/*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <kern/pms.h>
#include <kern/misc_protos.h>
#include <kern/etimer.h>
+#include <kern/kalloc.h>
+#include <kern/queue.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <i386/mp.h>
#include <i386/mp_events.h>
#include <i386/lapic.h>
-#include <i386/ipl.h>
#include <i386/cpuid.h>
#include <i386/fpu.h>
#include <i386/machine_cpu.h>
-#include <i386/mtrr.h>
#include <i386/pmCPU.h>
#if CONFIG_MCA
#include <i386/machine_check.h>
#define PAUSE
#endif /* MP_DEBUG */
+/* Debugging/test trace events: */
+#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
+#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
+#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
+#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
+#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
#define ABS(v) (((v) > 0)?(v):-(v))
void slave_boot_init(void);
+void i386_cpu_IPI(int cpu);
#if MACH_KDB
static void mp_kdb_wait(void);
static void mp_broadcast_action(void);
static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
-static int cpu_signal_handler(x86_saved_state_t *regs);
static int NMIInterruptHandler(x86_saved_state_t *regs);
boolean_t smp_initialized = FALSE;
volatile uint64_t debugger_entry_time;
volatile uint64_t debugger_exit_time;
#if MACH_KDP
-
+#include <kdp/kdp.h>
+extern int kdp_snapshot;
static struct _kdp_xcpu_call_func {
kdp_x86_xcpu_func_t func;
void *arg0, *arg1;
decl_lck_mtx_data(static, mp_bc_lock);
lck_mtx_ext_t mp_bc_lock_ext;
static volatile int debugger_cpu = -1;
+volatile long NMIPI_acks = 0;
+static void mp_cpus_call_init(void);
+static void mp_cpus_call_cpu_init(void);
static void mp_cpus_call_action(void);
static void mp_call_PM(void);
char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
+/* PAL-related routines */
+boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
+ int ipi_vector, i386_intr_func_t ipi_handler);
+void i386_start_cpu(int lapic_id, int cpu_num);
+void i386_send_NMI(int cpu);
#if GPROF
/*
static lck_grp_t smp_lck_grp;
static lck_grp_attr_t smp_lck_grp_attr;
-extern void slave_pstart(void);
+#define NUM_CPU_WARM_CALLS 20
+struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
+queue_head_t cpu_warm_call_list;
+decl_simple_lock_data(static, cpu_warm_lock);
+
+typedef struct cpu_warm_data {
+ timer_call_t cwd_call;
+ uint64_t cwd_deadline;
+ int cwd_result;
+} *cpu_warm_data_t;
+
+static void cpu_prewarm_init(void);
+static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
+static void _cpu_warm_setup(void *arg);
+static timer_call_t grab_warm_timer_call(void);
+static void free_warm_timer_call(timer_call_t call);
void
smp_init(void)
lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
console_init();
- /* Local APIC? */
- if (!lapic_probe())
+ if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
+ LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler))
return;
- lapic_init();
- lapic_configure();
- lapic_set_intr_func(LAPIC_NMI_INTERRUPT, NMIInterruptHandler);
- lapic_set_intr_func(LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler);
-
cpu_thread_init();
GPROF_INIT();
DBGLOG_CPU_INIT(master_cpu);
- install_real_mode_bootstrap(slave_pstart);
+ mp_cpus_call_init();
+ mp_cpus_call_cpu_init();
if (PE_parse_boot_argn("TSC_sync_margin",
&TSC_sync_margin, sizeof(TSC_sync_margin)))
kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin);
smp_initialized = TRUE;
+ cpu_prewarm_init();
+
return;
}
* longer than a full restart would require so it should be more
* than long enough.
*/
+
mp_wait_for_cpu_up(slot_num, 30000, 1);
mp_enable_preemption();
if (cpu_number() != psip->starter_cpu)
return;
- LAPIC_WRITE(ICRD, psip->target_lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_INIT);
- delay(100);
-
- LAPIC_WRITE(ICRD, psip->target_lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_STARTUP|(REAL_MODE_BOOTSTRAP_OFFSET>>12));
+ i386_start_cpu(psip->target_lapic, psip->target_cpu);
#ifdef POSTCODE_DELAY
/* Wait much longer if postcodes are displayed for a delay period. */
DBGLOG_CPU_INIT(slot_num);
DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
- DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) IdlePTD);
+ DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) (uintptr_t)IdlePTD);
/*
* Initialize (or re-initialize) the descriptor tables for this cpu.
int i=100;
#endif /* MACH_KDB && MACH_ASSERT */
- mp_disable_preemption();
+ SCHED_STATS_IPI(current_processor());
my_cpu = cpu_number();
- my_word = ¤t_cpu_datap()->cpu_signals;
+ my_word = &cpu_data_ptr[my_cpu]->cpu_signals;
+ /* Store the initial set of signals for diagnostics. New
+ * signals could arrive while these are being processed
+ * so it's no more than a hint.
+ */
+
+ cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word;
do {
#if MACH_KDB && MACH_ASSERT
* access through the debugger.
