/*
- * Copyright (c) 2004-2006 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2004-2011 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
*
* Implements the "wrappers" to the KEXT.
*/
-#include <i386/machine_routines.h>
-#include <i386/machine_cpu.h>
-#include <i386/misc_protos.h>
-#include <i386/pmap.h>
#include <i386/asm.h>
+#include <i386/machine_cpu.h>
#include <i386/mp.h>
+#include <i386/machine_routines.h>
#include <i386/proc_reg.h>
+#include <i386/pmap.h>
+#include <i386/misc_protos.h>
+#include <kern/machine.h>
#include <kern/pms.h>
#include <kern/processor.h>
+#include <kern/timer_queue.h>
+#include <i386/cpu_threads.h>
#include <i386/pmCPU.h>
#include <i386/cpuid.h>
-#include <i386/rtclock.h>
-#if MACH_KDB
-#include <i386/db_machdep.h>
-#include <ddb/db_aout.h>
-#include <ddb/db_access.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_variables.h>
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_expr.h>
-#endif
+#include <i386/rtclock_protos.h>
+#include <kern/sched_prim.h>
+#include <i386/lapic.h>
+#include <i386/pal_routines.h>
+#include <sys/kdebug.h>
+#include <i386/tsc.h>
+
+#include <kern/sched_urgency.h>
extern int disableConsoleOutput;
-decl_simple_lock_data(,pm_init_lock);
+#define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL
+
+uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16 * NSEC_PER_USEC, 32 * NSEC_PER_USEC, 64 * NSEC_PER_USEC, 128 * NSEC_PER_USEC, 256 * NSEC_PER_USEC, 512 * NSEC_PER_USEC, 1024 * NSEC_PER_USEC, 2048 * NSEC_PER_USEC, 4096 * NSEC_PER_USEC, 8192 * NSEC_PER_USEC, 16384 * NSEC_PER_USEC, 32768 * NSEC_PER_USEC};
+uint64_t *cpu_rtime_bins = &cpu_itime_bins[0];
/*
* The following is set when the KEXT loads and initializes.
*/
-pmDispatch_t *pmDispatch = NULL;
+pmDispatch_t *pmDispatch = NULL;
-/*
- * Current power management states (for use until KEXT is loaded).
- */
-static pmInitState_t pmInitState;
+uint32_t pmInitDone = 0;
+static boolean_t earlyTopology = FALSE;
+static uint64_t earlyMaxBusDelay = DELAY_UNSET;
+static uint64_t earlyMaxIntDelay = DELAY_UNSET;
/*
- * Nap control variables:
+ * Initialize the Cstate change code.
*/
-uint32_t napCtl = 0; /* Defaults to neither napping
- nor halting */
-uint32_t forcenap = 0; /* Force nap (fn) boot-arg controls */
-uint32_t maxBusDelay = 0xFFFFFFFF; /* Maximum memory bus delay that
- I/O devices can tolerate
- before errors (nanoseconds) */
-uint32_t C4C2SnoopDelay = 0; /* C4 to C2 transition time -
- time before a C4 system
- can snoop (nanoseconds) */
+void
+power_management_init(void)
+{
+ if (pmDispatch != NULL && pmDispatch->cstateInit != NULL) {
+ (*pmDispatch->cstateInit)();
+ }
+}
+
+static inline void
+machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins)
+{
+ uint32_t i;
+ for (i = 0; i < nbins; i++) {
+ if (interval < binvals[i]) {
+ bins[i]++;
+ break;
+ }
+ }
+}
+
+uint64_t idle_pending_timers_processed;
+uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000;
/*
- * We are being asked to set PState (sel).
+ * Called when the CPU is idle. It calls into the power management kext
+ * to determine the best way to idle the CPU.
