/*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <kern/cpu_data.h>
#include <mach/mach_types.h>
#include <mach/machine.h>
-#include <kern/etimer.h>
#include <mach/vm_map.h>
#include <mach/machine/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
-#include <i386/lock.h>
+#include <i386/bit_routines.h>
#include <i386/mp_desc.h>
#include <i386/misc_protos.h>
#include <i386/mp.h>
#include <i386/pmap.h>
+#if defined(__i386__) || defined(__x86_64__)
+#include <i386/pmap_internal.h>
+#endif /* i386 */
#if CONFIG_MCA
#include <i386/machine_check.h>
#endif
#include <kern/misc_protos.h>
-#include <mach_kdb.h>
-
-
-#ifdef __x86_64__
#define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
#define TRAP(n, name) extern void *name ;
#define TRAP_ERR(n, name) extern void *name ;
#define TRAP_SPC(n, name) extern void *name ;
-#define TRAP_IST(n, name) extern void *name ;
+#define TRAP_IST1(n, name) extern void *name ;
+#define TRAP_IST2(n, name) extern void *name ;
#define INTERRUPT(n) extern void *_intr_ ## n ;
#define USER_TRAP(n, name) extern void *name ;
#define USER_TRAP_SPC(n, name) extern void *name ;
#undef TRAP
#undef TRAP_ERR
#undef TRAP_SPC
-#undef TRAP_IST
+#undef TRAP_IST1
+#undef TRAP_IST2
#undef INTERRUPT
#undef USER_TRAP
#undef USER_TRAP_SPC
#define TRAP(n, name) \
- [n] { \
+ [n] = { \
(uintptr_t)&name, \
KERNEL64_CS, \
0, \
#define TRAP_ERR TRAP
#define TRAP_SPC TRAP
-#define TRAP_IST(n, name) \
- [n] { \
+#define TRAP_IST1(n, name) \
+ [n] = { \
(uintptr_t)&name, \
KERNEL64_CS, \
1, \
0 \
},
+#define TRAP_IST2(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 2, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
#define INTERRUPT(n) \
- [n] { \
+ [n] = { \
(uintptr_t)&_intr_ ## n,\
KERNEL64_CS, \
0, \
},
#define USER_TRAP(n, name) \
- [n] { \
+ [n] = { \
(uintptr_t)&name, \
KERNEL64_CS, \
0, \
},
#define USER_TRAP_SPC USER_TRAP
-
// Declare the table using the macros we just set up
-struct fake_descriptor64 master_idt64[IDTSZ] __attribute__ ((aligned (4096))) = {
+struct fake_descriptor64 master_idt64[IDTSZ]
+ __attribute__ ((section("__HIB,__desc")))
+ __attribute__ ((aligned(PAGE_SIZE))) = {
#include "../x86_64/idt_table.h"
};
-#endif
-
-/*
- * The i386 needs an interrupt stack to keep the PCB stack from being
- * overrun by interrupts. All interrupt stacks MUST lie at lower addresses
- * than any thread`s kernel stack.
- */
/*
* First cpu`s interrupt stack.
*/
-extern uint32_t low_intstack[]; /* bottom */
+extern uint32_t low_intstack[]; /* bottom */
extern uint32_t low_eintstack[]; /* top */
/*
* The master cpu (cpu 0) has its data area statically allocated;
* others are allocated dynamically and this array is updated at runtime.
