/*
- * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/mach_host_server.h>
#include <mach/task_server.h>
#include <mach/machine/vm_types.h>
-#include <mach_debug/zone_info.h>
#include <mach/vm_map.h>
+#include <mach/sdt.h>
+#include <kern/bits.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/backtrace.h>
#include <kern/zalloc.h>
#include <kern/kalloc.h>
+#include <prng/random.h>
+
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <libkern/OSDebug.h>
#include <libkern/OSAtomic.h>
+#include <libkern/section_keywords.h>
#include <sys/kdebug.h>
+#include <san/kasan.h>
+
+/*
+ * The zone_locks_grp allows for collecting lock statistics.
+ * All locks are associated to this group in zinit.
+ * Look at tools/lockstat for debugging lock contention.
+ */
+
+lck_grp_t zone_locks_grp;
+lck_grp_attr_t zone_locks_grp_attr;
+
/*
* ZONE_ALIAS_ADDR (deprecated)
*/
#define from_zone_map(addr, size) \
- ((vm_offset_t)(addr) >= zone_map_min_address && \
- ((vm_offset_t)(addr) + size - 1) < zone_map_max_address )
+ ((vm_offset_t)(addr) >= zone_map_min_address && \
+ ((vm_offset_t)(addr) + size - 1) < zone_map_max_address )
/*
* Zone Corruption Debugging
} else {
rolled_over = FALSE;
}
-
} while (!OSCompareAndSwap(old_count, new_count, count_p));
return rolled_over;
#define ZP_POISON 0xdeadbeef
#endif
+boolean_t zfree_poison_element(zone_t zone, vm_offset_t elem);
+void zalloc_poison_element(boolean_t check_poison, zone_t zone, vm_offset_t addr);
+
#define ZP_DEFAULT_SAMPLING_FACTOR 16
#define ZP_DEFAULT_SCALE_FACTOR 4
*/
/* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */
-uint32_t zp_factor = 0;
+#if DEBUG
+#define DEFAULT_ZP_FACTOR (1)
+#else
+#define DEFAULT_ZP_FACTOR (0)
+#endif
+uint32_t zp_factor = DEFAULT_ZP_FACTOR;
/* set by zp-scale=N boot arg, scales zp_factor by zone size */
uint32_t zp_scale = 0;
uintptr_t zp_poisoned_cookie = 0;
uintptr_t zp_nopoison_cookie = 0;
+#if VM_MAX_TAG_ZONES
+boolean_t zone_tagging_on;
+#endif /* VM_MAX_TAG_ZONES */
+
+SECURITY_READ_ONLY_LATE(boolean_t) copyio_zalloc_check = TRUE;
+static struct bool_gen zone_bool_gen;
/*
* initialize zone poisoning
if (zp_factor != 0) {
uint32_t rand_bits = early_random() & 0x3;
- if (rand_bits == 0x1)
+ if (rand_bits == 0x1) {
zp_factor += 1;
- else if (rand_bits == 0x2)
+ } else if (rand_bits == 0x2) {
zp_factor -= 1;
+ }
/* if 0x0 or 0x3, leave it alone */
}
zp_nopoison_cookie = (uintptr_t) early_random();
#if MACH_ASSERT
- if (zp_poisoned_cookie == zp_nopoison_cookie)
+ if (zp_poisoned_cookie == zp_nopoison_cookie) {
panic("early_random() is broken: %p and %p are not random\n",
- (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie);
+ (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie);
+ }
#endif
/*
/*
* These macros are used to keep track of the number
* of pages being used by the zone currently. The
- * z->page_count is protected by the zone lock.
+ * z->page_count is not protected by the zone lock.
*/
-#define ZONE_PAGE_COUNT_INCR(z, count) \
-{ \
- OSAddAtomic64(count, &(z->page_count)); \
+#define ZONE_PAGE_COUNT_INCR(z, count) \
+{ \
+ OSAddAtomic64(count, &(z->page_count)); \
}
-#define ZONE_PAGE_COUNT_DECR(z, count) \
-{ \
- OSAddAtomic64(-count, &(z->page_count)); \
+#define ZONE_PAGE_COUNT_DECR(z, count) \
+{ \
+ OSAddAtomic64(-count, &(z->page_count)); \
}
vm_map_t zone_map = VM_MAP_NULL;
vm_offset_t zone_map_max_address = 0;
/* Globals for random boolean generator for elements in free list */
-#define MAX_ENTROPY_PER_ZCRAM 4
-#define RANDOM_BOOL_GEN_SEED_COUNT 4
-static unsigned int bool_gen_seed[RANDOM_BOOL_GEN_SEED_COUNT];
-static unsigned int bool_gen_global = 0;
-decl_simple_lock_data(, bool_gen_lock)
+#define MAX_ENTROPY_PER_ZCRAM 4
/* VM region for all metadata structures */
-vm_offset_t zone_metadata_region_min = 0;
-vm_offset_t zone_metadata_region_max = 0;
-decl_lck_mtx_data(static ,zone_metadata_region_lck)
+vm_offset_t zone_metadata_region_min = 0;
+vm_offset_t zone_metadata_region_max = 0;
+decl_lck_mtx_data(static, zone_metadata_region_lck);
lck_attr_t zone_metadata_lock_attr;
-lck_mtx_ext_t zone_metadata_region_lck_ext;
+lck_mtx_ext_t zone_metadata_region_lck_ext;
/* Helpful for walking through a zone's free element list. */
struct zone_free_element {
/* void *backup_ptr; */
};
+#if CONFIG_ZCACHE
+
+/*
+ * Decides whether per-cpu zone caching is to be enabled for all zones.
+ * Can be set to TRUE via the boot-arg '-zcache_all'.
+ */
+bool cache_all_zones = FALSE;
+
+/*
+ * Specifies a single zone to enable CPU caching for.
+ * Can be set using boot-args: zcc_enable_for_zone_name=<zone>
+ */
+static char cache_zone_name[MAX_ZONE_NAME];
+
+static inline bool
+zone_caching_enabled(zone_t z)
+{
+ return z->cpu_cache_enabled && !z->tags && !z->zleak_on;
+}
+
+#endif /* CONFIG_ZCACHE */
+
/*
- * Protects num_zones, zone_array and zone_array_index
+ * Protects zone_array, num_zones, num_zones_in_use, and zone_empty_bitmap
*/
-decl_simple_lock_data(, all_zones_lock)
+decl_simple_lock_data(, all_zones_lock);
+unsigned int num_zones_in_use;
unsigned int num_zones;
-#define MAX_ZONES 256
+#if KASAN
+#define MAX_ZONES 512
+#else /* !KASAN */
+#define MAX_ZONES 320
+#endif/* !KASAN */
struct zone zone_array[MAX_ZONES];
-static int zone_array_index = 0;
-#define MULTIPAGE_METADATA_MAGIC (0xff)
+/* Used to keep track of empty slots in the zone_array */
+bitmap_t zone_empty_bitmap[BITMAP_LEN(MAX_ZONES)];
+
+#if DEBUG || DEVELOPMENT
+/*
+ * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one thread goes through at a time.
+ * Or we can end up with multiple test zones (if a second zinit() comes through before zdestroy()), which could lead us to
+ * run out of zones.
+ */
+decl_simple_lock_data(, zone_test_lock);
+static boolean_t zone_test_running = FALSE;
+static zone_t test_zone_ptr = NULL;
+#endif /* DEBUG || DEVELOPMENT */
-#define PAGE_METADATA_GET_ZINDEX(page_meta) \
+#define PAGE_METADATA_GET_ZINDEX(page_meta) \
(page_meta->zindex)
-#define PAGE_METADATA_GET_ZONE(page_meta) \
+#define PAGE_METADATA_GET_ZONE(page_meta) \
(&(zone_array[page_meta->zindex]))
-#define PAGE_METADATA_SET_ZINDEX(page_meta, index) \
+#define PAGE_METADATA_SET_ZINDEX(page_meta, index) \
page_meta->zindex = (index);
struct zone_page_metadata {
- queue_chain_t pages; /* linkage pointer for metadata lists */
+ queue_chain_t pages; /* linkage pointer for metadata lists */
/* Union for maintaining start of element free list and real metadata (for multipage allocations) */
union {
- /*
- * The start of the freelist can be maintained as a 32-bit offset instead of a pointer because
- * the free elements would be at max ZONE_MAX_ALLOC_SIZE bytes away from the metadata. Offset
+ /*
+ * The start of the freelist can be maintained as a 32-bit offset instead of a pointer because
+ * the free elements would be at max ZONE_MAX_ALLOC_SIZE bytes away from the metadata. Offset
* from start of the allocation chunk to free element list head.
*/
- uint32_t freelist_offset;
- /*
- * This field is used to lookup the real metadata for multipage allocations, where we mark the
- * metadata for all pages except the first as "fake" metadata using MULTIPAGE_METADATA_MAGIC.
+ uint32_t freelist_offset;
+ /*
+ * This field is used to lookup the real metadata for multipage allocations, where we mark the
+ * metadata for all pages except the first as "fake" metadata using MULTIPAGE_METADATA_MAGIC.
* Offset from this fake metadata to real metadata of allocation chunk (-ve offset).
*/
- uint32_t real_metadata_offset;
+ uint32_t real_metadata_offset;
};
- /*
- * For the first page in the allocation chunk, this represents the total number of free elements in
- * the chunk.
- * For all other pages, it represents the number of free elements on that page (used
- * for garbage collection of zones with large multipage allocation size)
+ /*
+ * For the first page in the allocation chunk, this represents the total number of free elements in
+ * the chunk.
*/
- uint16_t free_count;
- uint8_t zindex; /* Zone index within the zone_array */
- uint8_t page_count; /* Count of pages within the allocation chunk */
+ uint16_t free_count;
+ unsigned zindex : ZINDEX_BITS; /* Zone index within the zone_array */
+ unsigned page_count : PAGECOUNT_BITS; /* Count of pages within the allocation chunk */
};
/* Macro to get page index (within zone_map) of page containing element */
-#define PAGE_INDEX_FOR_ELEMENT(element) \
+#define PAGE_INDEX_FOR_ELEMENT(element) \
(((vm_offset_t)trunc_page(element) - zone_map_min_address) / PAGE_SIZE)
/* Macro to get metadata structure given a page index in zone_map */
-#define PAGE_METADATA_FOR_PAGE_INDEX(index) \
+#define PAGE_METADATA_FOR_PAGE_INDEX(index) \
(zone_metadata_region_min + ((index) * sizeof(struct zone_page_metadata)))
/* Macro to get index (within zone_map) for given metadata */
-#define PAGE_INDEX_FOR_METADATA(page_meta) \
+#define PAGE_INDEX_FOR_METADATA(page_meta) \
(((vm_offset_t)page_meta - zone_metadata_region_min) / sizeof(struct zone_page_metadata))
/* Macro to get page for given page index in zone_map */
-#define PAGE_FOR_PAGE_INDEX(index) \
- (zone_map_min_address + (PAGE_SIZE * (index)))
+#define PAGE_FOR_PAGE_INDEX(index) \
+ (zone_map_min_address + (PAGE_SIZE * (index)))
/* Macro to get the actual metadata for a given address */
-#define PAGE_METADATA_FOR_ELEMENT(element) \
+#define PAGE_METADATA_FOR_ELEMENT(element) \
(struct zone_page_metadata *)(PAGE_METADATA_FOR_PAGE_INDEX(PAGE_INDEX_FOR_ELEMENT(element)))
/* Magic value to indicate empty element free list */
-#define PAGE_METADATA_EMPTY_FREELIST ((uint32_t)(~0))
+#define PAGE_METADATA_EMPTY_FREELIST ((uint32_t)(~0))
+
+vm_map_copy_t create_vm_map_copy(vm_offset_t start_addr, vm_size_t total_size, vm_size_t used_size);
+boolean_t get_zone_info(zone_t z, mach_zone_name_t *zn, mach_zone_info_t *zi);
+boolean_t is_zone_map_nearing_exhaustion(void);
+extern void vm_pageout_garbage_collect(int collect);
static inline void *
page_metadata_get_freelist(struct zone_page_metadata *page_meta)
{
assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
- if (page_meta->freelist_offset == PAGE_METADATA_EMPTY_FREELIST)
+ if (page_meta->freelist_offset == PAGE_METADATA_EMPTY_FREELIST) {
return NULL;
- else {
- if (from_zone_map(page_meta, sizeof(struct zone_page_metadata)))
+ } else {
+ if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) {
return (void *)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)) + page_meta->freelist_offset);
- else
+ } else {
return (void *)((vm_offset_t)page_meta + page_meta->freelist_offset);
+ }
}
}
page_metadata_set_freelist(struct zone_page_metadata *page_meta, void *addr)
{
assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
- if (addr == NULL)
+ if (addr == NULL) {
page_meta->freelist_offset = PAGE_METADATA_EMPTY_FREELIST;
- else {
- if (from_zone_map(page_meta, sizeof(struct zone_page_metadata)))
+ } else {
+ if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) {
page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)));
- else
+ } else {
page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - (vm_offset_t)page_meta);
+ }
}
}
return (struct zone_page_metadata *)((vm_offset_t)page_meta - page_meta->real_metadata_offset);
}
-static inline void
+static inline void
page_metadata_set_realmeta(struct zone_page_metadata *page_meta, struct zone_page_metadata *real_meta)
{
- assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC);
- assert(PAGE_METADATA_GET_ZINDEX(real_meta) != MULTIPAGE_METADATA_MAGIC);
- assert((vm_offset_t)page_meta > (vm_offset_t)real_meta);
- vm_offset_t offset = (vm_offset_t)page_meta - (vm_offset_t)real_meta;
- assert(offset <= UINT32_MAX);
- page_meta->real_metadata_offset = (uint32_t)offset;
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC);
+ assert(PAGE_METADATA_GET_ZINDEX(real_meta) != MULTIPAGE_METADATA_MAGIC);
+ assert((vm_offset_t)page_meta > (vm_offset_t)real_meta);
+ vm_offset_t offset = (vm_offset_t)page_meta - (vm_offset_t)real_meta;
+ assert(offset <= UINT32_MAX);
+ page_meta->real_metadata_offset = (uint32_t)offset;
}
/* The backup pointer is stored in the last pointer-sized location in an element. */
static inline vm_offset_t *
get_backup_ptr(vm_size_t elem_size,
- vm_offset_t *element)
+ vm_offset_t *element)
{
return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t));
}
-/*
+/*
* Routine to populate a page backing metadata in the zone_metadata_region.
- * Must be called without the zone lock held as it might potentially block.
+ * Must be called without the zone lock held as it might potentially block.
*/
static inline void
-zone_populate_metadata_page(struct zone_page_metadata *page_meta)
+zone_populate_metadata_page(struct zone_page_metadata *page_meta)
{
vm_offset_t page_metadata_begin = trunc_page(page_meta);
vm_offset_t page_metadata_end = trunc_page((vm_offset_t)page_meta + sizeof(struct zone_page_metadata));
-
- for(;page_metadata_begin <= page_metadata_end; page_metadata_begin += PAGE_SIZE) {
- if (pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin))
+
+ for (; page_metadata_begin <= page_metadata_end; page_metadata_begin += PAGE_SIZE) {
+#if !KASAN
+ /*
+ * This can race with another thread doing a populate on the same metadata
+ * page, where we see an updated pmap but unmapped KASan shadow, causing a
+ * fault in the shadow when we first access the metadata page. Avoid this
+ * by always synchronizing on the zone_metadata_region lock with KASan.
+ */
+ if (pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) {
continue;
+ }
+#endif
/* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */
lck_mtx_lock(&zone_metadata_region_lck);
if (0 == pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) {
- kernel_memory_populate(zone_map,
- page_metadata_begin,
- PAGE_SIZE,
- KMA_KOBJECT,
- VM_KERN_MEMORY_OSFMK);
+ kern_return_t __assert_only ret = kernel_memory_populate(zone_map,
+ page_metadata_begin,
+ PAGE_SIZE,
+ KMA_KOBJECT,
+ VM_KERN_MEMORY_OSFMK);
+
+ /* should not fail with the given arguments */
+ assert(ret == KERN_SUCCESS);
}
lck_mtx_unlock(&zone_metadata_region_lck);
}
static inline uint16_t
get_metadata_alloc_count(struct zone_page_metadata *page_meta)
{
- assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
- struct zone *z = PAGE_METADATA_GET_ZONE(page_meta);
- return ((page_meta->page_count * PAGE_SIZE) / z->elem_size);
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
+ struct zone *z = PAGE_METADATA_GET_ZONE(page_meta);
+ return (page_meta->page_count * PAGE_SIZE) / z->elem_size;
}
-/*
- * Routine to lookup metadata for any given address.
+/*
+ * Routine to lookup metadata for any given address.
* If init is marked as TRUE, this should be called without holding the zone lock
* since the initialization might block.
*/
{
struct zone_page_metadata *page_meta = 0;
- if (from_zone_map(element, sizeof(struct zone_free_element))) {
+ if (from_zone_map(element, sizeof(struct zone_free_element))) {
page_meta = (struct zone_page_metadata *)(PAGE_METADATA_FOR_ELEMENT(element));
- if (init)
+ if (init) {
zone_populate_metadata_page(page_meta);
+ }
} else {
page_meta = (struct zone_page_metadata *)(trunc_page((vm_offset_t)element));
}
- if (init)
+ if (init) {
bzero((char *)page_meta, sizeof(struct zone_page_metadata));
- return ((PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC) ? page_meta : page_metadata_get_realmeta(page_meta));
+ }
+ return (PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC) ? page_meta : page_metadata_get_realmeta(page_meta);
}
/* Routine to get the page for a given metadata */
static inline vm_offset_t
get_zone_page(struct zone_page_metadata *page_meta)
{
- if (from_zone_map(page_meta, sizeof(struct zone_page_metadata)))
+ if (from_zone_map(page_meta, sizeof(struct zone_page_metadata))) {
return (vm_offset_t)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)));
- else
+ } else {
return (vm_offset_t)(trunc_page(page_meta));
+ }
+}
+
+/*
+ * Routine to panic if a pointer is not mapped to an expected zone.
+ * This can be used as a means of pinning an object to the zone it is expected
+ * to be a part of. Causes a panic if the address does not belong to any
+ * specified zone, does not belong to any zone, has been freed and therefore
+ * unmapped from the zone, or the pointer contains an uninitialized value that
+ * does not belong to any zone.