*/
void
-pmsCPUSet(uint32_t sel)
+machine_idle(void)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPUSet != NULL)
- (*pmDispatch->pmsCPUSet)(sel);
- else
- pmInitState.PState = sel;
+ cpu_data_t *my_cpu = current_cpu_datap();
+ __unused uint32_t cnum = my_cpu->cpu_number;
+ uint64_t ctime, rtime, itime;
+#if CST_DEMOTION_DEBUG
+ processor_t cproc = my_cpu->cpu_processor;
+ uint64_t cwakeups = my_cpu->cpu_wakeups_issued_total;
+#endif /* CST_DEMOTION_DEBUG */
+ uint64_t esdeadline, ehdeadline;
+ boolean_t do_process_pending_timers = FALSE;
+
+ ctime = mach_absolute_time();
+ esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline;
+ ehdeadline = my_cpu->rtclock_timer.deadline;
+/* Determine if pending timers exist */
+ if ((ctime >= esdeadline) && (ctime < ehdeadline) &&
+ ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) {
+ idle_pending_timers_processed++;
+ do_process_pending_timers = TRUE;
+ goto machine_idle_exit;
+ } else {
+ TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0);
+ }
+
+ my_cpu->lcpu.state = LCPU_IDLE;
+ DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
+ MARK_CPU_IDLE(cnum);
+
+ rtime = ctime - my_cpu->cpu_ixtime;
+
+ my_cpu->cpu_rtime_total += rtime;
+ machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS);
+#if CST_DEMOTION_DEBUG
+ uint32_t cl = 0, ch = 0;
+ uint64_t c3res, c6res, c7res;
+ rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
+ c3res = ((uint64_t)ch << 32) | cl;
+ rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
+ c6res = ((uint64_t)ch << 32) | cl;
+ rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
+ c7res = ((uint64_t)ch << 32) | cl;
+#endif
+
+ if (pmInitDone) {
+ /*
+ * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay()
+ * were called prior to the CPU PM kext being registered. We do
+ * this here since we know at this point the values will be first
+ * used since idle is where the decisions using these values is made.
+ */
+ if (earlyMaxBusDelay != DELAY_UNSET) {
+ ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF));
+ }
+ if (earlyMaxIntDelay != DELAY_UNSET) {
+ ml_set_maxintdelay(earlyMaxIntDelay);
+ }
+ }
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->MachineIdle != NULL) {
+ (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL);
+ } else {
+ /*
+ * If no power management, re-enable interrupts and halt.
+ * This will keep the CPU from spinning through the scheduler
+ * and will allow at least some minimal power savings (but it
+ * cause problems in some MP configurations w.r.t. the APIC
+ * stopping during a GV3 transition).
+ */
+ pal_hlt();
+ /* Once woken, re-disable interrupts. */
+ pal_cli();
+ }
+
+ /*
+ * Mark the CPU as running again.
+ */
+ MARK_CPU_ACTIVE(cnum);
+ DBGLOG(cpu_handle, cnum, MP_UNIDLE);
+ my_cpu->lcpu.state = LCPU_RUN;
+ uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time();
+ itime = ixtime - ctime;
+ my_cpu->cpu_idle_exits++;
+ my_cpu->cpu_itime_total += itime;
+ machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS);
+#if CST_DEMOTION_DEBUG
+ cl = ch = 0;
+ rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
+ c3res = (((uint64_t)ch << 32) | cl) - c3res;
+ rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
+ c6res = (((uint64_t)ch << 32) | cl) - c6res;
+ rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
+ c7res = (((uint64_t)ch << 32) | cl) - c7res;
+
+ uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n);
+ KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res);
+ if ((itime > 1000000) && (ndelta > 250000)) {
+ KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res);
+ }
+#endif
+
+machine_idle_exit:
+ /*
+ * Re-enable interrupts.
+ */
+
+ pal_sti();
+
+ if (do_process_pending_timers) {
+ TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0);
+
+ /* Adjust to reflect that this isn't truly a package idle exit */
+ __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
+ lapic_timer_swi(); /* Trigger software timer interrupt */
+ __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
+
+ TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0);
+ }
+#if CST_DEMOTION_DEBUG
+ uint64_t nwakeups = my_cpu->cpu_wakeups_issued_total;
+
+ if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) {
+ KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0);
+ }
+#endif
}
/*
- * This code configures the initial step tables. It should be called after
- * the timebase frequency is initialized.
- *
- * Note that this is not used in normal operation. It is strictly for
- * debugging/testing purposes.
+ * Called when the CPU is to be halted. It will choose the best C-State
+ * to be in.
*/
void
-pmsCPUConf(void)
+pmCPUHalt(uint32_t reason)
{
+ cpu_data_t *cpup = current_cpu_datap();
+
+ switch (reason) {
+ case PM_HALT_DEBUG:
+ cpup->lcpu.state = LCPU_PAUSE;
+ pal_stop_cpu(FALSE);
+ break;
+
+ case PM_HALT_PANIC:
+ cpup->lcpu.state = LCPU_PAUSE;
+ pal_stop_cpu(TRUE);
+ break;
+
+ case PM_HALT_NORMAL:
+ case PM_HALT_SLEEP:
+ default:
+ pal_cli();
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->pmCPUHalt != NULL) {
+ /*
+ * Halt the CPU (and put it in a low power state.
+ */
+ (*pmDispatch->pmCPUHalt)();
- if (pmDispatch != NULL && pmDispatch->pmsCPUConf != NULL)
- (*pmDispatch->pmsCPUConf)();
+ /*
+ * We've exited halt, so get the CPU schedulable again.
