#include <machine/sched_param.h>
#include <machine/machine_cpu.h>
#include <machine/machlimits.h>
+#include <machine/atomic.h>
-#ifdef CONFIG_MACH_APPROXIMATE_TIME
#include <machine/commpage.h>
-#endif
#include <kern/kern_types.h>
#include <kern/backtrace.h>
#include <kern/macro_help.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
#include <kern/processor.h>
#include <kern/queue.h>
#include <kern/sched.h>
#include <kern/timer_queue.h>
#include <kern/waitq.h>
#include <kern/policy_internal.h>
+#include <kern/cpu_quiesce.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
+#include <vm/vm_pageout.h>
#include <mach/sdt.h>
+#include <mach/mach_host.h>
+#include <mach/host_info.h>
#include <sys/kdebug.h>
#include <kperf/kperf.h>
#include <kern/kpc.h>
-
+#include <san/kasan.h>
#include <kern/pms.h>
+#include <kern/host.h>
+#include <stdatomic.h>
-struct rt_queue rt_runq;
+int rt_runq_count(processor_set_t pset)
+{
+ return atomic_load_explicit(&SCHED(rt_runq)(pset)->count, memory_order_relaxed);
+}
-uintptr_t sched_thread_on_rt_queue = (uintptr_t)0xDEAFBEE0;
+void rt_runq_count_incr(processor_set_t pset)
+{
+ atomic_fetch_add_explicit(&SCHED(rt_runq)(pset)->count, 1, memory_order_relaxed);
+}
-/* Lock RT runq, must be done with interrupts disabled (under splsched()) */
-#if __SMP__
-decl_simple_lock_data(static,rt_lock);
-#define rt_lock_init() simple_lock_init(&rt_lock, 0)
-#define rt_lock_lock() simple_lock(&rt_lock)
-#define rt_lock_unlock() simple_unlock(&rt_lock)
-#else
-#define rt_lock_init() do { } while(0)
-#define rt_lock_lock() do { } while(0)
-#define rt_lock_unlock() do { } while(0)
-#endif
+void rt_runq_count_decr(processor_set_t pset)
+{
+ atomic_fetch_sub_explicit(&SCHED(rt_runq)(pset)->count, 1, memory_order_relaxed);
+}
#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
#if defined(CONFIG_SCHED_TIMESHARE_CORE)
-unsigned sched_tick;
-uint32_t sched_tick_interval;
+unsigned sched_tick;
+uint32_t sched_tick_interval;
+
+/* Timeshare load calculation interval (15ms) */
+uint32_t sched_load_compute_interval_us = 15000;
+uint64_t sched_load_compute_interval_abs;
+static _Atomic uint64_t sched_load_compute_deadline;
uint32_t sched_pri_shifts[TH_BUCKET_MAX];
uint32_t sched_fixed_shift;
thread_t sched_maintenance_thread;
+#if __arm__ || __arm64__
+/* interrupts disabled lock to guard recommended cores state */
+decl_simple_lock_data(static,sched_recommended_cores_lock);
+static void sched_recommended_cores_maintenance(void);
+static void sched_update_recommended_cores(uint32_t recommended_cores);
+
+uint64_t perfcontrol_failsafe_starvation_threshold;
+extern char *proc_name_address(struct proc *p);
+
+#endif /* __arm__ || __arm64__ */
uint64_t sched_one_second_interval;
#endif /* CONFIG_SCHED_TIMESHARE_CORE */
-static thread_t thread_select(
- thread_t thread,
- processor_t processor,
- ast_t reason);
-
#if CONFIG_SCHED_IDLE_IN_PLACE
static thread_t thread_select_idle(
thread_t thread,
thread_t thread,
integer_t options);
-static void
-sched_realtime_init(void);
-
static void
sched_realtime_timebase_init(void);
*/
char sched_string[SCHED_STRING_MAX_LENGTH];
-uint32_t sched_debug_flags;
+uint32_t sched_debug_flags = SCHED_DEBUG_FLAG_CHOOSE_PROCESSOR_TRACEPOINTS;
/* Global flag which indicates whether Background Stepper Context is enabled */
static int cpu_throttle_enabled = 1;
-void
-sched_init(void)
+#if DEBUG
+
+/* Since using the indirect function dispatch table has a negative impact on
+ * context switch performance, only allow DEBUG kernels to use that mechanism.
+ */
+static void
+sched_init_override(void)
{
char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' };
/* Check for runtime selection of the scheduler algorithm */
if (!PE_parse_boot_argn("sched", sched_arg, sizeof (sched_arg))) {
- /* If no boot-args override, look in device tree */
- if (!PE_get_default("kern.sched", sched_arg,
- SCHED_STRING_MAX_LENGTH)) {
- sched_arg[0] = '\0';
- }
- }
-
-
- if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) {
- /* No boot-args, check in device tree */
- if (!PE_get_default("kern.sched_pri_decay_limit",
- &sched_pri_decay_band_limit,
- sizeof(sched_pri_decay_band_limit))) {
- /* Allow decay all the way to normal limits */
- sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
- }
+ sched_arg[0] = '\0';
}
-
- kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit);
-
if (strlen(sched_arg) > 0) {
if (0) {
/* Allow pattern below */
} else if (0 == strcmp(sched_arg, sched_traditional_with_pset_runqueue_dispatch.sched_name)) {
sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
#endif
-#if defined(CONFIG_SCHED_PROTO)
- } else if (0 == strcmp(sched_arg, sched_proto_dispatch.sched_name)) {
- sched_current_dispatch = &sched_proto_dispatch;
-#endif
-#if defined(CONFIG_SCHED_GRRR)
- } else if (0 == strcmp(sched_arg, sched_grrr_dispatch.sched_name)) {
- sched_current_dispatch = &sched_grrr_dispatch;
-#endif
#if defined(CONFIG_SCHED_MULTIQ)
} else if (0 == strcmp(sched_arg, sched_multiq_dispatch.sched_name)) {
sched_current_dispatch = &sched_multiq_dispatch;
kprintf("Scheduler: Runtime selection of %s\n", SCHED(sched_name));
} else {
#if defined(CONFIG_SCHED_MULTIQ)
- sched_current_dispatch = &sched_multiq_dispatch;
+ sched_current_dispatch = &sched_dualq_dispatch;
#elif defined(CONFIG_SCHED_TRADITIONAL)
sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
-#elif defined(CONFIG_SCHED_PROTO)
- sched_current_dispatch = &sched_proto_dispatch;
-#elif defined(CONFIG_SCHED_GRRR)
- sched_current_dispatch = &sched_grrr_dispatch;
#else
#error No default scheduler implementation
#endif
kprintf("Scheduler: Default of %s\n", SCHED(sched_name));
}
+}
- strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string));
+#endif /* DEBUG */
+
+void
+sched_init(void)
+{
+#if DEBUG
+ sched_init_override();
+#else /* DEBUG */
+ kprintf("Scheduler: Default of %s\n", SCHED(sched_name));
+#endif /* DEBUG */
+
+ if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) {
+ /* No boot-args, check in device tree */
+ if (!PE_get_default("kern.sched_pri_decay_limit",
+ &sched_pri_decay_band_limit,
+ sizeof(sched_pri_decay_band_limit))) {
+ /* Allow decay all the way to normal limits */
+ sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
+ }
+ }
+ kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit);
+
if (PE_parse_boot_argn("sched_debug", &sched_debug_flags, sizeof(sched_debug_flags))) {
kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags);
}
-
+ strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string));
+
+ cpu_quiescent_counter_init();
+
SCHED(init)();
- sched_realtime_init();
- ast_init();
+ SCHED(rt_init)(&pset0);
sched_timer_deadline_tracking_init();
SCHED(pset_init)(&pset0);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
sched_tick_interval = (uint32_t)abstime;
+ /* timeshare load calculation interval & deadline initialization */
+ clock_interval_to_absolutetime_interval(sched_load_compute_interval_us, NSEC_PER_USEC, &sched_load_compute_interval_abs);
+ sched_load_compute_deadline = sched_load_compute_interval_abs;
+
/*
* Compute conversion factor from usage to
* timesharing priorities with 5/8 ** n aging.
default_timeshare_computation = std_quantum / 2;
default_timeshare_constraint = std_quantum;
+#if __arm__ || __arm64__
+ perfcontrol_failsafe_starvation_threshold = (2 * sched_tick_interval);
+#endif /* __arm__ || __arm64__ */
}
#endif /* CONFIG_SCHED_TIMESHARE_CORE */
-static void
-sched_realtime_init(void)
+void
+pset_rt_init(processor_set_t pset)
+{
+ rt_lock_init(pset);
+
+ pset->rt_runq.count = 0;
+ queue_init(&pset->rt_runq.queue);
+ memset(&pset->rt_runq.runq_stats, 0, sizeof pset->rt_runq.runq_stats);
+}
+
+rt_queue_t
+sched_rtglobal_runq(processor_set_t pset)
+{
+ (void)pset;
+
+ return &pset0.rt_runq;
+}
+
+void
+sched_rtglobal_init(processor_set_t pset)
{
- rt_lock_init();
+ if (pset == &pset0) {
+ return pset_rt_init(pset);
+ }
- rt_runq.count = 0;
- queue_init(&rt_runq.queue);
+ /* Only pset0 rt_runq is used, so make it easy to detect
+ * buggy accesses to others.
+ */
+ memset(&pset->rt_runq, 0xfd, sizeof pset->rt_runq);
+}
+
+void
+sched_rtglobal_queue_shutdown(processor_t processor)
+{
+ (void)processor;
}
static void
}
+void
+sched_check_spill(processor_set_t pset, thread_t thread)
+{
+ (void)pset;
+ (void)thread;
+
+ return;
+}
+
+bool
+sched_thread_should_yield(processor_t processor, thread_t thread)
+{
+ (void)thread;
+
+ return (!SCHED(processor_queue_empty)(processor) || rt_runq_count(processor->processor_set) > 0);
+}
+
#if defined(CONFIG_SCHED_TIMESHARE_CORE)
/*
boolean_t ready_for_runq = FALSE;
thread_t cthread = current_thread();
uint32_t new_run_count;
+ int old_thread_state;
/*
* Set wait_result.
* Update scheduling state: not waiting,
* set running.
*/
- thread->state &= ~(TH_WAIT|TH_UNINT);
+ old_thread_state = thread->state;
+ thread->state = (old_thread_state | TH_RUN) &
+ ~(TH_WAIT|TH_UNINT|TH_WAIT_REPORT);
- if (!(thread->state & TH_RUN)) {
- thread->state |= TH_RUN;
- thread->last_made_runnable_time = mach_approximate_time();
+ if ((old_thread_state & TH_RUN) == 0) {
+ uint64_t ctime = mach_approximate_time();
+ thread->last_made_runnable_time = thread->last_basepri_change_time = ctime;
+ timer_start(&thread->runnable_timer, ctime);
ready_for_runq = TRUE;
- (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
+ if (old_thread_state & TH_WAIT_REPORT) {
+ (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
+ }
/* Update the runnable thread count */
new_run_count = sched_run_incr(thread);
ml_get_power_state(&aticontext, &pidle);
if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) {
- ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1);
DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
uint64_t ttd = PROCESSOR_DATA(current_processor(), timer_call_ttd);
thread->thread_timer_wakeups_bin_2++;
}
+ ledger_credit_thread(thread, thread->t_ledger,
+ task_ledgers.interrupt_wakeups, 1);
if (pidle) {
- ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1);
+ ledger_credit_thread(thread, thread->t_ledger,
+ task_ledgers.platform_idle_wakeups, 1);
}
} else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) {
+ /* TODO: what about an interrupt that does a wake taken on a callout thread? */
if (cthread->callout_woken_from_icontext) {
- ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1);
+ ledger_credit_thread(thread, thread->t_ledger,
+ task_ledgers.interrupt_wakeups, 1);
thread->thread_callout_interrupt_wakeups++;
+
if (cthread->callout_woken_from_platform_idle) {
- ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1);
+ ledger_credit_thread(thread, thread->t_ledger,
+ task_ledgers.platform_idle_wakeups, 1);
thread->thread_callout_platform_idle_wakeups++;
}
-
+
cthread->callout_woke_thread = TRUE;
}
}
-
+
if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) {
thread->callout_woken_from_icontext = aticontext;
thread->callout_woken_from_platform_idle = pidle;
thread->callout_woke_thread = FALSE;
}
+#if KPERF
+ if (ready_for_runq) {
+ kperf_make_runnable(thread, aticontext);
+ }
+#endif /* KPERF */
+
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
(uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result,
wait_result_t
thread_mark_wait_locked(
thread_t thread,
- wait_interrupt_t interruptible)
+ wait_interrupt_t interruptible_orig)
{
- boolean_t at_safe_point;
+ boolean_t at_safe_point;
+ wait_interrupt_t interruptible = interruptible_orig;
- assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2)));
+ assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2|TH_WAIT_REPORT)));
/*
* The thread may have certain types of interrupts/aborts masked
* are OK, we have to honor mask settings (outer-scoped code may
* not be able to handle aborts at the moment).