+ */
+
+void
+zone_require(void *addr, zone_t expected_zone)
+{
+ struct zone *src_zone = NULL;
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE);
+
+ src_zone = PAGE_METADATA_GET_ZONE(page_meta);
+ if (__improbable(src_zone == NULL)) {
+ panic("Address not in a zone for zone_require check (addr: %p)", addr);
+ }
+
+ if (__improbable(src_zone != expected_zone)) {
+ panic("Address not in expected zone for zone_require check (addr: %p, zone: %s)", addr, src_zone->zone_name);
+ }
+}
+
+/*
+ * ZTAGS
+ */
+
+#if VM_MAX_TAG_ZONES
+
+// for zones with tagging enabled:
+
+// calculate a pointer to the tag base entry,
+// holding either a uint32_t the first tag offset for a page in the zone map,
+// or two uint16_t tags if the page can only hold one or two elements
+
+#define ZTAGBASE(zone, element) \
+ (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_map_min_address)])
+
+// pointer to the tag for an element
+#define ZTAG(zone, element) \
+ ({ \
+ vm_tag_t * result; \
+ if ((zone)->tags_inline) { \
+ result = (vm_tag_t *) ZTAGBASE((zone), (element)); \
+ if ((page_mask & element) >= (zone)->elem_size) result++; \
+ } else { \
+ result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / (zone)->elem_size]; \
+ } \
+ result; \
+ })
+
+
+static vm_offset_t zone_tagbase_min;
+static vm_offset_t zone_tagbase_max;
+static vm_offset_t zone_tagbase_map_size;
+static vm_map_t zone_tagbase_map;
+
+static vm_offset_t zone_tags_min;
+static vm_offset_t zone_tags_max;
+static vm_offset_t zone_tags_map_size;
+static vm_map_t zone_tags_map;
+
+// simple heap allocator for allocating the tags for new memory
+
+decl_lck_mtx_data(, ztLock); /* heap lock */
+enum{
+ ztFreeIndexCount = 8,
+ ztFreeIndexMax = (ztFreeIndexCount - 1),
+ ztTagsPerBlock = 4
+};
+
+struct ztBlock {
+#if __LITTLE_ENDIAN__
+ uint64_t free:1,
+ next:21,
+ prev:21,
+ size:21;
+#else
+// ztBlock needs free bit least significant
+#error !__LITTLE_ENDIAN__
+#endif
+};
+typedef struct ztBlock ztBlock;
+
+static ztBlock * ztBlocks;
+static uint32_t ztBlocksCount;
+static uint32_t ztBlocksFree;
+
+static uint32_t
+ztLog2up(uint32_t size)
+{
+ if (1 == size) {
+ size = 0;
+ } else {
+ size = 32 - __builtin_clz(size - 1);
+ }
+ return size;
+}
+
+static uint32_t
+ztLog2down(uint32_t size)
+{
+ size = 31 - __builtin_clz(size);
+ return size;
+}
+
+static void
+ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags)
+{
+ vm_map_offset_t addr = (vm_map_offset_t) address;
+ vm_map_offset_t page, end;
+
+ page = trunc_page(addr);
+ end = round_page(addr + size);
+
+ for (; page < end; page += page_size) {
+ if (!pmap_find_phys(kernel_pmap, page)) {
+ kern_return_t __unused
+ ret = kernel_memory_populate(map, page, PAGE_SIZE,
+ KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG);
+ assert(ret == KERN_SUCCESS);
+ }
+ }
+}
+
+static boolean_t
+ztPresent(const void * address, size_t size)
+{
+ vm_map_offset_t addr = (vm_map_offset_t) address;
+ vm_map_offset_t page, end;
+ boolean_t result;
+
+ page = trunc_page(addr);
+ end = round_page(addr + size);
+ for (result = TRUE; (page < end); page += page_size) {
+ result = pmap_find_phys(kernel_pmap, page);
+ if (!result) {
+ break;
+ }
+ }
+ return result;
+}
+
+
+void __unused
+ztDump(boolean_t sanity);
+void __unused
+ztDump(boolean_t sanity)
+{
+ uint32_t q, cq, p;
+
+ for (q = 0; q <= ztFreeIndexMax; q++) {
+ p = q;
+ do{
+ if (sanity) {
+ cq = ztLog2down(ztBlocks[p].size);
+ if (cq > ztFreeIndexMax) {
+ cq = ztFreeIndexMax;
+ }
+ if (!ztBlocks[p].free
+ || ((p != q) && (q != cq))
+ || (ztBlocks[ztBlocks[p].next].prev != p)
+ || (ztBlocks[ztBlocks[p].prev].next != p)) {
+ kprintf("zterror at %d", p);
+ ztDump(FALSE);
+ kprintf("zterror at %d", p);
+ assert(FALSE);
+ }
+ continue;
+ }
+ kprintf("zt[%03d]%c %d, %d, %d\n",
+ p, ztBlocks[p].free ? 'F' : 'A',
+ ztBlocks[p].next, ztBlocks[p].prev,
+ ztBlocks[p].size);
+ p = ztBlocks[p].next;
+ if (p == q) {
+ break;
+ }
+ }while (p != q);
+ if (!sanity) {
+ printf("\n");
+ }
+ }
+ if (!sanity) {
+ printf("-----------------------\n");
+ }
+}
+
+
+
+#define ZTBDEQ(idx) \
+ ztBlocks[ztBlocks[(idx)].prev].next = ztBlocks[(idx)].next; \
+ ztBlocks[ztBlocks[(idx)].next].prev = ztBlocks[(idx)].prev;
+
+static void
+ztFree(zone_t zone __unused, uint32_t index, uint32_t count)
+{
+ uint32_t q, w, p, size, merge;
+
+ assert(count);
+ ztBlocksFree += count;
+
+ // merge with preceding
+ merge = (index + count);
+ if ((merge < ztBlocksCount)
+ && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+ && ztBlocks[merge].free) {
+ ZTBDEQ(merge);
+ count += ztBlocks[merge].size;
+ }
+
+ // merge with following
+ merge = (index - 1);
+ if ((merge > ztFreeIndexMax)
+ && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+ && ztBlocks[merge].free) {
+ size = ztBlocks[merge].size;
+ count += size;
+ index -= size;
+ ZTBDEQ(index);
+ }
+
+ q = ztLog2down(count);
+ if (q > ztFreeIndexMax) {
+ q = ztFreeIndexMax;
+ }
+ w = q;
+ // queue in order of size
+ while (TRUE) {
+ p = ztBlocks[w].next;
+ if (p == q) {
+ break;
+ }
+ if (ztBlocks[p].size >= count) {
+ break;
+ }
+ w = p;
+ }
+ ztBlocks[p].prev = index;
+ ztBlocks[w].next = index;
+
+ // fault in first
+ ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+
+ // mark first & last with free flag and size
+ ztBlocks[index].free = TRUE;
+ ztBlocks[index].size = count;
+ ztBlocks[index].prev = w;
+ ztBlocks[index].next = p;
+ if (count > 1) {
+ index += (count - 1);
+ // fault in last
+ ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+ ztBlocks[index].free = TRUE;
+ ztBlocks[index].size = count;
+ }
+}
+
+static uint32_t
+ztAlloc(zone_t zone, uint32_t count)
+{
+ uint32_t q, w, p, leftover;
+
+ assert(count);
+
+ q = ztLog2up(count);
+ if (q > ztFreeIndexMax) {
+ q = ztFreeIndexMax;
+ }
+ do{
+ w = q;
+ while (TRUE) {
+ p = ztBlocks[w].next;
+ if (p == q) {
+ break;
+ }
+ if (ztBlocks[p].size >= count) {
+ // dequeue, mark both ends allocated
+ ztBlocks[w].next = ztBlocks[p].next;
+ ztBlocks[ztBlocks[p].next].prev = w;
+ ztBlocks[p].free = FALSE;
+ ztBlocksFree -= ztBlocks[p].size;
+ if (ztBlocks[p].size > 1) {
+ ztBlocks[p + ztBlocks[p].size - 1].free = FALSE;
+ }
+
+ // fault all the allocation
+ ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0);
+ // mark last as allocated
+ if (count > 1) {
+ ztBlocks[p + count - 1].free = FALSE;
+ }
+ // free remainder
+ leftover = ztBlocks[p].size - count;
+ if (leftover) {
+ ztFree(zone, p + ztBlocks[p].size - leftover, leftover);
+ }
+
+ return p;
+ }
+ w = p;
+ }
+ q++;
+ }while (q <= ztFreeIndexMax);
+
+ return -1U;
+}
+
+static void
+ztInit(vm_size_t max_zonemap_size, lck_grp_t * group)
+{
+ kern_return_t ret;
+ vm_map_kernel_flags_t vmk_flags;
+ uint32_t idx;
+
+ lck_mtx_init(&ztLock, group, LCK_ATTR_NULL);
+
+ // allocate submaps VM_KERN_MEMORY_DIAG
+
+ zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size,
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+ &zone_tagbase_map);
+
+ if (ret != KERN_SUCCESS) {
+ panic("zone_init: kmem_suballoc failed");
+ }
+ zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size);
+
+ zone_tags_map_size = 2048 * 1024 * sizeof(vm_tag_t);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size,
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+ &zone_tags_map);
+
+ if (ret != KERN_SUCCESS) {
+ panic("zone_init: kmem_suballoc failed");
+ }
+ zone_tags_max = zone_tags_min + round_page(zone_tags_map_size);
+
+ ztBlocks = (ztBlock *) zone_tags_min;
+ ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock));
+
+ // initialize the qheads
+ lck_mtx_lock(&ztLock);
+
+ ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0);
+ for (idx = 0; idx < ztFreeIndexCount; idx++) {
+ ztBlocks[idx].free = TRUE;
+ ztBlocks[idx].next = idx;
+ ztBlocks[idx].prev = idx;
+ ztBlocks[idx].size = 0;
+ }
+ // free remaining space
+ ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount);
+
+ lck_mtx_unlock(&ztLock);
+}
+
+static void
+ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+ uint32_t * tagbase;
+ uint32_t count, block, blocks, idx;
+ size_t pages;
+
+ pages = atop(size);
+ tagbase = ZTAGBASE(zone, mem);
+
+ lck_mtx_lock(&ztLock);
+
+ // fault tagbase
+ ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0);
+
+ if (!zone->tags_inline) {
+ // allocate tags
+ count = (uint32_t)(size / zone->elem_size);
+ blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+ block = ztAlloc(zone, blocks);
+ if (-1U == block) {
+ ztDump(false);
+ }
+ assert(-1U != block);
+ }
+
+ lck_mtx_unlock(&ztLock);
+
+ if (!zone->tags_inline) {
+ // set tag base for each page
+ block *= ztTagsPerBlock;
+ for (idx = 0; idx < pages; idx++) {
+ tagbase[idx] = block + (uint32_t)((ptoa(idx) + (zone->elem_size - 1)) / zone->elem_size);
+ }
+ }
+}
+
+static void
+ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+ uint32_t * tagbase;
+ uint32_t count, block, blocks, idx;
+ size_t pages;
+
+ // set tag base for each page
+ pages = atop(size);
+ tagbase = ZTAGBASE(zone, mem);
+ block = tagbase[0];
+ for (idx = 0; idx < pages; idx++) {
+ tagbase[idx] = 0xFFFFFFFF;
+ }
+
+ lck_mtx_lock(&ztLock);
+ if (!zone->tags_inline) {
+ count = (uint32_t)(size / zone->elem_size);
+ blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+ assert(block != 0xFFFFFFFF);
+ block /= ztTagsPerBlock;
+ ztFree(NULL /* zone is unlocked */, block, blocks);
+ }
+
+ lck_mtx_unlock(&ztLock);
+}
+
+uint32_t
+zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size)
+{
+ zone_t z;
+ uint32_t idx;
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+
+ for (idx = 0; idx < num_zones; idx++) {
+ z = &(zone_array[idx]);
+ if (!z->tags) {
+ continue;
+ }
+ if (tag_zone_index != z->tag_zone_index) {
+ continue;
+ }
+ *elem_size = z->elem_size;
+ break;
+ }
+
+ simple_unlock(&all_zones_lock);
+
+ if (idx == num_zones) {
+ idx = -1U;
+ }
+
+ return idx;
}
-/* Routine to get the size of a zone allocated address. If the address doesnt belong to the
+#endif /* VM_MAX_TAG_ZONES */
+
+/* Routine to get the size of a zone allocated address. If the address doesnt belong to the
* zone_map, returns 0.
*/
vm_size_t
if (z) {
*z = src_zone;
}
- return (src_zone->elem_size);
+ return src_zone->elem_size;
} else {
#if CONFIG_GZALLOC
vm_size_t gzsize;
}
}
+#if DEBUG || DEVELOPMENT
+
+vm_size_t
+zone_element_info(void *addr, vm_tag_t * ptag)
+{
+ vm_size_t size = 0;
+ vm_tag_t tag = VM_KERN_MEMORY_NONE;
+ struct zone * src_zone;
+
+ if (from_zone_map(addr, sizeof(void *))) {
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE);
+ src_zone = PAGE_METADATA_GET_ZONE(page_meta);
+#if VM_MAX_TAG_ZONES
+ if (__improbable(src_zone->tags)) {
+ tag = (ZTAG(src_zone, (vm_offset_t) addr)[0] >> 1);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ size = src_zone->elem_size;
+ } else {
+#if CONFIG_GZALLOC
+ gzalloc_element_size(addr, NULL, &size);
+#endif /* CONFIG_GZALLOC */
+ }
+ *ptag = tag;
+ return size;
+}
+
+#endif /* DEBUG || DEVELOPMENT */
+
/*
* Zone checking helper function.
* A pointer that satisfies these conditions is OK to be a freelist next pointer
* A pointer that doesn't satisfy these conditions indicates corruption
*/
static inline boolean_t
-is_sane_zone_ptr(zone_t zone,
- vm_offset_t addr,
- size_t obj_size)
+is_sane_zone_ptr(zone_t zone,
+ vm_offset_t addr,
+ size_t obj_size)
{
/* Must be aligned to pointer boundary */
- if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0))
+ if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0)) {
return FALSE;
+ }
/* Must be a kernel address */
- if (__improbable(!pmap_kernel_va(addr)))
+ if (__improbable(!pmap_kernel_va(addr))) {
return FALSE;
+ }
/* Must be from zone map if the zone only uses memory from the zone_map */
/*
*/
if (zone->collectable && !zone->allows_foreign) {
/* check if addr is from zone map */
- if (addr >= zone_map_min_address &&
- (addr + obj_size - 1) < zone_map_max_address )
+ if (addr >= zone_map_min_address &&
+ (addr + obj_size - 1) < zone_map_max_address) {
return TRUE;
+ }
return FALSE;
}
}
static inline boolean_t
-is_sane_zone_page_metadata(zone_t zone,
- vm_offset_t page_meta)
+is_sane_zone_page_metadata(zone_t zone,
+ vm_offset_t page_meta)
{
/* NULL page metadata structures are invalid */
- if (page_meta == 0)
+ if (page_meta == 0) {
return FALSE;
+ }
return is_sane_zone_ptr(zone, page_meta, sizeof(struct zone_page_metadata));
}
static inline boolean_t
is_sane_zone_element(zone_t zone,
- vm_offset_t addr)
+ vm_offset_t addr)
{
/* NULL is OK because it indicates the tail of the list */
- if (addr == 0)
+ if (addr == 0) {
return TRUE;
+ }
return is_sane_zone_ptr(zone, addr, zone->elem_size);
}
-
+
/* Someone wrote to freed memory. */
-static inline void /* noreturn */
+__dead2
+static inline void
zone_element_was_modified_panic(zone_t zone,
- vm_offset_t element,
- vm_offset_t found,
- vm_offset_t expected,
- vm_offset_t offset)
+ vm_offset_t element,
+ vm_offset_t found,
+ vm_offset_t expected,
+ vm_offset_t offset)
{
panic("a freed zone element has been modified in zone %s: expected %p but found %p, bits changed %p, at offset %d of %d in element %p, cookies %p %p",
- zone->zone_name,
- (void *) expected,
- (void *) found,
- (void *) (expected ^ found),
- (uint32_t) offset,
- (uint32_t) zone->elem_size,
- (void *) element,
- (void *) zp_nopoison_cookie,
- (void *) zp_poisoned_cookie);
+ zone->zone_name,
+ (void *) expected,
+ (void *) found,
+ (void *) (expected ^ found),
+ (uint32_t) offset,
+ (uint32_t) zone->elem_size,
+ (void *) element,
+ (void *) zp_nopoison_cookie,
+ (void *) zp_poisoned_cookie);
}
/*
* The primary and backup pointers don't match.
* Determine which one was likely the corrupted pointer, find out what it
* probably should have been, and panic.
- * I would like to mark this as noreturn, but panic() isn't marked noreturn.
*/
-static void /* noreturn */
+__dead2
+static void
backup_ptr_mismatch_panic(zone_t zone,
- vm_offset_t element,
- vm_offset_t primary,
- vm_offset_t backup)
+ vm_offset_t element,
+ vm_offset_t primary,
+ vm_offset_t backup)
{
vm_offset_t likely_backup;
vm_offset_t likely_primary;
#if defined(__LP64__)
/* We can inspect the tag in the upper bits for additional confirmation */
- if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000)
+ if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000) {
element_was_poisoned = TRUE;
- else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000)
+ } else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000) {
element_was_poisoned = FALSE;
+ }
#endif
if (element_was_poisoned) {
}
/* The primary is definitely the corrupted one */
- if (!sane_primary && sane_backup)
+ if (!sane_primary && sane_backup) {
zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
+ }
/* The backup is definitely the corrupted one */
- if (sane_primary && !sane_backup)
+ if (sane_primary && !sane_backup) {
zone_element_was_modified_panic(zone, element, backup,
- (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
- zone->elem_size - sizeof(vm_offset_t));
+ (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
+ zone->elem_size - sizeof(vm_offset_t));
+ }
/*
* Not sure which is the corrupted one.
* ( (sane address) ^ (valid cookie) ), so we'll guess that the
* primary pointer has been overwritten with a sane but incorrect address.
*/
- if (sane_primary && sane_backup)
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+ if (sane_primary && sane_backup) {
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
+ }
/* Neither are sane, so just guess. */
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
}
/*
*/
static inline void
free_to_zone(zone_t zone,
- vm_offset_t element,
- boolean_t poison)
+ vm_offset_t element,
+ boolean_t poison)
{
vm_offset_t old_head;
struct zone_page_metadata *page_meta;
assert(PAGE_METADATA_GET_ZONE(page_meta) == zone);
old_head = (vm_offset_t)page_metadata_get_freelist(page_meta);
-#if MACH_ASSERT
- if (__improbable(!is_sane_zone_element(zone, old_head)))
+ if (__improbable(!is_sane_zone_element(zone, old_head))) {
panic("zfree: invalid head pointer %p for freelist of zone %s\n",
- (void *) old_head, zone->zone_name);
-#endif
+ (void *) old_head, zone->zone_name);
+ }
- if (__improbable(!is_sane_zone_element(zone, element)))
+ if (__improbable(!is_sane_zone_element(zone, element))) {
panic("zfree: freeing invalid pointer %p to zone %s\n",
- (void *) element, zone->zone_name);
+ (void *) element, zone->zone_name);
+ }
+ if (__improbable(old_head == element)) {
+ panic("zfree: double free of %p to zone %s\n",
+ (void *) element, zone->zone_name);
+ }
/*
* Always write a redundant next pointer
* So that it is more difficult to forge, xor it with a random cookie
*backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie);
- /*
- * Insert this element at the head of the free list. We also xor the
- * primary pointer with the zp_nopoison_cookie to make sure a free
+ /*
+ * Insert this element at the head of the free list. We also xor the
+ * primary pointer with the zp_nopoison_cookie to make sure a free
* element does not provide the location of the next free element directly.
*/
*primary = old_head ^ zp_nopoison_cookie;
}
zone->count--;
zone->countfree++;
+
+#if KASAN_ZALLOC
+ kasan_poison_range(element, zone->elem_size, ASAN_HEAP_FREED);
+#endif
}
*/
static inline vm_offset_t
try_alloc_from_zone(zone_t zone,
- boolean_t* check_poison)
+ vm_tag_t tag __unused,
+ boolean_t* check_poison)
{
vm_offset_t element;
struct zone_page_metadata *page_meta;
*check_poison = FALSE;
/* if zone is empty, bail */
- if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign))
+ if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign)) {
page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
- else if (!queue_empty(&zone->pages.intermediate))
+ } else if (!queue_empty(&zone->pages.intermediate)) {
page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
- else if (!queue_empty(&zone->pages.all_free)) {
+ } else if (!queue_empty(&zone->pages.all_free)) {
page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
assert(zone->count_all_free_pages >= page_meta->page_count);
zone->count_all_free_pages -= page_meta->page_count;
return 0;
}
/* Check if page_meta passes is_sane_zone_element */
- if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta)))
+ if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta))) {
panic("zalloc: invalid metadata structure %p for freelist of zone %s\n",
- (void *) page_meta, zone->zone_name);
+ (void *) page_meta, zone->zone_name);
+ }
assert(PAGE_METADATA_GET_ZONE(page_meta) == zone);
element = (vm_offset_t)page_metadata_get_freelist(page_meta);
- if (__improbable(!is_sane_zone_ptr(zone, element, zone->elem_size)))
+ if (__improbable(!is_sane_zone_ptr(zone, element, zone->elem_size))) {
panic("zfree: invalid head pointer %p for freelist of zone %s\n",
- (void *) element, zone->zone_name);
+ (void *) element, zone->zone_name);
+ }
vm_offset_t *primary = (vm_offset_t *) element;
vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary);
- /*
+ /*
* Since the primary next pointer is xor'ed with zp_nopoison_cookie
* for obfuscation, retrieve the original value back
*/
* backup_ptr_mismatch_panic will determine what next_element
* should have been, and print it appropriately
*/
- if (__improbable(!is_sane_zone_element(zone, next_element)))
+ if (__improbable(!is_sane_zone_element(zone, next_element))) {
backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup);
+ }
/* Check the backup pointer for the regular cookie */
if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) {
-
/* Check for the poisoned cookie instead */
- if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie)))
+ if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie))) {
/* Neither cookie is valid, corruption has occurred */
backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup);
+ }
/*
* Element was marked as poisoned, so check its integrity before using it.
}
/* Make sure the page_meta is at the correct offset from the start of page */
- if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element, FALSE)))
+ if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element, FALSE))) {
panic("zalloc: Incorrect metadata %p found in zone %s page queue. Expected metadata: %p\n",
- page_meta, zone->zone_name, get_zone_page_metadata((struct zone_free_element *)element, FALSE));
+ page_meta, zone->zone_name, get_zone_page_metadata((struct zone_free_element *)element, FALSE));
+ }
/* Make sure next_element belongs to the same page as page_meta */
if (next_element) {
- if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element, FALSE)))
+ if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element, FALSE))) {
panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n",
- (void *)next_element, (void *)element, zone->zone_name);
+ (void *)next_element, (void *)element, zone->zone_name);
+ }
}
/* Remove this element from the free list */
zone->count++;
zone->sum_count++;
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ // set the tag with b0 clear so the block remains inuse
+ ZTAG(zone, element)[0] = (tag << 1);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
+
+#if KASAN_ZALLOC
+ kasan_poison_range(element, zone->elem_size, ASAN_VALID);
+#endif
+
return element;
}
/*
* Zone info options
*/
-#define ZINFO_SLOTS MAX_ZONES /* for now */
-
-void zone_display_zprint(void);
+#define ZINFO_SLOTS MAX_ZONES /* for now */
-zone_t zone_find_largest(void);
+zone_t zone_find_largest(void);
-/*
- * Async allocation of zones
- * This mechanism allows for bootstrapping an empty zone which is setup with
+/*
+ * Async allocation of zones
+ * This mechanism allows for bootstrapping an empty zone which is setup with
* non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call
- * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free.
+ * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free.
* This will prime the zone for the next use.
*
* Currently the thread_callout function (zalloc_async) will loop through all zones
- * looking for any zone with async_pending set and do the work for it.
- *
+ * looking for any zone with async_pending set and do the work for it.
+ *
* NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call,
- * then zalloc_noblock to an empty zone may succeed.
+ * then zalloc_noblock to an empty zone may succeed.
*/
-void zalloc_async(
- thread_call_param_t p0,
- thread_call_param_t p1);
+void zalloc_async(
+ thread_call_param_t p0,
+ thread_call_param_t p1);
static thread_call_data_t call_async_alloc;
#define ZONE_ELEMENT_ALIGNMENT 32
#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
-#define zone_sleep(zone) \
- (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT);
-
-/*
- * The zone_locks_grp allows for collecting lock statistics.
- * All locks are associated to this group in zinit.
- * Look at tools/lockstat for debugging lock contention.
- */
+#define zone_sleep(zone) \
+ (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN_ALWAYS, (event_t)(zone), THREAD_UNINT);
-lck_grp_t zone_locks_grp;
-lck_grp_attr_t zone_locks_grp_attr;
-#define lock_zone_init(zone) \
-MACRO_BEGIN \
- lck_attr_setdefault(&(zone)->lock_attr); \
- lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \
- &zone_locks_grp, &(zone)->lock_attr); \
+#define lock_zone_init(zone) \
+MACRO_BEGIN \
+ lck_attr_setdefault(&(zone)->lock_attr); \
+ lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \
+ &zone_locks_grp, &(zone)->lock_attr); \
MACRO_END
-#define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock)
+#define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock)
/*
* Exclude more than one concurrent garbage collection
*/
-decl_lck_mtx_data(, zone_gc_lock)
+decl_lck_mtx_data(, zone_gc_lock);
lck_attr_t zone_gc_lck_attr;
lck_grp_t zone_gc_lck_grp;
boolean_t zone_gc_allowed = TRUE;
boolean_t panic_include_zprint = FALSE;
-vm_offset_t panic_kext_memory_info = 0;
+mach_memory_info_t *panic_kext_memory_info = NULL;
vm_size_t panic_kext_memory_size = 0;
-#define ZALLOC_DEBUG_ZONEGC 0x00000001
-#define ZALLOC_DEBUG_ZCRAM 0x00000002
-uint32_t zalloc_debug = 0;
+#define ZALLOC_DEBUG_ZONEGC 0x00000001
+#define ZALLOC_DEBUG_ZCRAM 0x00000002
+
+#if DEBUG || DEVELOPMENT
+static uint32_t zalloc_debug = 0;
+#endif
/*
* Zone leak debugging code
* off by default.
*
* Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
- * is the name of the zone you wish to log.
+ * is the name of the zone you wish to log.
*
* This code only tracks one zone, so you need to identify which one is leaking first.
* Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
*/
static boolean_t log_records_init = FALSE;
-static int log_records; /* size of the log, expressed in number of records */
+static int log_records; /* size of the log, expressed in number of records */
-#define MAX_NUM_ZONES_ALLOWED_LOGGING 5 /* Maximum 5 zones can be logged at once */
+#define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */
static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING;
static int num_zones_logged = 0;
-#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
-
-static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */
+static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */
/* Log allocations and frees to help debug a zone element corruption */
-boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */
+boolean_t corruption_debug_flag = DEBUG; /* enabled by "-zc" boot-arg */
/* Making pointer scanning leaks detection possible for all zones */
#if DEBUG || DEVELOPMENT
/*
- * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
+ * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
* the number of records you want in the log. For example, "zrecs=10" sets it to 10 records. Since this
* is the number of stacks suspected of leaking, we don't need many records.
*/
-#if defined(__LP64__)
-#define ZRECORDS_MAX 2560 /* Max records allowed in the log */
+#if defined(__LP64__)
+#define ZRECORDS_MAX 2560 /* Max records allowed in the log */
#else
-#define ZRECORDS_MAX 1536 /* Max records allowed in the log */
+#define ZRECORDS_MAX 1536 /* Max records allowed in the log */
#endif
-#define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */
+#define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */
/*
* Each record in the log contains a pointer to the zone element it refers to,
*/
-/*
- * Opcodes for the btlog operation field:
- */
-
-#define ZOP_ALLOC 1
-#define ZOP_FREE 0
-
/*
* Decide if we want to log this zone by doing a string compare between a zone name and the name
* of the zone to log. Return true if the strings are equal, false otherwise. Because it's not
* match a space in the zone name.
*/
-static int
-log_this_zone(const char *zonename, const char *logname)
+int
+track_this_zone(const char *zonename, const char *logname)
{
- int len;
+ unsigned int len;
const char *zc = zonename;
const char *lc = logname;
*/
for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) {
-
/*
* If the current characters don't match, check for a space in
* in the zone name and a corresponding period in the log name.
* If that's not there, then the strings don't match.
*/
- if (*zc != *lc && !(*zc == ' ' && *lc == '.'))
+ if (*zc != *lc && !(*zc == ' ' && *lc == '.')) {
break;
+ }
/*
* The strings are equal so far. If we're at the end, then it's a match.
*/
- if (*zc == '\0')
+ if (*zc == '\0') {
return TRUE;
+ }
}
return FALSE;
* the buffer for the records has been allocated.
*/
-#define DO_LOGGING(z) (z->zone_logging == TRUE && z->zlog_btlog)
+#define DO_LOGGING(z) (z->zone_logging == TRUE && z->zlog_btlog)
extern boolean_t kmem_alloc_ready;
#pragma mark -
#pragma mark Zone Leak Detection
-/*
+/*
* The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding
* allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a
- * backtrace. Every free, we examine the table and determine if the allocation was being tracked,
+ * backtrace. Every free, we examine the table and determine if the allocation was being tracked,
* and stop tracking it if it was being tracked.
*
- * We track the allocations in the zallocations hash table, which stores the address that was returned from
+ * We track the allocations in the zallocations hash table, which stores the address that was returned from
* the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which
* stores the backtrace associated with that allocation. This provides uniquing for the relatively large
* backtraces - we don't store them more than once.
* Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up
* a large amount of virtual space.
*/
-#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */
-#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */
-#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */
-#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */
-uint32_t zleak_state = 0; /* State of collection, as above */
+#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */
+#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */
+#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */
+#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */
+uint32_t zleak_state = 0; /* State of collection, as above */
-boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */
-vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */
-vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */
-unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */
+boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */
+vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */
+vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */
+unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */
/*
* Counters for allocation statistics.
- */
+ */
/* Times two active records want to occupy the same spot */
unsigned int z_alloc_collisions = 0;
unsigned int z_trace_overwrites = 0;
/* Times a new alloc or trace is put into the hash table */
-unsigned int z_alloc_recorded = 0;
-unsigned int z_trace_recorded = 0;
+unsigned int z_alloc_recorded = 0;
+unsigned int z_trace_recorded = 0;
/* Times zleak_log returned false due to not being able to acquire the lock */
-unsigned int z_total_conflicts = 0;
+unsigned int z_total_conflicts = 0;
#pragma mark struct zallocation
* An allocation bucket is in use if its element is not NULL
*/
struct zallocation {
- uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
- vm_size_t za_size; /* how much memory did this allocation take up? */
- uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */
+ uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
+ vm_size_t za_size; /* how much memory did this allocation take up? */
+ uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */
/* TODO: #if this out */
- uint32_t za_hit_count; /* for determining effectiveness of hash function */
+ uint32_t za_hit_count; /* for determining effectiveness of hash function */
};
/* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */
vm_size_t zleak_max_zonemap_size;
/* Hashmaps of allocations and their corresponding traces */
-static struct zallocation* zallocations;
-static struct ztrace* ztraces;
+static struct zallocation* zallocations;
+static struct ztrace* ztraces;
/* not static so that panic can see this, see kern/debug.c */
-struct ztrace* top_ztrace;
+struct ztrace* top_ztrace;
/* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */
-static lck_spin_t zleak_lock;
-static lck_attr_t zleak_lock_attr;
-static lck_grp_t zleak_lock_grp;
-static lck_grp_attr_t zleak_lock_grp_attr;
+static lck_spin_t zleak_lock;
+static lck_attr_t zleak_lock_attr;
+static lck_grp_t zleak_lock_grp;
+static lck_grp_attr_t zleak_lock_grp_attr;
/*
* Initializes the zone leak monitor. Called from zone_init()
*/
-static void
-zleak_init(vm_size_t max_zonemap_size)
+static void
+zleak_init(vm_size_t max_zonemap_size)
{
- char scratch_buf[16];
- boolean_t zleak_enable_flag = FALSE;
+ char scratch_buf[16];
+ boolean_t zleak_enable_flag = FALSE;
zleak_max_zonemap_size = max_zonemap_size;
- zleak_global_tracking_threshold = max_zonemap_size / 2;
+ zleak_global_tracking_threshold = max_zonemap_size / 2;
zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8;
+#if CONFIG_EMBEDDED
+ if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) {
+ zleak_enable_flag = TRUE;
+ printf("zone leak detection enabled\n");
+ } else {
+ zleak_enable_flag = FALSE;
+ printf("zone leak detection disabled\n");
+ }
+#else /* CONFIG_EMBEDDED */
/* -zleakoff (flag to disable zone leak monitor) */
if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) {
zleak_enable_flag = FALSE;
zleak_enable_flag = TRUE;
printf("zone leak detection enabled\n");
}
-
+#endif /* CONFIG_EMBEDDED */
+
/* zfactor=XXXX (override how often to sample the zone allocator) */
if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) {
printf("Zone leak factor override: %u\n", zleak_sample_factor);
if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) {
printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets);
/* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
- if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) {
+ if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets - 1))) {
printf("Override isn't a power of two, bad things might happen!\n");
}
}
-
+
/* zleak-traces=XXXX (override number of buckets in ztraces) */
if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) {
printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets);
/* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
- if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) {
+ if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets - 1))) {
printf("Override isn't a power of two, bad things might happen!\n");
}
}
-
+
/* allocate the zleak_lock */
lck_grp_attr_setdefault(&zleak_lock_grp_attr);
lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr);
lck_attr_setdefault(&zleak_lock_attr);
lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr);
-
+
if (zleak_enable_flag) {
zleak_state = ZLEAK_STATE_ENABLED;
}
int
get_zleak_state(void)
{
- if (zleak_state & ZLEAK_STATE_FAILED)
- return (-1);
- if (zleak_state & ZLEAK_STATE_ACTIVE)
- return (1);
- return (0);
+ if (zleak_state & ZLEAK_STATE_FAILED) {
+ return -1;
+ }
+ if (zleak_state & ZLEAK_STATE_ACTIVE) {
+ return 1;
+ }
+ return 0;
}
#endif
ztraces = traces_ptr;
/*
- * Initialize the top_ztrace to the first entry in ztraces,
+ * Initialize the top_ztrace to the first entry in ztraces,
* so we don't have to check for null in zleak_log
*/
top_ztrace = &ztraces[0];
zleak_state |= ZLEAK_STATE_ACTIVE;
zleak_state &= ~ZLEAK_STATE_ACTIVATING;
lck_spin_unlock(&zleak_lock);
-
+
return 0;
-fail:
+fail:
/*
* If we fail to allocate memory, don't further tax
* the system by trying again.
}
/*
- * TODO: What about allocations that never get deallocated,
+ * TODO: What about allocations that never get deallocated,
* especially ones with unique backtraces? Should we wait to record
- * until after boot has completed?
+ * until after boot has completed?
* (How many persistent zallocs are there?)
*/
/*
- * This function records the allocation in the allocations table,
- * and stores the associated backtrace in the traces table
+ * This function records the allocation in the allocations table,
+ * and stores the associated backtrace in the traces table
* (or just increments the refcount if the trace is already recorded)
* If the allocation slot is in use, the old allocation is replaced with the new allocation, and
* the associated trace's refcount is decremented.
*/
static boolean_t
zleak_log(uintptr_t* bt,
- uintptr_t addr,
- uint32_t depth,
- vm_size_t allocation_size)
+ uintptr_t addr,
+ uint32_t depth,
+ vm_size_t allocation_size)
{
/* Quit if there's someone else modifying the hash tables */
if (!lck_spin_try_lock(&zleak_lock)) {
z_total_conflicts++;
return FALSE;
}
-
- struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
-
+
+ struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets);
struct ztrace* trace = &ztraces[trace_index];
-
+
allocation->za_hit_count++;
trace->zt_hit_count++;
-
- /*
+
+ /*
* If the allocation bucket we want to be in is occupied, and if the occupier
- * has the same trace as us, just bail.
+ * has the same trace as us, just bail.
*/
if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) {
z_alloc_collisions++;
-
+
lck_spin_unlock(&zleak_lock);
return TRUE;
}
-
+
/* STEP 1: Store the backtrace in the traces array. */
/* A size of zero indicates that the trace bucket is free. */
-
- if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) {
- /*
+
+ if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0) {
+ /*
* Different unique trace with same hash!
* Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated
* and get out of the way for later chances
*/
trace->zt_collisions++;
z_trace_collisions++;
-
+
lck_spin_unlock(&zleak_lock);
return TRUE;
} else if (trace->zt_size > 0) {
trace->zt_size += allocation_size;
} else {
/* Found an unused trace bucket, record the trace here! */
- if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */
+ if (trace->zt_depth != 0) { /* if this slot was previously used but not currently in use */
z_trace_overwrites++;
-
+ }
+
z_trace_recorded++;
- trace->zt_size = allocation_size;
- memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) );
-
- trace->zt_depth = depth;
- trace->zt_collisions = 0;
+ trace->zt_size = allocation_size;
+ memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)));
+
+ trace->zt_depth = depth;
+ trace->zt_collisions = 0;
}
-
+
/* STEP 2: Store the allocation record in the allocations array. */
-
+
if (allocation->za_element != (uintptr_t) 0) {
- /*
+ /*
* Straight up replace any allocation record that was there. We don't want to do the work
- * to preserve the allocation entries that were there, because we only record a subset of the
+ * to preserve the allocation entries that were there, because we only record a subset of the
* allocations anyways.
*/
-
+
z_alloc_collisions++;
-
+
struct ztrace* associated_trace = &ztraces[allocation->za_trace_index];
/* Knock off old allocation's size, not the new allocation */
associated_trace->zt_size -= allocation->za_size;
z_alloc_overwrites++;
}
- allocation->za_element = addr;
- allocation->za_trace_index = trace_index;
- allocation->za_size = allocation_size;
-
+ allocation->za_element = addr;
+ allocation->za_trace_index = trace_index;
+ allocation->za_size = allocation_size;
+
z_alloc_recorded++;
-
- if (top_ztrace->zt_size < trace->zt_size)
+
+ if (top_ztrace->zt_size < trace->zt_size) {
top_ztrace = trace;
-
+ }
+
lck_spin_unlock(&zleak_lock);
return TRUE;
}
*/
static void
zleak_free(uintptr_t addr,
- vm_size_t allocation_size)
+ vm_size_t allocation_size)
{
- if (addr == (uintptr_t) 0)
+ if (addr == (uintptr_t) 0) {
return;
-
+ }
+
struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
-
+
/* Double-checked locking: check to find out if we're interested, lock, check to make
* sure it hasn't changed, then modify it, and release the lock.
*/
-
+
if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
/* if the allocation was the one, grab the lock, check again, then delete it */
lck_spin_lock(&zleak_lock);
-
+
if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
struct ztrace *trace;
/* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */
if (allocation->za_size != allocation_size) {
- panic("Freeing as size %lu memory that was allocated with size %lu\n",
- (uintptr_t)allocation_size, (uintptr_t)allocation->za_size);
+ panic("Freeing as size %lu memory that was allocated with size %lu\n",
+ (uintptr_t)allocation_size, (uintptr_t)allocation->za_size);
}
-
+
trace = &ztraces[allocation->za_trace_index];
-
+
/* size of 0 indicates trace bucket is unused */
if (trace->zt_size > 0) {
trace->zt_size -= allocation_size;
}
-
+
/* A NULL element means the allocation bucket is unused */
allocation->za_element = 0;
}
#ifndef __LP64__
x += ~(x << 15);
x ^= (x >> 10);
- x += (x << 3 );
- x ^= (x >> 6 );
+ x += (x << 3);
+ x ^= (x >> 6);
x += ~(x << 11);
x ^= (x >> 16);
#else
x += ~(x << 32);
x ^= (x >> 22);
x += ~(x << 13);
- x ^= (x >> 8 );
- x += (x << 3 );
+ x ^= (x >> 8);
+ x += (x << 3);
x ^= (x >> 15);
x += ~(x << 27);
x ^= (x >> 31);
uint32_t
hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size)
{
-
uintptr_t hash = 0;
uintptr_t mask = max_size - 1;
/* End of all leak-detection code */
#pragma mark -
-#define ZONE_MAX_ALLOC_SIZE (32 * 1024)
+#define ZONE_MAX_ALLOC_SIZE (32 * 1024)
#define ZONE_ALLOC_FRAG_PERCENT(alloc_size, ele_size) (((alloc_size % ele_size) * 100) / alloc_size)
+/* Used to manage copying in of new zone names */
+static vm_offset_t zone_names_start;
+static vm_offset_t zone_names_next;
+
+static vm_size_t
+compute_element_size(vm_size_t requested_size)
+{
+ vm_size_t element_size = requested_size;
+
+ /* Zone elements must fit both a next pointer and a backup pointer */
+ vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
+ if (element_size < minimum_element_size) {
+ element_size = minimum_element_size;
+ }
+
+ /*
+ * Round element size to a multiple of sizeof(pointer)
+ * This also enforces that allocations will be aligned on pointer boundaries
+ */
+ element_size = ((element_size - 1) + sizeof(vm_offset_t)) -
+ ((element_size - 1) % sizeof(vm_offset_t));
+
+ return element_size;
+}
+
+#if KASAN_ZALLOC
+
+/*
+ * Called from zinit().
+ *
+ * Fixes up the zone's element size to incorporate the redzones.
+ */
+static void
+kasan_update_element_size_for_redzone(
+ zone_t zone, /* the zone that needs to be updated */
+ vm_size_t *size, /* requested zone element size */
+ vm_size_t *max, /* maximum memory to use */
+ const char *name) /* zone name */
+{
+ /* Expand the zone allocation size to include the redzones. For page-multiple
+ * zones add a full guard page because they likely require alignment. kalloc
+ * and fakestack handles its own KASan state, so ignore those zones. */
+ /* XXX: remove this when zinit_with_options() is a thing */
+ const char *kalloc_name = "kalloc.";
+ const char *fakestack_name = "fakestack.";
+ if (strncmp(name, kalloc_name, strlen(kalloc_name)) == 0) {
+ zone->kasan_redzone = 0;
+ } else if (strncmp(name, fakestack_name, strlen(fakestack_name)) == 0) {
+ zone->kasan_redzone = 0;
+ } else {
+ if ((*size % PAGE_SIZE) != 0) {
+ zone->kasan_redzone = KASAN_GUARD_SIZE;
+ } else {
+ zone->kasan_redzone = PAGE_SIZE;
+ }
+ *max = (*max / *size) * (*size + zone->kasan_redzone * 2);
+ *size += zone->kasan_redzone * 2;
+ }
+}
+
+/*
+ * Called from zalloc_internal() to fix up the address of the newly
+ * allocated element.
+ *
+ * Returns the element address skipping over the redzone on the left.
+ */
+static vm_offset_t
+kasan_fixup_allocated_element_address(
+ zone_t zone, /* the zone the element belongs to */
+ vm_offset_t addr) /* address of the element, including the redzone */
+{
+ /* Fixup the return address to skip the redzone */
+ if (zone->kasan_redzone) {
+ addr = kasan_alloc(addr, zone->elem_size,
+ zone->elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone);
+ }
+ return addr;
+}
+
+/*
+ * Called from zfree() to add the element being freed to the KASan quarantine.
+ *
+ * Returns true if the newly-freed element made it into the quarantine without
+ * displacing another, false otherwise. In the latter case, addrp points to the
+ * address of the displaced element, which will be freed by the zone.
+ */
+static bool
+kasan_quarantine_freed_element(
+ zone_t *zonep, /* the zone the element is being freed to */
+ void **addrp) /* address of the element being freed */
+{
+ zone_t zone = *zonep;
+ void *addr = *addrp;
+
+ /*
+ * Resize back to the real allocation size and hand off to the KASan
+ * quarantine. `addr` may then point to a different allocation, if the
+ * current element replaced another in the quarantine. The zone then
+ * takes ownership of the swapped out free element.
