/*
- * Copyright (c) 2003-2006 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2003-2007 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <mach/vm_map.h>
#include <i386/machine_routines.h>
#include <i386/misc_protos.h>
+#include <i386/tsc.h>
+#include <i386/cpu_data.h>
#include <machine/cpu_capabilities.h>
#include <machine/commpage.h>
#include <machine/pmap.h>
extern commpage_descriptor sigdata_descriptor;
extern commpage_descriptor *ba_descriptors[];
-extern vm_map_t com_region_map32; // the shared submap, set up in vm init
-extern vm_map_t com_region_map64; // the shared submap, set up in vm init
+extern vm_map_t commpage32_map; // the shared submap, set up in vm init
+extern vm_map_t commpage64_map; // the shared submap, set up in vm init
char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
char *commPagePtr64 = NULL; // ...and of 64-bit commpage
int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
-void* dsmos_blobs[3]; /* ptrs to the system integrity data in each commpage */
-int dsmos_blob_count = 0;
-
static uintptr_t next; // next available byte in comm page
static int cur_routine; // comm page address of "current" routine
static int matched; // true if we've found a match for "current" routine
static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
static size_t commPageBaseOffset; // add to 32-bit runtime address to get offset in commpage
+static commpage_time_data *time_data32 = NULL;
+static commpage_time_data *time_data64 = NULL;
+
/* Allocate the commpage and add to the shared submap created by vm:
* 1. allocate a page in the kernel map (RW)
* 2. wire it down
static void*
commpage_allocate(
- vm_map_t submap, // com_region_map32 or com_region_map64
+ vm_map_t submap, // commpage32_map or commpage_map64
size_t area_used ) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
{
- vm_offset_t kernel_addr; // address of commpage in kernel map
+ vm_offset_t kernel_addr = 0; // address of commpage in kernel map
vm_offset_t zero = 0;
vm_size_t size = area_used; // size actually populated
vm_map_entry_t entry;
if (submap == NULL)
panic("commpage submap is null");
- if (vm_allocate(kernel_map,&kernel_addr,area_used,VM_FLAGS_ANYWHERE))
+ if (vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE))
panic("cannot allocate commpage");
if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE))
if (mach_make_memory_entry( kernel_map, // target map
&size, // size
kernel_addr, // offset (address in kernel map)
- VM_PROT_DEFAULT, // map it RW
+ VM_PROT_ALL, // map it RWX
&handle, // this is the object handle we get
NULL )) // parent_entry (what is this?)
panic("cannot make entry for commpage");
handle, // port is the memory entry we just made
0, // offset (map 1st page in memory entry)
FALSE, // copy
- VM_PROT_READ, // cur_protection (R-only in user map)
- VM_PROT_READ, // max_protection
+ VM_PROT_READ|VM_PROT_EXECUTE, // cur_protection (R-only in user map)
+ VM_PROT_READ|VM_PROT_EXECUTE, // max_protection
VM_INHERIT_SHARE )) // inheritance
panic("cannot map commpage");
ml_cpu_get_info(&cpu_info);
switch (cpu_info.vector_unit) {
+ case 8:
+ bits |= kHasSSE4_2;
+ /* fall thru */
+ case 7:
+ bits |= kHasSSE4_1;
+ /* fall thru */
case 6:
bits |= kHasSupplementalSSE3;
/* fall thru */
if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
bits |= k64Bit;
+ if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */
+ bits |= kSlow;
+
_cpu_capabilities = bits; // set kernel version for use by drivers etc
}
int
-_get_cpu_capabilities()
+_get_cpu_capabilities(void)
{
return _cpu_capabilities;
}
void *dest = commpage_addr_of(address);
if ((uintptr_t)dest < next)
- panic("commpage overlap at address 0x%x, 0x%x < 0x%x", address, dest, next);
+ panic("commpage overlap at address 0x%x, %p < 0x%lx", address, dest, next);
bcopy(source,dest,length);
if (rd->commpage_address != cur_routine) {
if ((cur_routine!=0) && (matched==0))
- panic("commpage no match for last, next address %08x", rd->commpage_address);
+ panic("commpage no match for last, next address %08lx", rd->commpage_address);
cur_routine = rd->commpage_address;
matched = 0;
}
if ((must == rd->musthave) && (cant == 0)) {
if (matched)
- panic("commpage multiple matches for address %08x", rd->commpage_address);
+ panic("commpage multiple matches for address %08lx", rd->commpage_address);
matched = 1;
commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
static void
commpage_populate_one(
- vm_map_t submap, // com_region_map32 or com_region_map64
+ vm_map_t submap, // commpage32_map or compage64_map
char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
size_t base_offset, // will become commPageBaseOffset
commpage_descriptor** commpage_routines, // list of routine ptrs for this commpage
boolean_t legacy, // true if 32-bit commpage
+ commpage_time_data** time_data, // &time_data32 or &time_data64
const char* signature ) // "commpage 32-bit" or "commpage 64-bit"
{
short c2;
commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used );
*kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
commPageBaseOffset = base_offset;
+
+ *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
/* Stuff in the constants. We move things into the comm page in strictly
* ascending order, so we can check for overlap and panic if so.