*/
+ interruptible &= TH_OPT_INTMASK;
if (interruptible > (thread->options & TH_OPT_INTMASK))
interruptible = thread->options & TH_OPT_INTMASK;
if ( !(thread->state & TH_TERMINATE))
DTRACE_SCHED(sleep);
- thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
+ int state_bits = TH_WAIT;
+ if (!interruptible) {
+ state_bits |= TH_UNINT;
+ }
+ if (thread->sched_call) {
+ wait_interrupt_t mask = THREAD_WAIT_NOREPORT_USER;
+ if (is_kerneltask(thread->task)) {
+ mask = THREAD_WAIT_NOREPORT_KERNEL;
+ }
+ if ((interruptible_orig & mask) == 0) {
+ state_bits |= TH_WAIT_REPORT;
+ }
+ }
+ thread->state |= state_bits;
thread->at_safe_point = at_safe_point;
/* TODO: pass this through assert_wait instead, have
thread->pending_block_hint = kThreadWaitNone;
return (thread->wait_result = THREAD_WAITING);
+ } else {
+ if (thread->sched_flags & TH_SFLAG_ABORTSAFELY)
+ thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
}
- else
- if (thread->sched_flags & TH_SFLAG_ABORTSAFELY)
- thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
thread->pending_block_hint = kThreadWaitNone;
return (thread->wait_result = THREAD_INTERRUPTED);
return result;
}
-/*
- * Check to see if an assert wait is possible, without actually doing one.
- * This is used by debug code in locks and elsewhere to verify that it is
- * always OK to block when trying to take a blocking lock (since waiting
- * for the actual assert_wait to catch the case may make it hard to detect
- * this case.
- */
-boolean_t
-assert_wait_possible(void)
-{
-
- thread_t thread;
-
-#if DEBUG
- if(debug_mode) return TRUE; /* Always succeed in debug mode */
-#endif
-
- thread = current_thread();
-
- return (thread == NULL || waitq_wait_possible(thread));
-}
-
/*
* assert_wait:
*
if (__improbable(event == NO_EVENT))
panic("%s() called with NO_EVENT", __func__);
+ if (__improbable(thread == THREAD_NULL))
+ panic("%s() called with THREAD_NULL", __func__);
+
struct waitq *wq = global_eventq(event);
return waitq_wakeup64_thread(wq, CAST_EVENT64_T(event), thread, THREAD_AWAKENED);
#if __SMP__
/* Invoked with pset locked, returns with pset unlocked */
-static void
+void
sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) {
processor_t ast_processor = NULL;
processor_t sprocessor;
- qe_foreach_element(sprocessor, &cpset->active_queue, processor_queue) {
- if ((sprocessor->state == PROCESSOR_RUNNING) &&
- (sprocessor->processor_primary != sprocessor) &&
- (sprocessor->processor_primary->state == PROCESSOR_RUNNING) &&
- (sprocessor->current_pri < BASEPRI_RTQUEUES) &&
- ((cpset->pending_AST_cpu_mask & (1ULL << sprocessor->cpu_id)) == 0)) {
- assert(sprocessor != cprocessor);
- ast_processor = sprocessor;
- break;
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
+ uint64_t running_secondary_map = (cpset->cpu_state_map[PROCESSOR_RUNNING] &
+ ~cpset->primary_map);
+ for (int cpuid = lsb_first(running_secondary_map); cpuid >= 0; cpuid = lsb_next(running_secondary_map, cpuid)) {
+ sprocessor = processor_array[cpuid];
+ if ((sprocessor->processor_primary->state == PROCESSOR_RUNNING) &&
+ (sprocessor->current_pri < BASEPRI_RTQUEUES)) {
+
+ ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL);
+ if (ipi_type != SCHED_IPI_NONE) {
+ assert(sprocessor != cprocessor);
+ ast_processor = sprocessor;
+ break;
+ }
}
}
if (ast_processor) {
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0);
- cause_ast_check(ast_processor);
+ sched_ipi_perform(ast_processor, ipi_type);
}
}
+#else
+/* Invoked with pset locked, returns with pset unlocked */
+void
+sched_SMT_balance(__unused processor_t cprocessor, processor_set_t cpset)
+{
+ pset_unlock(cpset);
+}
#endif /* __SMP__ */
+static processor_t choose_processor_for_realtime_thread(processor_set_t pset);
+static bool all_available_primaries_are_running_realtime_threads(processor_set_t pset);
+int sched_allow_rt_smt = 1;
+
/*
* thread_select:
*
* May select the current thread, which must be locked.
*/
static thread_t
-thread_select(
- thread_t thread,
- processor_t processor,
- ast_t reason)
+thread_select(thread_t thread,
+ processor_t processor,
+ ast_t *reason)
{
processor_set_t pset = processor->processor_set;
thread_t new_thread = THREAD_NULL;
if (SCHED(can_update_priority)(thread))
SCHED(update_priority)(thread);
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
pset_lock(pset);
* An exception is that bound threads are dispatched to a processor without going through
* choose_processor(), so in those cases we should continue trying to dequeue work.
*/
- if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue) && !rt_runq.count) {
- goto idle;
+ if (!SCHED(processor_bound_count)(processor)) {
+ if ((pset->recommended_bitmask & pset->primary_map & pset->cpu_state_map[PROCESSOR_IDLE]) != 0) {
+ goto idle;
+ }
+
+ /* There are no idle primaries */
+
+ if (processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) {
+ bool secondary_can_run_realtime_thread = sched_allow_rt_smt && rt_runq_count(pset) && all_available_primaries_are_running_realtime_threads(pset);
+ if (!secondary_can_run_realtime_thread) {
+ goto idle;
+ }
+ }
}
}
- rt_lock_lock();
-
/*
* Test to see if the current thread should continue
* to run on this processor. Must not be attempting to wait, and not
* This code is very insanely tricky.
*/
- if (((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN) &&
- (thread->sched_pri >= BASEPRI_RTQUEUES || processor->processor_primary == processor) &&
- (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) &&
- (thread->affinity_set == AFFINITY_SET_NULL || thread->affinity_set->aset_pset == pset)) {
+ /* i.e. not waiting, not TH_SUSP'ed */
+ boolean_t still_running = ((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN);
+
+ /*
+ * Threads running on SMT processors are forced to context switch. Don't rebalance realtime threads.
+ * TODO: This should check if it's worth it to rebalance, i.e. 'are there any idle primary processors'
+ */
+ boolean_t needs_smt_rebalance = (thread->sched_pri < BASEPRI_RTQUEUES && processor->processor_primary != processor);
+
+ boolean_t affinity_mismatch = (thread->affinity_set != AFFINITY_SET_NULL && thread->affinity_set->aset_pset != pset);
+
+ boolean_t bound_elsewhere = (thread->bound_processor != PROCESSOR_NULL && thread->bound_processor != processor);
+
+ boolean_t avoid_processor = (SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread));
+
+ if (still_running && !needs_smt_rebalance && !affinity_mismatch && !bound_elsewhere && !avoid_processor) {
/*
+ * This thread is eligible to keep running on this processor.
+ *
* RT threads with un-expired quantum stay on processor,
* unless there's a valid RT thread with an earlier deadline.
*/
if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) {
- if (rt_runq.count > 0) {
- thread_t next_rt = qe_queue_first(&rt_runq.queue, struct thread, runq_links);
+ if (rt_runq_count(pset) > 0) {
- assert(next_rt->runq == THREAD_ON_RT_RUNQ);
-
- if (next_rt->realtime.deadline < processor->deadline &&
- (next_rt->bound_processor == PROCESSOR_NULL ||
- next_rt->bound_processor == processor)) {
- /* The next RT thread is better, so pick it off the runqueue. */
- goto pick_new_rt_thread;
+ rt_lock_lock(pset);
+
+ if (rt_runq_count(pset) > 0) {
+
+ thread_t next_rt = qe_queue_first(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links);
+
+ if (next_rt->realtime.deadline < processor->deadline &&
+ (next_rt->bound_processor == PROCESSOR_NULL ||
+ next_rt->bound_processor == processor)) {
+ /* The next RT thread is better, so pick it off the runqueue. */
+ goto pick_new_rt_thread;
+ }
}
+
+ rt_lock_unlock(pset);
}
/* This is still the best RT thread to run. */
processor->deadline = thread->realtime.deadline;
- rt_lock_unlock();
+ sched_update_pset_load_average(pset);
+
+ processor_t next_rt_processor = PROCESSOR_NULL;
+ sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE;
+
+ if (rt_runq_count(pset) > 0) {
+ next_rt_processor = choose_processor_for_realtime_thread(pset);
+ if (next_rt_processor) {
+ next_rt_ipi_type = sched_ipi_action(next_rt_processor, NULL, false, SCHED_IPI_EVENT_PREEMPT);
+ }
+ }
pset_unlock(pset);
+ if (next_rt_processor) {
+ sched_ipi_perform(next_rt_processor, next_rt_ipi_type);
+ }
+
return (thread);
}
- if ((rt_runq.count == 0) &&
+ if ((rt_runq_count(pset) == 0) &&
SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) {
/* This thread is still the highest priority runnable (non-idle) thread */
processor->deadline = UINT64_MAX;
- rt_lock_unlock();
+ sched_update_pset_load_average(pset);
pset_unlock(pset);
return (thread);
}
+ } else {
+ /*
+ * This processor must context switch.
+ * If it's due to a rebalance, we should aggressively find this thread a new home.
+ */
+ if (needs_smt_rebalance || affinity_mismatch || bound_elsewhere || avoid_processor)
+ *reason |= AST_REBALANCE;
}
/* OK, so we're not going to run the current thread. Look at the RT queue. */
- if (rt_runq.count > 0) {
- thread_t next_rt = qe_queue_first(&rt_runq.queue, struct thread, runq_links);
+ if (rt_runq_count(pset) > 0) {
- assert(next_rt->runq == THREAD_ON_RT_RUNQ);
+ rt_lock_lock(pset);
- if (__probable((next_rt->bound_processor == PROCESSOR_NULL ||
- (next_rt->bound_processor == processor)))) {
+ if (rt_runq_count(pset) > 0) {
+ thread_t next_rt = qe_queue_first(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links);
+
+ if (__probable((next_rt->bound_processor == PROCESSOR_NULL ||
+ (next_rt->bound_processor == processor)))) {
pick_new_rt_thread:
- new_thread = qe_dequeue_head(&rt_runq.queue, struct thread, runq_links);
+ new_thread = qe_dequeue_head(&SCHED(rt_runq)(pset)->queue, struct thread, runq_links);
- new_thread->runq = PROCESSOR_NULL;
- SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
- rt_runq.count--;
+ new_thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset));
+ rt_runq_count_decr(pset);
- processor->deadline = new_thread->realtime.deadline;
+ processor->deadline = new_thread->realtime.deadline;
+ processor_state_update_from_thread(processor, new_thread);
- rt_lock_unlock();
- pset_unlock(pset);
+ rt_lock_unlock(pset);
+ sched_update_pset_load_average(pset);
- return (new_thread);
+ processor_t ast_processor = PROCESSOR_NULL;
+ processor_t next_rt_processor = PROCESSOR_NULL;
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
+ sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE;
+
+ if (processor->processor_secondary != NULL) {
+ processor_t sprocessor = processor->processor_secondary;
+ if ((sprocessor->state == PROCESSOR_RUNNING) || (sprocessor->state == PROCESSOR_DISPATCHING)) {
+ ipi_type = sched_ipi_action(sprocessor, NULL, false, SCHED_IPI_EVENT_SMT_REBAL);
+ ast_processor = sprocessor;
+ }
+ }
+ if (rt_runq_count(pset) > 0) {
+ next_rt_processor = choose_processor_for_realtime_thread(pset);
+ if (next_rt_processor) {
+ next_rt_ipi_type = sched_ipi_action(next_rt_processor, NULL, false, SCHED_IPI_EVENT_PREEMPT);
+ }
+ }
+ pset_unlock(pset);
+
+ if (ast_processor) {
+ sched_ipi_perform(ast_processor, ipi_type);
+ }
+
+ if (next_rt_processor) {
+ sched_ipi_perform(next_rt_processor, next_rt_ipi_type);
+ }
+
+ return (new_thread);
+ }
}
+
+ rt_lock_unlock(pset);
}
processor->deadline = UINT64_MAX;
- rt_lock_unlock();
/* No RT threads, so let's look at the regular threads. */
- if ((new_thread = SCHED(choose_thread)(processor, MINPRI, reason)) != THREAD_NULL) {
+ if ((new_thread = SCHED(choose_thread)(processor, MINPRI, *reason)) != THREAD_NULL) {
+ sched_update_pset_load_average(pset);
+ processor_state_update_from_thread(processor, new_thread);
pset_unlock(pset);
return (new_thread);
}
* If other threads have appeared, shortcut
* around again.