*/
-cpu_data_t cpu_data_master = {
+static cpu_data_t cpu_data_master = {
.cpu_this = &cpu_data_master,
- .cpu_nanotime = &rtc_nanotime_info,
+ .cpu_nanotime = &pal_rtc_nanotime_info,
.cpu_int_stack_top = (vm_offset_t) low_eintstack,
-#ifdef __i386__
- .cpu_is64bit = FALSE,
-#else
- .cpu_is64bit = TRUE
-#endif
};
-cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] &cpu_data_master };
+cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master };
decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */
unsigned int real_ncpus = 1;
unsigned int max_ncpus = MAX_CPUS;
-#ifdef __i386__
-extern void *hi_remap_text;
-#define HI_TEXT(lo_text) \
- (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE)
-
-extern void hi_sysenter(void);
-
-typedef struct {
- uint16_t length;
- uint32_t offset[2];
-} __attribute__((__packed__)) table_descriptor64_t;
-
-extern table_descriptor64_t gdtptr64;
-extern table_descriptor64_t idtptr64;
-#endif
extern void hi64_sysenter(void);
extern void hi64_syscall(void);
-#if defined(__x86_64__) && !defined(UBER64)
-#define UBER64(x) ((uintptr_t)x)
-#endif
-
/*
* Multiprocessor i386/i486 systems use a separate copy of the
* GDT, IDT, LDT, and kernel TSS per processor. The first three
ACC_P|ACC_PL_K|ACC_DATA_W
};
+#if NCOPY_WINDOWS > 0
struct fake_descriptor userwindow_desc_pattern = {
(unsigned int) 0,
((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1,
SZ_32 | SZ_G,
ACC_P|ACC_PL_U|ACC_DATA_W
};
+#endif
struct fake_descriptor physwindow_desc_pattern = {
(unsigned int) 0,
case ACC_CALL_GATE:
case ACC_INTR_GATE:
case ACC_TRAP_GATE:
- real.gate.offset_low16 = fakep->offset64 & 0xFFFF;
+ real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
real.gate.IST = fakep->size_or_IST & 0x7;
real.gate.access8 = fakep->access;
- real.gate.offset_high16 = (fakep->offset64>>16)&0xFFFF;
+ real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF);
real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32);
break;
default: /* Otherwise */
real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
- real.desc.base_low16 = fakep->offset64 & 0xFFFF;
- real.desc.base_med8 = (fakep->offset64 >> 16) & 0xFF;
+ real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
+ real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
real.desc.access8 = fakep->access;
real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
real.desc.granularity4 = fakep->size_or_IST;
- real.desc.base_high8 = (fakep->offset64 >> 24) & 0xFF;
+ real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
real.desc.base_top32 = (uint32_t)(fakep->offset64>>32);
}
}
}
-#ifdef __i386__
-void
-cpu_desc_init(cpu_data_t *cdp)
+static void
+cpu_gdt_alias(vm_map_offset_t gdt, vm_map_offset_t alias)
{
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
-
- if (cdp == &cpu_data_master) {
- /*
- * Fix up the entries in the GDT to point to
- * this LDT and this TSS.
- */
- struct fake_descriptor temp_fake_desc;
- temp_fake_desc = ldt_desc_pattern;
- temp_fake_desc.offset = (vm_offset_t) &master_ldt;
- fix_desc(&temp_fake_desc, 1);
- *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_LDT)] =
- temp_fake_desc;
- *(struct fake_descriptor *) &master_gdt[sel_idx(USER_LDT)] =
- temp_fake_desc;
-
- temp_fake_desc = tss_desc_pattern;
- temp_fake_desc.offset = (vm_offset_t) &master_ktss;
- fix_desc(&temp_fake_desc, 1);
- *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_TSS)] =
- temp_fake_desc;
-
-#if MACH_KDB
- temp_fake_desc = tss_desc_pattern;
- temp_fake_desc.offset = (vm_offset_t) &master_dbtss;
- fix_desc(&temp_fake_desc, 1);
- *(struct fake_descriptor *) &master_gdt[sel_idx(DEBUG_TSS)] =
- temp_fake_desc;
-#endif
-
- temp_fake_desc = cpudata_desc_pattern;
- temp_fake_desc.offset = (vm_offset_t) &cpu_data_master;
- fix_desc(&temp_fake_desc, 1);
- *(struct fake_descriptor *) &master_gdt[sel_idx(CPU_DATA_GS)] =
- temp_fake_desc;
-
- fix_desc((void *)&master_idt, IDTSZ);
-
- cdi->cdi_idt.ptr = master_idt;
- cdi->cdi_gdt.ptr = (void *)master_gdt;
-
-
- /*
- * Master CPU uses the tables built at boot time.