+ * - by calling the fast init routine for a slave, or
+ * - by returning if we're the master processor.
+ */
+ if (cpup->cpu_number != master_cpu) {
+ i386_init_slave_fast();
+ panic("init_slave_fast returned");
+ }
+ } else {
+ /*
+ * If no power managment and a processor is taken off-line,
+ * then invalidate the cache and halt it (it will not be able
+ * to be brought back on-line without resetting the CPU).
+ */
+ __asm__ volatile ("wbinvd");
+ cpup->lcpu.state = LCPU_HALT;
+ pal_stop_cpu(FALSE);
+
+ panic("back from Halt");
+ }
+
+ break;
+ }
+}
+
+void
+pmMarkAllCPUsOff(void)
+{
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->markAllCPUsOff != NULL) {
+ (*pmDispatch->markAllCPUsOff)();
+ }
+}
+
+static void
+pmInitComplete(void)
+{
+ if (earlyTopology
+ && pmDispatch != NULL
+ && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ earlyTopology = FALSE;
+ }
+ pmInitDone = 1;
+}
+
+x86_lcpu_t *
+pmGetLogicalCPU(int cpu)
+{
+ return cpu_to_lcpu(cpu);
+}
+
+x86_lcpu_t *
+pmGetMyLogicalCPU(void)
+{
+ cpu_data_t *cpup = current_cpu_datap();
+
+ return &cpup->lcpu;
+}
+
+static x86_core_t *
+pmGetCore(int cpu)
+{
+ return cpu_to_core(cpu);
+}
+
+static x86_core_t *
+pmGetMyCore(void)
+{
+ cpu_data_t *cpup = current_cpu_datap();
+
+ return cpup->lcpu.core;
+}
+
+static x86_die_t *
+pmGetDie(int cpu)
+{
+ return cpu_to_die(cpu);
+}
+
+static x86_die_t *
+pmGetMyDie(void)
+{
+ cpu_data_t *cpup = current_cpu_datap();
+
+ return cpup->lcpu.die;
+}
+
+static x86_pkg_t *
+pmGetPackage(int cpu)
+{
+ return cpu_to_package(cpu);
+}
+
+static x86_pkg_t *
+pmGetMyPackage(void)
+{
+ cpu_data_t *cpup = current_cpu_datap();
+
+ return cpup->lcpu.package;
+}
+
+static void
+pmLockCPUTopology(int lock)
+{
+ if (lock) {
+ mp_safe_spin_lock(&x86_topo_lock);
+ } else {
+ simple_unlock(&x86_topo_lock);
+ }
}
/*
- * Machine-dependent initialization.
+ * Called to get the next deadline that has been set by the
+ * power management code.
+ * Note: a return of 0 from AICPM and this routine signifies
+ * that no deadline is set.
*/
-void
-pmsCPUMachineInit(void)
+uint64_t
+pmCPUGetDeadline(cpu_data_t *cpu)
{
- /*
- * Initialize some of the initial state to "uninitialized" until
- * it gets set with something more useful. This allows the KEXT
- * to determine if the initial value was actually set to something.
- */
- pmInitState.PState = -1;
- pmInitState.PLimit = -1;
+ uint64_t deadline = 0;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->GetDeadline != NULL) {
+ deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu);
+ }
- if (pmDispatch != NULL && pmDispatch->pmsCPUMachineInit != NULL)
- (*pmDispatch->pmsCPUMachineInit)();
+ return deadline;
}
/*
- * This function should be called once for each processor to force the
- * processor to the correct initial voltage and frequency.
+ * Called to determine if the supplied deadline or the power management
+ * deadline is sooner. Returns which ever one is first.
*/
-void
-pmsCPUInit(void)
+
+uint64_t
+pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline)
{
- pmsCPUMachineInit();
- if (pmDispatch != NULL && pmDispatch->pmsCPUInit != NULL)
- (*pmDispatch->pmsCPUInit)();
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->SetDeadline != NULL) {
+ deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline);
+ }
+
+ return deadline;
}
/*
- * Broadcast a change to all processing including ourselves.
+ * Called when a power management deadline expires.
*/
void
-pmsCPURun(uint32_t nstep)
+pmCPUDeadline(cpu_data_t *cpu)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPURun != NULL)
- (*pmDispatch->pmsCPURun)(nstep);
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->Deadline != NULL) {
+ (*pmDispatch->Deadline)(&cpu->lcpu);
+ }
}
/*
- * Return the current state of a core.
+ * Called to get a CPU out of idle.