*/
- if (!SCHED(processor_queue_empty)(processor) || rt_runq.count > 0)
+ if (!SCHED(processor_queue_empty)(processor) || rt_runq_count(pset) > 0)
continue;
pset_lock(pset);
* was running.
*/
if (processor->state == PROCESSOR_RUNNING) {
- processor->state = PROCESSOR_IDLE;
-
- if (processor->processor_primary == processor) {
- re_queue_head(&pset->idle_queue, &processor->processor_queue);
- } else {
- re_queue_head(&pset->idle_secondary_queue, &processor->processor_queue);
- }
+ pset_update_processor_state(pset, processor, PROCESSOR_IDLE);
}
#if __SMP__
/* Invoked with pset locked, returns with pset unlocked */
- sched_SMT_balance(processor, pset);
+ SCHED(processor_balance)(processor, pset);
#else
pset_unlock(pset);
#endif
sched_run_decr(thread);
thread->state |= TH_IDLE;
- processor->current_pri = IDLEPRI;
- processor->current_thmode = TH_MODE_NONE;
- processor->current_sfi_class = SFI_CLASS_KERNEL;
+ processor_state_update_idle(procssor);
/* Reload precise timing global policy to thread-local policy */
thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
#endif
thread->last_run_time = processor->last_dispatch;
- thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer);
+ processor_timer_switch_thread(processor->last_dispatch,
+ &processor->idle_thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer;
+
/*
* Cancel the quantum timer while idling.
*/
- timer_call_cancel(&processor->quantum_timer);
+ timer_call_quantum_timer_cancel(&processor->quantum_timer);
processor->first_timeslice = FALSE;
- (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+ if (thread->sched_call) {
+ (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+ }
thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, NULL);
/*
* Return at splsched.
*/
- (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
+ if (thread->sched_call) {
+ (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
+ }
thread_lock(thread);
* Otherwise skip; we will context switch to another thread or return here.
*/
if (!(thread->state & TH_WAIT)) {
- processor->last_dispatch = mach_absolute_time();
- thread_timer_event(processor->last_dispatch, &thread->system_timer);
+ uint64_t time_now = processor->last_dispatch = mach_absolute_time();
+ processor_timer_switch_thread(time_now, &thread->system_timer);
+ timer_update(&thread->runnable_timer, time_now);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
-
thread_quantum_init(thread);
- processor->quantum_end = processor->last_dispatch + thread->quantum_remaining;
- timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
+ processor->quantum_end = time_now + thread->quantum_remaining;
+ timer_call_quantum_timer_enter(&processor->quantum_timer,
+ thread, processor->quantum_end, time_now);
processor->first_timeslice = TRUE;
- thread->computation_epoch = processor->last_dispatch;
+ thread->computation_epoch = time_now;
}
thread->state &= ~TH_IDLE;
#endif
#if defined(CONFIG_SCHED_TIMESHARE_CORE)
- sched_timeshare_consider_maintenance(ctime);
+ if ((thread->state & TH_IDLE) == 0)
+ sched_timeshare_consider_maintenance(ctime);
#endif
+#if MONOTONIC
+ mt_sched_update(self);
+#endif /* MONOTONIC */
+
assert_thread_magic(self);
assert(self == current_thread());
assert(self->runq == PROCESSOR_NULL);
/* Update SFI class based on other factors */
thread->sfi_class = sfi_thread_classify(thread);
+
+ /* Update the same_pri_latency for the thread (used by perfcontrol callouts) */
+ thread->same_pri_latency = ctime - thread->last_basepri_change_time;
+ /*
+ * In case a base_pri update happened between the timestamp and
+ * taking the thread lock
+ */
+ if (ctime <= thread->last_basepri_change_time)
+ thread->same_pri_latency = ctime - thread->last_made_runnable_time;
/* Allow realtime threads to hang onto a stack. */
if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack)
self->reserved_stack = self->kernel_stack;
+ /* Prepare for spin debugging */
+#if INTERRUPT_MASKED_DEBUG
+ ml_spin_debug_clear(thread);
+#endif
+
if (continuation != NULL) {
if (!thread->kernel_stack) {
/*
processor = current_processor();
processor->active_thread = thread;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
+
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
processor->last_dispatch = ctime;
self->last_run_time = ctime;
- thread_timer_event(ctime, &thread->system_timer);
+ processor_timer_switch_thread(ctime, &thread->system_timer);
+ timer_update(&thread->runnable_timer, ctime);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
/*
* during privilege transitions, synthesize an event now.
*/
if (!thread->precise_user_kernel_time) {
- timer_switch(PROCESSOR_DATA(processor, current_state),
- ctime,
- PROCESSOR_DATA(processor, current_state));
+ timer_update(PROCESSOR_DATA(processor, current_state), ctime);
}
-
+
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE,
self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
+#if KPERF
+ kperf_off_cpu(self);
+#endif /* KPERF */
+
TLOG(1, "thread_invoke: calling stack_handoff\n");
stack_handoff(self, thread);
/* 'self' is now off core */
- assert(thread == current_thread());
+ assert(thread == current_thread_volatile());
DTRACE_SCHED(on__cpu);
thread_dispatch(self, thread);
+#if KASAN
+ /* Old thread's stack has been moved to the new thread, so explicitly
+ * unpoison it. */
+ kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size);
+#endif
+
thread->continuation = thread->parameter = NULL;
counter(c_thread_invoke_hits++);
- (void) spllo();
-
assert(continuation);
- call_continuation(continuation, parameter, thread->wait_result);
+ call_continuation(continuation, parameter, thread->wait_result, TRUE);
/*NOTREACHED*/
}
else if (thread == self) {
MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
- self->continuation = self->parameter = NULL;
+#if KASAN
+ /* stack handoff to self - no thread_dispatch(), so clear the stack
+ * and free the fakestack directly */
+ kasan_fakestack_drop(self);
+ kasan_fakestack_gc(self);
+ kasan_unpoison_stack(self->kernel_stack, kernel_stack_size);
+#endif
- (void) spllo();
+ self->continuation = self->parameter = NULL;
- call_continuation(continuation, parameter, self->wait_result);
+ call_continuation(continuation, parameter, self->wait_result, TRUE);
/*NOTREACHED*/
}
} else {
*/
processor = current_processor();
processor->active_thread = thread;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
+
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
processor->last_dispatch = ctime;
self->last_run_time = ctime;
- thread_timer_event(ctime, &thread->system_timer);
+ processor_timer_switch_thread(ctime, &thread->system_timer);
+ timer_update(&thread->runnable_timer, ctime);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
/*
* during privilege transitions, synthesize an event now.
*/
if (!thread->precise_user_kernel_time) {
- timer_switch(PROCESSOR_DATA(processor, current_state),
- ctime,
- PROCESSOR_DATA(processor, current_state));
+ timer_update(PROCESSOR_DATA(processor, current_state), ctime);
}
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
+#if KPERF
+ kperf_off_cpu(self);
+#endif /* KPERF */
+
/*
* This is where we actually switch register context,
* and address space if required. We will next run
*/
assert(continuation == self->continuation);
thread = machine_switch_context(self, continuation, thread);
- assert(self == current_thread());
+ assert(self == current_thread_volatile());
TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
DTRACE_SCHED(on__cpu);
if (continuation) {
self->continuation = self->parameter = NULL;
- (void) spllo();
-
- call_continuation(continuation, parameter, self->wait_result);
+ call_continuation(continuation, parameter, self->wait_result, TRUE);
/*NOTREACHED*/
}
* correct (we won't accidentally have a runnable thread that hasn't been
* dispatched to an idle processor), if not ideal (we may be restarting the
* dispatch process, which could have some overhead).
- *
*/
- if ((sampled_sched_run_count == 1) &&
- (pset->pending_deferred_AST_cpu_mask)) {
- qe_foreach_element_safe(active_processor, &pset->active_queue, processor_queue) {
+
+ if ((sampled_sched_run_count == 1) && (pset->pending_deferred_AST_cpu_mask)) {
+ uint64_t dispatching_map = (pset->cpu_state_map[PROCESSOR_DISPATCHING] &
+ pset->pending_deferred_AST_cpu_mask &
+ ~pset->pending_AST_cpu_mask);
+ for (int cpuid = lsb_first(dispatching_map); cpuid >= 0; cpuid = lsb_next(dispatching_map, cpuid)) {
+ active_processor = processor_array[cpuid];
/*
* If a processor is DISPATCHING, it could be because of
* a cancelable signal.
* should be no different than if the core took some
* interrupt while IDLE.
*/
- if ((active_processor->state == PROCESSOR_DISPATCHING) &&
- (pset->pending_deferred_AST_cpu_mask & (1ULL << active_processor->cpu_id)) &&
- (!(pset->pending_AST_cpu_mask & (1ULL << active_processor->cpu_id))) &&
- (active_processor != processor)) {
+ if (active_processor != processor) {
/*
* Squash all of the processor state back to some
* reasonable facsimile of PROCESSOR_IDLE.
- *
- * TODO: What queue policy do we actually want here?
- * We want to promote selection of a good processor
- * to run on. Do we want to enqueue at the head?
- * The tail? At the (relative) old position in the
- * queue? Or something else entirely?
*/
- re_queue_head(&pset->idle_queue, &active_processor->processor_queue);
assert(active_processor->next_thread == THREAD_NULL);
-
- active_processor->current_pri = IDLEPRI;
- active_processor->current_thmode = TH_MODE_FIXED;
- active_processor->current_sfi_class = SFI_CLASS_KERNEL;
+ processor_state_update_idle(active_processor);
active_processor->deadline = UINT64_MAX;
- active_processor->state = PROCESSOR_IDLE;
- pset->pending_deferred_AST_cpu_mask &= ~(1U << active_processor->cpu_id);
+ pset_update_processor_state(pset, active_processor, PROCESSOR_IDLE);
+ bit_clear(pset->pending_deferred_AST_cpu_mask, active_processor->cpu_id);
machine_signal_idle_cancel(active_processor);
}
/* We don't support deferred ASTs; everything is candycanes and sunshine. */
#endif
+static void
+thread_csw_callout(
+ thread_t old,
+ thread_t new,
+ uint64_t timestamp)
+{
+ perfcontrol_event event = (new->state & TH_IDLE) ? IDLE : CONTEXT_SWITCH;
+ uint64_t same_pri_latency = (new->state & TH_IDLE) ? 0 : new->same_pri_latency;
+ machine_switch_perfcontrol_context(event, timestamp, 0,
+ same_pri_latency, old, new);
+}
+
+
/*
* thread_dispatch:
*
processor_t processor = self->last_processor;
assert(processor == current_processor());
- assert(self == current_thread());
+ assert(self == current_thread_volatile());
assert(thread != self);
if (thread != THREAD_NULL) {
+ /*
+ * Do the perfcontrol callout for context switch.
+ * The reason we do this here is:
+ * - thread_dispatch() is called from various places that are not
+ * the direct context switch path for eg. processor shutdown etc.
+ * So adding the callout here covers all those cases.
+ * - We want this callout as early as possible to be close
+ * to the timestamp taken in thread_invoke()
+ * - We want to avoid holding the thread lock while doing the
+ * callout
+ * - We do not want to callout if "thread" is NULL.
+ */
+ thread_csw_callout(thread, self, processor->last_dispatch);
+
+#if KASAN
+ if (thread->continuation != NULL) {
+ /*
+ * Thread has a continuation and the normal stack is going away.
+ * Unpoison the stack and mark all fakestack objects as unused.
+ */
+ kasan_fakestack_drop(thread);
+ if (thread->kernel_stack) {
+ kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size);
+ }
+ }
+
+ /*
+ * Free all unused fakestack objects.
+ */
+ kasan_fakestack_gc(thread);
+#endif
+
/*
* If blocked at a continuation, discard
* the stack.
* Bill CPU time to both the task and
* the individual thread.
*/
- ledger_credit(thread->t_ledger,
- task_ledgers.cpu_time, consumed);
- ledger_credit(thread->t_threadledger,
- thread_ledgers.cpu_time, consumed);
-#ifdef CONFIG_BANK
+ ledger_credit_thread(thread, thread->t_ledger,
+ task_ledgers.cpu_time, consumed);
+ ledger_credit_thread(thread, thread->t_threadledger,
+ thread_ledgers.cpu_time, consumed);
if (thread->t_bankledger) {
- ledger_credit(thread->t_bankledger,
- bank_ledgers.cpu_time,
- (consumed - thread->t_deduct_bank_ledger_time));
-
+ ledger_credit_thread(thread, thread->t_bankledger,
+ bank_ledgers.cpu_time,
+ (consumed - thread->t_deduct_bank_ledger_time));
}
- thread->t_deduct_bank_ledger_time =0;
-#endif
+ thread->t_deduct_bank_ledger_time = 0;
}
wake_lock(thread);
/*
* Still runnable.