+ */
+ vm_size_t usersz = zone->elem_size - 2 * zone->kasan_redzone;
+ vm_size_t sz = usersz;
+
+ if (addr && zone->kasan_redzone) {
+ kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC);
+ addr = (void *)kasan_dealloc((vm_address_t)addr, &sz);
+ assert(sz == zone->elem_size);
+ }
+ if (addr && zone->kasan_quarantine) {
+ kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, zonep, usersz, true);
+ if (!addr) {
+ return TRUE;
+ }
+ }
+ *addrp = addr;
+ return FALSE;
+}
+
+#endif /* KASAN_ZALLOC */
+
/*
* zinit initializes a new zone. The zone data structures themselves
* are stored in a zone, which is initially a static structure that
* is initialized by zone_init.
*/
+
zone_t
zinit(
- vm_size_t size, /* the size of an element */
- vm_size_t max, /* maximum memory to use */
- vm_size_t alloc, /* allocation size */
- const char *name) /* a name for the zone */
+ vm_size_t size, /* the size of an element */
+ vm_size_t max, /* maximum memory to use */
+ vm_size_t alloc, /* allocation size */
+ const char *name) /* a name for the zone */
{
- zone_t z;
+ zone_t z;
- simple_lock(&all_zones_lock);
- z = &(zone_array[zone_array_index]);
- zone_array_index++;
- assert(zone_array_index != MAX_ZONES);
- simple_unlock(&all_zones_lock);
+ size = compute_element_size(size);
- /* Zone elements must fit both a next pointer and a backup pointer */
- vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
- if (size < minimum_element_size)
- size = minimum_element_size;
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+
+ assert(num_zones < MAX_ZONES);
+ assert(num_zones_in_use <= num_zones);
+
+ /* If possible, find a previously zdestroy'ed zone in the zone_array that we can reuse instead of initializing a new zone. */
+ for (int index = bitmap_first(zone_empty_bitmap, MAX_ZONES);
+ index >= 0 && index < (int)num_zones;
+ index = bitmap_next(zone_empty_bitmap, index)) {
+ z = &(zone_array[index]);
+
+ /*
+ * If the zone name and the element size are the same, we can just reuse the old zone struct.
+ * Otherwise hand out a new zone from the zone_array.
+ */
+ if (!strcmp(z->zone_name, name)) {
+ vm_size_t old_size = z->elem_size;
+#if KASAN_ZALLOC
+ old_size -= z->kasan_redzone * 2;
+#endif
+ if (old_size == size) {
+ /* Clear the empty bit for this zone, increment num_zones_in_use, and mark the zone as valid again. */
+ bitmap_clear(zone_empty_bitmap, index);
+ num_zones_in_use++;
+ z->zone_valid = TRUE;
+ z->zone_destruction = FALSE;
+
+ /* All other state is already set up since the zone was previously in use. Return early. */
+ simple_unlock(&all_zones_lock);
+ return z;
+ }
+ }
+ }
+
+ /* If we're here, it means we didn't find a zone above that we could simply reuse. Set up a new zone. */
+
+ /* Clear the empty bit for the new zone */
+ bitmap_clear(zone_empty_bitmap, num_zones);
+
+ z = &(zone_array[num_zones]);
+ z->index = num_zones;
+
+ num_zones++;
+ num_zones_in_use++;
/*
- * Round element size to a multiple of sizeof(pointer)
- * This also enforces that allocations will be aligned on pointer boundaries
+ * Initialize the zone lock here before dropping the all_zones_lock. Otherwise we could race with
+ * zalloc_async() and try to grab the zone lock before it has been initialized, causing a panic.
*/
- size = ((size-1) + sizeof(vm_offset_t)) -
- ((size-1) % sizeof(vm_offset_t));
+ lock_zone_init(z);
+
+ simple_unlock(&all_zones_lock);
- if (alloc == 0)
- alloc = PAGE_SIZE;
+#if KASAN_ZALLOC
+ kasan_update_element_size_for_redzone(z, &size, &max, name);
+#endif
- alloc = round_page(alloc);
- max = round_page(max);
+ max = round_page(max);
vm_size_t best_alloc = PAGE_SIZE;
- vm_size_t alloc_size;
- for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) {
- if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) {
- best_alloc = alloc_size;
+
+ if ((size % PAGE_SIZE) == 0) {
+ /* zero fragmentation by definition */
+ best_alloc = size;
+ } else {
+ vm_size_t alloc_size;
+ for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) {
+ if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) {
+ best_alloc = alloc_size;
+ }
}
}
+
alloc = best_alloc;
- if (max && (max < alloc))
+ if (max && (max < alloc)) {
max = alloc;
+ }
z->free_elements = NULL;
queue_init(&z->pages.any_free_foreign);
z->max_size = max;
z->elem_size = size;
z->alloc_size = alloc;
- z->zone_name = name;
z->count = 0;
z->countfree = 0;
z->count_all_free_pages = 0;
z->prio_refill_watermark = 0;
z->zone_replenish_thread = NULL;
z->zp_count = 0;
+ z->kasan_quarantine = TRUE;
+ z->zone_valid = TRUE;
+ z->zone_destruction = FALSE;
+ z->cpu_cache_enabled = FALSE;
+ z->clear_memory = FALSE;
#if CONFIG_ZLEAKS
z->zleak_capture = 0;
z->zleak_on = FALSE;
#endif /* CONFIG_ZLEAKS */
- lock_zone_init(z);
-
/*
- * Add the zone to the all-zones list.
+ * If the VM is ready to handle kmem_alloc requests, copy the zone name passed in.
+ *
+ * Else simply maintain a pointer to the name string. The only zones we'll actually have
+ * to do this for would be the VM-related zones that are created very early on before any
+ * kexts can be loaded (unloaded). So we should be fine with just a pointer in this case.
*/
- simple_lock(&all_zones_lock);
- z->index = num_zones;
- num_zones++;
- simple_unlock(&all_zones_lock);
+ if (kmem_alloc_ready) {
+ size_t len = MIN(strlen(name) + 1, MACH_ZONE_NAME_MAX_LEN);
+
+ if (zone_names_start == 0 || ((zone_names_next - zone_names_start) + len) > PAGE_SIZE) {
+ printf("zalloc: allocating memory for zone names buffer\n");
+ kern_return_t retval = kmem_alloc_kobject(kernel_map, &zone_names_start,
+ PAGE_SIZE, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS) {
+ panic("zalloc: zone_names memory allocation failed");
+ }
+ bzero((char *)zone_names_start, PAGE_SIZE);
+ zone_names_next = zone_names_start;
+ }
+
+ strlcpy((char *)zone_names_next, name, len);
+ z->zone_name = (char *)zone_names_next;
+ zone_names_next += len;
+ } else {
+ z->zone_name = name;
+ }
/*
* Check for and set up zone leak detection if requested via boot-args. We recognized two
*/
if (num_zones_logged < max_num_zones_to_log) {
-
- int i = 1; /* zlog0 isn't allowed. */
- boolean_t zone_logging_enabled = FALSE;
- char zlog_name[MAX_ZONE_NAME] = ""; /* Temp. buffer to create the strings zlog1, zlog2 etc... */
+ int i = 1; /* zlog0 isn't allowed. */
+ boolean_t zone_logging_enabled = FALSE;
+ char zlog_name[MAX_ZONE_NAME] = ""; /* Temp. buffer to create the strings zlog1, zlog2 etc... */
while (i <= max_num_zones_to_log) {
-
snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i);
if (PE_parse_boot_argn(zlog_name, zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
- if (log_this_zone(z->zone_name, zone_name_to_log)) {
- z->zone_logging = TRUE;
- zone_logging_enabled = TRUE;
- num_zones_logged++;
- break;
+ if (track_this_zone(z->zone_name, zone_name_to_log)) {
+ if (z->zone_valid) {
+ z->zone_logging = TRUE;
+ zone_logging_enabled = TRUE;
+ num_zones_logged++;
+ break;
+ }
}
}
i++;
}
if (zone_logging_enabled == FALSE) {
- /*
+ /*
* Backwards compat. with the old boot-arg used to specify single zone logging i.e. zlog
* Needs to happen after the newer zlogn checks because the prefix will match all the zlogn
* boot-args.
*/
if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
- if (log_this_zone(z->zone_name, zone_name_to_log)) {
+ if (track_this_zone(z->zone_name, zone_name_to_log)) {
+ if (z->zone_valid) {
z->zone_logging = TRUE;
zone_logging_enabled = TRUE;
num_zones_logged++;
+ }
}
}
}
if (log_records_init == FALSE && zone_logging_enabled == TRUE) {
- if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) {
+ if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) {
/*
* Don't allow more than ZRECORDS_MAX records even if the user asked for more.
* This prevents accidentally hogging too much kernel memory and making the system
* right now.
*/
if (kmem_alloc_ready) {
-
zone_t curr_zone = NULL;
unsigned int max_zones = 0, zone_idx = 0;
- simple_lock(&all_zones_lock);
+ simple_lock(&all_zones_lock, &zone_locks_grp);
max_zones = num_zones;
simple_unlock(&all_zones_lock);
for (zone_idx = 0; zone_idx < max_zones; zone_idx++) {
-
curr_zone = &(zone_array[zone_idx]);
+ if (!curr_zone->zone_valid) {
+ continue;
+ }
+
/*
* We work with the zone unlocked here because we could end up needing the zone lock to
* enable logging for this zone e.g. need a VM object to allocate memory to enable logging for the
* We don't expect these zones to be needed at this early a time in boot and so take this chance.
*/
if (curr_zone->zone_logging && curr_zone->zlog_btlog == NULL) {
-
curr_zone->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */);
if (curr_zone->zlog_btlog) {
-
printf("zone: logging started for zone %s\n", curr_zone->zone_name);
} else {
printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
curr_zone->zone_logging = FALSE;
}
}
-
}
}
}
-#if CONFIG_GZALLOC
+#if CONFIG_GZALLOC
gzalloc_zone_init(z);
#endif
- return(z);
+
+#if CONFIG_ZCACHE
+ /* Check if boot-arg specified it should have a cache */
+ if (cache_all_zones || track_this_zone(name, cache_zone_name)) {
+ zone_change(z, Z_CACHING_ENABLED, TRUE);
+ }
+#endif
+
+ return z;
}
-unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count;
+unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count;
static void zone_replenish_thread(zone_t);
/* High priority VM privileged thread used to asynchronously refill a designated
* zone, such as the reserved VM map entry zone.
*/
-__attribute__((noreturn))
+__dead2
static void
zone_replenish_thread(zone_t z)
{
for (;;) {
lock_zone(z);
+ assert(z->zone_valid);
z->zone_replenishing = TRUE;
assert(z->prio_refill_watermark != 0);
while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) {
assert(z->async_prio_refill == TRUE);
unlock_zone(z);
- int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT;
+ int zflags = KMA_KOBJECT | KMA_NOPAGEWAIT;
vm_offset_t space, alloc_size;
kern_return_t kr;
-
- if (vm_pool_low())
+
+ if (vm_pool_low()) {
alloc_size = round_page(z->elem_size);
- else
+ } else {
alloc_size = z->alloc_size;
-
- if (z->noencrypt)
+ }
+
+ if (z->noencrypt) {
zflags |= KMA_NOENCRYPT;
-
+ }
+
+ if (z->clear_memory) {
+ zflags |= KMA_ZERO;
+ }
+
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (kr == KERN_SUCCESS) {
}
lock_zone(z);
+ assert(z->zone_valid);
zone_replenish_loops++;
}
}
void
-zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) {
+zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark)
+{
z->prio_refill_watermark = low_water_mark;
z->async_prio_refill = TRUE;
thread_deallocate(z->zone_replenish_thread);
}
+void
+zdestroy(zone_t z)
+{
+ unsigned int zindex;
+
+ assert(z != NULL);
+
+ lock_zone(z);
+ assert(z->zone_valid);
+
+ /* Assert that the zone does not have any allocations in flight */
+ assert(z->doing_alloc_without_vm_priv == FALSE);
+ assert(z->doing_alloc_with_vm_priv == FALSE);
+ assert(z->async_pending == FALSE);
+ assert(z->waiting == FALSE);
+ assert(z->async_prio_refill == FALSE);
+
+#if !KASAN_ZALLOC
+ /*
+ * Unset the valid bit. We'll hit an assert failure on further operations on this zone, until zinit() is called again.
+ * Leave the zone valid for KASan as we will see zfree's on quarantined free elements even after the zone is destroyed.
+ */
+ z->zone_valid = FALSE;
+#endif
+ z->zone_destruction = TRUE;
+ unlock_zone(z);
+
+#if CONFIG_ZCACHE
+ /* Drain the per-cpu caches if caching is enabled for the zone. */
+ if (zone_caching_enabled(z)) {
+ panic("zdestroy: Zone caching enabled for zone %s", z->zone_name);
+ }
+#endif /* CONFIG_ZCACHE */
+
+ /* Dump all the free elements */
+ drop_free_elements(z);
+
+#if CONFIG_GZALLOC
+ /* If the zone is gzalloc managed dump all the elements in the free cache */
+ gzalloc_empty_free_cache(z);
+#endif
+
+ lock_zone(z);
+
+#if !KASAN_ZALLOC
+ /* Assert that all counts are zero */
+ assert(z->count == 0);
+ assert(z->countfree == 0);
+ assert(z->cur_size == 0);
+ assert(z->page_count == 0);
+ assert(z->count_all_free_pages == 0);
+
+ /* Assert that all queues except the foreign queue are empty. The zone allocator doesn't know how to free up foreign memory. */
+ assert(queue_empty(&z->pages.all_used));
+ assert(queue_empty(&z->pages.intermediate));
+ assert(queue_empty(&z->pages.all_free));
+#endif
+
+ zindex = z->index;
+
+ unlock_zone(z);
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+
+ assert(!bitmap_test(zone_empty_bitmap, zindex));
+ /* Mark the zone as empty in the bitmap */
+ bitmap_set(zone_empty_bitmap, zindex);
+ num_zones_in_use--;
+ assert(num_zones_in_use > 0);
+
+ simple_unlock(&all_zones_lock);
+}
+
/* Initialize the metadata for an allocation chunk */
static inline void
zcram_metadata_init(vm_offset_t newmem, vm_size_t size, struct zone_page_metadata *chunk_metadata)
}
-/*
- * Boolean Random Number Generator for generating booleans to randomize
- * the order of elements in newly zcram()'ed memory. The algorithm is a
- * modified version of the KISS RNG proposed in the paper:
- * http://stat.fsu.edu/techreports/M802.pdf
- * The modifications have been documented in the technical paper
- * paper from UCL:
- * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf
- */
-
-static void random_bool_gen_entropy(
- int *buffer,
- int count)
-{
-
- int i, t;
- simple_lock(&bool_gen_lock);
- for (i = 0; i < count; i++) {
- bool_gen_seed[1] ^= (bool_gen_seed[1] << 5);
- bool_gen_seed[1] ^= (bool_gen_seed[1] >> 7);
- bool_gen_seed[1] ^= (bool_gen_seed[1] << 22);
- t = bool_gen_seed[2] + bool_gen_seed[3] + bool_gen_global;
- bool_gen_seed[2] = bool_gen_seed[3];
- bool_gen_global = t < 0;
- bool_gen_seed[3] = t &2147483647;
- bool_gen_seed[0] += 1411392427;
- buffer[i] = (bool_gen_seed[0] + bool_gen_seed[1] + bool_gen_seed[3]);
- }
- simple_unlock(&bool_gen_lock);
-}
-
-static boolean_t random_bool_gen(
- int *buffer,
- int index,
- int bufsize)
-{
- int valindex, bitpos;
- valindex = (index / (8 * sizeof(int))) % bufsize;
- bitpos = index % (8 * sizeof(int));
- return (boolean_t)(buffer[valindex] & (1 << bitpos));
-}
-
-static void
+static void
random_free_to_zone(
- zone_t zone,
- vm_offset_t newmem,
- vm_offset_t first_element_offset,
- int element_count,
- int *entropy_buffer)
-{
- vm_offset_t last_element_offset;
- vm_offset_t element_addr;
+ zone_t zone,
+ vm_offset_t newmem,
+ vm_offset_t first_element_offset,
+ int element_count,
+ unsigned int *entropy_buffer)
+{
+ vm_offset_t last_element_offset;
+ vm_offset_t element_addr;
vm_size_t elem_size;
- int index;
+ int index;
+ assert(element_count && element_count <= ZONE_CHUNK_MAXELEMENTS);
elem_size = zone->elem_size;
last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size);
for (index = 0; index < element_count; index++) {
assert(first_element_offset <= last_element_offset);
if (
#if DEBUG || DEVELOPMENT
- leak_scan_debug_flag ||
+ leak_scan_debug_flag || __improbable(zone->tags) ||
#endif /* DEBUG || DEVELOPMENT */
- random_bool_gen(entropy_buffer, index, MAX_ENTROPY_PER_ZCRAM)) {
+ random_bool_gen_bits(&zone_bool_gen, entropy_buffer, MAX_ENTROPY_PER_ZCRAM, 1)) {
element_addr = newmem + first_element_offset;
first_element_offset += elem_size;
} else {
*/
void
zcram(
- zone_t zone,
- vm_offset_t newmem,
- vm_size_t size)
+ zone_t zone,
+ vm_offset_t newmem,
+ vm_size_t size)
{
- vm_size_t elem_size;
+ vm_size_t elem_size;
boolean_t from_zm = FALSE;
int element_count;
- int entropy_buffer[MAX_ENTROPY_PER_ZCRAM];
+ unsigned int entropy_buffer[MAX_ENTROPY_PER_ZCRAM] = { 0 };
/* Basic sanity checks */
assert(zone != ZONE_NULL && newmem != (vm_offset_t)0);
assert(!zone->collectable || zone->allows_foreign
- || (from_zone_map(newmem, size)));
+ || (from_zone_map(newmem, size)));
elem_size = zone->elem_size;
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, VM_KERNEL_ADDRPERM(zone), size, 0, 0, 0);
+ KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, zone->index, size);
- if (from_zone_map(newmem, size))
+ if (from_zone_map(newmem, size)) {
from_zm = TRUE;
+ }
if (!from_zm) {
- /* We cannot support elements larger than page size for foreign memory because we
- * put metadata on the page itself for each page of foreign memory. We need to do
- * this in order to be able to reach the metadata when any element is freed
+ /* We cannot support elements larger than page size for foreign memory because we
+ * put metadata on the page itself for each page of foreign memory. We need to do
+ * this in order to be able to reach the metadata when any element is freed
*/
assert((zone->allows_foreign == TRUE) && (zone->elem_size <= (PAGE_SIZE - sizeof(struct zone_page_metadata))));
- }
+ }
- if (zalloc_debug & ZALLOC_DEBUG_ZCRAM)
+#if DEBUG || DEVELOPMENT
+ if (zalloc_debug & ZALLOC_DEBUG_ZCRAM) {
kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name,
- (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size);
+ (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size);
+ }
+#endif /* DEBUG || DEVELOPMENT */
ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE));
- random_bool_gen_entropy(entropy_buffer, MAX_ENTROPY_PER_ZCRAM);
-
- /*
- * Initialize the metadata for all pages. We dont need the zone lock
+ /*
+ * Initialize the metadata for all pages. We dont need the zone lock
* here because we are not manipulating any zone related state yet.
*/
page_metadata_set_freelist(chunk_metadata, 0);
PAGE_METADATA_SET_ZINDEX(chunk_metadata, zone->index);
chunk_metadata->free_count = 0;
- chunk_metadata->page_count = (size / PAGE_SIZE);
+ assert((size / PAGE_SIZE) <= ZONE_CHUNK_MAXPAGES);
+ chunk_metadata->page_count = (unsigned)(size / PAGE_SIZE);
zcram_metadata_init(newmem, size, chunk_metadata);
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ assert(from_zm);
+ ztMemoryAdd(zone, newmem, size);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
lock_zone(zone);
+ assert(zone->zone_valid);
enqueue_tail(&zone->pages.all_used, &(chunk_metadata->pages));
if (!from_zm) {
- /* We cannot support elements larger than page size for foreign memory because we
- * put metadata on the page itself for each page of foreign memory. We need to do
- * this in order to be able to reach the metadata when any element is freed
+ /* We cannot support elements larger than page size for foreign memory because we
+ * put metadata on the page itself for each page of foreign memory. We need to do
+ * this in order to be able to reach the metadata when any element is freed
*/
for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
vm_offset_t first_element_offset = 0;
- if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){
+ if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) {
first_element_offset = zone_page_metadata_size;
} else {
first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
}
- element_count = (int)((PAGE_SIZE - first_element_offset) / elem_size);
- random_free_to_zone(zone, newmem, first_element_offset, element_count, entropy_buffer);
+ element_count = (unsigned int)((PAGE_SIZE - first_element_offset) / elem_size);
+ random_free_to_zone(zone, newmem, first_element_offset, element_count, entropy_buffer);
}
} else {
- element_count = (int)(size / elem_size);
- random_free_to_zone(zone, newmem, 0, element_count, entropy_buffer);
+ element_count = (unsigned int)(size / elem_size);
+ random_free_to_zone(zone, newmem, 0, element_count, entropy_buffer);
}
unlock_zone(zone);
-
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, VM_KERNEL_ADDRPERM(zone), 0, 0, 0, 0);
+ KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zone->index);
}
/*
* Fill a zone with enough memory to contain at least nelem elements.