*/
sync_iss_to_iks(regs);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
mp_kdp_wait(TRUE, FALSE);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
} else
#endif /* MACH_KDP */
if (i_bit(MP_TLB_FLUSH, my_word)) {
}
} while (*my_word);
- mp_enable_preemption();
-
return 0;
}
NMIInterruptHandler(x86_saved_state_t *regs)
{
void *stackptr;
-
+
+ if (panic_active() && !panicDebugging) {
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ for(;;)
+ cpu_pause();
+ }
+
+ atomic_incl(&NMIPI_acks, 1);
sync_iss_to_iks_unconditionally(regs);
#if defined (__i386__)
__asm__ volatile("movl %%ebp, %0" : "=m" (stackptr));
if (cpu_number() == debugger_cpu)
goto NMExit;
- if (pmap_tlb_flush_timeout == TRUE && current_cpu_datap()->cpu_tlb_invalid) {
+ if (spinlock_timed_out) {
+ char pstr[192];
+ snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n", cpu_number(), spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
+ panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
+ } else if (pmap_tlb_flush_timeout == TRUE) {
char pstr[128];
- snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor\n", cpu_number());
- panic_i386_backtrace(stackptr, 16, &pstr[0], TRUE, regs);
+ snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor (this CPU did not acknowledge interrupts) TLB state:0x%x\n", cpu_number(), current_cpu_datap()->cpu_tlb_invalid);
+ panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs);
}
#if MACH_KDP
- mp_kdp_wait(FALSE, pmap_tlb_flush_timeout);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ current_cpu_datap()->cpu_NMI_acknowledged = TRUE;
+ mp_kdp_wait(FALSE, pmap_tlb_flush_timeout || spinlock_timed_out || panic_active());
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
#endif
NMExit:
return 1;
}
-#ifdef MP_DEBUG
-int max_lock_loops = 100000000;
-int trappedalready = 0; /* (BRINGUP) */
-#endif /* MP_DEBUG */
-
-static void
-i386_cpu_IPI(int cpu)
-{
- boolean_t state;
-
-#ifdef MP_DEBUG
- if(cpu_datap(cpu)->cpu_signals & 6) { /* (BRINGUP) */
- kprintf("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
- }
-#endif /* MP_DEBUG */
-
-#if MACH_KDB
-#ifdef MP_DEBUG
- if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) { /* (BRINGUP) */
- if(kdb_cpu != cpu_number()) {
- trappedalready = 1;
- panic("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n",
- cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
- }
- }
-#endif /* MP_DEBUG */
-#endif
-
- /* Wait for previous interrupt to be delivered... */
-#ifdef MP_DEBUG
- int pending_busy_count = 0;
- while (LAPIC_READ(ICR) & LAPIC_ICR_DS_PENDING) {
- if (++pending_busy_count > max_lock_loops)
- panic("i386_cpu_IPI() deadlock\n");
-#else
- while (LAPIC_READ(ICR) & LAPIC_ICR_DS_PENDING) {
-#endif /* MP_DEBUG */
- cpu_pause();
- }
-
- state = ml_set_interrupts_enabled(FALSE);
- LAPIC_WRITE(ICRD, cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED);
- (void) ml_set_interrupts_enabled(state);
-}
/*
* cpu_interrupt is really just to be used by the scheduler to
void
cpu_interrupt(int cpu)
{
+ boolean_t did_IPI = FALSE;
+
if (smp_initialized
&& pmCPUExitIdle(cpu_datap(cpu))) {
i386_cpu_IPI(cpu);
+ did_IPI = TRUE;
}
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0);
}
/*
void
cpu_NMI_interrupt(int cpu)
{
- boolean_t state;
-
if (smp_initialized) {
- state = ml_set_interrupts_enabled(FALSE);
-/* Program the interrupt command register */
- LAPIC_WRITE(ICRD, cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT);
-/* The vector is ignored in this case--the target CPU will enter on the
- * NMI vector.
- */
- LAPIC_WRITE(ICR, LAPIC_VECTOR(INTERPROCESSOR)|LAPIC_ICR_DM_NMI);
- (void) ml_set_interrupts_enabled(state);
+ i386_send_NMI(cpu);
}
}
return;
if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(0xef800020 | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
DBGLOG(cpu_signal, cpu, event);
}
}
if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(0xef800020 | DBG_FUNC_END, cpu, 0, 0, 0, 0);
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
}
/*
intrs_enabled = ml_get_interrupts_enabled();
-
/* spin on entry rendezvous */
atomic_incl(&mp_rv_entry, 1);
while (mp_rv_entry < mp_rv_ncpus) {
handle_pending_TLB_flushes();
cpu_pause();
}
+
/* action function */
if (mp_rv_action_func != NULL)
mp_rv_action_func(mp_rv_func_arg);
+
/* spin on exit rendezvous */
atomic_incl(&mp_rv_exit, 1);
while (mp_rv_exit < mp_rv_ncpus) {
handle_pending_TLB_flushes();
cpu_pause();
}
+
/* teardown function */
if (mp_rv_teardown_func != NULL)
mp_rv_teardown_func(mp_rv_func_arg);
arg);
}
-void
-handle_pending_TLB_flushes(void)
+
+typedef struct {
+ queue_chain_t link; /* queue linkage */
+ void (*func)(void *,void *); /* routine to call */
+ void *arg0; /* routine's 1st arg */
+ void *arg1; /* routine's 2nd arg */
+ volatile long *countp; /* completion counter */
+} mp_call_t;
+
+#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
+static queue_head_t mp_cpus_call_freelist;
+static queue_head_t mp_cpus_call_queue[MAX_CPUS];
+/*
+ * The free list and the per-cpu call queues are protected by the following
+ * lock which is taken wil interrupts disabled.