*/
- thread->last_made_runnable_time = mach_approximate_time();
+ thread->last_made_runnable_time = thread->last_basepri_change_time = processor->last_dispatch;
machine_thread_going_off_core(thread, FALSE, processor->last_dispatch);
- if (thread->reason & AST_QUANTUM)
- thread_setrun(thread, SCHED_TAILQ);
- else if (thread->reason & AST_PREEMPT)
- thread_setrun(thread, SCHED_HEADQ);
+ ast_t reason = thread->reason;
+ sched_options_t options = SCHED_NONE;
+
+ if (reason & AST_REBALANCE) {
+ options |= SCHED_REBALANCE;
+ if (reason & AST_QUANTUM) {
+ /*
+ * Having gone to the trouble of forcing this thread off a less preferred core,
+ * we should force the preferable core to reschedule immediately to give this
+ * thread a chance to run instead of just sitting on the run queue where
+ * it may just be stolen back by the idle core we just forced it off.
+ * But only do this at the end of a quantum to prevent cascading effects.
+ */
+ options |= SCHED_PREEMPT;
+ }
+ }
+
+ if (reason & AST_QUANTUM)
+ options |= SCHED_TAILQ;
+ else if (reason & AST_PREEMPT)
+ options |= SCHED_HEADQ;
else
- thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
+ options |= (SCHED_PREEMPT | SCHED_TAILQ);
+
+ thread_setrun(thread, options);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
*/
boolean_t should_terminate = FALSE;
uint32_t new_run_count;
+ int thread_state = thread->state;
/* Only the first call to thread_dispatch
* after explicit termination should add
* the thread to the termination queue
*/
- if ((thread->state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) {
+ if ((thread_state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) {
should_terminate = TRUE;
- thread->state |= TH_TERMINATE2;
+ thread_state |= TH_TERMINATE2;
}
- thread->state &= ~TH_RUN;
- thread->last_made_runnable_time = ~0ULL;
+ timer_stop(&thread->runnable_timer, processor->last_dispatch);
+
+ thread_state &= ~TH_RUN;
+ thread->state = thread_state;
+
+ thread->last_made_runnable_time = thread->last_basepri_change_time = THREAD_NOT_RUNNABLE;
thread->chosen_processor = PROCESSOR_NULL;
new_run_count = sched_run_decr(thread);
#if CONFIG_SCHED_SFI
- if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) {
- if (thread->reason & AST_SFI) {
- thread->wait_sfi_begin_time = processor->last_dispatch;
- }
+ if (thread->reason & AST_SFI) {
+ thread->wait_sfi_begin_time = processor->last_dispatch;
}
#endif
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
- (uintptr_t)thread_tid(thread), thread->reason, thread->state,
+ (uintptr_t)thread_tid(thread), thread->reason, thread_state,
new_run_count, 0);
- (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+ if (thread_state & TH_WAIT_REPORT) {
+ (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+ }
if (thread->wake_active) {
thread->wake_active = FALSE;
}
}
+ int urgency = THREAD_URGENCY_NONE;
+ uint64_t latency = 0;
+
/* Update (new) current thread and reprogram quantum timer */
thread_lock(self);
+
if (!(self->state & TH_IDLE)) {
uint64_t arg1, arg2;
- int urgency;
- uint64_t latency;
#if CONFIG_SCHED_SFI
ast_t new_ast;
}
#endif
- assertf(processor->last_dispatch >= self->last_made_runnable_time, "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx", processor->last_dispatch, self->last_made_runnable_time);
+ assertf(processor->last_dispatch >= self->last_made_runnable_time,
+ "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx",
+ processor->last_dispatch, self->last_made_runnable_time);
+
+ assert(self->last_made_runnable_time <= self->last_basepri_change_time);
+
latency = processor->last_dispatch - self->last_made_runnable_time;
+ assert(latency >= self->same_pri_latency);
urgency = thread_get_urgency(self, &arg1, &arg2);
thread_tell_urgency(urgency, arg1, arg2, latency, self);
- machine_thread_going_on_core(self, urgency, latency, processor->last_dispatch);
-
/*
* Get a new quantum if none remaining.
*/
* Set up quantum timer and timeslice.
*/
processor->quantum_end = processor->last_dispatch + self->quantum_remaining;
- timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
+ timer_call_quantum_timer_enter(&processor->quantum_timer, self,
+ processor->quantum_end, processor->last_dispatch);
processor->first_timeslice = TRUE;
} else {
- timer_call_cancel(&processor->quantum_timer);
+ timer_call_quantum_timer_cancel(&processor->quantum_timer);
processor->first_timeslice = FALSE;
thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self);
- machine_thread_going_on_core(self, THREAD_URGENCY_NONE, 0, processor->last_dispatch);
}
assert(self->block_hint == kThreadWaitNone);
thread_unlock(self);
+ machine_thread_going_on_core(self, urgency, latency, self->same_pri_latency,
+ processor->last_dispatch);
+
#if defined(CONFIG_SCHED_DEFERRED_AST)
/*
* TODO: Can we state that redispatching our old thread is also
pset_cancel_deferred_dispatch(processor->processor_set, processor);
}
#endif
-
}
/*
do {
thread_lock(self);
- new_thread = thread_select(self, processor, reason);
+ new_thread = thread_select(self, processor, &reason);
thread_unlock(self);
} while (!thread_invoke(self, new_thread, reason));
void *parameter,
thread_t new_thread)
{
- ast_t handoff = AST_HANDOFF;
+ ast_t reason = AST_HANDOFF;
self->continuation = continuation;
self->parameter = parameter;
- while (!thread_invoke(self, new_thread, handoff)) {
- processor_t processor = current_processor();
+ while (!thread_invoke(self, new_thread, reason)) {
+ /* the handoff failed, so we have to fall back to the normal block path */
+ processor_t processor = current_processor();
+
+ reason = AST_NONE;
thread_lock(self);
- new_thread = thread_select(self, processor, AST_NONE);
+ new_thread = thread_select(self, processor, &reason);
thread_unlock(self);
- handoff = AST_NONE;
}
return (self->wait_result);
self->continuation = self->parameter = NULL;
- if (thread != THREAD_NULL)
- (void)spllo();
+#if INTERRUPT_MASKED_DEBUG
+ /* Reset interrupt-masked spin debugging timeout */
+ ml_spin_debug_clear(self);
+#endif
- TLOG(1, "thread_continue: calling call_continuation \n");
- call_continuation(continuation, parameter, self->wait_result);
+ TLOG(1, "thread_continue: calling call_continuation\n");
+
+ boolean_t enable_interrupts = thread != THREAD_NULL;
+ call_continuation(continuation, parameter, self->wait_result, enable_interrupts);
/*NOTREACHED*/
}
/* Assumes RT lock is not held, and acquires splsched/rt_lock itself */
void
-rt_runq_scan(sched_update_scan_context_t scan_context)
+sched_rtglobal_runq_scan(sched_update_scan_context_t scan_context)
{
spl_t s;
thread_t thread;
+ processor_set_t pset = &pset0;
+
s = splsched();
- rt_lock_lock();
+ rt_lock_lock(pset);
- qe_foreach_element_safe(thread, &rt_runq.queue, runq_links) {
+ qe_foreach_element_safe(thread, &pset->rt_runq.queue, runq_links) {
if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) {
scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time;
}
}
- rt_lock_unlock();
+ rt_lock_unlock(pset);
splx(s);
}
+int64_t
+sched_rtglobal_runq_count_sum(void)
+{
+ return pset0.rt_runq.runq_stats.count_sum;
+}
/*
* realtime_queue_insert:
* Enqueue a thread for realtime execution.
*/
static boolean_t
-realtime_queue_insert(thread_t thread)
+realtime_queue_insert(processor_t processor, processor_set_t pset, thread_t thread)
{
- queue_t queue = &rt_runq.queue;
+ queue_t queue = &SCHED(rt_runq)(pset)->queue;
uint64_t deadline = thread->realtime.deadline;
boolean_t preempt = FALSE;
- rt_lock_lock();
+ rt_lock_lock(pset);
if (queue_empty(queue)) {
enqueue_tail(queue, &thread->runq_links);
}
}
- thread->runq = THREAD_ON_RT_RUNQ;
- SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
- rt_runq.count++;
+ thread->runq = processor;
+ SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset));
+ rt_runq_count_incr(pset);
- rt_lock_unlock();
+ rt_lock_unlock(pset);
return (preempt);
}
processor_t processor,
thread_t thread)
{
- processor_set_t pset = processor->processor_set;
- ast_t preempt;
+ processor_set_t pset = processor->processor_set;
+ pset_assert_locked(pset);
+ ast_t preempt;
- boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE;
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
thread->chosen_processor = processor;
*/
if ( (thread->bound_processor == processor)
&& processor->state == PROCESSOR_IDLE) {
- re_queue_tail(&pset->active_queue, &processor->processor_queue);
processor->next_thread = thread;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = thread->realtime.deadline;
- processor->state = PROCESSOR_DISPATCHING;
+ pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING);
- if (processor != current_processor()) {
- if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared on exit from main processor_idle() loop */
- pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_signal_idle = TRUE;
- }
- }
+ ipi_type = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_BOUND_THR);
pset_unlock(pset);
-
- if (do_signal_idle) {
- machine_signal_idle(processor);
- }
+ sched_ipi_perform(processor, ipi_type);
return;
}
else
preempt = AST_NONE;
- realtime_queue_insert(thread);
+ realtime_queue_insert(processor, pset, thread);
+ ipi_type = SCHED_IPI_NONE;
if (preempt != AST_NONE) {
if (processor->state == PROCESSOR_IDLE) {
- re_queue_tail(&pset->active_queue, &processor->processor_queue);
-
processor->next_thread = THREAD_NULL;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = thread->realtime.deadline;
- processor->state = PROCESSOR_DISPATCHING;
+ pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING);
if (processor == current_processor()) {
ast_on(preempt);
} else {
- if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared on exit from main processor_idle() loop */
- pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_signal_idle = TRUE;
- }
+ ipi_type = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_PREEMPT);
}
} else if (processor->state == PROCESSOR_DISPATCHING) {
if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) {
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = thread->realtime.deadline;
}
} else {
if (processor == current_processor()) {
ast_on(preempt);
} else {
- if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared after IPI causes csw_check() to be called */
- pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_cause_ast = TRUE;
- }
+ ipi_type = sched_ipi_action(processor, thread, false, SCHED_IPI_EVENT_PREEMPT);
}
}
} else {
}
pset_unlock(pset);
+ sched_ipi_perform(processor, ipi_type);
+}
- if (do_signal_idle) {
- machine_signal_idle(processor);
- } else if (do_cause_ast) {
- cause_ast_check(processor);
- }
+
+sched_ipi_type_t sched_ipi_deferred_policy(processor_set_t pset, processor_t dst,
+ __unused sched_ipi_event_t event)
+{
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ if (!bit_test(pset->pending_deferred_AST_cpu_mask, dst->cpu_id)) {
+ return SCHED_IPI_DEFERRED;
+ }
+#else /* CONFIG_SCHED_DEFERRED_AST */
+ panic("Request for deferred IPI on an unsupported platform; pset: %p CPU: %d", pset, dst->cpu_id);
+#endif /* CONFIG_SCHED_DEFERRED_AST */
+ return SCHED_IPI_NONE;
+}
+
+sched_ipi_type_t sched_ipi_action(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event)
+{
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
+ assert(dst != NULL);
+
+ processor_set_t pset = dst->processor_set;
+ if (current_processor() == dst) {
+ return SCHED_IPI_NONE;
+ }
+
+ if (bit_test(pset->pending_AST_cpu_mask, dst->cpu_id)) {
+ return SCHED_IPI_NONE;
+ }
+
+ ipi_type = SCHED(ipi_policy)(dst, thread, dst_idle, event);
+ switch(ipi_type) {
+ case SCHED_IPI_NONE:
+ return SCHED_IPI_NONE;
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ case SCHED_IPI_DEFERRED:
+ bit_set(pset->pending_deferred_AST_cpu_mask, dst->cpu_id);
+ break;
+#endif /* CONFIG_SCHED_DEFERRED_AST */
+ default:
+ bit_set(pset->pending_AST_cpu_mask, dst->cpu_id);
+ break;
+ }
+ return ipi_type;
+}
+
+sched_ipi_type_t sched_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event)
+{
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
+ boolean_t deferred_ipi_supported = false;
+ processor_set_t pset = dst->processor_set;
+
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ deferred_ipi_supported = true;
+#endif /* CONFIG_SCHED_DEFERRED_AST */
+
+ switch(event) {
+ case SCHED_IPI_EVENT_SPILL:
+ case SCHED_IPI_EVENT_SMT_REBAL:
+ case SCHED_IPI_EVENT_REBALANCE:
+ case SCHED_IPI_EVENT_BOUND_THR:
+ /*
+ * The spill, SMT rebalance, rebalance and the bound thread
+ * scenarios use immediate IPIs always.
+ */
+ ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE;
+ break;
+ case SCHED_IPI_EVENT_PREEMPT:
+ /* In the preemption case, use immediate IPIs for RT threads */
+ if (thread && (thread->sched_pri >= BASEPRI_RTQUEUES)) {
+ ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE;
+ break;
+ }
+
+ /*
+ * For Non-RT threads preemption,
+ * If the core is active, use immediate IPIs.