- * Just set the index pointers to the high shared-mapping space.
- * Note that the sysenter stack uses empty space above the ktss
- * in the HIGH_FIXED_KTSS page. In this case we don't map the
- * the real master_sstk in low memory.
- */
- cdi->cdi_ktss = (struct i386_tss *)
- pmap_index_to_virt(HIGH_FIXED_KTSS) ;
- cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) +
- (vm_offset_t) &master_sstk.top -
- (vm_offset_t) &master_sstk;
- } else {
- cpu_desc_table_t *cdt = (cpu_desc_table_t *) cdp->cpu_desc_tablep;
-
- vm_offset_t cpu_hi_desc;
-
- cpu_hi_desc = pmap_cpu_high_shared_remap(
- cdp->cpu_number,
- HIGH_CPU_DESC,
- (vm_offset_t) cdt, 1);
-
- /*
- * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one
- * block (cpu_desc_table) and double-mapped into high shared space
- * in one page window.
- * Also, a transient stack for the fast sysenter path. The top of
- * which is set at context switch time to point to the PCB using
- * the high address.
- */
- cdi->cdi_gdt.ptr = (struct fake_descriptor *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, gdt[0]));
- cdi->cdi_idt.ptr = (struct fake_descriptor *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, idt[0]));
- cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, ktss));
- cdi->cdi_sstk = cpu_hi_desc + offsetof(cpu_desc_table_t, sstk.top);
-
- /*
- * LDT descriptors are mapped into a seperate area.
- */
- cdi->cdi_ldt = (struct fake_descriptor *)
- pmap_cpu_high_shared_remap(
- cdp->cpu_number,
- HIGH_CPU_LDT_BEGIN,
- (vm_offset_t) cdp->cpu_ldtp,
- HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1);
-
- /*
- * Copy the tables
- */
- bcopy((char *)master_idt, (char *)cdt->idt, sizeof(master_idt));
- bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
- bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt));
- bzero((char *)&cdt->ktss, sizeof(struct i386_tss));
-#if MACH_KDB
- cdi->cdi_dbtss = (struct i386_tss *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, dbtss));
- bcopy((char *)&master_dbtss,
- (char *)&cdt->dbtss,
- sizeof(struct i386_tss));
-#endif /* MACH_KDB */
-
- /*
- * Fix up the entries in the GDT to point to
- * this LDT and this TSS.
- */
- struct fake_descriptor temp_ldt = ldt_desc_pattern;
- temp_ldt.offset = (vm_offset_t)cdi->cdi_ldt;
- fix_desc(&temp_ldt, 1);
-
- cdt->gdt[sel_idx(KERNEL_LDT)] = temp_ldt;
- cdt->gdt[sel_idx(USER_LDT)] = temp_ldt;
-
- cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
- cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss;
- fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
+ pt_entry_t *pte = NULL;
- cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
- cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
- fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
+ /* Require page alignment */
+ assert(page_aligned(gdt));
+ assert(page_aligned(alias));
-#if MACH_KDB
- cdt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
- cdt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) cdi->cdi_dbtss;
- fix_desc(&cdt->gdt[sel_idx(DEBUG_TSS)], 1);
+ pte = pmap_pte(kernel_pmap, alias);