- * Memory is obtained with kmem_alloc_kobject from the kernel_map.
* Return the number of elements actually put into the zone, which may
* be more than the caller asked for since the memory allocation is
- * rounded up to a full page.
+ * rounded up to the next zone allocation size.
*/
int
zfill(
- zone_t zone,
- int nelem)
+ zone_t zone,
+ int nelem)
{
- kern_return_t kr;
- vm_size_t size;
- vm_offset_t memory;
- int nalloc;
+ kern_return_t kr;
+ vm_offset_t memory;
- assert(nelem > 0);
- if (nelem <= 0)
- return 0;
- size = nelem * zone->elem_size;
- size = round_page(size);
- kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE);
- if (kr != KERN_SUCCESS)
+ vm_size_t alloc_size = zone->alloc_size;
+ vm_size_t elem_per_alloc = alloc_size / zone->elem_size;
+ vm_size_t nalloc = (nelem + elem_per_alloc - 1) / elem_per_alloc;
+ int zflags = KMA_KOBJECT;
+
+ if (zone->clear_memory) {
+ zflags |= KMA_ZERO;
+ }
+
+ /* Don't mix-and-match zfill with foreign memory */
+ assert(!zone->allows_foreign);
+
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
+ kr = kernel_memory_allocate(zone_map, &memory, nalloc * alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
+ if (kr != KERN_SUCCESS) {
+ printf("%s: kernel_memory_allocate() of %lu bytes failed\n",
+ __func__, (unsigned long)(nalloc * alloc_size));
return 0;
+ }
- zone_change(zone, Z_FOREIGN, TRUE);
- zcram(zone, memory, size);
- nalloc = (int)(size / zone->elem_size);
- assert(nalloc >= nelem);
+ for (vm_size_t i = 0; i < nalloc; i++) {
+ zcram(zone, memory + i * alloc_size, alloc_size);
+ }
- return nalloc;
+ return (int)(nalloc * elem_per_alloc);
}
/*
zone_bootstrap(void)
{
char temp_buf[16];
- unsigned int i;
- if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug)))
+#if DEBUG || DEVELOPMENT
+ if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug))) {
zalloc_debug = 0;
+ }
+#endif /* DEBUG || DEVELOPMENT */
/* Set up zone element poisoning */
zp_init();
- /* Seed the random boolean generator for elements in zone free list */
- for (i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) {
- bool_gen_seed[i] = (unsigned int)early_random();
- }
- simple_lock_init(&bool_gen_lock, 0);
+ random_bool_init(&zone_bool_gen);
/* should zlog log to debug zone corruption instead of leaks? */
if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) {
corruption_debug_flag = TRUE;
- }
+ }
#if DEBUG || DEVELOPMENT
+ /* should perform zone element size checking in copyin/copyout? */
+ if (PE_parse_boot_argn("-no-copyio-zalloc-check", temp_buf, sizeof(temp_buf))) {
+ copyio_zalloc_check = FALSE;
+ }
+#if VM_MAX_TAG_ZONES
+ /* enable tags for zones that ask for */
+ if (PE_parse_boot_argn("-zt", temp_buf, sizeof(temp_buf))) {
+ zone_tagging_on = TRUE;
+ }
+#endif /* VM_MAX_TAG_ZONES */
/* disable element location randomization in a page */
if (PE_parse_boot_argn("-zl", temp_buf, sizeof(temp_buf))) {
leak_scan_debug_flag = TRUE;
simple_lock_init(&all_zones_lock, 0);
+ num_zones_in_use = 0;
num_zones = 0;
+ /* Mark all zones as empty */
+ bitmap_full(zone_empty_bitmap, BITMAP_LEN(MAX_ZONES));
+ zone_names_next = zone_names_start = 0;
+
+#if DEBUG || DEVELOPMENT
+ simple_lock_init(&zone_test_lock, 0);
+#endif /* DEBUG || DEVELOPMENT */
+
thread_call_setup(&call_async_alloc, zalloc_async, NULL);
/* initializing global lock group for zones */
lck_grp_attr_setdefault(&zone_locks_grp_attr);
lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr);
- lck_attr_setdefault(&zone_metadata_lock_attr);
+ lck_attr_setdefault(&zone_metadata_lock_attr);
lck_mtx_init_ext(&zone_metadata_region_lck, &zone_metadata_region_lck_ext, &zone_locks_grp, &zone_metadata_lock_attr);
+
+#if CONFIG_ZCACHE
+ /* zcc_enable_for_zone_name=<zone>: enable per-cpu zone caching for <zone>. */
+ if (PE_parse_boot_arg_str("zcc_enable_for_zone_name", cache_zone_name, sizeof(cache_zone_name))) {
+ printf("zcache: caching enabled for zone %s\n", cache_zone_name);
+ }
+
+ /* -zcache_all: enable per-cpu zone caching for all zones, overrides 'zcc_enable_for_zone_name'. */
+ if (PE_parse_boot_argn("-zcache_all", temp_buf, sizeof(temp_buf))) {
+ cache_all_zones = TRUE;
+ printf("zcache: caching enabled for all zones\n");
+ }
+#endif /* CONFIG_ZCACHE */
+}
+
+/*
+ * We're being very conservative here and picking a value of 95%. We might need to lower this if
+ * we find that we're not catching the problem and are still hitting zone map exhaustion panics.
+ */
+#define ZONE_MAP_JETSAM_LIMIT_DEFAULT 95
+
+/*
+ * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit.
+ * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default.
+ */
+unsigned int zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT;
+
+/*
+ * Returns pid of the task with the largest number of VM map entries.
+ */
+extern pid_t find_largest_process_vm_map_entries(void);
+
+/*
+ * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills.
+ * For any other pid we try to kill that process synchronously.
+ */
+boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid);
+
+void
+get_zone_map_size(uint64_t *current_size, uint64_t *capacity)
+{
+ *current_size = zone_map->size;
+ *capacity = vm_map_max(zone_map) - vm_map_min(zone_map);
+}
+
+void
+get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size)
+{
+ zone_t largest_zone = zone_find_largest();
+ strlcpy(zone_name, largest_zone->zone_name, zone_name_len);
+ *zone_size = largest_zone->cur_size;
+}
+
+boolean_t
+is_zone_map_nearing_exhaustion(void)
+{
+ uint64_t size = zone_map->size;
+ uint64_t capacity = vm_map_max(zone_map) - vm_map_min(zone_map);
+ if (size > ((capacity * zone_map_jetsam_limit) / 100)) {
+ return TRUE;
+ }
+ return FALSE;
+}
+
+extern zone_t vm_map_entry_zone;
+extern zone_t vm_object_zone;
+
+#define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98
+
+/*
+ * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread
+ * to walk through the jetsam priority bands and kill processes.
+ */
+static void
+kill_process_in_largest_zone(void)
+{
+ pid_t pid = -1;
+ zone_t largest_zone = zone_find_largest();
+
+ printf("zone_map_exhaustion: Zone map size %lld, capacity %lld [jetsam limit %d%%]\n", (uint64_t)zone_map->size,
+ (uint64_t)(vm_map_max(zone_map) - vm_map_min(zone_map)), zone_map_jetsam_limit);
+ printf("zone_map_exhaustion: Largest zone %s, size %lu\n", largest_zone->zone_name, (uintptr_t)largest_zone->cur_size);
+
+ /*
+ * We want to make sure we don't call this function from userspace. Or we could end up trying to synchronously kill the process
+ * whose context we're in, causing the system to hang.
+ */
+ assert(current_task() == kernel_task);
+
+ /*
+ * If vm_object_zone is the largest, check to see if the number of elements in vm_map_entry_zone is comparable. If so, consider
+ * vm_map_entry_zone as the largest. This lets us target a specific process to jetsam to quickly recover from the zone map bloat.
+ */
+ if (largest_zone == vm_object_zone) {
+ unsigned int vm_object_zone_count = vm_object_zone->count;
+ unsigned int vm_map_entry_zone_count = vm_map_entry_zone->count;
+ /* Is the VM map entries zone count >= 98% of the VM objects zone count? */
+ if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) {
+ largest_zone = vm_map_entry_zone;
+ printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", (uintptr_t)largest_zone->cur_size);
+ }
+ }
+
+ /* TODO: Extend this to check for the largest process in other zones as well. */
+ if (largest_zone == vm_map_entry_zone) {
+ pid = find_largest_process_vm_map_entries();
+ } else {
+ printf("zone_map_exhaustion: Nothing to do for the largest zone [%s]. Waking up memorystatus thread.\n", largest_zone->zone_name);
+ }
+ if (!memorystatus_kill_on_zone_map_exhaustion(pid)) {
+ printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid);
+ }
}
/* Global initialization of Zone Allocator.
zone_init(
vm_size_t max_zonemap_size)
{
- kern_return_t retval;
- vm_offset_t zone_min;
- vm_offset_t zone_max;
- vm_offset_t zone_metadata_space;
- unsigned int zone_pages;
+ kern_return_t retval;
+ vm_offset_t zone_min;
+ vm_offset_t zone_max;
+ vm_offset_t zone_metadata_space;
+ unsigned int zone_pages;
+ vm_map_kernel_flags_t vmk_flags;
+
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) {
+ ztInit(max_zonemap_size, &zone_locks_grp);
+ }
+#endif
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
- FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE),
- &zone_map);
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE,
+ &zone_map);
- if (retval != KERN_SUCCESS)
+ if (retval != KERN_SUCCESS) {
panic("zone_init: kmem_suballoc failed");
+ }
zone_max = zone_min + round_page(max_zonemap_size);
-#if CONFIG_GZALLOC
+
+#if CONFIG_GZALLOC
gzalloc_init(max_zonemap_size);
#endif
+
/*
* Setup garbage collection information:
*/
zone_pages = (unsigned int)atop_kernel(zone_max - zone_min);
zone_metadata_space = round_page(zone_pages * sizeof(struct zone_page_metadata));
retval = kernel_memory_allocate(zone_map, &zone_metadata_region_min, zone_metadata_space,
- 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_OSFMK);
- if (retval != KERN_SUCCESS)
+ 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS) {
panic("zone_init: zone_metadata_region initialization failed!");
+ }
zone_metadata_region_max = zone_metadata_region_min + zone_metadata_space;
#if defined(__LP64__)
* the vm_page zone can be packed properly (see vm_page.h
* for the packing requirements
*/
- if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_metadata_region_max))) != (vm_page_t)zone_metadata_region_max)
+ if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_metadata_region_max))) != (vm_page_t)zone_metadata_region_max) {
panic("VM_PAGE_PACK_PTR failed on zone_metadata_region_max - %p", (void *)zone_metadata_region_max);
+ }
- if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address))) != (vm_page_t)zone_map_max_address)
+ if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address))) != (vm_page_t)zone_map_max_address) {
panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address);
+ }
#endif
lck_grp_attr_setdefault(&zone_gc_lck_grp_attr);
lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr);
lck_attr_setdefault(&zone_gc_lck_attr);
lck_mtx_init_ext(&zone_gc_lock, &zone_gc_lck_ext, &zone_gc_lck_grp, &zone_gc_lck_attr);
-
+
#if CONFIG_ZLEAKS
/*
* Initialize the zone leak monitor
*/
zleak_init(max_zonemap_size);
#endif /* CONFIG_ZLEAKS */
-}
-extern volatile SInt32 kfree_nop_count;
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) {
+ vm_allocation_zones_init();
+ }
+#endif
+
+ int jetsam_limit_temp = 0;
+ if (PE_parse_boot_argn("zone_map_jetsam_limit", &jetsam_limit_temp, sizeof(jetsam_limit_temp)) &&
+ jetsam_limit_temp > 0 && jetsam_limit_temp <= 100) {
+ zone_map_jetsam_limit = jetsam_limit_temp;
+ }
+}
#pragma mark -
#pragma mark zalloc_canblock
+extern boolean_t early_boot_complete;
+
+void
+zalloc_poison_element(boolean_t check_poison, zone_t zone, vm_offset_t addr)
+{
+ vm_offset_t inner_size = zone->elem_size;
+ if (__improbable(check_poison && addr)) {
+ vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1;
+ vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr);
+
+ for (; element_cursor < backup; element_cursor++) {
+ if (__improbable(*element_cursor != ZP_POISON)) {
+ zone_element_was_modified_panic(zone,
+ addr,
+ *element_cursor,
+ ZP_POISON,
+ ((vm_offset_t)element_cursor) - addr);
+ }
+ }
+ }
+
+ if (addr) {
+ /*
+ * Clear out the old next pointer and backup to avoid leaking the cookie
+ * and so that only values on the freelist have a valid cookie
+ */
+
+ vm_offset_t *primary = (vm_offset_t *) addr;
+ vm_offset_t *backup = get_backup_ptr(inner_size, primary);
+
+ *primary = ZP_POISON;
+ *backup = ZP_POISON;
+ }
+}
+
+/*
+ * When deleting page mappings from the kernel map, it might be necessary to split
+ * apart an existing vm_map_entry. That means that a "free" operation, will need to
+ * *allocate* new vm_map_entry structures before it can free a page.
+ *
+ * This reserve here is the number of elements which are held back from everyone except
+ * the zone_gc thread. This is done so the zone_gc thread should never have to wait for
+ * the zone replenish thread for vm_map_entry structs. If it did, it could wind up
+ * in a deadlock.
+ */
+#define VM_MAP_ENTRY_RESERVE_CNT 8
+
/*
* zalloc returns an element from the specified zone.
*/
static void *
zalloc_internal(
- zone_t zone,
+ zone_t zone,
boolean_t canblock,
- boolean_t nopagewait)
-{
- vm_offset_t addr = 0;
- kern_return_t retval;
- uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */
- int numsaved = 0;
- boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE;
-#if CONFIG_GZALLOC
- boolean_t did_gzalloc = FALSE;
+ boolean_t nopagewait,
+ vm_size_t
+#if !VM_MAX_TAG_ZONES
+ __unused
#endif
- thread_t thr = current_thread();
+ reqsize,
+ vm_tag_t tag)
+{
+ vm_offset_t addr = 0;
+ kern_return_t retval;
+ uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */
+ unsigned int numsaved = 0;
+ thread_t thr = current_thread();
boolean_t check_poison = FALSE;
boolean_t set_doing_alloc_with_vm_priv = FALSE;
#if CONFIG_ZLEAKS
- uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
+ uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
#endif /* CONFIG_ZLEAKS */
+#if KASAN
+ /*
+ * KASan uses zalloc() for fakestack, which can be called anywhere. However,
+ * we make sure these calls can never block.
+ */
+ boolean_t irq_safe = FALSE;
+ const char *fakestack_name = "fakestack.";
+ if (strncmp(zone->zone_name, fakestack_name, strlen(fakestack_name)) == 0) {
+ irq_safe = TRUE;
+ }
+#elif MACH_ASSERT
+ /* In every other case, zalloc() from interrupt context is unsafe. */
+ const boolean_t irq_safe = FALSE;
+#endif
+
assert(zone != ZONE_NULL);
+ assert(irq_safe || ml_get_interrupts_enabled() || ml_is_quiescing() || debug_mode_active() || !early_boot_complete);
-#if CONFIG_GZALLOC
+#if CONFIG_GZALLOC
addr = gzalloc_alloc(zone, canblock);
- did_gzalloc = (addr != 0);
#endif
-
/*
* If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
*/
- if (__improbable(DO_LOGGING(zone)))
- numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH);
+ if (__improbable(DO_LOGGING(zone))) {
+ numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH);
+ }
#if CONFIG_ZLEAKS
/*
*/
if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) {
/* Avoid backtracing twice if zone logging is on */
- if (numsaved == 0)
- zleak_tracedepth = backtrace(zbt, MAX_ZTRACE_DEPTH);
- else
+ if (numsaved == 0) {
+ zleak_tracedepth = backtrace(zbt, MAX_ZTRACE_DEPTH, NULL);
+ } else {
zleak_tracedepth = numsaved;
+ }
}
#endif /* CONFIG_ZLEAKS */
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ vm_tag_will_update_zone(tag, zone->tag_zone_index);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
+#if CONFIG_ZCACHE
+ if (__probable(addr == 0)) {
+ if (zone_caching_enabled(zone)) {
+ addr = zcache_alloc_from_cpu_cache(zone);
+ if (addr) {
+#if KASAN_ZALLOC
+ addr = kasan_fixup_allocated_element_address(zone, addr);
+#endif
+ if (__improbable(DO_LOGGING(zone) && addr)) {
+ btlog_add_entry(zone->zlog_btlog, (void *)addr,
+ ZOP_ALLOC, (void **)zbt, numsaved);
+ }
+ DTRACE_VM2(zalloc, zone_t, zone, void*, addr);
+ return (void *)addr;
+ }
+ }
+ }
+#endif /* CONFIG_ZCACHE */
+
lock_zone(zone);
+ assert(zone->zone_valid);
+ /*
+ * Check if we need another thread to replenish the zone.
+ * This is used for elements, like vm_map_entry, which are
+ * needed themselves to implement zalloc().
+ */
if (zone->async_prio_refill && zone->zone_replenish_thread) {
- do {
- vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size));
- vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size;
- zone_replenish_wakeup = (zfreec < zrefillwm);
- zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0);
-
- if (zone_replenish_wakeup) {
- zone_replenish_wakeups_initiated++;
- /* Signal the potentially waiting
- * refill thread.
- */
- thread_wakeup(&zone->zone_replenish_thread);
- unlock_zone(zone);
- /* Scheduling latencies etc. may prevent
- * the refill thread from keeping up
- * with demand. Throttle consumers
- * when we fall below half the
- * watermark, unless VM privileged
- */
- if (zone_alloc_throttle) {
- zone_replenish_throttle_count++;
- assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC);
- thread_block(THREAD_CONTINUE_NULL);
- }
- lock_zone(zone);
- }
- } while (zone_alloc_throttle == TRUE);
- }
-
- if (__probable(addr == 0))
- addr = try_alloc_from_zone(zone, &check_poison);
+ vm_size_t curr_free;
+ vm_size_t refill_level;
+ const vm_size_t reserved_min = VM_MAP_ENTRY_RESERVE_CNT * zone->elem_size;
+
+ for (;;) {
+ curr_free = (zone->cur_size - (zone->count * zone->elem_size));
+ refill_level = zone->prio_refill_watermark * zone->elem_size;
+
+ /*
+ * Nothing to do if there are plenty of elements.
+ */
+ if (curr_free > refill_level) {
+ break;
+ }
+
+ /*
+ * Wakeup the replenish thread.
+ */
+ zone_replenish_wakeups_initiated++;
+ thread_wakeup(&zone->zone_replenish_thread);
+
+ /*
+ * If we:
+ * - still have head room, more than half the refill amount, or
+ * - this is a VMPRIV thread and we're still above reserved, or
+ * - this is the zone garbage collection thread which may use the reserve
+ * then we don't have to wait for the replenish thread.
+ *
+ * The reserve for the garbage collection thread is to avoid a deadlock
+ * on the zone_map_lock between the replenish thread and GC thread.
+ */
+ if (curr_free > refill_level / 2 ||
+ ((thr->options & TH_OPT_VMPRIV) && curr_free > reserved_min) ||
+ (thr->options & TH_OPT_ZONE_GC)) {
+ break;
+ }
+ zone_replenish_throttle_count++;
+ unlock_zone(zone);
+ assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC);
+ thread_block(THREAD_CONTINUE_NULL);
+ lock_zone(zone);
+
+ assert(zone->zone_valid);
+ }
+ }
+
+ if (__probable(addr == 0)) {
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
+ }
+ /* If we're here because of zone_gc(), we didn't wait for zone_replenish_thread to finish.
+ * So we need to ensure that we did successfully grab an element. And we only need to assert
+ * this for zones that have a replenish thread configured (in this case, the Reserved VM map
+ * entries zone). The value of reserved_min in the previous bit of code should have given us
+ * headroom even though the GC thread didn't wait.
+ */
+ if ((thr->options & TH_OPT_ZONE_GC) && zone->async_prio_refill) {
+ assert(addr != 0);
+ }
while ((addr == 0) && canblock) {
/*
- * zone is empty, try to expand it
- *
+ * zone is empty, try to expand it
+ *
* Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged)
* to expand the zone concurrently... this is necessary to avoid stalling
* vm_privileged threads running critical code necessary to continue compressing/swapping
if ((zone->cur_size + zone->elem_size) >
zone->max_size) {
- if (zone->exhaustible)
+ if (zone->exhaustible) {
break;
+ }
if (zone->expandable) {
/*
* We're willing to overflow certain
* with the collectable flag. What we
* want is an assurance we can get the
* memory back, assuming there's no
- * leak.
+ * leak.