+ * If the core is idle, use deferred IPIs if supported; otherwise immediate IPI.
+ */
+ if (deferred_ipi_supported && dst_idle) {
+ return sched_ipi_deferred_policy(pset, dst, event);
+ }
+ ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE;
+ break;
+ default:
+ panic("Unrecognized scheduler IPI event type %d", event);
+ }
+ assert(ipi_type != SCHED_IPI_NONE);
+ return ipi_type;
}
+void sched_ipi_perform(processor_t dst, sched_ipi_type_t ipi)
+{
+ switch (ipi) {
+ case SCHED_IPI_NONE:
+ break;
+ case SCHED_IPI_IDLE:
+ machine_signal_idle(dst);
+ break;
+ case SCHED_IPI_IMMEDIATE:
+ cause_ast_check(dst);
+ break;
+ case SCHED_IPI_DEFERRED:
+ machine_signal_idle_deferred(dst);
+ break;
+ default:
+ panic("Unrecognized scheduler IPI type: %d", ipi);
+ }
+}
#if defined(CONFIG_SCHED_TIMESHARE_CORE)
thread_t thread,
integer_t options)
{
- processor_set_t pset = processor->processor_set;
- ast_t preempt;
+ processor_set_t pset = processor->processor_set;
+ pset_assert_locked(pset);
+ ast_t preempt;
enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing;
- enum { eNoSignal, eDoSignal, eDoDeferredSignal } do_signal_idle = eNoSignal;
- boolean_t do_cause_ast = FALSE;
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
thread->chosen_processor = processor;
thread->bound_processor == processor)
&& processor->state == PROCESSOR_IDLE) {
- re_queue_tail(&pset->active_queue, &processor->processor_queue);
-
processor->next_thread = thread;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = UINT64_MAX;
- processor->state = PROCESSOR_DISPATCHING;
-
- if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared on exit from main processor_idle() loop */
- pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_signal_idle = eDoSignal;
- }
+ pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING);
+ ipi_type = sched_ipi_action(processor, thread, true, SCHED_IPI_EVENT_BOUND_THR);
pset_unlock(pset);
-
- if (do_signal_idle == eDoSignal) {
- machine_signal_idle(processor);
- }
-
+ sched_ipi_perform(processor, ipi_type);
return;
}
} else
preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
+ if ((options & (SCHED_PREEMPT|SCHED_REBALANCE)) == (SCHED_PREEMPT|SCHED_REBALANCE)) {
+ /*
+ * Having gone to the trouble of forcing this thread off a less preferred core,
+ * we should force the preferable core to reschedule immediately to give this
+ * thread a chance to run instead of just sitting on the run queue where
+ * it may just be stolen back by the idle core we just forced it off.
+ */
+ preempt |= AST_PREEMPT;
+ }
+
SCHED(processor_enqueue)(processor, thread, options);
+ sched_update_pset_load_average(pset);
if (preempt != AST_NONE) {
if (processor->state == PROCESSOR_IDLE) {
- re_queue_tail(&pset->active_queue, &processor->processor_queue);
-
processor->next_thread = THREAD_NULL;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = UINT64_MAX;
- processor->state = PROCESSOR_DISPATCHING;
-
+ pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING);
ipi_action = eExitIdle;
} else if ( processor->state == PROCESSOR_DISPATCHING) {
if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) {
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = UINT64_MAX;
}
} else if ( (processor->state == PROCESSOR_RUNNING ||
thread->sched_pri >= processor->current_pri ) {
ipi_action = eInterruptRunning;
} else if (processor->state == PROCESSOR_IDLE) {
- re_queue_tail(&pset->active_queue, &processor->processor_queue);
processor->next_thread = THREAD_NULL;
- processor->current_pri = thread->sched_pri;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class;
+ processor_state_update_from_thread(processor, thread);
processor->deadline = UINT64_MAX;
- processor->state = PROCESSOR_DISPATCHING;
+ pset_update_processor_state(pset, processor, PROCESSOR_DISPATCHING);
ipi_action = eExitIdle;
}
}
- switch (ipi_action) {
- case eDoNothing:
- break;
- case eExitIdle:
- if (processor == current_processor()) {
- if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
- ast_on(preempt);
- } else {
-#if defined(CONFIG_SCHED_DEFERRED_AST)
- if (!(pset->pending_deferred_AST_cpu_mask & (1ULL << processor->cpu_id)) &&
- !(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared on exit from main processor_idle() loop */
- pset->pending_deferred_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_signal_idle = eDoDeferredSignal;
- }
-#else
- if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared on exit from main processor_idle() loop */
- pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_signal_idle = eDoSignal;
- }
-#endif
- }
- break;
- case eInterruptRunning:
- if (processor == current_processor()) {
- if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
- ast_on(preempt);
- } else {
- if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
- /* cleared after IPI causes csw_check() to be called */
- pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
- do_cause_ast = TRUE;
- }
- }
- break;
+ if (ipi_action != eDoNothing) {
+ if (processor == current_processor()) {
+ if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
+ ast_on(preempt);
+ } else {
+ sched_ipi_event_t event = (options & SCHED_REBALANCE) ? SCHED_IPI_EVENT_REBALANCE : SCHED_IPI_EVENT_PREEMPT;
+ ipi_type = sched_ipi_action(processor, thread, (ipi_action == eExitIdle), event);
+ }
}
-
pset_unlock(pset);
-
- if (do_signal_idle == eDoSignal) {
- machine_signal_idle(processor);
- }
-#if defined(CONFIG_SCHED_DEFERRED_AST)
- else if (do_signal_idle == eDoDeferredSignal) {
- /*
- * TODO: The ability to cancel this signal could make
- * sending it outside of the pset lock an issue. Do
- * we need to address this? Or would the only fallout
- * be that the core takes a signal? As long as we do
- * not run the risk of having a core marked as signal
- * outstanding, with no real signal outstanding, the
- * only result should be that we fail to cancel some
- * signals.
- */
- machine_signal_idle_deferred(processor);
- }
-#endif
- else if (do_cause_ast) {
- cause_ast_check(processor);
- }
+ sched_ipi_perform(processor, ipi_type);
}
/*
*/
processor_t
choose_processor(
- processor_set_t pset,
- processor_t processor,
- thread_t thread)
+ processor_set_t starting_pset,
+ processor_t processor,
+ thread_t thread)
{
- processor_set_t nset, cset = pset;
+ processor_set_t pset = starting_pset;
+ processor_set_t nset;
assert(thread->sched_pri <= BASEPRI_RTQUEUES);
*/
integer_t lowest_priority = MAXPRI + 1;
+ integer_t lowest_secondary_priority = MAXPRI + 1;
integer_t lowest_unpaired_primary_priority = MAXPRI + 1;
integer_t lowest_count = INT_MAX;
uint64_t furthest_deadline = 1;
processor_t lp_processor = PROCESSOR_NULL;
processor_t lp_unpaired_primary_processor = PROCESSOR_NULL;
processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL;
+ processor_t lp_paired_secondary_processor = PROCESSOR_NULL;
processor_t lc_processor = PROCESSOR_NULL;
processor_t fd_processor = PROCESSOR_NULL;
}
do {
-
/*
* Choose an idle processor, in pset traversal order
*/
- qe_foreach_element(processor, &cset->idle_queue, processor_queue) {
- if (processor->is_recommended)
- return processor;
+
+ uint64_t idle_primary_map = (pset->cpu_state_map[PROCESSOR_IDLE] &
+ pset->primary_map &
+ pset->recommended_bitmask &
+ ~pset->pending_AST_cpu_mask);
+
+ int cpuid = lsb_first(idle_primary_map);
+ if (cpuid >= 0) {
+ processor = processor_array[cpuid];
+ return processor;
}
/*
- * Otherwise, enumerate active and idle processors to find candidates
+ * Otherwise, enumerate active and idle processors to find primary candidates
* with lower priority/etc.
*/
- qe_foreach_element(processor, &cset->active_queue, processor_queue) {
-
- if (!processor->is_recommended) {
- continue;
- }
+ uint64_t active_map = ((pset->cpu_state_map[PROCESSOR_RUNNING] | pset->cpu_state_map[PROCESSOR_DISPATCHING]) &
+ pset->recommended_bitmask &
+ ~pset->pending_AST_cpu_mask);
+ active_map = bit_ror64(active_map, (pset->last_chosen + 1));
+ for (int rotid = lsb_first(active_map); rotid >= 0; rotid = lsb_next(active_map, rotid)) {
+ cpuid = ((rotid + pset->last_chosen + 1) & 63);
+ processor = processor_array[cpuid];
integer_t cpri = processor->current_pri;
- if (cpri < lowest_priority) {
- lowest_priority = cpri;
- lp_processor = processor;
+ if (processor->processor_primary != processor) {
+ if (cpri < lowest_secondary_priority) {
+ lowest_secondary_priority = cpri;
+ lp_paired_secondary_processor = processor;
+ }
+ } else {
+ if (cpri < lowest_priority) {
+ lowest_priority = cpri;
+ lp_processor = processor;
+ }
}
if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) {
* For SMT configs, these idle secondary processors must have active primary. Otherwise
* the idle primary would have short-circuited the loop above
*/
- qe_foreach_element(processor, &cset->idle_secondary_queue, processor_queue) {
+ uint64_t idle_secondary_map = (pset->cpu_state_map[PROCESSOR_IDLE] &
+ ~pset->primary_map &
+ pset->recommended_bitmask &
+ ~pset->pending_AST_cpu_mask);
- if (!processor->is_recommended) {
- continue;
- }
+ for (cpuid = lsb_first(idle_secondary_map); cpuid >= 0; cpuid = lsb_next(idle_secondary_map, cpuid)) {
+ processor = processor_array[cpuid];
processor_t cprimary = processor->processor_primary;
+ if (!cprimary->is_recommended) {
+ continue;
+ }
+ if (bit_test(pset->pending_AST_cpu_mask, cprimary->cpu_id)) {
+ continue;
+ }
+
/* If the primary processor is offline or starting up, it's not a candidate for this path */
if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) {
integer_t primary_pri = cprimary->current_pri;
*/
if (thread->sched_pri > lowest_unpaired_primary_priority) {
- /* Move to end of active queue so that the next thread doesn't also pick it */
- re_queue_tail(&cset->active_queue, &lp_unpaired_primary_processor->processor_queue);
+ pset->last_chosen = lp_unpaired_primary_processor->cpu_id;
return lp_unpaired_primary_processor;
}
if (thread->sched_pri > lowest_priority) {
- /* Move to end of active queue so that the next thread doesn't also pick it */
- re_queue_tail(&cset->active_queue, &lp_processor->processor_queue);
+ pset->last_chosen = lp_processor->cpu_id;
return lp_processor;
}
+ if (sched_allow_rt_smt && (thread->sched_pri > lowest_secondary_priority)) {
+ pset->last_chosen = lp_paired_secondary_processor->cpu_id;
+ return lp_paired_secondary_processor;
+ }
if (thread->realtime.deadline < furthest_deadline)
return fd_processor;
else {
if (thread->sched_pri > lowest_unpaired_primary_priority) {
- /* Move to end of active queue so that the next thread doesn't also pick it */
- re_queue_tail(&cset->active_queue, &lp_unpaired_primary_processor->processor_queue);
+ pset->last_chosen = lp_unpaired_primary_processor->cpu_id;
return lp_unpaired_primary_processor;
}
if (thread->sched_pri > lowest_priority) {
- /* Move to end of active queue so that the next thread doesn't also pick it */
- re_queue_tail(&cset->active_queue, &lp_processor->processor_queue);
+ pset->last_chosen = lp_processor->cpu_id;
return lp_processor;
}
/*
* Move onto the next processor set.
*/
- nset = next_pset(cset);
+ nset = next_pset(pset);
- if (nset != pset) {
- pset_unlock(cset);
+ if (nset != starting_pset) {
+ pset_unlock(pset);
- cset = nset;
- pset_lock(cset);
+ pset = nset;
+ pset_lock(pset);
}
- } while (nset != pset);
+ } while (nset != starting_pset);
/*
* Make sure that we pick a running processor,
if (lp_unpaired_secondary_processor != PROCESSOR_NULL) {
processor = lp_unpaired_secondary_processor;
lp_unpaired_secondary_processor = PROCESSOR_NULL;
+ } else if (lp_paired_secondary_processor != PROCESSOR_NULL) {
+ processor = lp_paired_secondary_processor;
+ lp_paired_secondary_processor = PROCESSOR_NULL;
} else if (lc_processor != PROCESSOR_NULL) {
processor = lc_processor;
lc_processor = PROCESSOR_NULL;
* Check that the correct processor set is
* returned locked.