*/
-uint32_t
-pmsCPUQuery(void)
+boolean_t
+pmCPUExitIdle(cpu_data_t *cpu)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPUQuery != NULL)
- return((*pmDispatch->pmsCPUQuery)());
+ boolean_t do_ipi;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->exitIdle != NULL) {
+ do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu);
+ } else {
+ do_ipi = TRUE;
+ }
- /*
- * Return a non-sense value.
- */
- return((~0) << 16);
+ return do_ipi;
}
-/*
- * Return the current state of the package.
- */
-uint32_t
-pmsCPUPackageQuery(void)
+kern_return_t
+pmCPUExitHalt(int cpu)
+{
+ kern_return_t rc = KERN_INVALID_ARGUMENT;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->exitHalt != NULL) {
+ rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu));
+ }
+
+ return rc;
+}
+
+kern_return_t
+pmCPUExitHaltToOff(int cpu)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPUPackageQuery != NULL)
- return((*pmDispatch->pmsCPUPackageQuery)());
+ kern_return_t rc = KERN_SUCCESS;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->exitHaltToOff != NULL) {
+ rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu));
+ }
- /*
- * Return a non-sense value.
- */
- return((~0) << 16);
+ return rc;
}
/*
- * Force the CPU package to the lowest power level. This is a low-level
- * interface meant to be called from the panic or debugger code to bring
- * the CPU to a safe power level for unmanaged operation.
- *
- * Note that while this will bring an entire package to a safe level, it
- * cannot affect other packages. As a general rule, this should be run on
- * every code as part of entering the debugger or on the panic path.
+ * Called to initialize the power management structures for the CPUs.
*/
void
-pmsCPUYellowFlag(void)
+pmCPUStateInit(void)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPUYellowFlag != NULL)
- (*pmDispatch->pmsCPUYellowFlag)();
+ if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ } else {
+ earlyTopology = TRUE;
+ }
}
/*
- * Restore the CPU to the power state it was in before a yellow flag.
+ * Called when a CPU is being restarted after being powered off (as in S3).
*/
void
-pmsCPUGreenFlag(void)
+pmCPUMarkRunning(cpu_data_t *cpu)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPUGreenFlag != NULL)
- (*pmDispatch->pmsCPUGreenFlag)();
+ cpu_data_t *cpup = current_cpu_datap();
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->markCPURunning != NULL) {
+ (*pmDispatch->markCPURunning)(&cpu->lcpu);
+ } else {
+ cpup->lcpu.state = LCPU_RUN;
+ }
}
/*
- * Load a new ratio/VID table.
- *
- * Note that this interface is specific to the Intel SpeedStep implementation.
- * It is expected that this will only be called once to override the default
- * ratio/VID table when the platform starts.
- *
- * Normally, the table will need to be replaced at the same time that the
- * stepper program proper is replaced, as the PState indices from an old
- * program may no longer be valid. When replacing the default program this
- * should not be a problem as any new table will have at least two PState
- * entries and the default program only references P0 and P1.
+ * Called to get/set CPU power management state.
*/
-kern_return_t
-pmsCPULoadVIDTable(uint16_t *tablep, int nstates)
+int
+pmCPUControl(uint32_t cmd, void *datap)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPULoadVIDTable != NULL)
- return((*pmDispatch->pmsCPULoadVIDTable)(tablep, nstates));
- else {
- int i;
+ int rc = -1;
- if (nstates > MAX_PSTATES)
- return(KERN_FAILURE);
+ if (pmDispatch != NULL
+ && pmDispatch->pmCPUControl != NULL) {
+ rc = (*pmDispatch->pmCPUControl)(cmd, datap);
+ }
- for (i = 0; i < nstates; i += 1)
- pmInitState.VIDTable[i] = tablep[i];
- }
- return(KERN_SUCCESS);
+ return rc;
}
/*
- * Set the (global) PState limit. CPUs will not be permitted to run at
- * a lower (more performant) PState than this.
+ * Called to save the timer state used by power management prior
+ * to "sleeping".
*/
-kern_return_t
-pmsCPUSetPStateLimit(uint32_t limit)
+void
+pmTimerSave(void)
{
- if (pmDispatch != NULL && pmDispatch->pmsCPUSetPStateLimit != NULL)
- return((*pmDispatch->pmsCPUSetPStateLimit)(limit));
+ if (pmDispatch != NULL
+ && pmDispatch->pmTimerStateSave != NULL) {
+ (*pmDispatch->pmTimerStateSave)();
+ }
+}
- pmInitState.PLimit = limit;
- return(KERN_SUCCESS);
+/*
+ * Called to restore the timer state used by power management after
+ * waking from "sleep".