*/
zone->max_size += (zone->max_size >> 1);
} else {
panic_include_zprint = TRUE;
#if CONFIG_ZLEAKS
- if (zleak_state & ZLEAK_STATE_ACTIVE)
+ if (zleak_state & ZLEAK_STATE_ACTIVE) {
panic_include_ztrace = TRUE;
+ }
#endif /* CONFIG_ZLEAKS */
panic("zalloc: zone \"%s\" empty.", zone->zone_name);
}
}
- /*
+ /*
* It is possible that a BG thread is refilling/expanding the zone
* and gets pre-empted during that operation. That blocks all other
* threads from making progress leading to a watchdog timeout. To
* avoid that, boost the thread priority using the rwlock boost
*/
set_thread_rwlock_boost();
-
+
if ((thr->options & TH_OPT_VMPRIV)) {
- zone->doing_alloc_with_vm_priv = TRUE;
+ zone->doing_alloc_with_vm_priv = TRUE;
set_doing_alloc_with_vm_priv = TRUE;
} else {
- zone->doing_alloc_without_vm_priv = TRUE;
+ zone->doing_alloc_without_vm_priv = TRUE;
}
unlock_zone(zone);
for (;;) {
- int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT;
+ int zflags = KMA_KOBJECT | KMA_NOPAGEWAIT;
- if (vm_pool_low() || retry >= 1)
- alloc_size =
- round_page(zone->elem_size);
- else
+ if (vm_pool_low() || retry >= 1) {
+ alloc_size =
+ round_page(zone->elem_size);
+ } else {
alloc_size = zone->alloc_size;
-
- if (zone->noencrypt)
+ }
+
+ if (zone->noencrypt) {
zflags |= KMA_NOENCRYPT;
-
+ }
+
+ if (zone->clear_memory) {
+ zflags |= KMA_ZERO;
+ }
+
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (retval == KERN_SUCCESS) {
#if CONFIG_ZLEAKS
if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) {
if (zone_map->size >= zleak_global_tracking_threshold) {
kern_return_t kr;
-
+
kr = zleak_activate();
if (kr != KERN_SUCCESS) {
printf("Failed to activate live zone leak debugging (%d).\n", kr);
}
}
}
-
+
if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) {
if (zone->cur_size > zleak_per_zone_tracking_threshold) {
zone->zleak_on = TRUE;
- }
+ }
}
#endif /* CONFIG_ZLEAKS */
zcram(zone, space, alloc_size);
-
+
break;
} else if (retval != KERN_RESOURCE_SHORTAGE) {
retry++;
-
- if (retry == 2) {
- zone_gc();
- printf("zalloc did gc\n");
- zone_display_zprint();
- }
+
if (retry == 3) {
panic_include_zprint = TRUE;
#if CONFIG_ZLEAKS
if ((zleak_state & ZLEAK_STATE_ACTIVE)) {
panic_include_ztrace = TRUE;
}
-#endif /* CONFIG_ZLEAKS */
+#endif /* CONFIG_ZLEAKS */
if (retval == KERN_NO_SPACE) {
zone_t zone_largest = zone_find_largest();
panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)",
- zone->zone_name, zone_largest->zone_name,
- (unsigned long)zone_largest->cur_size, zone_largest->count);
-
+ zone->zone_name, zone_largest->zone_name,
+ (unsigned long)zone_largest->cur_size, zone_largest->count);
}
- panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count);
+ panic("zalloc: \"%s\" (%d elements) retry fail %d", zone->zone_name, zone->count, retval);
}
} else {
break;
}
}
lock_zone(zone);
+ assert(zone->zone_valid);
+
+ if (set_doing_alloc_with_vm_priv == TRUE) {
+ zone->doing_alloc_with_vm_priv = FALSE;
+ } else {
+ zone->doing_alloc_without_vm_priv = FALSE;
+ }
- if (set_doing_alloc_with_vm_priv == TRUE)
- zone->doing_alloc_with_vm_priv = FALSE;
- else
- zone->doing_alloc_without_vm_priv = FALSE;
-
if (zone->waiting) {
- zone->waiting = FALSE;
+ zone->waiting = FALSE;
zone_wakeup(zone);
}
clear_thread_rwlock_boost();
- addr = try_alloc_from_zone(zone, &check_poison);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
if (addr == 0 &&
retval == KERN_RESOURCE_SHORTAGE) {
- if (nopagewait == TRUE)
- break; /* out of the main while loop */
+ if (nopagewait == TRUE) {
+ break; /* out of the main while loop */
+ }
unlock_zone(zone);
VM_PAGE_WAIT();
lock_zone(zone);
+ assert(zone->zone_valid);
}
}
- if (addr == 0)
- addr = try_alloc_from_zone(zone, &check_poison);
+ if (addr == 0) {
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
+ }
}
#if CONFIG_ZLEAKS
/* Zone leak detection:
- * If we're sampling this allocation, add it to the zleaks hash table.
+ * If we're sampling this allocation, add it to the zleaks hash table.
*/
- if (addr && zleak_tracedepth > 0) {
+ if (addr && zleak_tracedepth > 0) {
/* Sampling can fail if another sample is happening at the same time in a different zone. */
if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) {
/* If it failed, roll back the counter so we sample the next allocation instead. */
zone->zleak_capture = zleak_sample_factor;
}
}
-#endif /* CONFIG_ZLEAKS */
-
-
+#endif /* CONFIG_ZLEAKS */
+
+
if ((addr == 0) && (!canblock || nopagewait) && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) {
zone->async_pending = TRUE;
unlock_zone(zone);
thread_call_enter(&call_async_alloc);
lock_zone(zone);
- addr = try_alloc_from_zone(zone, &check_poison);
+ assert(zone->zone_valid);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
}
- vm_offset_t inner_size = zone->elem_size;
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags) && addr) {
+ if (reqsize) {
+ reqsize = zone->elem_size - reqsize;
+ }
+ vm_tag_update_zone_size(tag, zone->tag_zone_index, zone->elem_size, reqsize);
+ }
+#endif /* VM_MAX_TAG_ZONES */
unlock_zone(zone);
btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved);
}
- if (__improbable(check_poison && addr)) {
- vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1;
- vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr);
-
- for ( ; element_cursor < backup ; element_cursor++)
- if (__improbable(*element_cursor != ZP_POISON))
- zone_element_was_modified_panic(zone,
- addr,
- *element_cursor,
- ZP_POISON,
- ((vm_offset_t)element_cursor) - addr);
- }
+ zalloc_poison_element(check_poison, zone, addr);
if (addr) {
- /*
- * Clear out the old next pointer and backup to avoid leaking the cookie
- * and so that only values on the freelist have a valid cookie
- */
-
- vm_offset_t *primary = (vm_offset_t *) addr;
- vm_offset_t *backup = get_backup_ptr(inner_size, primary);
-
- *primary = ZP_POISON;
- *backup = ZP_POISON;
-
#if DEBUG || DEVELOPMENT
if (__improbable(leak_scan_debug_flag && !(zone->elem_size & (sizeof(uintptr_t) - 1)))) {
- int count, idx;
+ unsigned int count, idx;
/* Fill element, from tail, with backtrace in reverse order */
- if (numsaved == 0) numsaved = backtrace(zbt, MAX_ZTRACE_DEPTH);
- count = (int) (zone->elem_size / sizeof(uintptr_t));
- if (count >= numsaved) count = numsaved - 1;
- for (idx = 0; idx < count; idx++) ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1];
+ if (numsaved == 0) {
+ numsaved = backtrace(zbt, MAX_ZTRACE_DEPTH, NULL);
+ }
+ count = (unsigned int)(zone->elem_size / sizeof(uintptr_t));
+ if (count >= numsaved) {
+ count = numsaved - 1;
+ }
+ for (idx = 0; idx < count; idx++) {
+ ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1];
+ }
}
#endif /* DEBUG || DEVELOPMENT */
}
TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr);
- return((void *)addr);
-}
+#if KASAN_ZALLOC
+ addr = kasan_fixup_allocated_element_address(zone, addr);
+#endif
+
+ DTRACE_VM2(zalloc, zone_t, zone, void*, addr);
+
+ return (void *)addr;
+}
+
void *
zalloc(zone_t zone)
{
- return (zalloc_internal(zone, TRUE, FALSE));
+ return zalloc_internal(zone, TRUE, FALSE, 0, VM_KERN_MEMORY_NONE);
}
void *
zalloc_noblock(zone_t zone)
{
- return (zalloc_internal(zone, FALSE, FALSE));
+ return zalloc_internal(zone, FALSE, FALSE, 0, VM_KERN_MEMORY_NONE);
}
void *
zalloc_nopagewait(zone_t zone)
{
- return (zalloc_internal(zone, TRUE, TRUE));
+ return zalloc_internal(zone, TRUE, TRUE, 0, VM_KERN_MEMORY_NONE);
+}
+
+void *
+zalloc_canblock_tag(zone_t zone, boolean_t canblock, vm_size_t reqsize, vm_tag_t tag)
+{
+ return zalloc_internal(zone, canblock, FALSE, reqsize, tag);
}
void *
zalloc_canblock(zone_t zone, boolean_t canblock)
{
- return (zalloc_internal(zone, canblock, FALSE));
+ return zalloc_internal(zone, canblock, FALSE, 0, VM_KERN_MEMORY_NONE);
+}
+
+void *
+zalloc_attempt(zone_t zone)
+{
+ boolean_t check_poison = FALSE;
+ vm_offset_t addr = try_alloc_from_zone(zone, VM_KERN_MEMORY_NONE, &check_poison);
+ zalloc_poison_element(check_poison, zone, addr);
+ return (void *)addr;
+}
+
+void
+zfree_direct(zone_t zone, vm_offset_t elem)
+{
+ boolean_t poison = zfree_poison_element(zone, elem);
+ free_to_zone(zone, elem, poison);
}
unsigned int max_zones, i;
void *elt = NULL;
boolean_t pending = FALSE;
-
- simple_lock(&all_zones_lock);
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
max_zones = num_zones;
simple_unlock(&all_zones_lock);
for (i = 0; i < max_zones; i++) {
current_z = &(zone_array[i]);
+
+ if (current_z->no_callout == TRUE) {
+ /* async_pending will never be set */
+ continue;
+ }
+
lock_zone(current_z);
- if (current_z->async_pending == TRUE) {
+ if (current_z->zone_valid && current_z->async_pending == TRUE) {
current_z->async_pending = FALSE;
pending = TRUE;
}
unlock_zone(current_z);
if (pending == TRUE) {
- elt = zalloc_canblock(current_z, TRUE);
+ elt = zalloc_canblock_tag(current_z, TRUE, 0, VM_KERN_MEMORY_OSFMK);
zfree(current_z, elt);
pending = FALSE;
}
*/
void *
zget(
- zone_t zone)
+ zone_t zone)
{
- return zalloc_internal(zone, FALSE, TRUE);
+ return zalloc_internal(zone, FALSE, TRUE, 0, VM_KERN_MEMORY_NONE);
}
/* Keep this FALSE by default. Large memory machine run orders of magnitude
- slower in debug mode when true. Use debugger to enable if needed */
+ * slower in debug mode when true. Use debugger to enable if needed */
/* static */ boolean_t zone_check = FALSE;
-static void zone_check_freelist(zone_t zone, vm_offset_t elem)
+static void
+zone_check_freelist(zone_t zone, vm_offset_t elem)
{
struct zone_free_element *this;
struct zone_page_metadata *thispage;
if (zone->allows_foreign) {
for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
- !queue_end(&zone->pages.any_free_foreign, &(thispage->pages));
- thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
+ !queue_end(&zone->pages.any_free_foreign, &(thispage->pages));
+ thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
for (this = page_metadata_get_freelist(thispage);
- this != NULL;
- this = this->next) {
- if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) {
panic("zone_check_freelist");
+ }
}
}
}
for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
- !queue_end(&zone->pages.all_free, &(thispage->pages));
- thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
+ !queue_end(&zone->pages.all_free, &(thispage->pages));
+ thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
for (this = page_metadata_get_freelist(thispage);
- this != NULL;
- this = this->next) {
- if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) {
panic("zone_check_freelist");
+ }
}
}
for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
- !queue_end(&zone->pages.intermediate, &(thispage->pages));
- thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
+ !queue_end(&zone->pages.intermediate, &(thispage->pages));
+ thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
for (this = page_metadata_get_freelist(thispage);
- this != NULL;
- this = this->next) {
- if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem) {
panic("zone_check_freelist");
+ }
}
}
}
-void
-zfree(
- zone_t zone,
- void *addr)
-{
- vm_offset_t elem = (vm_offset_t) addr;
- uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */
- int numsaved = 0;
- boolean_t gzfreed = FALSE;
+boolean_t
+zfree_poison_element(zone_t zone, vm_offset_t elem)
+{
boolean_t poison = FALSE;
+ if (zp_factor != 0 || zp_tiny_zone_limit != 0) {
+ /*
+ * Poison the memory before it ends up on the freelist to catch
+ * use-after-free and use of uninitialized memory
+ *
+ * Always poison tiny zones' elements (limit is 0 if -no-zp is set)
+ * Also poison larger elements periodically
+ */
- assert(zone != ZONE_NULL);
+ vm_offset_t inner_size = zone->elem_size;
- /*
- * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
- */
+ uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale);
- if (__improbable(DO_LOGGING(zone) && corruption_debug_flag))
- numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH);
+ if (inner_size <= zp_tiny_zone_limit) {
+ poison = TRUE;
+ } else if (zp_factor != 0 && sample_counter(&zone->zp_count, sample_factor) == TRUE) {
+ poison = TRUE;
+ }
-#if MACH_ASSERT
- /* Basic sanity checks */
- if (zone == ZONE_NULL || elem == (vm_offset_t)0)
+ if (__improbable(poison)) {
+ /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */
+ /* Poison everything but primary and backup */
+ vm_offset_t *element_cursor = ((vm_offset_t *) elem) + 1;
+ vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *)elem);
+
+ for (; element_cursor < backup; element_cursor++) {
+ *element_cursor = ZP_POISON;
+ }
+ }
+ }
+ return poison;
+}
+void
+(zfree)(
+ zone_t zone,
+ void *addr)
+{
+ vm_offset_t elem = (vm_offset_t) addr;
+ uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */
+ unsigned int numsaved = 0;
+ boolean_t gzfreed = FALSE;
+ boolean_t poison = FALSE;
+#if VM_MAX_TAG_ZONES
+ vm_tag_t tag;
+#endif /* VM_MAX_TAG_ZONES */
+
+ assert(zone != ZONE_NULL);
+ DTRACE_VM2(zfree, zone_t, zone, void*, addr);
+#if KASAN_ZALLOC
+ if (kasan_quarantine_freed_element(&zone, &addr)) {
+ return;
+ }
+ elem = (vm_offset_t)addr;
+#endif
+
+ /*
+ * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
+ */
+
+ if (__improbable(DO_LOGGING(zone) && corruption_debug_flag)) {
+ numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH);
+ }
+
+#if MACH_ASSERT
+ /* Basic sanity checks */
+ if (zone == ZONE_NULL || elem == (vm_offset_t)0) {
panic("zfree: NULL");
+ }
#endif
-#if CONFIG_GZALLOC
+#if CONFIG_GZALLOC
gzfreed = gzalloc_free(zone, addr);
#endif
TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr);
if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign &&
- !from_zone_map(elem, zone->elem_size))) {
+ !from_zone_map(elem, zone->elem_size))) {
panic("zfree: non-allocated memory in collectable zone!");
}
- if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) {
- /*
- * Poison the memory before it ends up on the freelist to catch
- * use-after-free and use of uninitialized memory
- *
- * Always poison tiny zones' elements (limit is 0 if -no-zp is set)
- * Also poison larger elements periodically
- */
-
- vm_offset_t inner_size = zone->elem_size;
-
- uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale);
-
- if (inner_size <= zp_tiny_zone_limit)
- poison = TRUE;
- else if (zp_factor != 0 && sample_counter(&zone->zp_count, sample_factor) == TRUE)
- poison = TRUE;
-
- if (__improbable(poison)) {
-
- /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */
- /* Poison everything but primary and backup */
- vm_offset_t *element_cursor = ((vm_offset_t *) elem) + 1;
- vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *)elem);
-
- for ( ; element_cursor < backup; element_cursor++)
- *element_cursor = ZP_POISON;
- }
+ if (!gzfreed) {
+ poison = zfree_poison_element(zone, elem);
}
/*
}
}
+#if CONFIG_ZCACHE
+ if (zone_caching_enabled(zone)) {
+ int __assert_only ret = zcache_free_to_cpu_cache(zone, addr);
+ assert(ret != FALSE);
+ return;
+ }
+#endif /* CONFIG_ZCACHE */
+
lock_zone(zone);
+ assert(zone->zone_valid);
if (zone_check) {
zone_check_freelist(zone, elem);
}
- if (__probable(!gzfreed))
+ if (__probable(!gzfreed)) {
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ tag = (ZTAG(zone, elem)[0] >> 1);
+ // set the tag with b0 clear so the block remains inuse
+ ZTAG(zone, elem)[0] = 0xFFFE;
+ }
+#endif /* VM_MAX_TAG_ZONES */
free_to_zone(zone, elem, poison);
+ }
-#if MACH_ASSERT
- if (zone->count < 0)
+ if (__improbable(zone->count < 0)) {
panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone",
- zone->zone_name, addr);
-#endif
-
+ zone->zone_name, addr);
+ }
#if CONFIG_ZLEAKS
/*
- * Zone leak detection: un-track the allocation
+ * Zone leak detection: un-track the allocation
*/
if (zone->zleak_on) {
zleak_free(elem, zone->elem_size);
}
#endif /* CONFIG_ZLEAKS */
-
+
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags) && __probable(!gzfreed)) {
+ vm_tag_update_zone_size(tag, zone->tag_zone_index, -((int64_t)zone->elem_size), 0);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
unlock_zone(zone);
}
-
/* Change a zone's flags.
* This routine must be called immediately after zinit.
*/
void
zone_change(
- zone_t zone,
- unsigned int item,
- boolean_t value)
+ zone_t zone,
+ unsigned int item,
+ boolean_t value)
{
assert( zone != ZONE_NULL );
assert( value == TRUE || value == FALSE );
- switch(item){
- case Z_NOENCRYPT:
- zone->noencrypt = value;
- break;
- case Z_EXHAUST:
- zone->exhaustible = value;
- break;
- case Z_COLLECT:
- zone->collectable = value;
- break;
- case Z_EXPAND:
- zone->expandable = value;
- break;
- case Z_FOREIGN:
- zone->allows_foreign = value;
- break;
- case Z_CALLERACCT:
- zone->caller_acct = value;
- break;
- case Z_NOCALLOUT:
- zone->no_callout = value;
- break;
- case Z_GZALLOC_EXEMPT:
- zone->gzalloc_exempt = value;
-#if CONFIG_GZALLOC
- gzalloc_reconfigure(zone);
+ switch (item) {
+ case Z_NOENCRYPT:
+ zone->noencrypt = value;
+ break;
+ case Z_EXHAUST:
+ zone->exhaustible = value;
+ break;
+ case Z_COLLECT:
+ zone->collectable = value;
+ break;
+ case Z_EXPAND:
+ zone->expandable = value;
+ break;
+ case Z_FOREIGN:
+ zone->allows_foreign = value;
+ break;
+ case Z_CALLERACCT:
+ zone->caller_acct = value;
+ break;
+ case Z_NOCALLOUT:
+ zone->no_callout = value;
+ break;
+ case Z_TAGS_ENABLED:
+#if VM_MAX_TAG_ZONES
+ {
+ static int tag_zone_index;
+ zone->tags = TRUE;
+ zone->tags_inline = (((page_size + zone->elem_size - 1) / zone->elem_size) <= (sizeof(uint32_t) / sizeof(uint16_t)));
+ zone->tag_zone_index = OSAddAtomic(1, &tag_zone_index);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ break;
+ case Z_GZALLOC_EXEMPT:
+ zone->gzalloc_exempt = value;
+#if CONFIG_GZALLOC
+ gzalloc_reconfigure(zone);
#endif
- break;
- case Z_ALIGNMENT_REQUIRED:
- zone->alignment_required = value;
-#if CONFIG_GZALLOC
- gzalloc_reconfigure(zone);
+ break;
+ case Z_ALIGNMENT_REQUIRED:
+ zone->alignment_required = value;
+#if KASAN_ZALLOC
+ if (zone->kasan_redzone == KASAN_GUARD_SIZE) {
+ /* Don't disturb alignment with the redzone for zones with
+ * specific alignment requirements. */
+ zone->elem_size -= zone->kasan_redzone * 2;
+ zone->kasan_redzone = 0;
+ }
#endif
- break;
- default:
- panic("Zone_change: Wrong Item Type!");
- /* break; */
+#if CONFIG_GZALLOC
+ gzalloc_reconfigure(zone);
+#endif
+ break;
+ case Z_KASAN_QUARANTINE:
+ zone->kasan_quarantine = value;
+ break;
+ case Z_CACHING_ENABLED:
+#if CONFIG_ZCACHE
+ if (value == TRUE) {
+#if CONFIG_GZALLOC
+ /*
+ * Per cpu zone caching should be
+ * disabled if gzalloc is enabled.
+ */
+ if (gzalloc_enabled()) {
+ break;
+ }
+#endif
+ if (zcache_ready()) {
+ zcache_init(zone);
+ } else {
+ zone->cpu_cache_enable_when_ready = TRUE;
+ }
+ }
+#endif
+ break;
+ case Z_CLEARMEMORY:
+ zone->clear_memory = value;
+ break;
+ default:
+ panic("Zone_change: Wrong Item Type!");
+ /* break; */
}
}
assert(free_count >= 0);
- return(free_count);
+ return free_count;
+}
+
+/*
+ * Drops (i.e. frees) the elements in the all free pages queue of a zone.