*/
- if (cset != processor->processor_set) {
- pset_unlock(cset);
- cset = processor->processor_set;
- pset_lock(cset);
+ if (pset != processor->processor_set) {
+ pset_unlock(pset);
+ pset = processor->processor_set;
+ pset_lock(pset);
}
/*
} while (processor == PROCESSOR_NULL);
- return (processor);
+ pset->last_chosen = processor->cpu_id;
+ return processor;
}
/*
pset_lock(pset);
processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
+ pset = processor->processor_set;
SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
(uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0);
pset = processor->processor_set;
pset_lock(pset);
processor = SCHED(choose_processor)(pset, processor, thread);
+ pset = processor->processor_set;
SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
(uintptr_t)thread_tid(thread), thread->last_processor->cpu_id, processor->cpu_id, processor->state, 0);
pset_lock(pset);
processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
- task->pset_hint = processor->processor_set;
+ pset = processor->processor_set;
+ task->pset_hint = pset;
SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
(uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0);
* Dispatch the thread on the chosen processor.
* TODO: This should be based on sched_mode, not sched_pri
*/
- if (thread->sched_pri >= BASEPRI_RTQUEUES)
+ if (thread->sched_pri >= BASEPRI_RTQUEUES) {
realtime_setrun(processor, thread);
- else
+ } else {
processor_setrun(processor, thread, options);
+ }
+ /* pset is now unlocked */
+ if (thread->bound_processor == PROCESSOR_NULL) {
+ SCHED(check_spill)(pset, thread);
+ }
}
processor_set_t
pset_lock(pset);
/* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */
- pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
+ bit_clear(pset->pending_AST_cpu_mask, processor->cpu_id);
result = csw_check_locked(processor, pset, check_reason);
ast_t
csw_check_locked(
processor_t processor,
- processor_set_t pset __unused,
+ processor_set_t pset,
ast_t check_reason)
{
ast_t result;
thread_t thread = processor->active_thread;
if (processor->first_timeslice) {
- if (rt_runq.count > 0)
+ if (rt_runq_count(pset) > 0)
return (check_reason | AST_PREEMPT | AST_URGENT);
}
else {
- if (rt_runq.count > 0) {
+ if (rt_runq_count(pset) > 0) {
if (BASEPRI_RTQUEUES > processor->current_pri)
return (check_reason | AST_PREEMPT | AST_URGENT);
else
}
}
+#if __SMP__
+ /*
+ * If the current thread is running on a processor that is no longer recommended,
+ * urgently preempt it, at which point thread_select() should
+ * try to idle the processor and re-dispatch the thread to a recommended processor.
+ */
+ if (!processor->is_recommended) {
+ return (check_reason | AST_PREEMPT | AST_URGENT);
+ }
+#endif
+
result = SCHED(processor_csw_check)(processor);
if (result != AST_NONE)
return (check_reason | result | (thread_eager_preemption(thread) ? AST_URGENT : AST_NONE));
#if __SMP__
-
/*
- * If the current thread is running on a processor that is no longer recommended, gently
- * (non-urgently) get to a point and then block, and which point thread_select() should
- * try to idle the processor and re-dispatch the thread to a recommended processor.
+ * Same for avoid-processor
+ *
+ * TODO: Should these set AST_REBALANCE?
*/
- if (!processor->is_recommended)
+ if (SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread)) {
return (check_reason | AST_PREEMPT);
+ }
/*
* Even though we could continue executing on this processor, a
* TODO: Should this do the same check that thread_select does? i.e.
* if no bound threads target this processor, and idle primaries exist, preempt
* The case of RT threads existing is already taken care of above
- * Consider Capri in this scenario.
- *
- * if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue))
- *
- * TODO: Alternatively - check if only primary is idle, or check if primary's pri is lower than mine.
*/
if (processor->current_pri < BASEPRI_RTQUEUES &&
void
set_sched_pri(
thread_t thread,
- int priority)
+ int new_priority,
+ set_sched_pri_options_t options)
{
thread_t cthread = current_thread();
boolean_t is_current_thread = (thread == cthread) ? TRUE : FALSE;
uint64_t urgency_param1, urgency_param2;
boolean_t removed_from_runq = FALSE;
+ bool lazy_update = ((options & SETPRI_LAZY) == SETPRI_LAZY);
+
+ int old_priority = thread->sched_pri;
+
/* If we're already at this priority, no need to mess with the runqueue */
- if (priority == thread->sched_pri)
+ if (new_priority == old_priority)
return;
if (is_current_thread) {
removed_from_runq = thread_run_queue_remove(thread);
}
- thread->sched_pri = priority;
+ thread->sched_pri = new_priority;
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY),
(uintptr_t)thread_tid(thread),
thread->base_pri,
thread->sched_pri,
- 0, /* eventually, 'reason' */
+ thread->sched_usage,
0);
if (is_current_thread) {
* those are lazily handled. QoS classes have distinct priority bands, and QoS
* inheritance is expected to involve priority changes.
*/
+ uint64_t ctime = mach_approximate_time();
if (nurgency != curgency) {
thread_tell_urgency(nurgency, urgency_param1, urgency_param2, 0, thread);
- machine_thread_going_on_core(thread, nurgency, 0, 0);
}
+ machine_thread_going_on_core(thread, nurgency, 0, 0, ctime);
}
- /* TODO: Should this be TAILQ if it went down, HEADQ if it went up? */
if (removed_from_runq)
thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ);
else if (thread->state & TH_RUN) {
processor_t processor = thread->last_processor;
if (is_current_thread) {
- ast_t preempt;
+ processor_state_update_from_thread(processor, thread);
- processor->current_pri = priority;
- processor->current_thmode = thread->sched_mode;
- processor->current_sfi_class = thread->sfi_class = sfi_thread_classify(thread);
- if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE)
- ast_on(preempt);
- } else if (processor != PROCESSOR_NULL && processor->active_thread == thread)
+ /*
+ * When dropping in priority, check if the thread no longer belongs on core.
+ * If a thread raises its own priority, don't aggressively rebalance it.
+ * <rdar://problem/31699165>
+ */
+ if (!lazy_update && new_priority < old_priority) {
+ ast_t preempt;
+
+ if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE)
+ ast_on(preempt);
+ }
+ } else if (!lazy_update && processor != PROCESSOR_NULL &&
+ processor != current_processor() && processor->active_thread == thread) {
cause_ast_check(processor);
+ }
}
}
return SCHED(processor_queue_remove)(processor, thread);
}
- rt_lock_lock();
+ processor_set_t pset = processor->processor_set;
+
+ rt_lock_lock(pset);
if (thread->runq != PROCESSOR_NULL) {
/*
* that run queue.
*/
- assert(thread->runq == THREAD_ON_RT_RUNQ);
-
remqueue(&thread->runq_links);
- SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
- rt_runq.count--;
+ SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq)(pset)->runq_stats, rt_runq_count(pset));
+ rt_runq_count_decr(pset);
thread->runq = PROCESSOR_NULL;
removed = TRUE;
}
- rt_lock_unlock();
+ rt_lock_unlock(pset);
return (removed);
}
thread_run_queue_reinsert(thread_t thread, integer_t options)
{
assert(thread->runq == PROCESSOR_NULL);
+ assert(thread->state & (TH_RUN));
- assert(thread->state & (TH_RUN));
- thread_setrun(thread, options);
-
+ thread_setrun(thread, options);
}
void
-sys_override_cpu_throttle(int flag)
+sys_override_cpu_throttle(boolean_t enable_override)
{
- if (flag == CPU_THROTTLE_ENABLE)
- cpu_throttle_enabled = 1;
- if (flag == CPU_THROTTLE_DISABLE)
+ if (enable_override)
cpu_throttle_enabled = 0;
+ else
+ cpu_throttle_enabled = 1;
}
int
}
}
+perfcontrol_class_t
+thread_get_perfcontrol_class(thread_t thread)
+{
+ /* Special case handling */
+ if (thread->state & TH_IDLE)
+ return PERFCONTROL_CLASS_IDLE;
+ if (thread->task == kernel_task)
+ return PERFCONTROL_CLASS_KERNEL;
+ if (thread->sched_mode == TH_MODE_REALTIME)
+ return PERFCONTROL_CLASS_REALTIME;
+
+ /* perfcontrol_class based on base_pri */
+ if (thread->base_pri <= MAXPRI_THROTTLE)
+ return PERFCONTROL_CLASS_BACKGROUND;
+ else if (thread->base_pri <= BASEPRI_UTILITY)
+ return PERFCONTROL_CLASS_UTILITY;
+ else if (thread->base_pri <= BASEPRI_DEFAULT)
+ return PERFCONTROL_CLASS_NONUI;
+ else if (thread->base_pri <= BASEPRI_FOREGROUND)
+ return PERFCONTROL_CLASS_UI;
+ else
+ return PERFCONTROL_CLASS_ABOVEUI;
+}
/*
* This is the processor idle loop, which just looks for other threads
SCHED_STATS_CPU_IDLE_START(processor);
- timer_switch(&PROCESSOR_DATA(processor, system_state),
- mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state));
+ uint64_t ctime = mach_absolute_time();
+
+ timer_switch(&PROCESSOR_DATA(processor, system_state), ctime, &PROCESSOR_DATA(processor, idle_state));
PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state);
+ cpu_quiescent_counter_leave(ctime);
+
while (1) {
- if (processor->state != PROCESSOR_IDLE) /* unsafe, but worst case we loop around once */
+ /*
+ * Ensure that updates to my processor and pset state,
+ * made by the IPI source processor before sending the IPI,
+ * are visible on this processor now (even though we don't
+ * take the pset lock yet).
+ */
+ atomic_thread_fence(memory_order_acquire);
+
+ if (processor->state != PROCESSOR_IDLE)
break;
- if (pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))
+ if (bit_test(pset->pending_AST_cpu_mask, processor->cpu_id))
break;
- if (processor->is_recommended) {
- if (rt_runq.count)
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ if (bit_test(pset->pending_deferred_AST_cpu_mask, processor->cpu_id))
+ break;
+#endif
+ if (processor->is_recommended && (processor->processor_primary == processor)) {
+ if (rt_runq_count(pset))
break;
} else {
if (SCHED(processor_bound_count)(processor))
#endif
IDLE_KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -1, 0);
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -1, 0);
machine_track_platform_idle(TRUE);
(void)splsched();
+ /*
+ * Check if we should call sched_timeshare_consider_maintenance() here.
+ * The CPU was woken out of idle due to an interrupt and we should do the
+ * call only if the processor is still idle. If the processor is non-idle,
+ * the threads running on the processor would do the call as part of
+ * context swithing.
+ */
+ if (processor->state == PROCESSOR_IDLE) {
+ sched_timeshare_consider_maintenance(mach_absolute_time());
+ }
+
IDLE_KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0);
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -2, 0);
if (!SCHED(processor_queue_empty)(processor)) {
/* Secondary SMT processors respond to directed wakeups
}
}
- timer_switch(&PROCESSOR_DATA(processor, idle_state),
- mach_absolute_time(), &PROCESSOR_DATA(processor, system_state));
+ ctime = mach_absolute_time();
+
+ timer_switch(&PROCESSOR_DATA(processor, idle_state), ctime, &PROCESSOR_DATA(processor, system_state));
PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state);
+ cpu_quiescent_counter_join(ctime);
+
pset_lock(pset);
/* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */
- pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
+ bit_clear(pset->pending_AST_cpu_mask, processor->cpu_id);
#if defined(CONFIG_SCHED_DEFERRED_AST)
- pset->pending_deferred_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
+ bit_clear(pset->pending_deferred_AST_cpu_mask, processor->cpu_id);
#endif
state = processor->state;
*/
new_thread = processor->next_thread;
processor->next_thread = THREAD_NULL;
- processor->state = PROCESSOR_RUNNING;
+ pset_update_processor_state(pset, processor, PROCESSOR_RUNNING);
if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) ||
- (rt_runq.count > 0)) ) {
- /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */
- processor->current_pri = IDLEPRI;
- processor->current_thmode = TH_MODE_FIXED;
- processor->current_sfi_class = SFI_CLASS_KERNEL;
+ (rt_runq_count(pset) > 0)) ) {
+ /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */
+ processor_state_update_idle(processor);
processor->deadline = UINT64_MAX;
pset_unlock(pset);
thread_lock(new_thread);
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq.count, 0, 0);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq_count(pset), 0, 0);
thread_setrun(new_thread, SCHED_HEADQ);
thread_unlock(new_thread);
return (THREAD_NULL);
}
+ sched_update_pset_load_average(pset);
+
pset_unlock(pset);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
return (new_thread);
} else if (state == PROCESSOR_IDLE) {
- re_queue_tail(&pset->active_queue, &processor->processor_queue);
-
- processor->state = PROCESSOR_RUNNING;
- processor->current_pri = IDLEPRI;
- processor->current_thmode = TH_MODE_FIXED;
- processor->current_sfi_class = SFI_CLASS_KERNEL;
+ pset_update_processor_state(pset, processor, PROCESSOR_RUNNING);
+ processor_state_update_idle(processor);
processor->deadline = UINT64_MAX;
} else if (state == PROCESSOR_SHUTDOWN) {
*/
if ((new_thread = processor->next_thread) != THREAD_NULL) {
processor->next_thread = THREAD_NULL;
- processor->current_pri = IDLEPRI;
- processor->current_thmode = TH_MODE_FIXED;
- processor->current_sfi_class = SFI_CLASS_KERNEL;
+ processor_state_update_idle(processor);
processor->deadline = UINT64_MAX;
pset_unlock(pset);
kern_return_t result;
thread_t thread;
spl_t s;
+ char name[MAXTHREADNAMESIZE];
result = kernel_thread_create((thread_continue_t)idle_thread, NULL, MAXPRI_KERNEL, &thread);
if (result != KERN_SUCCESS)
return (result);
+ snprintf(name, sizeof(name), "idle #%d", processor->cpu_id);
+ thread_set_thread_name(thread, name);
+
s = splsched();
thread_lock(thread);
thread->bound_processor = processor;
simple_lock_init(&sched_vm_group_list_lock, 0);
+#if __arm__ || __arm64__
+ simple_lock_init(&sched_recommended_cores_lock, 0);
+#endif /* __arm__ || __arm64__ */
result = kernel_thread_start_priority((thread_continue_t)sched_init_thread,
(void *)SCHED(maintenance_continuation), MAXPRI_KERNEL, &thread);
thread_block(THREAD_CONTINUE_NULL);
}
+#if __arm64__
+static _Atomic uint64_t sched_perfcontrol_callback_deadline;
+#endif /* __arm64__ */
+
+
#if defined(CONFIG_SCHED_TIMESHARE_CORE)
static volatile uint64_t sched_maintenance_deadline;
static uint64_t sched_tick_last_abstime;
static uint64_t sched_tick_delta;
uint64_t sched_tick_max_delta;
+
+
/*
* sched_init_thread:
*
sched_tick += sched_tick_delta;
+ update_vm_info();
+
/*
* Compute various averages.