+ */
+void
+pmTimerRestore(void)
+{
+ if (pmDispatch != NULL
+ && pmDispatch->pmTimerStateRestore != NULL) {
+ (*pmDispatch->pmTimerStateRestore)();
+ }
}
/*
- * Initialize the Cstate change code.
+ * Set the worst-case time for the C4 to C2 transition.
+ * No longer does anything.
*/
void
-power_management_init(void)
+ml_set_maxsnoop(__unused uint32_t maxdelay)
{
- uint32_t cpuModel;
- uint32_t cpuFamily;
- uint32_t xcpuid[4];
+}
- /*
- * Initialize the lock for the KEXT initialization.
- */
- simple_lock_init(&pm_init_lock, 0);
- /*
- * XXX
- *
- * The following is a hack to disable power management on some systems
- * until the KEXT is done. This is strictly temporary!!!
- */
- do_cpuid(1, xcpuid);
- cpuFamily = (xcpuid[eax] >> 8) & 0xf;
- cpuModel = (xcpuid[eax] >> 4) & 0xf;
+/*
+ * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds.
+ */
+unsigned
+ml_get_maxsnoop(void)
+{
+ uint64_t max_snoop = 0;
- if (cpuFamily != 0x6 || cpuModel < 0xe)
- pmDispatch = NULL;
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->getMaxSnoop != NULL) {
+ max_snoop = pmDispatch->getMaxSnoop();
+ }
- if (pmDispatch != NULL && pmDispatch->cstateInit != NULL)
- (*pmDispatch->cstateInit)();
+ return (unsigned)(max_snoop & 0xffffffff);
+}
+
+
+uint32_t
+ml_get_maxbusdelay(void)
+{
+ uint64_t max_delay = 0;
+
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->getMaxBusDelay != NULL) {
+ max_delay = pmDispatch->getMaxBusDelay();
+ }
+
+ return (uint32_t)(max_delay & 0xffffffff);
}
/*
- * This function will update the system nap policy. It should be called
- * whenever conditions change: when the system is ready to being napping
- * and if something changes the rules (e.g. a sysctl altering the policy
- * for debugging).
+ * Advertise a memory access latency tolerance of "mdelay" ns
*/
void
-machine_nap_policy(void)
+ml_set_maxbusdelay(uint32_t mdelay)
{
- if (pmDispatch != NULL && pmDispatch->cstateNapPolicy != NULL)
- napCtl = (*pmDispatch->cstateNapPolicy)(forcenap, napCtl);
+ uint64_t maxdelay = mdelay;
+
+ if (pmDispatch != NULL
+ && pmDispatch->setMaxBusDelay != NULL) {
+ earlyMaxBusDelay = DELAY_UNSET;
+ pmDispatch->setMaxBusDelay(maxdelay);
+ } else {
+ earlyMaxBusDelay = maxdelay;
+ }
+}
+
+uint64_t
+ml_get_maxintdelay(void)
+{
+ uint64_t max_delay = 0;
+
+ if (pmDispatch != NULL
+ && pmDispatch->getMaxIntDelay != NULL) {
+ max_delay = pmDispatch->getMaxIntDelay();
+ }
+
+ return max_delay;
}
/*
- * ACPI calls the following routine to set/update mwait hints. A table
- * (possibly null) specifies the available Cstates and their hints, all
- * other states are assumed to be invalid. ACPI may update available
- * states to change the nap policy (for example, while AC power is
- * available).
+ * Set the maximum delay allowed for an interrupt.
*/
-kern_return_t
-Cstate_table_set(Cstate_hint_t *tablep, unsigned int nstates)
+void
+ml_set_maxintdelay(uint64_t mdelay)
{
- if (forcenap)
- return(KERN_SUCCESS);
+ if (pmDispatch != NULL
+ && pmDispatch->setMaxIntDelay != NULL) {
+ earlyMaxIntDelay = DELAY_UNSET;
+ pmDispatch->setMaxIntDelay(mdelay);
+ } else {
+ earlyMaxIntDelay = mdelay;
+ }
+}
- if (pmDispatch != NULL && pmDispatch->cstateTableSet != NULL)
- return((*pmDispatch->cstateTableSet)(tablep, nstates));
- else {
- unsigned int i;
+boolean_t
+ml_get_interrupt_prewake_applicable()
+{
+ boolean_t applicable = FALSE;
- for (i = 0; i < nstates; i += 1) {
- pmInitState.CStates[i].number = tablep[i].number;
- pmInitState.CStates[i].hint = tablep[i].hint;
+ if (pmInitDone
+ && pmDispatch != NULL
+ && pmDispatch->pmInterruptPrewakeApplicable != NULL) {
+ applicable = pmDispatch->pmInterruptPrewakeApplicable();
}
- pmInitState.CStatesCount = nstates;
- }
- return(KERN_SUCCESS);
-}
-
-static inline void
-sti(void) {
- __asm__ volatile ( "sti" : : : "memory");
+ return applicable;
}
/*
- * Called when the CPU is idle. It will choose the best C state to
- * be in.
