[4],
+ esha1[0], esha1[1], esha1[2],
+ esha1[3], esha1[4]);
+ }
+ cs_validate_page_bad_hash++;
+ *tainted = TRUE;
+ } else {
+ if (cs_debug > 1) {
+ printf("CODE SIGNING: cs_validate_page: "
+ "off 0x%llx size 0x%lx: SHA1 OK\n",
+ page_offset, size);
+ }
+ *tainted = FALSE;
+ }
+ validated = TRUE;
+ }
+
+ return validated;
}
+int
+ubc_cs_getcdhash(
+ vnode_t vp,
+ off_t offset,
+ unsigned char *cdhash)
+{
+ struct cs_blob *blobs, *blob;
+ off_t rel_offset;
+
+ blobs = ubc_get_cs_blobs(vp);
+ for (blob = blobs;
+ blob != NULL;
+ blob = blob->csb_next) {
+ /* compute offset relative to this blob */
+ rel_offset = offset - blob->csb_base_offset;
+ if (rel_offset >= blob->csb_start_offset &&
+ rel_offset < blob->csb_end_offset) {
+ /* this blob does cover our "offset" ! */
+ break;
+ }
+ }
+
+ if (blob == NULL) {
+ /* we didn't find a blob covering "offset" */
+ return EBADEXEC; /* XXX any better error ? */
+ }
+
+ /* get the SHA1 hash of that blob */
+ bcopy(blob->csb_sha1, cdhash, sizeof (blob->csb_sha1));
+
+ return 0;
+}