*/
*/
SCHED(thread_update_scan)(&scan_context);
- rt_runq_scan(&scan_context);
+ SCHED(rt_runq_scan)(&scan_context);
uint64_t ctime = mach_absolute_time();
*/
sched_vm_group_maintenance();
+#if __arm__ || __arm64__
+ /* Check to see if the recommended cores failsafe is active */
+ sched_recommended_cores_maintenance();
+#endif /* __arm__ || __arm64__ */
+
+
+#if DEBUG || DEVELOPMENT
+#if __x86_64__
+#include <i386/misc_protos.h>
+ /* Check for long-duration interrupts */
+ mp_interrupt_watchdog();
+#endif /* __x86_64__ */
+#endif /* DEBUG || DEVELOPMENT */
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_END,
- sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG],
- sched_pri_shifts[TH_BUCKET_SHARE_UT], 0, 0);
+ sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG],
+ sched_pri_shifts[TH_BUCKET_SHARE_UT], sched_pri_shifts[TH_BUCKET_SHARE_DF], 0);
assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT);
thread_block((thread_continue_t)sched_timeshare_maintenance_continue);
*/
void
sched_timeshare_consider_maintenance(uint64_t ctime) {
- uint64_t ndeadline, deadline = sched_maintenance_deadline;
+
+ cpu_quiescent_counter_checkin(ctime);
+
+ uint64_t deadline = sched_maintenance_deadline;
if (__improbable(ctime >= deadline)) {
if (__improbable(current_thread() == sched_maintenance_thread))
return;
OSMemoryBarrier();
- ndeadline = ctime + sched_tick_interval;
+ uint64_t ndeadline = ctime + sched_tick_interval;
if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline, deadline, ndeadline))) {
thread_wakeup((event_t)sched_timeshare_maintenance_continue);
sched_maintenance_wakeups++;
}
}
+
+ uint64_t load_compute_deadline = __c11_atomic_load(&sched_load_compute_deadline, memory_order_relaxed);
+
+ if (__improbable(load_compute_deadline && ctime >= load_compute_deadline)) {
+ uint64_t new_deadline = 0;
+ if (__c11_atomic_compare_exchange_strong(&sched_load_compute_deadline, &load_compute_deadline, new_deadline,
+ memory_order_relaxed, memory_order_relaxed)) {
+ compute_sched_load();
+ new_deadline = ctime + sched_load_compute_interval_abs;
+ __c11_atomic_store(&sched_load_compute_deadline, new_deadline, memory_order_relaxed);
+ }
+ }
+
+#if __arm64__
+ uint64_t perf_deadline = __c11_atomic_load(&sched_perfcontrol_callback_deadline, memory_order_relaxed);
+
+ if (__improbable(perf_deadline && ctime >= perf_deadline)) {
+ /* CAS in 0, if success, make callback. Otherwise let the next context switch check again. */
+ if (__c11_atomic_compare_exchange_strong(&sched_perfcontrol_callback_deadline, &perf_deadline, 0,
+ memory_order_relaxed, memory_order_relaxed)) {
+ machine_perfcontrol_deadline_passed(perf_deadline);
+ }
+ }
+#endif /* __arm64__ */
+
}
#endif /* CONFIG_SCHED_TIMESHARE_CORE */
nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2);
}
+#if __arm__ || __arm64__
-kern_return_t
-sched_work_interval_notify(thread_t thread, uint64_t work_interval_id, uint64_t start, uint64_t finish, uint64_t deadline, uint64_t next_start, uint32_t flags)
+uint32_t perfcontrol_requested_recommended_cores = ALL_CORES_RECOMMENDED;
+uint32_t perfcontrol_requested_recommended_core_count = MAX_CPUS;
+bool perfcontrol_failsafe_active = false;
+bool perfcontrol_sleep_override = false;
+
+uint64_t perfcontrol_failsafe_maintenance_runnable_time;
+uint64_t perfcontrol_failsafe_activation_time;
+uint64_t perfcontrol_failsafe_deactivation_time;
+
+/* data covering who likely caused it and how long they ran */
+#define FAILSAFE_NAME_LEN 33 /* (2*MAXCOMLEN)+1 from size of p_name */
+char perfcontrol_failsafe_name[FAILSAFE_NAME_LEN];
+int perfcontrol_failsafe_pid;
+uint64_t perfcontrol_failsafe_tid;
+uint64_t perfcontrol_failsafe_thread_timer_at_start;
+uint64_t perfcontrol_failsafe_thread_timer_last_seen;
+uint32_t perfcontrol_failsafe_recommended_at_trigger;
+
+/*
+ * Perf controller calls here to update the recommended core bitmask.
+ * If the failsafe is active, we don't immediately apply the new value.
+ * Instead, we store the new request and use it after the failsafe deactivates.
+ *
+ * If the failsafe is not active, immediately apply the update.
+ *
+ * No scheduler locks are held, no other locks are held that scheduler might depend on,
+ * interrupts are enabled
+ *
+ * currently prototype is in osfmk/arm/machine_routines.h
+ */
+void
+sched_perfcontrol_update_recommended_cores(uint32_t recommended_cores)
{
- int urgency;
- uint64_t urgency_param1, urgency_param2;
- spl_t s;
+ assert(preemption_enabled());
- if (work_interval_id == 0) {
- return (KERN_INVALID_ARGUMENT);
+ spl_t s = splsched();
+ simple_lock(&sched_recommended_cores_lock);
+
+ perfcontrol_requested_recommended_cores = recommended_cores;
+ perfcontrol_requested_recommended_core_count = __builtin_popcountll(recommended_cores);
+
+ if ((perfcontrol_failsafe_active == false) && (perfcontrol_sleep_override == false))
+ sched_update_recommended_cores(perfcontrol_requested_recommended_cores);
+ else
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_REC_CORES_FAILSAFE) | DBG_FUNC_NONE,
+ perfcontrol_requested_recommended_cores,
+ sched_maintenance_thread->last_made_runnable_time, 0, 0, 0);
+
+ simple_unlock(&sched_recommended_cores_lock);
+ splx(s);
+}
+
+void
+sched_override_recommended_cores_for_sleep(void)
+{
+ spl_t s = splsched();
+ simple_lock(&sched_recommended_cores_lock);
+
+ if (perfcontrol_sleep_override == false) {
+ perfcontrol_sleep_override = true;
+ sched_update_recommended_cores(ALL_CORES_RECOMMENDED);
}
- assert(thread == current_thread());
+ simple_unlock(&sched_recommended_cores_lock);
+ splx(s);
+}
- thread_mtx_lock(thread);
- if (thread->work_interval_id != work_interval_id) {
- thread_mtx_unlock(thread);
- return (KERN_INVALID_ARGUMENT);
+void
+sched_restore_recommended_cores_after_sleep(void)
+{
+ spl_t s = splsched();
+ simple_lock(&sched_recommended_cores_lock);
+
+ if (perfcontrol_sleep_override == true) {
+ perfcontrol_sleep_override = false;
+ sched_update_recommended_cores(perfcontrol_requested_recommended_cores);
}
- thread_mtx_unlock(thread);
- s = splsched();
- thread_lock(thread);
- urgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
- thread_unlock(thread);
+ simple_unlock(&sched_recommended_cores_lock);
splx(s);
+}
- machine_work_interval_notify(thread, work_interval_id, start, finish, deadline, next_start, urgency, flags);
- return (KERN_SUCCESS);
+/*
+ * Consider whether we need to activate the recommended cores failsafe
+ *
+ * Called from quantum timer interrupt context of a realtime thread
+ * No scheduler locks are held, interrupts are disabled
+ */
+void
+sched_consider_recommended_cores(uint64_t ctime, thread_t cur_thread)
+{
+ /*
+ * Check if a realtime thread is starving the system
+ * and bringing up non-recommended cores would help
+ *
+ * TODO: Is this the correct check for recommended == possible cores?
+ * TODO: Validate the checks without the relevant lock are OK.
+ */
+
+ if (__improbable(perfcontrol_failsafe_active == TRUE)) {
+ /* keep track of how long the responsible thread runs */
+
+ simple_lock(&sched_recommended_cores_lock);
+
+ if (perfcontrol_failsafe_active == TRUE &&
+ cur_thread->thread_id == perfcontrol_failsafe_tid) {
+ perfcontrol_failsafe_thread_timer_last_seen = timer_grab(&cur_thread->user_timer) +
+ timer_grab(&cur_thread->system_timer);
+ }
+
+ simple_unlock(&sched_recommended_cores_lock);
+
+ /* we're already trying to solve the problem, so bail */
+ return;
+ }
+
+ /* The failsafe won't help if there are no more processors to enable */
+ if (__probable(perfcontrol_requested_recommended_core_count >= processor_count))
+ return;
+
+ uint64_t too_long_ago = ctime - perfcontrol_failsafe_starvation_threshold;
+
+ /* Use the maintenance thread as our canary in the coal mine */
+ thread_t m_thread = sched_maintenance_thread;
+
+ /* If it doesn't look bad, nothing to see here */
+ if (__probable(m_thread->last_made_runnable_time >= too_long_ago))
+ return;
+
+ /* It looks bad, take the lock to be sure */
+ thread_lock(m_thread);
+
+ if (m_thread->runq == PROCESSOR_NULL ||
+ (m_thread->state & (TH_RUN|TH_WAIT)) != TH_RUN ||
+ m_thread->last_made_runnable_time >= too_long_ago) {
+ /*
+ * Maintenance thread is either on cpu or blocked, and
+ * therefore wouldn't benefit from more cores
+ */
+ thread_unlock(m_thread);
+ return;
+ }
+
+ uint64_t maintenance_runnable_time = m_thread->last_made_runnable_time;
+
+ thread_unlock(m_thread);
+
+ /*
+ * There are cores disabled at perfcontrol's recommendation, but the
+ * system is so overloaded that the maintenance thread can't run.
+ * That likely means that perfcontrol can't run either, so it can't fix
+ * the recommendation. We have to kick in a failsafe to keep from starving.
+ *
+ * When the maintenance thread has been starved for too long,
+ * ignore the recommendation from perfcontrol and light up all the cores.