+ * Put a CPU into "safe" mode with respect to power.
+ *
+ * Some systems cannot operate at a continuous "normal" speed without
+ * exceeding the thermal design. This is called per-CPU to place the
+ * CPUs into a "safe" operating mode.
*/
void
-machine_idle_cstate(void)
+pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags)
{
- if (pmDispatch != NULL && pmDispatch->cstateMachineIdle != NULL)
- (*pmDispatch->cstateMachineIdle)(napCtl);
- else {
- sti();
- }
+ if (pmDispatch != NULL
+ && pmDispatch->pmCPUSafeMode != NULL) {
+ pmDispatch->pmCPUSafeMode(lcpu, flags);
+ } else {
+ /*
+ * Do something reasonable if the KEXT isn't present.
+ *
+ * We only look at the PAUSE and RESUME flags. The other flag(s)
+ * will not make any sense without the KEXT, so just ignore them.
+ *
+ * We set the CPU's state to indicate that it's halted. If this
+ * is the CPU we're currently running on, then spin until the
+ * state becomes non-halted.
+ */
+ if (flags & PM_SAFE_FL_PAUSE) {
+ lcpu->state = LCPU_PAUSE;
+ if (lcpu == x86_lcpu()) {
+ while (lcpu->state == LCPU_PAUSE) {
+ cpu_pause();
+ }
+ }
+ }
+
+ /*
+ * Clear the halted flag for the specified CPU, that will
+ * get it out of it's spin loop.
+ */
+ if (flags & PM_SAFE_FL_RESUME) {
+ lcpu->state = LCPU_RUN;
+ }
+ }
}
-static pmStats_t *
-pmsCPUStats(void)
+static uint32_t saved_run_count = 0;
+
+void
+machine_run_count(uint32_t count)
{
- cpu_data_t *pp;
+ if (pmDispatch != NULL
+ && pmDispatch->pmSetRunCount != NULL) {
+ pmDispatch->pmSetRunCount(count);
+ } else {
+ saved_run_count = count;
+ }
+}
+
+processor_t
+machine_choose_processor(processor_set_t pset,
+ processor_t preferred)
+{
+ int startCPU;
+ int endCPU;
+ int preferredCPU;
+ int chosenCPU;
+
+ if (!pmInitDone) {
+ return preferred;
+ }
+
+ if (pset == NULL) {
+ startCPU = -1;
+ endCPU = -1;
+ } else {
+ startCPU = pset->cpu_set_low;
+ endCPU = pset->cpu_set_hi;
+ }
+
+ if (preferred == NULL) {
+ preferredCPU = -1;
+ } else {
+ preferredCPU = preferred->cpu_id;
+ }
+
+ if (pmDispatch != NULL
+ && pmDispatch->pmChooseCPU != NULL) {
+ chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU);
- pp = current_cpu_datap();
- return(&pp->cpu_pmStats);
+ if (chosenCPU == -1) {
+ return NULL;
+ }
+ return cpu_datap(chosenCPU)->cpu_processor;
+ }
+
+ return preferred;
}
-static pmsd *
-pmsCPUStepperData(void)
+static int
+pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline)
{
- cpu_data_t *pp;
+ thread_urgency_t urgency;
+ uint64_t arg1, arg2;
+
+ urgency = thread_get_urgency(THREAD_NULL, &arg1, &arg2);
- pp = current_cpu_datap();
- return(&pp->pms);
+ if (urgency == THREAD_URGENCY_REAL_TIME) {
+ if (rt_period != NULL) {
+ *rt_period = arg1;
+ }
+
+ if (rt_deadline != NULL) {
+ *rt_deadline = arg2;
+ }
+ }
+
+ return (int)urgency;
}
-static uint64_t *
-CPUHPETAddr(void)
+#if DEBUG
+uint32_t urgency_stats[64][THREAD_URGENCY_MAX];
+#endif
+
+#define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000)
+uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded;
+
+void
+thread_tell_urgency(thread_urgency_t urgency,
+ uint64_t rt_period,
+ uint64_t rt_deadline,
+ uint64_t sched_latency,
+ thread_t nthread)
{
- cpu_data_t *pp;
- pp = current_cpu_datap();
- return(pp->cpu_pmHpet);
+ uint64_t urgency_notification_time_start = 0, delta;
+ boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0);
+ assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE);
+#if DEBUG
+ urgency_stats[cpu_number() % 64][urgency]++;
+#endif
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmThreadTellUrgency == NULL) {
+ return;
+ }
+
+ SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, sched_latency, 0);
+
+ if (__improbable((urgency_assert == TRUE))) {
+ urgency_notification_time_start = mach_absolute_time();
+ }
+
+ current_cpu_datap()->cpu_nthread = nthread;
+ pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline);
+
+ if (__improbable((urgency_assert == TRUE))) {
+ delta = mach_absolute_time() - urgency_notification_time_start;
+
+ if (__improbable(delta > urgency_notification_max_recorded)) {
+ /* This is not synchronized, but it doesn't matter
+ * if we (rarely) miss an event, as it is statistically
+ * unlikely that it will never recur.