+ pmap_store_pte(pte, kvtophys(gdt) | INTEL_PTE_REF
+ | INTEL_PTE_MOD
+ | INTEL_PTE_WIRED
+ | INTEL_PTE_VALID
+ | INTEL_PTE_WRITE
+ | INTEL_PTE_NX);
- cdt->dbtss.esp0 = (int)(db_task_stack_store +
- (INTSTACK_SIZE * (cdp->cpu_number)) - sizeof (natural_t));
- cdt->dbtss.esp = cdt->dbtss.esp0;
- cdt->dbtss.eip = (int)&db_task_start;
-#endif /* MACH_KDB */
-
- cdt->ktss.ss0 = KERNEL_DS;
- cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */
-
- cpu_userwindow_init(cdp->cpu_number);
- cpu_physwindow_init(cdp->cpu_number);
-
- }
+ /* TLB flush unneccessry because target processor isn't running yet */
}
-#endif /* __i386__ */
+
void
cpu_desc_init64(cpu_data_t *cdp)
*/
cdi->cdi_ktss = (void *)&master_ktss64;
cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
- cdi->cdi_gdt.ptr = (void *)master_gdt;
- cdi->cdi_idt.ptr = (void *)master_idt64;
+ cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS;
+ cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
cdi->cdi_ldt = (struct fake_descriptor *) master_ldt;
-
/* Replace the expanded LDTs and TSS slots in the GDT */
- kernel_ldt_desc64.offset64 = UBER64(&master_ldt);
+ kernel_ldt_desc64.offset64 = (uintptr_t) &master_ldt;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
kernel_ldt_desc64;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
kernel_ldt_desc64;
- kernel_tss_desc64.offset64 = UBER64(&master_ktss64);
+ kernel_tss_desc64.offset64 = (uintptr_t) &master_ktss64;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
kernel_tss_desc64;
fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
/*
- * Set the double-fault stack as IST1 in the 64-bit TSS
+ * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
+ * Note: this will be dynamically re-allocated in VM later.
*/
- master_ktss64.ist1 = UBER64((uintptr_t) df_task_stack_end);
+ master_ktss64.ist2 = (uintptr_t) low_eintstack;
+ master_ktss64.ist1 = (uintptr_t) low_eintstack
+ - sizeof(x86_64_intr_stack_frame_t);
- } else {
+ } else if (cdi->cdi_ktss == NULL) { /* Skipping re-init on wake */
cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
+
/*
* Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
* heap (cpu_desc_table).
* LDT descriptors are mapped into a separate area.
+ * GDT descriptors are addressed by alias to avoid sgdt leaks to user-space.
*/
- cdi->cdi_gdt.ptr = (struct fake_descriptor *)cdt->gdt;
- cdi->cdi_idt.ptr = (void *)cdt->idt;
+ cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
+ cdi->cdi_gdt.ptr = (void *)CPU_GDT_ALIAS(cdp->cpu_number);
cdi->cdi_ktss = (void *)&cdt->ktss;
cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top;
cdi->cdi_ldt = cdp->cpu_ldtp;
+ /* Make the virtual alias address for the GDT */
+ cpu_gdt_alias((vm_map_offset_t) &cdt->gdt,
+ (vm_map_offset_t) cdi->cdi_gdt.ptr);
+
/*
* Copy the tables
*/
- bcopy((char *)master_idt64, (char *)cdt->idt, sizeof(master_idt64));
bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt));
bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
* Fix up the entries in the GDT to point to
* this LDT and this TSS.