+ *
+ * TODO: Consider weird states like boot, sleep, or debugger
+ */
+
+ simple_lock(&sched_recommended_cores_lock);
+
+ if (perfcontrol_failsafe_active == TRUE) {
+ simple_unlock(&sched_recommended_cores_lock);
+ return;
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_REC_CORES_FAILSAFE) | DBG_FUNC_START,
+ perfcontrol_requested_recommended_cores, maintenance_runnable_time, 0, 0, 0);
+
+ perfcontrol_failsafe_active = TRUE;
+ perfcontrol_failsafe_activation_time = mach_absolute_time();
+ perfcontrol_failsafe_maintenance_runnable_time = maintenance_runnable_time;
+ perfcontrol_failsafe_recommended_at_trigger = perfcontrol_requested_recommended_cores;
+
+ /* Capture some data about who screwed up (assuming that the thread on core is at fault) */
+ task_t task = cur_thread->task;
+ perfcontrol_failsafe_pid = task_pid(task);
+ strlcpy(perfcontrol_failsafe_name, proc_name_address(task->bsd_info), sizeof(perfcontrol_failsafe_name));
+
+ perfcontrol_failsafe_tid = cur_thread->thread_id;
+
+ /* Blame the thread for time it has run recently */
+ uint64_t recent_computation = (ctime - cur_thread->computation_epoch) + cur_thread->computation_metered;
+
+ uint64_t last_seen = timer_grab(&cur_thread->user_timer) + timer_grab(&cur_thread->system_timer);
+
+ /* Compute the start time of the bad behavior in terms of the thread's on core time */
+ perfcontrol_failsafe_thread_timer_at_start = last_seen - recent_computation;
+ perfcontrol_failsafe_thread_timer_last_seen = last_seen;
+
+ /* Ignore the previously recommended core configuration */
+ sched_update_recommended_cores(ALL_CORES_RECOMMENDED);
+
+ simple_unlock(&sched_recommended_cores_lock);
+}
+
+/*
+ * Now that our bacon has been saved by the failsafe, consider whether to turn it off
+ *
+ * Runs in the context of the maintenance thread, no locks held
+ */
+static void
+sched_recommended_cores_maintenance(void)
+{
+ /* Common case - no failsafe, nothing to be done here */
+ if (__probable(perfcontrol_failsafe_active == FALSE))
+ return;
+
+ uint64_t ctime = mach_absolute_time();
+
+ boolean_t print_diagnostic = FALSE;
+ char p_name[FAILSAFE_NAME_LEN] = "";
+
+ spl_t s = splsched();
+ simple_lock(&sched_recommended_cores_lock);
+
+ /* Check again, under the lock, to avoid races */
+ if (perfcontrol_failsafe_active == FALSE)
+ goto out;
+
+ /*
+ * Ensure that the other cores get another few ticks to run some threads
+ * If we don't have this hysteresis, the maintenance thread is the first
+ * to run, and then it immediately kills the other cores
+ */
+ if ((ctime - perfcontrol_failsafe_activation_time) < perfcontrol_failsafe_starvation_threshold)
+ goto out;
+
+ /* Capture some diagnostic state under the lock so we can print it out later */
+
+ int pid = perfcontrol_failsafe_pid;
+ uint64_t tid = perfcontrol_failsafe_tid;
+
+ uint64_t thread_usage = perfcontrol_failsafe_thread_timer_last_seen -
+ perfcontrol_failsafe_thread_timer_at_start;
+ uint32_t rec_cores_before = perfcontrol_failsafe_recommended_at_trigger;
+ uint32_t rec_cores_after = perfcontrol_requested_recommended_cores;
+ uint64_t failsafe_duration = ctime - perfcontrol_failsafe_activation_time;
+ strlcpy(p_name, perfcontrol_failsafe_name, sizeof(p_name));
+
+ print_diagnostic = TRUE;
+
+ /* Deactivate the failsafe and reinstate the requested recommendation settings */
+
+ perfcontrol_failsafe_deactivation_time = ctime;
+ perfcontrol_failsafe_active = FALSE;
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_REC_CORES_FAILSAFE) | DBG_FUNC_END,
+ perfcontrol_requested_recommended_cores, failsafe_duration, 0, 0, 0);
+
+ sched_update_recommended_cores(perfcontrol_requested_recommended_cores);
+
+out:
+ simple_unlock(&sched_recommended_cores_lock);
+ splx(s);
+
+ if (print_diagnostic) {
+ uint64_t failsafe_duration_ms = 0, thread_usage_ms = 0;
+
+ absolutetime_to_nanoseconds(failsafe_duration, &failsafe_duration_ms);
+ failsafe_duration_ms = failsafe_duration_ms / NSEC_PER_MSEC;
+
+ absolutetime_to_nanoseconds(thread_usage, &thread_usage_ms);
+ thread_usage_ms = thread_usage_ms / NSEC_PER_MSEC;
+
+ printf("recommended core failsafe kicked in for %lld ms "
+ "likely due to %s[%d] thread 0x%llx spending "
+ "%lld ms on cpu at realtime priority - "
+ "new recommendation: 0x%x -> 0x%x\n",
+ failsafe_duration_ms, p_name, pid, tid, thread_usage_ms,
+ rec_cores_before, rec_cores_after);
+ }
+}
+
+/*
+ * Apply a new recommended cores mask to the processors it affects
+ * Runs after considering failsafes and such
+ *
+ * Iterate over processors and update their ->is_recommended field.
+ * If a processor is running, we let it drain out at its next
+ * quantum expiration or blocking point. If a processor is idle, there
+ * may be more work for it to do, so IPI it.
+ *
+ * interrupts disabled, sched_recommended_cores_lock is held
+ */
+static void
+sched_update_recommended_cores(uint32_t recommended_cores)
+{
+ processor_set_t pset, nset;
+ processor_t processor;
+ uint64_t needs_exit_idle_mask = 0x0;
+
+ processor = processor_list;
+ pset = processor->processor_set;
+
+ KDBG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_START,
+ recommended_cores, perfcontrol_failsafe_active, 0, 0);
+
+ if (__builtin_popcount(recommended_cores) == 0) {
+ bit_set(recommended_cores, master_processor->cpu_id); /* add boot processor or we hang */
+ }
+
+ /* First set recommended cores */
+ pset_lock(pset);
+ do {
+
+ nset = processor->processor_set;
+ if (nset != pset) {
+ pset_unlock(pset);
+ pset = nset;
+ pset_lock(pset);
+ }
+
+ if (bit_test(recommended_cores, processor->cpu_id)) {
+ processor->is_recommended = TRUE;
+ bit_set(pset->recommended_bitmask, processor->cpu_id);
+
+ if (processor->state == PROCESSOR_IDLE) {
+ if (processor != current_processor()) {
+ bit_set(needs_exit_idle_mask, processor->cpu_id);
+ }
+ }
+ }
+ } while ((processor = processor->processor_list) != NULL);
+ pset_unlock(pset);
+
+ /* Now shutdown not recommended cores */
+ processor = processor_list;
+ pset = processor->processor_set;
+
+ pset_lock(pset);
+ do {
+
+ nset = processor->processor_set;
+ if (nset != pset) {
+ pset_unlock(pset);
+ pset = nset;
+ pset_lock(pset);
+ }
+
+ if (!bit_test(recommended_cores, processor->cpu_id)) {
+ sched_ipi_type_t ipi_type = SCHED_IPI_NONE;
+
+ processor->is_recommended = FALSE;
+ bit_clear(pset->recommended_bitmask, processor->cpu_id);
+
+ if ((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_DISPATCHING)) {
+ ipi_type = SCHED_IPI_IMMEDIATE;
+ }
+ SCHED(processor_queue_shutdown)(processor);
+ /* pset unlocked */
+
+ SCHED(rt_queue_shutdown)(processor);
+
+ if (ipi_type != SCHED_IPI_NONE) {
+ if (processor == current_processor()) {
+ ast_on(AST_PREEMPT);
+ } else {
+ sched_ipi_perform(processor, ipi_type);
+ }
+ }
+
+ pset_lock(pset);
+ }
+ } while ((processor = processor->processor_list) != NULL);
+ pset_unlock(pset);
+
+ /* Issue all pending IPIs now that the pset lock has been dropped */
+ for (int cpuid = lsb_first(needs_exit_idle_mask); cpuid >= 0; cpuid = lsb_next(needs_exit_idle_mask, cpuid)) {
+ processor = processor_array[cpuid];
+ machine_signal_idle(processor);
+ }
+
+ KDBG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_END,
+ needs_exit_idle_mask, 0, 0, 0);
}
+#endif /* __arm__ || __arm64__ */
void thread_set_options(uint32_t thopt) {
spl_t x;
void thread_set_pending_block_hint(thread_t thread, block_hint_t block_hint) {
thread->pending_block_hint = block_hint;
}
+
+uint32_t qos_max_parallelism(int qos, uint64_t options)
+{
+ return SCHED(qos_max_parallelism)(qos, options);
+}
+
+uint32_t sched_qos_max_parallelism(__unused int qos, uint64_t options)
+{
+ host_basic_info_data_t hinfo;
+ mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+ /* Query the machine layer for core information */
+ __assert_only kern_return_t kret = host_info(host_self(), HOST_BASIC_INFO,
+ (host_info_t)&hinfo, &count);
+ assert(kret == KERN_SUCCESS);
+
+ /* We would not want multiple realtime threads running on the
+ * same physical core; even for SMT capable machines.
+ */
+ if (options & QOS_PARALLELISM_REALTIME) {
+ return hinfo.physical_cpu;
+ }
+
+ if (options & QOS_PARALLELISM_COUNT_LOGICAL) {
+ return hinfo.logical_cpu;
+ } else {
+ return hinfo.physical_cpu;
+ }
+}
+
+#if __arm64__
+
+/*
+ * Set up or replace old timer with new timer
+ *
+ * Returns true if canceled old timer, false if it did not
+ */
+boolean_t
+sched_perfcontrol_update_callback_deadline(uint64_t new_deadline)
+{
+ /*
+ * Exchange deadline for new deadline, if old deadline was nonzero,
+ * then I cancelled the callback, otherwise I didn't
+ */
+
+ uint64_t old_deadline = __c11_atomic_load(&sched_perfcontrol_callback_deadline,
+ memory_order_relaxed);
+
+
+ while (!__c11_atomic_compare_exchange_weak(&sched_perfcontrol_callback_deadline,
+ &old_deadline, new_deadline,
+ memory_order_relaxed, memory_order_relaxed));
+
+
+ /* now old_deadline contains previous value, which might not be the same if it raced */
+
+ return (old_deadline != 0) ? TRUE : FALSE;
+}
+
+#endif /* __arm64__ */
+
+void
+sched_update_pset_load_average(processor_set_t pset)
+{
+ int load = ((bit_count(pset->cpu_state_map[PROCESSOR_RUNNING]) + pset->pset_runq.count + rt_runq_count(pset)) << PSET_LOAD_NUMERATOR_SHIFT);
+ int new_load_average = (pset->load_average + load) >> 1;
+
+ pset->load_average = new_load_average;
+
+#if (DEVELOPMENT || DEBUG)
+#endif
+}
+
+/* pset is locked */
+static processor_t
+choose_processor_for_realtime_thread(processor_set_t pset)
+{
+ uint64_t cpu_map = (pset->cpu_bitmask & pset->recommended_bitmask & ~pset->pending_AST_cpu_mask);
+
+ for (int cpuid = lsb_first(cpu_map); cpuid >= 0; cpuid = lsb_next(cpu_map, cpuid)) {
+ processor_t processor = processor_array[cpuid];
+
+ if (processor->processor_primary != processor) {
+ continue;
+ }
+
+ if (processor->state == PROCESSOR_IDLE) {
+ return processor;
+ }
+
+ if ((processor->state != PROCESSOR_RUNNING) && (processor->state != PROCESSOR_DISPATCHING)) {
+ continue;
+ }
+
+ if (processor->current_pri >= BASEPRI_RTQUEUES) {
+ continue;
+ }
+
+ return processor;
+
+ }
+
+ if (!sched_allow_rt_smt) {
+ return PROCESSOR_NULL;
+ }
+
+ /* Consider secondary processors */
+ for (int cpuid = lsb_first(cpu_map); cpuid >= 0; cpuid = lsb_next(cpu_map, cpuid)) {
+ processor_t processor = processor_array[cpuid];
+
+ if (processor->processor_primary == processor) {
+ continue;
+ }
+
+ if (processor->state == PROCESSOR_IDLE) {
+ return processor;
+ }
+
+ if ((processor->state != PROCESSOR_RUNNING) && (processor->state != PROCESSOR_DISPATCHING)) {
+ continue;
+ }
+
+ if (processor->current_pri >= BASEPRI_RTQUEUES) {
+ continue;
+ }
+
+ return processor;
+
+ }
+
+ return PROCESSOR_NULL;
+}
+
+/* pset is locked */
+static bool
+all_available_primaries_are_running_realtime_threads(processor_set_t pset)
+{
+ uint64_t cpu_map = (pset->cpu_bitmask & pset->recommended_bitmask);
+
+ for (int cpuid = lsb_first(cpu_map); cpuid >= 0; cpuid = lsb_next(cpu_map, cpuid)) {
+ processor_t processor = processor_array[cpuid];
+
+ if (processor->processor_primary != processor) {
+ continue;
+ }
+
+ if (processor->state == PROCESSOR_IDLE) {
+ return false;
+ }
+
+ if (processor->state == PROCESSOR_DISPATCHING) {
+ return false;
+ }
+
+ if (processor->state != PROCESSOR_RUNNING) {
+ /*
+ * All other processor states are considered unavailable to run
+ * realtime threads. In particular, we prefer an available secondary
+ * processor over the risk of leaving a realtime thread on the run queue
+ * while waiting for a processor in PROCESSOR_START state,
+ * which should anyway be a rare case.
+ */
+ continue;
+ }
+
+ if (processor->current_pri < BASEPRI_RTQUEUES) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+