+ */
+ urgency_notification_max_recorded = delta;
+
+ if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended())) {
+ panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch->pmThreadTellUrgency, delta);
+ }
+ }
+ }
+
+ SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0);
}
-/*
- * Called by the power management kext to register itself and to get the
- * callbacks it might need into other power management functions.
- */
void
-pmRegister(pmDispatch_t *cpuFuncs, pmCallBacks_t *callbacks)
-{
- if (callbacks != NULL) {
- callbacks->Park = pmsPark;
- callbacks->Run = pmsRun;
- callbacks->RunLocal = pmsRunLocal;
- callbacks->SetStep = pmsSetStep;
- callbacks->NapPolicy = machine_nap_policy;
- callbacks->Build = pmsBuild;
- callbacks->Stats = pmsCPUStats;
- callbacks->StepperData = pmsCPUStepperData;
- callbacks->HPETAddr = CPUHPETAddr;
- callbacks->InitState = &pmInitState;
- callbacks->resetPop = resetPop;
- }
-
- if (cpuFuncs != NULL)
- pmDispatch = cpuFuncs;
+machine_thread_going_on_core(__unused thread_t new_thread,
+ __unused thread_urgency_t urgency,
+ __unused uint64_t sched_latency,
+ __unused uint64_t same_pri_latency,
+ __unused uint64_t dispatch_time)
+{
}
-/*
- * Unregisters the power management functions from the kext.
- */
void
-pmUnRegister(pmDispatch_t *cpuFuncs)
+machine_thread_going_off_core(thread_t old_thread, boolean_t thread_terminating,
+ uint64_t last_dispatch, boolean_t thread_runnable)
{
- if (cpuFuncs != NULL && pmDispatch == cpuFuncs)
- pmDispatch = NULL;
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmThreadGoingOffCore == NULL) {
+ return;
+ }
+
+ pmDispatch->pmThreadGoingOffCore(old_thread, thread_terminating,
+ last_dispatch, thread_runnable);
}
-#if MACH_KDB
-/*
- * XXX stubs for now
- */
void
-db_cfg(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+machine_max_runnable_latency(__unused uint64_t bg_max_latency,
+ __unused uint64_t default_max_latency,
+ __unused uint64_t realtime_max_latency)
{
- return;
}
void
-db_display_iokit(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+machine_work_interval_notify(__unused thread_t thread,
+ __unused struct kern_work_interval_args* kwi_args)
{
- return;
}
+
void
-db_dtimers(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+machine_switch_perfcontrol_context(__unused perfcontrol_event event,
+ __unused uint64_t timestamp,
+ __unused uint32_t flags,
+ __unused uint64_t new_thread_same_pri_latency,
+ __unused thread_t old,
+ __unused thread_t new)
{
- return;
}
void
-db_intcnt(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+machine_switch_perfcontrol_state_update(__unused perfcontrol_event event,
+ __unused uint64_t timestamp,
+ __unused uint32_t flags,
+ __unused thread_t thread)
{
- return;
}
void
-db_nap(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+active_rt_threads(boolean_t active)
+{
+ if (!pmInitDone
+ || pmDispatch == NULL
+ || pmDispatch->pmActiveRTThreads == NULL) {
+ return;
+ }
+
+ pmDispatch->pmActiveRTThreads(active);
+}
+
+static uint32_t
+pmGetSavedRunCount(void)
+{
+ return saved_run_count;
+}
+
+/*
+ * Returns the root of the package tree.