*/
- kernel_ldt_desc64.offset64 = UBER64(cdi->cdi_ldt);
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
kernel_ldt_desc64;
fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
- kernel_ldt_desc64.offset64 = UBER64(cdi->cdi_ldt);
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
kernel_ldt_desc64;
fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
- kernel_tss_desc64.offset64 = UBER64(cdi->cdi_ktss);
+ kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktss;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
kernel_tss_desc64;
fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
- /* Set double-fault stack as IST1 */
- cdt->ktss.ist1 = UBER64((unsigned long)cdt->dfstk + sizeof(cdt->dfstk));
-#ifdef __i386__
- cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
- cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
- fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
-
- /* Allocate copyio windows */
- cpu_userwindow_init(cdp->cpu_number);
- cpu_physwindow_init(cdp->cpu_number);
-#endif
+ /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
+ bzero((void *) cdt->fstk, sizeof(cdt->fstk));
+ cdt->ktss.ist2 = (unsigned long)cdt->fstk + sizeof(cdt->fstk);
+ cdt->ktss.ist1 = cdt->ktss.ist2
+ - sizeof(x86_64_intr_stack_frame_t);
}
/* Require that the top of the sysenter stack is 16-byte aligned */
panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
}
-#ifdef __i386__
-void
-cpu_desc_load(cpu_data_t *cdp)
-{
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
-
- cdi->cdi_idt.size = 0x1000 + cdp->cpu_number;
- cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1;
-
- lgdt((unsigned long *) &cdi->cdi_gdt);
- lidt((unsigned long *) &cdi->cdi_idt);
- lldt(KERNEL_LDT);
-
- set_tr(KERNEL_TSS);
-
- __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(CPU_DATA_GS)));
-}
-#endif /* __i386__ */
void
cpu_desc_load64(cpu_data_t *cdp)
{
cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
-#ifdef __i386__
+ /* Stuff the kernel per-cpu data area address into the MSRs */
+ wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
+
/*
- * Load up the new descriptors etc
- * ml_load_desc64() expects these global pseudo-descriptors:
- * gdtptr64 -> per-cpu gdt
- * idtptr64 -> per-cpu idt
- * These are 10-byte descriptors with 64-bit addresses into
- * uber-space.
- *
- * Refer to commpage/cpu_number.s for the IDT limit trick.
+ * Ensure the TSS segment's busy bit is clear. This is required
+ * for the case of reloading descriptors at wake to avoid
+ * their complete re-initialization.
*/
- gdtptr64.length = GDTSZ * sizeof(struct real_descriptor) - 1;
- gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt.ptr;
- gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
- idtptr64.length = 0x1000 + cdp->cpu_number;
- idtptr64.offset[0] = (uint32_t) cdi->cdi_idt.ptr;
- idtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
-
- /* Make sure busy bit is cleared in the TSS */
gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
- ml_load_desc64();
-#else
/* Load the GDT, LDT, IDT and TSS */
cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1;
cdi->cdi_idt.size = 0x1000 + cdp->cpu_number;
- lgdt((unsigned long *) &cdi->cdi_gdt);
- lidt((unsigned long *) &cdi->cdi_idt);
+ lgdt((uintptr_t *) &cdi->cdi_gdt);
+ lidt((uintptr_t *) &cdi->cdi_idt);
lldt(KERNEL_LDT);
set_tr(KERNEL_TSS);
- /* Stuff the pre-cpu data area into the MSR and swapgs to activate */
- wrmsr64(MSR_IA32_KERNEL_GS_BASE, (unsigned long)cdp);
#if GPROF // Hack to enable mcount to work on K64
__asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS)));
-#endif
- swapgs();
-
- cpu_mode_init(cdp);
#endif
}
-#ifdef __i386__
-/*
- * Set MSRs for sysenter/sysexit for 32-bit.
- */
-static void
-fast_syscall_init(__unused cpu_data_t *cdp)
-{
- wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0);
- wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0);
- wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0);
-}
-#endif
/*
* Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
fast_syscall_init64(__unused cpu_data_t *cdp)
{
wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
- wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64((uintptr_t) hi64_sysenter));
- wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));
+ wrmsr64(MSR_IA32_SYSENTER_EIP, (uintptr_t) hi64_sysenter);
+ wrmsr64(MSR_IA32_SYSENTER_ESP, current_sstk());
/* Enable syscall/sysret */
wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
* Note USER_CS because sysret uses this + 16 when returning to
* 64-bit code.
*/
- wrmsr64(MSR_IA32_LSTAR, UBER64((uintptr_t) hi64_syscall));
+ wrmsr64(MSR_IA32_LSTAR, (uintptr_t) hi64_syscall);
wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
(((uint64_t)KERNEL64_CS) << 32));
/*
*/
wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
-#ifdef __i386__
- /*
- * Set the Kernel GS base MSR to point to per-cpu data in uber-space.