+ * Called by zone_gc() on each zone and when a zone is zdestroy()ed.
+ */
+void
+drop_free_elements(zone_t z)
+{
+ vm_size_t elt_size;
+ unsigned int total_freed_pages = 0;
+ struct zone_page_metadata *page_meta;
+ vm_address_t free_page_address;
+ vm_size_t size_to_free;
+
+ lock_zone(z);
+
+ elt_size = z->elem_size;
+
+ while (!queue_empty(&z->pages.all_free)) {
+ page_meta = (struct zone_page_metadata *)queue_first(&z->pages.all_free);
+ assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
+ /*
+ * Don't drain zones with async refill to below the refill threshold,
+ * as they need some reserve to function properly.
+ */
+ if (!z->zone_destruction &&
+ z->async_prio_refill && z->zone_replenish_thread &&
+ (vm_size_t)(page_meta->free_count - z->countfree) < z->prio_refill_watermark) {
+ break;
+ }
+
+ (void)dequeue_head(&z->pages.all_free);
+
+ assert(z->countfree >= page_meta->free_count);
+ z->countfree -= page_meta->free_count;
+
+ assert(z->count_all_free_pages >= page_meta->page_count);
+ z->count_all_free_pages -= page_meta->page_count;
+
+ assert(z->cur_size >= page_meta->free_count * elt_size);
+ z->cur_size -= page_meta->free_count * elt_size;
+
+ ZONE_PAGE_COUNT_DECR(z, page_meta->page_count);
+ unlock_zone(z);
+
+ /* Free the pages for metadata and account for them */
+ free_page_address = get_zone_page(page_meta);
+ total_freed_pages += page_meta->page_count;
+ size_to_free = page_meta->page_count * PAGE_SIZE;
+#if KASAN_ZALLOC
+ kasan_poison_range(free_page_address, size_to_free, ASAN_VALID);
+#endif
+#if VM_MAX_TAG_ZONES
+ if (z->tags) {
+ ztMemoryRemove(z, free_page_address, size_to_free);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ kmem_free(zone_map, free_page_address, size_to_free);
+ if (current_thread()->options & TH_OPT_ZONE_GC) {
+ thread_yield_to_preemption();
+ }
+ lock_zone(z);
+ }
+ if (z->zone_destruction) {
+ assert(queue_empty(&z->pages.all_free));
+ assert(z->count_all_free_pages == 0);
+ }
+ unlock_zone(z);
+
+
+#if DEBUG || DEVELOPMENT
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) {
+ kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name,
+ (unsigned long)((total_freed_pages * PAGE_SIZE) / elt_size), total_freed_pages);
+ }
+#endif /* DEBUG || DEVELOPMENT */
}
/* Zone garbage collection
* zones that are marked collectable looking for reclaimable
* pages. zone_gc is called by consider_zone_gc when the system
* begins to run out of memory.
+ *
+ * We should ensure that zone_gc never blocks.
*/
-extern zone_t vm_map_entry_reserved_zone;
-uint64_t zone_gc_bailed = 0;
-
void
-zone_gc(void)
+zone_gc(boolean_t consider_jetsams)
{
- unsigned int max_zones;
- zone_t z;
- unsigned int i;
- zone_t zres = vm_map_entry_reserved_zone;
+ unsigned int max_zones;
+ zone_t z;
+ unsigned int i;
+
+ if (consider_jetsams) {
+ kill_process_in_largest_zone();
+ /*
+ * If we do end up jetsamming something, we need to do a zone_gc so that
+ * we can reclaim free zone elements and update the zone map size.
+ * Fall through.
+ */
+ }
lck_mtx_lock(&zone_gc_lock);
- simple_lock(&all_zones_lock);
+ current_thread()->options |= TH_OPT_ZONE_GC;
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
max_zones = num_zones;
simple_unlock(&all_zones_lock);
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
+#if DEBUG || DEVELOPMENT
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC) {
kprintf("zone_gc() starting...\n");
+ }
+#endif /* DEBUG || DEVELOPMENT */
for (i = 0; i < max_zones; i++) {
z = &(zone_array[i]);
- vm_size_t elt_size, size_freed;
- int total_freed_pages = 0;
- struct zone_page_metadata *page_meta;
- queue_head_t page_meta_head;
-
assert(z != ZONE_NULL);
- if (!z->collectable)
- continue;
-
- if (queue_empty(&z->pages.all_free)) {
+ if (!z->collectable) {
continue;
}
-
- /*
- * Since kmem_free() might use VM entries from the reserved VM entries zone, we should bail from zone_gc() if we
- * are below the critical threshold for that zone. Otherwise, there could be a deadlock between the zone_gc
- * thread and the zone_replenish thread for the VM entries zone on the zone_map lock.
- */
- if (zres->zone_replenishing) {
- zone_gc_bailed++;
- break;
+#if CONFIG_ZCACHE
+ if (zone_caching_enabled(z)) {
+ zcache_drain_depot(z);
}
-
- lock_zone(z);
- elt_size = z->elem_size;
-
+#endif /* CONFIG_ZCACHE */
if (queue_empty(&z->pages.all_free)) {
- unlock_zone(z);
continue;
}
- /*
- * Snatch all of the free elements away from the zone.
- */
- uint64_t old_all_free_count = z->count_all_free_pages;
- queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages);
- queue_init(&z->pages.all_free);
- z->count_all_free_pages = 0;
- unlock_zone(z);
-
- /* Iterate through all elements to find out size and count of elements we snatched */
- size_freed = 0;
- queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) {
- assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
- size_freed += elt_size * page_meta->free_count;
- }
-
- /* Update the zone size and free element count */
- lock_zone(z);
- z->cur_size -= size_freed;
- z->countfree -= size_freed/elt_size;
- unlock_zone(z);
-
- while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) {
- vm_address_t free_page_address;
- if (zres->zone_replenishing)
- break;
- /* Free the pages for metadata and account for them */
- free_page_address = get_zone_page(page_meta);
- ZONE_PAGE_COUNT_DECR(z, page_meta->page_count);
- total_freed_pages += page_meta->page_count;
- old_all_free_count -= page_meta->page_count;
- size_freed -= (elt_size * page_meta->free_count);
- kmem_free(zone_map, free_page_address, (page_meta->page_count * PAGE_SIZE));
- thread_yield_to_preemption();
- }
- if (page_meta != NULL) {
- /*
- * We bailed because the VM entry reserved zone is replenishing. Put the remaining
- * metadata objects back on the all_free list and bail.
- */
- queue_entry_t qe;
- enqueue_head(&page_meta_head, &(page_meta->pages));
- zone_gc_bailed++;
-
- lock_zone(z);
- qe_foreach_safe(qe, &page_meta_head) {
- re_queue_tail(&z->pages.all_free, qe);
- }
- z->count_all_free_pages += (int)old_all_free_count;
- z->cur_size += size_freed;
- z->countfree += size_freed/elt_size;
- unlock_zone(z);
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc() bailed due to VM entry zone replenishing (zone_gc_bailed: %lld)\n", zone_gc_bailed);
- break;
- }
-
- /* We freed all the pages from the all_free list for this zone */
- assert(old_all_free_count == 0);
-
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
+ drop_free_elements(z);
}
+ current_thread()->options &= ~TH_OPT_ZONE_GC;
+
lck_mtx_unlock(&zone_gc_lock);
}
*/
void
-consider_zone_gc(void)
+consider_zone_gc(boolean_t consider_jetsams)
{
if (kmapoff_kaddr != 0) {
/*
kmapoff_kaddr = 0;
}
- if (zone_gc_allowed)
- zone_gc();
+ if (zone_gc_allowed) {
+ zone_gc(consider_jetsams);
+ }
+}
+
+/*
+ * Creates a vm_map_copy_t to return to the caller of mach_* MIG calls
+ * requesting zone information.
+ * Frees unused pages towards the end of the region, and zero'es out unused
+ * space on the last page.
+ */
+vm_map_copy_t
+create_vm_map_copy(
+ vm_offset_t start_addr,
+ vm_size_t total_size,
+ vm_size_t used_size)
+{
+ kern_return_t kr;
+ vm_offset_t end_addr;
+ vm_size_t free_size;
+ vm_map_copy_t copy;
+
+ if (used_size != total_size) {
+ end_addr = start_addr + used_size;
+ free_size = total_size - (round_page(end_addr) - start_addr);
+
+ if (free_size >= PAGE_SIZE) {
+ kmem_free(ipc_kernel_map,
+ round_page(end_addr), free_size);
+ }
+ bzero((char *) end_addr, round_page(end_addr) - end_addr);
+ }
+
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)start_addr,
+ (vm_map_size_t)used_size, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
+
+ return copy;
+}
+
+boolean_t
+get_zone_info(
+ zone_t z,
+ mach_zone_name_t *zn,
+ mach_zone_info_t *zi)
+{
+ struct zone zcopy;
+
+ assert(z != ZONE_NULL);
+ lock_zone(z);
+ if (!z->zone_valid) {
+ unlock_zone(z);
+ return FALSE;
+ }
+ zcopy = *z;
+ unlock_zone(z);
+
+ if (zn != NULL) {
+ /* assuming here the name data is static */
+ (void) __nosan_strlcpy(zn->mzn_name, zcopy.zone_name,
+ strlen(zcopy.zone_name) + 1);
+ }
+
+ if (zi != NULL) {
+ zi->mzi_count = (uint64_t)zcopy.count;
+ zi->mzi_cur_size = ptoa_64(zcopy.page_count);
+ zi->mzi_max_size = (uint64_t)zcopy.max_size;
+ zi->mzi_elem_size = (uint64_t)zcopy.elem_size;
+ zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size;
+ zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size;
+ zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible;
+ zi->mzi_collectable = 0;
+ if (zcopy.collectable) {
+ SET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable, ((uint64_t)zcopy.count_all_free_pages * PAGE_SIZE));
+ SET_MZI_COLLECTABLE_FLAG(zi->mzi_collectable, TRUE);
+ }
+ }
+
+ return TRUE;
}
kern_return_t
task_zone_info(
- __unused task_t task,
- __unused mach_zone_name_array_t *namesp,
+ __unused task_t task,
+ __unused mach_zone_name_array_t *namesp,
__unused mach_msg_type_number_t *namesCntp,
- __unused task_zone_info_array_t *infop,
+ __unused task_zone_info_array_t *infop,
__unused mach_msg_type_number_t *infoCntp)
{
return KERN_FAILURE;
kern_return_t
mach_zone_info(
- host_priv_t host,
- mach_zone_name_array_t *namesp,
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
mach_msg_type_number_t *namesCntp,
- mach_zone_info_array_t *infop,
+ mach_zone_info_array_t *infop,
mach_msg_type_number_t *infoCntp)
{
- return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL));
+ return mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL);
}
-kern_return_t
-host_zone_info(
- host_priv_t host,
- zone_name_array_t *namesp,
- mach_msg_type_number_t *namesCntp,
- zone_info_array_t *infop,
- mach_msg_type_number_t *infoCntp)
-{
- return (mach_memory_info(host, (mach_zone_name_array_t *)namesp, namesCntp, (mach_zone_info_array_t *)infop, infoCntp, NULL, NULL));
-}
-
kern_return_t
mach_memory_info(
- host_priv_t host,
- mach_zone_name_array_t *namesp,
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
mach_msg_type_number_t *namesCntp,
- mach_zone_info_array_t *infop,
+ mach_zone_info_array_t *infop,
mach_msg_type_number_t *infoCntp,
mach_memory_info_array_t *memoryInfop,
mach_msg_type_number_t *memoryInfoCntp)
{
- mach_zone_name_t *names;
- vm_offset_t names_addr;
- vm_size_t names_size;
-
- mach_zone_info_t *info;
- vm_offset_t info_addr;
- vm_size_t info_size;
-
- mach_memory_info_t *memory_info;
- vm_offset_t memory_info_addr;
- vm_size_t memory_info_size;
- vm_size_t memory_info_vmsize;
- unsigned int num_sites;
-
- unsigned int max_zones, i;
- zone_t z;
- mach_zone_name_t *zn;
- mach_zone_info_t *zi;
- kern_return_t kr;
-
- vm_size_t used;
- vm_map_copy_t copy;
- uint64_t zones_collectable_bytes = 0;
-
- if (host == HOST_NULL)
+ mach_zone_name_t *names;
+ vm_offset_t names_addr;
+ vm_size_t names_size;
+
+ mach_zone_info_t *info;
+ vm_offset_t info_addr;
+ vm_size_t info_size;
+
+ mach_memory_info_t *memory_info;
+ vm_offset_t memory_info_addr;
+ vm_size_t memory_info_size;
+ vm_size_t memory_info_vmsize;
+ unsigned int num_info;
+
+ unsigned int max_zones, used_zones, i;
+ mach_zone_name_t *zn;
+ mach_zone_info_t *zi;
+ kern_return_t kr;
+
+ uint64_t zones_collectable_bytes = 0;
+
+ if (host == HOST_NULL) {
return KERN_INVALID_HOST;
+ }
#if CONFIG_DEBUGGER_FOR_ZONE_INFO
- if (!PE_i_can_has_debugger(NULL))
+ if (!PE_i_can_has_debugger(NULL)) {
return KERN_INVALID_HOST;
+ }
#endif
/*
* We won't pick up any zones that are allocated later.
*/
- simple_lock(&all_zones_lock);
+ simple_lock(&all_zones_lock, &zone_locks_grp);
max_zones = (unsigned int)(num_zones);
simple_unlock(&all_zones_lock);
names_size = round_page(max_zones * sizeof *names);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size, VM_KERN_MEMORY_IPC);
- if (kr != KERN_SUCCESS)
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
return kr;
+ }
names = (mach_zone_name_t *) names_addr;
info_size = round_page(max_zones * sizeof *info);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size, VM_KERN_MEMORY_IPC);
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS) {
kmem_free(ipc_kernel_map,
- names_addr, names_size);
+ names_addr, names_size);
return kr;
}
info = (mach_zone_info_t *) info_addr;
zn = &names[0];
zi = &info[0];
+ used_zones = max_zones;
for (i = 0; i < max_zones; i++) {
- struct zone zcopy;
- z = &(zone_array[i]);
- assert(z != ZONE_NULL);
-
- lock_zone(z);
- zcopy = *z;
- unlock_zone(z);
-
- /* assuming here the name data is static */
- (void) strncpy(zn->mzn_name, zcopy.zone_name,
- sizeof zn->mzn_name);
- zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
-
- zi->mzi_count = (uint64_t)zcopy.count;
- zi->mzi_cur_size = ptoa_64(zcopy.page_count);
- zi->mzi_max_size = (uint64_t)zcopy.max_size;
- zi->mzi_elem_size = (uint64_t)zcopy.elem_size;
- zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size;
- zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size;
- zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible;
- zi->mzi_collectable = (uint64_t)zcopy.collectable;
- zones_collectable_bytes += ((uint64_t)zcopy.count_all_free_pages * PAGE_SIZE);
+ if (!get_zone_info(&(zone_array[i]), zn, zi)) {
+ used_zones--;
+ continue;
+ }
+ zones_collectable_bytes += GET_MZI_COLLECTABLE_BYTES(zi->mzi_collectable);
zn++;
zi++;
}
- used = max_zones * sizeof *names;
- if (used != names_size)
- bzero((char *) (names_addr + used), names_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)used, TRUE, ©);
- assert(kr == KERN_SUCCESS);
-
- *namesp = (mach_zone_name_t *) copy;
- *namesCntp = max_zones;
+ *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, used_zones * sizeof *names);
+ *namesCntp = used_zones;
- used = max_zones * sizeof *info;
+ *infop = (mach_zone_info_t *) create_vm_map_copy(info_addr, info_size, used_zones * sizeof *info);
+ *infoCntp = used_zones;
- if (used != info_size)
- bzero((char *) (info_addr + used), info_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)used, TRUE, ©);
- assert(kr == KERN_SUCCESS);
-
- *infop = (mach_zone_info_t *) copy;
- *infoCntp = max_zones;
-
- num_sites = 0;
+ num_info = 0;
memory_info_addr = 0;
- if (memoryInfop && memoryInfoCntp)
- {
- num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
- memory_info_size = num_sites * sizeof(*info);
+ if (memoryInfop && memoryInfoCntp) {
+ vm_map_copy_t copy;
+ num_info = vm_page_diagnose_estimate();
+ memory_info_size = num_info * sizeof(*memory_info);
memory_info_vmsize = round_page(memory_info_size);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
+ &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS) {
- kmem_free(ipc_kernel_map,
- names_addr, names_size);
- kmem_free(ipc_kernel_map,
- info_addr, info_size);
return kr;
}
- kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
- VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE);
+ kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
+ VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE);
assert(kr == KERN_SUCCESS);
memory_info = (mach_memory_info_t *) memory_info_addr;
- vm_page_diagnose(memory_info, num_sites, zones_collectable_bytes);
+ vm_page_diagnose(memory_info, num_info, zones_collectable_bytes);
kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE);
assert(kr == KERN_SUCCESS);
-
+
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr,
- (vm_map_size_t)memory_info_size, TRUE, ©);
+ (vm_map_size_t)memory_info_size, TRUE, ©);
assert(kr == KERN_SUCCESS);
*memoryInfop = (mach_memory_info_t *) copy;
- *memoryInfoCntp = num_sites;
+ *memoryInfoCntp = num_info;
}
return KERN_SUCCESS;
}
kern_return_t
-mach_zone_force_gc(
- host_t host)
+mach_zone_info_for_zone(
+ host_priv_t host,
+ mach_zone_name_t name,
+ mach_zone_info_t *infop)
{
+ unsigned int max_zones, i;
+ zone_t zone_ptr;
- if (host == HOST_NULL)
+ if (host == HOST_NULL) {
+ return KERN_INVALID_HOST;
+ }
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+ if (!PE_i_can_has_debugger(NULL)) {
return KERN_INVALID_HOST;
+ }
+#endif
- consider_zone_gc();
+ if (infop == NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- return (KERN_SUCCESS);
-}
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+ max_zones = (unsigned int)(num_zones);
+ simple_unlock(&all_zones_lock);
-extern unsigned int stack_total;
-extern unsigned long long stack_allocs;
+ zone_ptr = ZONE_NULL;
+ for (i = 0; i < max_zones; i++) {
+ zone_t z = &(zone_array[i]);
+ assert(z != ZONE_NULL);
-#if defined(__i386__) || defined (__x86_64__)
-extern unsigned int inuse_ptepages_count;
-extern long long alloc_ptepages_count;
+ /* Find the requested zone by name */
+ if (track_this_zone(z->zone_name, name.mzn_name)) {
+ zone_ptr = z;
+ break;
+ }
+ }
+
+ /* No zones found with the requested zone name */
+ if (zone_ptr == ZONE_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ if (get_zone_info(zone_ptr, NULL, infop)) {
+ return KERN_SUCCESS;
+ }
+ return KERN_FAILURE;
+}
+
+kern_return_t
+mach_zone_info_for_largest_zone(
+ host_priv_t host,
+ mach_zone_name_t *namep,
+ mach_zone_info_t *infop)
+{
+ if (host == HOST_NULL) {
+ return KERN_INVALID_HOST;
+ }
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+ if (!PE_i_can_has_debugger(NULL)) {
+ return KERN_INVALID_HOST;
+ }
#endif
-void zone_display_zprint()
+ if (namep == NULL || infop == NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ if (get_zone_info(zone_find_largest(), namep, infop)) {
+ return KERN_SUCCESS;
+ }
+ return KERN_FAILURE;
+}
+
+uint64_t
+get_zones_collectable_bytes(void)
{
- unsigned int i;
- zone_t the_zone;
+ unsigned int i, max_zones;
+ uint64_t zones_collectable_bytes = 0;
+ mach_zone_info_t zi;
- for (i = 0; i < num_zones; i++) {
- the_zone = &(zone_array[i]);
- if(the_zone->cur_size > (1024*1024)) {
- printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size);
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+ max_zones = (unsigned int)(num_zones);
+ simple_unlock(&all_zones_lock);
+
+ for (i = 0; i < max_zones; i++) {
+ if (get_zone_info(&(zone_array[i]), NULL, &zi)) {
+ zones_collectable_bytes += GET_MZI_COLLECTABLE_BYTES(zi.mzi_collectable);
}
}
- printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total));
-#if defined(__i386__) || defined (__x86_64__)
- printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count));
-#endif
+ return zones_collectable_bytes;
+}
- printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total);
+kern_return_t
+mach_zone_get_zlog_zones(
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp)
+{
+#if DEBUG || DEVELOPMENT
+ unsigned int max_zones, logged_zones, i;
+ kern_return_t kr;
+ zone_t zone_ptr;
+ mach_zone_name_t *names;
+ vm_offset_t names_addr;
+ vm_size_t names_size;
+
+ if (host == HOST_NULL) {
+ return KERN_INVALID_HOST;
+ }
+
+ if (namesp == NULL || namesCntp == NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+ max_zones = (unsigned int)(num_zones);
+ simple_unlock(&all_zones_lock);
+
+ names_size = round_page(max_zones * sizeof *names);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ return kr;
+ }
+ names = (mach_zone_name_t *) names_addr;
+
+ zone_ptr = ZONE_NULL;
+ logged_zones = 0;
+ for (i = 0; i < max_zones; i++) {
+ zone_t z = &(zone_array[i]);
+ assert(z != ZONE_NULL);
+
+ /* Copy out the zone name if zone logging is enabled */
+ if (z->zlog_btlog) {
+ get_zone_info(z, &names[logged_zones], NULL);
+ logged_zones++;
+ }
+ }
+
+ *namesp = (mach_zone_name_t *) create_vm_map_copy(names_addr, names_size, logged_zones * sizeof *names);
+ *namesCntp = logged_zones;
+
+ return KERN_SUCCESS;
+
+#else /* DEBUG || DEVELOPMENT */
+#pragma unused(host, namesp, namesCntp)
+ return KERN_FAILURE;
+#endif /* DEBUG || DEVELOPMENT */
+}
+
+kern_return_t
+mach_zone_get_btlog_records(
+ host_priv_t host,
+ mach_zone_name_t name,
+ zone_btrecord_array_t *recsp,
+ mach_msg_type_number_t *recsCntp)
+{
+#if DEBUG || DEVELOPMENT
+ unsigned int max_zones, i, numrecs = 0;
+ zone_btrecord_t *recs;
+ kern_return_t kr;
+ zone_t zone_ptr;
+ vm_offset_t recs_addr;
+ vm_size_t recs_size;
+
+ if (host == HOST_NULL) {
+ return KERN_INVALID_HOST;
+ }
+
+ if (recsp == NULL || recsCntp == NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+ max_zones = (unsigned int)(num_zones);
+ simple_unlock(&all_zones_lock);
+
+ zone_ptr = ZONE_NULL;
+ for (i = 0; i < max_zones; i++) {
+ zone_t z = &(zone_array[i]);
+ assert(z != ZONE_NULL);
+
+ /* Find the requested zone by name */
+ if (track_this_zone(z->zone_name, name.mzn_name)) {
+ zone_ptr = z;
+ break;
+ }
+ }
+
+ /* No zones found with the requested zone name */
+ if (zone_ptr == ZONE_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ /* Logging not turned on for the requested zone */
+ if (!DO_LOGGING(zone_ptr)) {
+ return KERN_FAILURE;
+ }
+
+ /* Allocate memory for btlog records */
+ numrecs = (unsigned int)(get_btlog_records_count(zone_ptr->zlog_btlog));
+ recs_size = round_page(numrecs * sizeof *recs);
+
+ kr = kmem_alloc_pageable(ipc_kernel_map, &recs_addr, recs_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ return kr;
+ }
+
+ /*
+ * We will call get_btlog_records() below which populates this region while holding a spinlock
+ * (the btlog lock). So these pages need to be wired.