+ */
+x86_pkg_t *
+pmGetPkgRoot(void)
+{
+ return x86_pkgs;
+}
+
+static boolean_t
+pmCPUGetHibernate(int cpu)
+{
+ return cpu_datap(cpu)->cpu_hibernate;
+}
+
+processor_t
+pmLCPUtoProcessor(int lcpu)
+{
+ return cpu_datap(lcpu)->cpu_processor;
+}
+
+static void
+pmReSyncDeadlines(int cpu)
+{
+ static boolean_t registered = FALSE;
+
+ if (!registered) {
+ PM_interrupt_register(&timer_resync_deadlines);
+ registered = TRUE;
+ }
+
+ if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num) {
+ timer_resync_deadlines();
+ } else {
+ cpu_PM_interrupt(cpu);
+ }
+}
+
+static void
+pmSendIPI(int cpu)
{
- return;
+ lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT);
}
+static void
+pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime)
+{
+ /*
+ * Make sure that nanotime didn't change while we were reading it.
+ */
+ do {
+ rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */
+ rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base;
+ rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base;
+ rtc_nanotime->scale = pal_rtc_nanotime_info.scale;
+ rtc_nanotime->shift = pal_rtc_nanotime_info.shift;
+ } while (pal_rtc_nanotime_info.generation != 0
+ && rtc_nanotime->generation != pal_rtc_nanotime_info.generation);
+}
+
+uint32_t
+pmTimerQueueMigrate(int target_cpu)
+{
+ /* Call the etimer code to do this. */
+ return (target_cpu != cpu_number())
+ ? timer_queue_migrate_cpu(target_cpu)
+ : 0;
+}
+
+
+/*
+ * Called by the power management kext to register itself and to get the
+ * callbacks it might need into other kernel functions. This interface
+ * is versioned to allow for slight mis-matches between the kext and the
+ * kernel.
+ */
void
-db_pmgr(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs,
+ pmCallBacks_t *callbacks)
{
- return;
+ if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
+ callbacks->setRTCPop = setPop;
+ callbacks->resyncDeadlines = pmReSyncDeadlines;
+ callbacks->initComplete = pmInitComplete;
+ callbacks->GetLCPU = pmGetLogicalCPU;
+ callbacks->GetCore = pmGetCore;
+ callbacks->GetDie = pmGetDie;
+ callbacks->GetPackage = pmGetPackage;
+ callbacks->GetMyLCPU = pmGetMyLogicalCPU;
+ callbacks->GetMyCore = pmGetMyCore;
+ callbacks->GetMyDie = pmGetMyDie;
+ callbacks->GetMyPackage = pmGetMyPackage;
+ callbacks->GetPkgRoot = pmGetPkgRoot;
+ callbacks->LockCPUTopology = pmLockCPUTopology;
+ callbacks->GetHibernate = pmCPUGetHibernate;
+ callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
+ callbacks->ThreadBind = thread_bind;
+ callbacks->GetSavedRunCount = pmGetSavedRunCount;
+ callbacks->GetNanotimeInfo = pmGetNanotimeInfo;
+ callbacks->ThreadGetUrgency = pmThreadGetUrgency;
+ callbacks->RTCClockAdjust = rtc_clock_adjust;
+ callbacks->timerQueueMigrate = pmTimerQueueMigrate;
+ callbacks->topoParms = &topoParms;
+ callbacks->pmSendIPI = pmSendIPI;
+ callbacks->InterruptPending = lapic_is_interrupt_pending;
+ callbacks->IsInterrupting = lapic_is_interrupting;
+ callbacks->InterruptStats = lapic_interrupt_counts;
+ callbacks->DisableApicTimer = lapic_disable_timer;
+ } else {
+ panic("Version mis-match between Kernel and CPU PM");
+ }
+
+ if (cpuFuncs != NULL) {
+ if (pmDispatch) {
+ panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p", pmDispatch, cpuFuncs);
+ }
+
+ pmDispatch = cpuFuncs;
+
+ if (earlyTopology
+ && pmDispatch->pmCPUStateInit != NULL) {
+ (*pmDispatch->pmCPUStateInit)();
+ earlyTopology = FALSE;
+ }
+
+ if (pmDispatch->pmIPIHandler != NULL) {
+ lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler);
+ }
+ }
}
+/*
+ * Unregisters the power management functions from the kext.
+ */
void
-db_test(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+pmUnRegister(pmDispatch_t *cpuFuncs)
{
- return;
+ if (cpuFuncs != NULL && pmDispatch == cpuFuncs) {
+ pmDispatch = NULL;
+ }
}
void
-db_getpmgr(__unused pmData_t *pmj)
+machine_track_platform_idle(boolean_t entry)
{
+ cpu_data_t *my_cpu = current_cpu_datap();
+
+ if (entry) {
+ (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1);
+ } else {
+ uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1);
+ if (nidle == topoParms.nLThreadsPerPackage) {
+ my_cpu->lcpu.package->package_idle_exits++;
+ }
+ }
}
-#endif