- * The uber-space handler (hi64_syscall) uses the swapgs instruction.
- */
- wrmsr64(MSR_IA32_KERNEL_GS_BASE, UBER64(cdp));
-
-#if ONLY_SAFE_FOR_LINDA_SERIAL
- kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n",
- rdmsr64(MSR_IA32_KERNEL_GS_BASE));
-#endif
-#endif
}
+
cpu_data_t *
cpu_data_alloc(boolean_t is_boot_cpu)
{
if (is_boot_cpu) {
assert(real_ncpus == 1);
- cdp = &cpu_data_master;
+ cdp = cpu_datap(0);
if (cdp->cpu_processor == NULL) {
simple_lock_init(&ncpus_lock, 0);
cdp->cpu_processor = cpu_processor_alloc(TRUE);
#if NCOPY_WINDOWS > 0
cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
#endif
- queue_init(&cdp->rtclock_timer.queue);
- cdp->rtclock_timer.deadline = EndOfAllTime;
}
return cdp;
}
/*
* Allocate per-cpu data:
*/
- ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t));
+ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() failed, ret=%d\n", ret);
goto abort;
bzero((void*) cdp, sizeof(cpu_data_t));
cdp->cpu_this = cdp;
- /* Propagate mode */
- cdp->cpu_is64bit = cpu_mode_is64bit();
-
/*
* Allocate interrupt stack:
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_int_stack_top,
- INTSTACK_SIZE);
+ INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() int stack failed, ret=%d\n", ret);
goto abort;
bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
cdp->cpu_int_stack_top += INTSTACK_SIZE;
-
/*
* Allocate descriptor table:
- * Size depends on cpu mode.
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_desc_tablep,
- cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t)
- : sizeof(cpu_desc_table_t));
+ sizeof(cpu_desc_table64_t),
+ VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
goto abort;
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_ldtp,
- sizeof(struct real_descriptor) * LDTSZ);
+ sizeof(struct real_descriptor) * LDTSZ,
+ VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() ldt failed, ret=%d\n", ret);
goto abort;
real_ncpus++;
simple_unlock(&ncpus_lock);
- cdp->cpu_nanotime = &rtc_nanotime_info;
- queue_init(&cdp->rtclock_timer.queue);
- cdp->rtclock_timer.deadline = EndOfAllTime;
+ /*
+ * Before this cpu has been assigned a real thread context,
+ * we give it a fake, unique, non-zero thread id which the locking
+ * primitives use as their lock value.
+ * Note that this does not apply to the boot processor, cpu 0, which
+ * transitions to a thread context well before other processors are
+ * started.
+ */
+ cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
+
+ cdp->cpu_nanotime = &pal_rtc_nanotime_info;
kprintf("cpu_data_alloc(%d) %p desc_table: %p "
"ldt: %p "
if (cdp) {
if (cdp->cpu_desc_tablep)
kfree((void *) cdp->cpu_desc_tablep,
- sizeof(*cdp->cpu_desc_tablep));
+ sizeof(cpu_desc_table64_t));
if (cdp->cpu_int_stack_top)
kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE),
INTSTACK_SIZE);
return NULL;
}
+boolean_t
+valid_user_data_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0)
+ return (TRUE);
+
+ if (sel.ti == SEL_LDT)
+ return (TRUE);
+ else if (sel.index < GDTSZ) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
+ return (TRUE);
+ }
+
+ return (FALSE);
+}
+
+boolean_t
+valid_user_code_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0)
+ return (FALSE);
+
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV)
+ return (TRUE);
+ }
+ else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
+ return (TRUE);
+ }
+
+ return (FALSE);
+}
+
+boolean_t
+valid_user_stack_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0)
+ return (FALSE);
+
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV)
+ return (TRUE);
+ }
+ else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
+ return (TRUE);
+ }
+
+ return (FALSE);
+}
+
boolean_t
valid_user_segment_selectors(uint16_t cs,
uint16_t ss,
valid_user_data_selector(gs);
}
-
#if NCOPY_WINDOWS > 0
static vm_offset_t user_window_base = 0;
if (vm_allocate(kernel_map, &vaddr,
(NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
- VM_FLAGS_ANYWHERE) != KERN_SUCCESS)
+ VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS)
panic("cpu_userwindow_init: "
"couldn't allocate user map window");
user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
cdp->cpu_copywindow_base = user_window;
+ /*
+ * Abuse this pdp entry, the pdp now actually points to
+ * an array of copy windows addresses.