panic("commpage no match on last routine");
if (next > (uintptr_t)_COMM_PAGE_END)
- panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%08x", next, (uintptr_t)commPagePtr);
+ panic("commpage overflow: next = 0x%08lx, commPagePtr = 0x%08lx", next, (uintptr_t)commPagePtr);
if ( legacy ) {
next = (uintptr_t) NULL;
next = (uintptr_t) NULL;
commpage_stuff_routine(&sigdata_descriptor);
}
-
- /* salt away a ptr to the system integrity data in this commpage */
- dsmos_blobs[dsmos_blob_count++] =
- commpage_addr_of( _COMM_PAGE_SYSTEM_INTEGRITY );
}
{
commpage_init_cpu_capabilities();
- commpage_populate_one( com_region_map32,
+ commpage_populate_one( commpage32_map,
&commPagePtr32,
_COMM_PAGE32_AREA_USED,
_COMM_PAGE32_BASE_ADDRESS,
commpage_32_routines,
TRUE, /* legacy (32-bit) commpage */
+ &time_data32,
"commpage 32-bit");
pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
_COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
+
+ time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
if (_cpu_capabilities & k64Bit) {
- commpage_populate_one( com_region_map64,
+ commpage_populate_one( commpage64_map,
&commPagePtr64,
_COMM_PAGE64_AREA_USED,
_COMM_PAGE32_START_ADDRESS, /* because kernel is built 32-bit */
commpage_64_routines,
FALSE, /* not a legacy commpage */
+ &time_data64,
"commpage 64-bit");
pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
_COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
rtc_nanotime_init_commpage();
}
+
+
+/* Update commpage nanotime information. Note that we interleave
+ * setting the 32- and 64-bit commpages, in order to keep nanotime more
+ * nearly in sync between the two environments.
+ *
+ * This routine must be serialized by some external means, ie a lock.
+ */
+
+void
+commpage_set_nanotime(
+ uint64_t tsc_base,
+ uint64_t ns_base,
+ uint32_t scale,
+ uint32_t shift )
+{
+ commpage_time_data *p32 = time_data32;
+ commpage_time_data *p64 = time_data64;
+ static uint32_t generation = 0;
+ uint32_t next_gen;
+
+ if (p32 == NULL) /* have commpages been allocated yet? */
+ return;
+
+ if ( generation != p32->nt_generation )
+ panic("nanotime trouble 1"); /* possibly not serialized */
+ if ( ns_base < p32->nt_ns_base )
+ panic("nanotime trouble 2");
+ if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) )
+ panic("nanotime trouble 3");
+
+ next_gen = ++generation;
+ if (next_gen == 0)
+ next_gen = ++generation;
+
+ p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
+ p64->nt_generation = 0;
+
+ p32->nt_tsc_base = tsc_base;
+ p64->nt_tsc_base = tsc_base;
+
+ p32->nt_ns_base = ns_base;
+ p64->nt_ns_base = ns_base;
+
+ p32->nt_scale = scale;
+ p64->nt_scale = scale;
+
+ p32->nt_shift = shift;
+ p64->nt_shift = shift;
+
+ p32->nt_generation = next_gen; /* mark data as valid */
+ p64->nt_generation = next_gen;
+}
+
+
+/* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
+
+void
+commpage_disable_timestamp( void )
+{
+ time_data32->gtod_generation = 0;
+ time_data64->gtod_generation = 0;
+}
+
+
+/* Update commpage gettimeofday() information. As with nanotime(), we interleave
+ * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
+ * between the two environments.
+ *
+ * This routine must be serializeed by some external means, ie a lock.
+ */
+
+ void
+ commpage_set_timestamp(
+ uint64_t abstime,
+ uint64_t secs )
+{
+ commpage_time_data *p32 = time_data32;
+ commpage_time_data *p64 = time_data64;
+ static uint32_t generation = 0;
+ uint32_t next_gen;
+
+ next_gen = ++generation;
+ if (next_gen == 0)
+ next_gen = ++generation;
+
+ p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
+ p64->gtod_generation = 0;
+
+ p32->gtod_ns_base = abstime;
+ p64->gtod_ns_base = abstime;
+
+ p32->gtod_sec_base = secs;
+ p64->gtod_sec_base = secs;
+
+ p32->gtod_generation = next_gen; /* mark data as valid */
+ p64->gtod_generation = next_gen;
+}