+ */
+ kr = vm_map_wire_kernel(ipc_kernel_map, recs_addr, recs_addr + recs_size,
+ VM_PROT_READ | VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE);
+ assert(kr == KERN_SUCCESS);
+
+ recs = (zone_btrecord_t *)recs_addr;
+ get_btlog_records(zone_ptr->zlog_btlog, recs, &numrecs);
+
+ kr = vm_map_unwire(ipc_kernel_map, recs_addr, recs_addr + recs_size, FALSE);
+ assert(kr == KERN_SUCCESS);
+
+ *recsp = (zone_btrecord_t *) create_vm_map_copy(recs_addr, recs_size, numrecs * sizeof *recs);
+ *recsCntp = numrecs;
+
+ return KERN_SUCCESS;
+
+#else /* DEBUG || DEVELOPMENT */
+#pragma unused(host, name, recsp, recsCntp)
+ return KERN_FAILURE;
+#endif /* DEBUG || DEVELOPMENT */
}
+
+#if DEBUG || DEVELOPMENT
+
+kern_return_t
+mach_memory_info_check(void)
+{
+ mach_memory_info_t * memory_info;
+ mach_memory_info_t * info;
+ zone_t zone;
+ unsigned int idx, num_info, max_zones;
+ vm_offset_t memory_info_addr;
+ kern_return_t kr;
+ size_t memory_info_size, memory_info_vmsize;
+ uint64_t top_wired, zonestotal, total;
+
+ num_info = vm_page_diagnose_estimate();
+ memory_info_size = num_info * sizeof(*memory_info);
+ memory_info_vmsize = round_page(memory_info_size);
+ kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG);
+ assert(kr == KERN_SUCCESS);
+
+ memory_info = (mach_memory_info_t *) memory_info_addr;
+ vm_page_diagnose(memory_info, num_info, 0);
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+
+ top_wired = total = zonestotal = 0;
+ for (idx = 0; idx < max_zones; idx++) {
+ zone = &(zone_array[idx]);
+ assert(zone != ZONE_NULL);
+ lock_zone(zone);
+ zonestotal += ptoa_64(zone->page_count);
+ unlock_zone(zone);
+ }
+ for (idx = 0; idx < num_info; idx++) {
+ info = &memory_info[idx];
+ if (!info->size) {
+ continue;
+ }
+ if (VM_KERN_COUNT_WIRED == info->site) {
+ top_wired = info->size;
+ }
+ if (VM_KERN_SITE_HIDE & info->flags) {
+ continue;
+ }
+ if (!(VM_KERN_SITE_WIRED & info->flags)) {
+ continue;
+ }
+ total += info->size;
+ }
+ total += zonestotal;
+
+ printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", total, top_wired, zonestotal, top_wired - total);
+
+ kmem_free(kernel_map, memory_info_addr, memory_info_vmsize);
+
+ return kr;
+}
+
+extern boolean_t(*volatile consider_buffer_cache_collect)(int);
+
+#endif /* DEBUG || DEVELOPMENT */
+
+kern_return_t
+mach_zone_force_gc(
+ host_t host)
+{
+ if (host == HOST_NULL) {
+ return KERN_INVALID_HOST;
+ }
+
+#if DEBUG || DEVELOPMENT
+ /* Callout to buffer cache GC to drop elements in the apfs zones */
+ if (consider_buffer_cache_collect != NULL) {
+ (void)(*consider_buffer_cache_collect)(0);
+ }
+ consider_zone_gc(FALSE);
+#endif /* DEBUG || DEVELOPMENT */
+ return KERN_SUCCESS;
+}
+
+extern unsigned int stack_total;
+extern unsigned long long stack_allocs;
+
zone_t
zone_find_largest(void)
{
unsigned int i;
unsigned int max_zones;
- zone_t the_zone;
+ zone_t the_zone;
zone_t zone_largest;
- simple_lock(&all_zones_lock);
+ simple_lock(&all_zones_lock, &zone_locks_grp);
max_zones = num_zones;
simple_unlock(&all_zones_lock);
-
+
zone_largest = &(zone_array[0]);
for (i = 0; i < max_zones; i++) {
the_zone = &(zone_array[i]);
return zone_largest;
}
-#if ZONE_DEBUG
+#if ZONE_DEBUG
/* should we care about locks here ? */
-#define zone_in_use(z) ( z->count || z->free_elements \
- || !queue_empty(&z->pages.all_free) \
- || !queue_empty(&z->pages.intermediate) \
- || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign)))
+#define zone_in_use(z) ( z->count || z->free_elements \
+ || !queue_empty(&z->pages.all_free) \
+ || !queue_empty(&z->pages.intermediate) \
+ || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign)))
-#endif /* ZONE_DEBUG */
+#endif /* ZONE_DEBUG */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static uintptr_t *
zone_copy_all_allocations_inqueue(zone_t z, queue_head_t * queue, uintptr_t * elems)
{
- struct zone_page_metadata *page_meta;
- vm_offset_t free, elements;
- vm_offset_t idx, numElements, freeCount, bytesAvail, metaSize;
-
- queue_iterate(queue, page_meta, struct zone_page_metadata *, pages)
- {
- elements = get_zone_page(page_meta);
- bytesAvail = ptoa(page_meta->page_count);
- freeCount = 0;
- if (z->allows_foreign && !from_zone_map(elements, z->elem_size))
- {
- metaSize = (sizeof(struct zone_page_metadata) + ZONE_ELEMENT_ALIGNMENT - 1) & ~(ZONE_ELEMENT_ALIGNMENT - 1);
- bytesAvail -= metaSize;
- elements += metaSize;
- }
- numElements = bytesAvail / z->elem_size;
- // construct array of all possible elements
- for (idx = 0; idx < numElements; idx++)
- {
- elems[idx] = INSTANCE_PUT(elements + idx * z->elem_size);
- }
- // remove from the array all free elements
- free = (vm_offset_t)page_metadata_get_freelist(page_meta);
- while (free)
- {
- // find idx of free element
- for (idx = 0; (idx < numElements) && (elems[idx] != INSTANCE_PUT(free)); idx++) {}
- assert(idx < numElements);
- // remove it
- bcopy(&elems[idx + 1], &elems[idx], (numElements - (idx + 1)) * sizeof(elems[0]));
- numElements--;
- freeCount++;
- // next free element
- vm_offset_t *primary = (vm_offset_t *) free;
- free = *primary ^ zp_nopoison_cookie;
- }
- elems += numElements;
- }
-
- return (elems);
+ struct zone_page_metadata *page_meta;
+ vm_offset_t free, elements;
+ vm_offset_t idx, numElements, freeCount, bytesAvail, metaSize;
+
+ queue_iterate(queue, page_meta, struct zone_page_metadata *, pages)
+ {
+ elements = get_zone_page(page_meta);
+ bytesAvail = ptoa(page_meta->page_count);
+ freeCount = 0;
+ if (z->allows_foreign && !from_zone_map(elements, z->elem_size)) {
+ metaSize = (sizeof(struct zone_page_metadata) + ZONE_ELEMENT_ALIGNMENT - 1) & ~(ZONE_ELEMENT_ALIGNMENT - 1);
+ bytesAvail -= metaSize;
+ elements += metaSize;
+ }
+ numElements = bytesAvail / z->elem_size;
+ // construct array of all possible elements
+ for (idx = 0; idx < numElements; idx++) {
+ elems[idx] = INSTANCE_PUT(elements + idx * z->elem_size);
+ }
+ // remove from the array all free elements
+ free = (vm_offset_t)page_metadata_get_freelist(page_meta);
+ while (free) {
+ // find idx of free element
+ for (idx = 0; (idx < numElements) && (elems[idx] != INSTANCE_PUT(free)); idx++) {
+ }
+ assert(idx < numElements);
+ // remove it
+ bcopy(&elems[idx + 1], &elems[idx], (numElements - (idx + 1)) * sizeof(elems[0]));
+ numElements--;
+ freeCount++;
+ // next free element
+ vm_offset_t *primary = (vm_offset_t *) free;
+ free = *primary ^ zp_nopoison_cookie;
+ }
+ elems += numElements;
+ }
+
+ return elems;
}
kern_return_t
zone_leaks(const char * zoneName, uint32_t nameLen, leak_site_proc proc, void * refCon)
{
- uintptr_t zbt[MAX_ZTRACE_DEPTH];
- zone_t zone;
- uintptr_t * array;
- uintptr_t * next;
- uintptr_t element, bt;
- uint32_t idx, count, found;
- uint32_t btidx, btcount, nobtcount, btfound;
- uint32_t elemSize;
- uint64_t maxElems;
- kern_return_t kr;
-
- for (idx = 0; idx < num_zones; idx++)
- {
- if (!strncmp(zoneName, zone_array[idx].zone_name, nameLen)) break;
- }
- if (idx >= num_zones) return (KERN_INVALID_NAME);
- zone = &zone_array[idx];
-
- elemSize = (uint32_t) zone->elem_size;
- maxElems = ptoa(zone->page_count) / elemSize;
-
- if ((zone->alloc_size % elemSize)
- && !leak_scan_debug_flag) return (KERN_INVALID_CAPABILITY);
-
- kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array,
- maxElems * sizeof(uintptr_t), VM_KERN_MEMORY_DIAG);
- if (KERN_SUCCESS != kr) return (kr);
-
- lock_zone(zone);
-
- next = array;
- next = zone_copy_all_allocations_inqueue(zone, &zone->pages.any_free_foreign, next);
- next = zone_copy_all_allocations_inqueue(zone, &zone->pages.intermediate, next);
- next = zone_copy_all_allocations_inqueue(zone, &zone->pages.all_used, next);
- count = (uint32_t)(next - array);
-
- unlock_zone(zone);
-
- zone_leaks_scan(array, count, (uint32_t)zone->elem_size, &found);
- assert(found <= count);
-
- for (idx = 0; idx < count; idx++)
- {
- element = array[idx];
- if (kInstanceFlagReferenced & element) continue;
- element = INSTANCE_PUT(element) & ~kInstanceFlags;
- }
-
- if (zone->zlog_btlog && !corruption_debug_flag)
- {
- // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found
- btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon);
- }
-
- for (nobtcount = idx = 0; idx < count; idx++)
- {
- element = array[idx];
- if (!element) continue;
- if (kInstanceFlagReferenced & element) continue;
- element = INSTANCE_PUT(element) & ~kInstanceFlags;
-
- // see if we can find any backtrace left in the element
- btcount = (typeof(btcount)) (zone->elem_size / sizeof(uintptr_t));
- if (btcount >= MAX_ZTRACE_DEPTH) btcount = MAX_ZTRACE_DEPTH - 1;
- for (btfound = btidx = 0; btidx < btcount; btidx++)
- {
- bt = ((uintptr_t *)element)[btcount - 1 - btidx];
- if (!VM_KERNEL_IS_SLID(bt)) break;
- zbt[btfound++] = bt;
- }
- if (btfound) (*proc)(refCon, 1, elemSize, &zbt[0], btfound);
- else nobtcount++;
- }
- if (nobtcount)
- {
- // fake backtrace when we found nothing
- zbt[0] = (uintptr_t) &zalloc;
- (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1);
- }
-
- kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t));
-
- return (KERN_SUCCESS);
-}
+ uintptr_t zbt[MAX_ZTRACE_DEPTH];
+ zone_t zone;
+ uintptr_t * array;
+ uintptr_t * next;
+ uintptr_t element, bt;
+ uint32_t idx, count, found;
+ uint32_t btidx, btcount, nobtcount, btfound;
+ uint32_t elemSize;
+ uint64_t maxElems;
+ unsigned int max_zones;
+ kern_return_t kr;
+
+ simple_lock(&all_zones_lock, &zone_locks_grp);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
-void
-kern_wired_diagnose(void)
-{
- unsigned int count = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
- mach_memory_info_t info[count];
- unsigned int idx;
- uint64_t total_zone, total_wired, top_wired, osfmk_wired;
+ for (idx = 0; idx < max_zones; idx++) {
+ if (!strncmp(zoneName, zone_array[idx].zone_name, nameLen)) {
+ break;
+ }
+ }
+ if (idx >= max_zones) {
+ return KERN_INVALID_NAME;
+ }
+ zone = &zone_array[idx];
+
+ elemSize = (uint32_t) zone->elem_size;
+ maxElems = ptoa(zone->page_count) / elemSize;
+
+ if ((zone->alloc_size % elemSize)
+ && !leak_scan_debug_flag) {
+ return KERN_INVALID_CAPABILITY;
+ }
+
+ kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array,
+ maxElems * sizeof(uintptr_t), VM_KERN_MEMORY_DIAG);
+ if (KERN_SUCCESS != kr) {
+ return kr;
+ }
+
+ lock_zone(zone);
+
+ next = array;
+ next = zone_copy_all_allocations_inqueue(zone, &zone->pages.any_free_foreign, next);
+ next = zone_copy_all_allocations_inqueue(zone, &zone->pages.intermediate, next);
+ next = zone_copy_all_allocations_inqueue(zone, &zone->pages.all_used, next);
+ count = (uint32_t)(next - array);
+
+ unlock_zone(zone);
+
+ zone_leaks_scan(array, count, (uint32_t)zone->elem_size, &found);
+ assert(found <= count);
- if (KERN_SUCCESS != vm_page_diagnose(info, count, 0)) return;
+ for (idx = 0; idx < count; idx++) {
+ element = array[idx];
+ if (kInstanceFlagReferenced & element) {
+ continue;
+ }
+ element = INSTANCE_PUT(element) & ~kInstanceFlags;
+ }
+
+ if (zone->zlog_btlog && !corruption_debug_flag) {
+ // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found
+ btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon);
+ }
- total_zone = total_wired = top_wired = osfmk_wired = 0;
- for (idx = 0; idx < num_zones; idx++)
- {
- total_zone += ptoa_64(zone_array[idx].page_count);
- }
- total_wired = total_zone;
+ for (nobtcount = idx = 0; idx < count; idx++) {
+ element = array[idx];
+ if (!element) {
+ continue;
+ }
+ if (kInstanceFlagReferenced & element) {
+ continue;
+ }
+ element = INSTANCE_PUT(element) & ~kInstanceFlags;
+
+ // see if we can find any backtrace left in the element
+ btcount = (typeof(btcount))(zone->elem_size / sizeof(uintptr_t));
+ if (btcount >= MAX_ZTRACE_DEPTH) {
+ btcount = MAX_ZTRACE_DEPTH - 1;
+ }
+ for (btfound = btidx = 0; btidx < btcount; btidx++) {
+ bt = ((uintptr_t *)element)[btcount - 1 - btidx];
+ if (!VM_KERNEL_IS_SLID(bt)) {
+ break;
+ }
+ zbt[btfound++] = bt;
+ }
+ if (btfound) {
+ (*proc)(refCon, 1, elemSize, &zbt[0], btfound);
+ } else {
+ nobtcount++;
+ }
+ }
+ if (nobtcount) {
+ // fake backtrace when we found nothing
+ zbt[0] = (uintptr_t) &zalloc;
+ (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1);
+ }
- for (idx = 0; idx < count; idx++)
- {
- if (VM_KERN_COUNT_WIRED == info[idx].site) top_wired = info[idx].size;
- if (VM_KERN_MEMORY_OSFMK == info[idx].site) osfmk_wired = info[idx].size;
- if (VM_KERN_SITE_HIDE & info[idx].flags) continue;
- if (!(VM_KERN_SITE_WIRED & info[idx].flags)) continue;
- total_wired += info[idx].size;
- }
+ kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t));
- printf("top 0x%qx, total 0x%qx, zone 0x%qx, osfmk 0x%qx\n",
- top_wired, total_wired, total_zone, osfmk_wired);
+ return KERN_SUCCESS;
}
boolean_t
kdp_is_in_zone(void *addr, const char *zone_name)
{
zone_t z;
- return (zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name));
+ return zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name);
+}
+
+boolean_t
+run_zone_test(void)
+{
+ unsigned int i = 0, max_iter = 5;
+ void * test_ptr;
+ zone_t test_zone;
+
+ simple_lock(&zone_test_lock, &zone_locks_grp);
+ if (!zone_test_running) {
+ zone_test_running = TRUE;
+ } else {
+ simple_unlock(&zone_test_lock);
+ printf("run_zone_test: Test already running.\n");
+ return FALSE;
+ }
+ simple_unlock(&zone_test_lock);
+
+ printf("run_zone_test: Testing zinit(), zalloc(), zfree() and zdestroy() on zone \"test_zone_sysctl\"\n");
+
+ /* zinit() and zdestroy() a zone with the same name a bunch of times, verify that we get back the same zone each time */
+ do {
+ test_zone = zinit(sizeof(uint64_t), 100 * sizeof(uint64_t), sizeof(uint64_t), "test_zone_sysctl");
+ if (test_zone == NULL) {
+ printf("run_zone_test: zinit() failed\n");
+ return FALSE;
+ }
+
+#if KASAN_ZALLOC
+ if (test_zone_ptr == NULL && zone_free_count(test_zone) != 0) {
+#else
+ if (zone_free_count(test_zone) != 0) {
+#endif
+ printf("run_zone_test: free count is not zero\n");
+ return FALSE;
+ }
+
+ if (test_zone_ptr == NULL) {
+ /* Stash the zone pointer returned on the fist zinit */
+ printf("run_zone_test: zone created for the first time\n");
+ test_zone_ptr = test_zone;
+ } else if (test_zone != test_zone_ptr) {
+ printf("run_zone_test: old zone pointer and new zone pointer don't match\n");
+ return FALSE;
+ }
+
+ test_ptr = zalloc(test_zone);
+ if (test_ptr == NULL) {
+ printf("run_zone_test: zalloc() failed\n");
+ return FALSE;
+ }
+ zfree(test_zone, test_ptr);
+
+ zdestroy(test_zone);
+ i++;
+
+ printf("run_zone_test: Iteration %d successful\n", i);
+ } while (i < max_iter);
+
+ printf("run_zone_test: Test passed\n");
+
+ simple_lock(&zone_test_lock, &zone_locks_grp);
+ zone_test_running = FALSE;
+ simple_unlock(&zone_test_lock);
+
+ return TRUE;
}
#endif /* DEBUG || DEVELOPMENT */