+ */
cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
-#ifdef __i386__
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
- cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern;
- cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)].offset = user_window;
-
- fix_desc(&cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)], 1);
-#endif /* __i386__ */
}
void
if (phys_window == 0) {
if (vm_allocate(kernel_map, &phys_window,
- PAGE_SIZE, VM_FLAGS_ANYWHERE)
+ PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU))
!= KERN_SUCCESS)
panic("cpu_physwindow_init: "
"couldn't allocate phys map window");
* pte pointer we're interested in actually
* exists in the page table
*/
- pmap_expand(kernel_pmap, phys_window);
+ pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE);
cdp->cpu_physwindow_base = phys_window;
cdp->cpu_physwindow_ptep = vtopte(phys_window);
}
-#ifdef __i386__
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
- cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern;
- cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window;
-
- fix_desc(&cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)], 1);
-#endif /* __i386__ */
}
#endif /* NCOPY_WINDOWS > 0 */
void
cpu_mode_init(cpu_data_t *cdp)
{
-#ifdef __i386__
- if (cpu_mode_is64bit()) {
- cpu_IA32e_enable(cdp);
- cpu_desc_load64(cdp);
- fast_syscall_init64(cdp);
- } else {
- fast_syscall_init(cdp);
- }
-#else
fast_syscall_init64(cdp);
-#endif
-
- /* Call for per-cpu pmap mode initialization */
- pmap_cpu_init();
}
+/*
+ * Allocate a new interrupt stack for the boot processor from the
+ * heap rather than continue to use the statically allocated space.
+ * Also switch to a dynamically allocated cpu data area.
+ */
+void
+cpu_data_realloc(void)
+{
+ int ret;
+ vm_offset_t istk;
+ vm_offset_t fstk;
+ cpu_data_t *cdp;
+ boolean_t istate;
+
+ ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
+ }
+ bzero((void*) istk, INTSTACK_SIZE);
+ istk += INTSTACK_SIZE;
+
+ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret);
+ }
+
+ /* Copy old contents into new area and make fix-ups */
+ assert(cpu_number() == 0);
+ bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t));
+ cdp->cpu_this = cdp;
+ cdp->cpu_int_stack_top = istk;
+ timer_call_queue_init(&cdp->rtclock_timer.queue);
+
+ /* Allocate the separate fault stack */
+ ret = kmem_alloc(kernel_map, &fstk, PAGE_SIZE, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() fault stack alloc, ret=%d\n", ret);
+ }
+ bzero((void*) fstk, PAGE_SIZE);
+ fstk += PAGE_SIZE;
+
+ /*
+ * With interrupts disabled commmit the new areas.
+ */
+ istate = ml_set_interrupts_enabled(FALSE);
+ cpu_data_ptr[0] = cdp;
+ master_ktss64.ist2 = (uintptr_t) fstk;
+ master_ktss64.ist1 = (uintptr_t) fstk
+ - sizeof(x86_64_intr_stack_frame_t);
+ wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
+ (void) ml_set_interrupts_enabled(istate);
+
+ kprintf("Reallocated master cpu data: %p,"
+ " interrupt stack: %p, fault stack: %p\n",
+ (void *) cdp, (void *) istk, (void *) fstk);
+}