+ */
+decl_simple_lock_data(,mp_cpus_call_lock);
+
+static inline boolean_t
+mp_call_lock(void)
+{
+ boolean_t intrs_enabled;
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ simple_lock(&mp_cpus_call_lock);
+
+ return intrs_enabled;
+}
+
+static inline boolean_t
+mp_call_is_locked(void)
+{
+ return !ml_get_interrupts_enabled() &&
+ hw_lock_held((hw_lock_t)&mp_cpus_call_lock);
+}
+
+static inline void
+mp_call_unlock(boolean_t intrs_enabled)
+{
+ simple_unlock(&mp_cpus_call_lock);
+ ml_set_interrupts_enabled(intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_alloc(void)
+{
+ mp_call_t *callp;
+
+ assert(mp_call_is_locked());
+ if (queue_empty(&mp_cpus_call_freelist))
+ return NULL;
+ queue_remove_first(&mp_cpus_call_freelist, callp, typeof(callp), link);
+ return callp;
+}
+
+static inline void
+mp_call_free(mp_call_t *callp)
+{
+ assert(mp_call_is_locked());
+ queue_enter_first(&mp_cpus_call_freelist, callp, typeof(callp), link);
+}
+
+static inline mp_call_t *
+mp_call_dequeue(queue_t call_queue)
{
- volatile int *my_word = ¤t_cpu_datap()->cpu_signals;
+ mp_call_t *callp;
+
+ assert(mp_call_is_locked());
+ if (queue_empty(call_queue))
+ return NULL;
+ queue_remove_first(call_queue, callp, typeof(callp), link);
+ return callp;
+}
+
+/* Called on the boot processor to initialize global structures */
+static void
+mp_cpus_call_init(void)
+{
+ DBG("mp_cpus_call_init()\n");
+ simple_lock_init(&mp_cpus_call_lock, 0);
+ queue_init(&mp_cpus_call_freelist);
+}
- if (i_bit(MP_TLB_FLUSH, my_word)) {
- DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
- i_bit_clear(MP_TLB_FLUSH, my_word);
- pmap_update_interrupt();
+/*
+ * Called by each processor to add call buffers to the free list
+ * and to initialize the per-cpu call queue.
+ * Also called but ignored on slave processors on re-start/wake.
+ */
+static void
+mp_cpus_call_cpu_init(void)
+{
+ boolean_t intrs_enabled;
+ int i;
+ mp_call_t *callp;
+
+ if (mp_cpus_call_queue[cpu_number()].next != NULL)
+ return; /* restart/wake case: called already */
+
+ queue_init(&mp_cpus_call_queue[cpu_number()]);
+ for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) {
+ callp = (mp_call_t *) kalloc(sizeof(mp_call_t));
+ intrs_enabled = mp_call_lock();
+ mp_call_free(callp);
+ mp_call_unlock(intrs_enabled);
}
+
+ DBG("mp_cpus_call_init() done on cpu %d\n", cpu_number());
}
/*
* This is called from cpu_signal_handler() to process an MP_CALL signal.
+ * And also from i386_deactivate_cpu() when a cpu is being taken offline.
*/
static void
mp_cpus_call_action(void)
{
- if (mp_rv_action_func != NULL)
- mp_rv_action_func(mp_rv_func_arg);
- atomic_incl(&mp_rv_complete, 1);
+ queue_t cpu_head;
+ boolean_t intrs_enabled;
+ mp_call_t *callp;
+ mp_call_t call;
+
+ assert(!ml_get_interrupts_enabled());
+ cpu_head = &mp_cpus_call_queue[cpu_number()];
+ intrs_enabled = mp_call_lock();
+ while ((callp = mp_call_dequeue(cpu_head)) != NULL) {
+ /* Copy call request to the stack to free buffer */
+ call = *callp;
+ mp_call_free(callp);
+ if (call.func != NULL) {
+ mp_call_unlock(intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_ACTION,
+ call.func, call.arg0, call.arg1, call.countp, 0);
+ call.func(call.arg0, call.arg1);
+ (void) mp_call_lock();
+ }
+ if (call.countp != NULL)
+ atomic_incl(call.countp, 1);
+ }
+ mp_call_unlock(intrs_enabled);
+}
+
+static boolean_t
+mp_call_queue(
+ int cpu,
+ void (*action_func)(void *, void *),
+ void *arg0,
+ void *arg1,
+ volatile long *countp)
+{
+ queue_t cpu_head = &mp_cpus_call_queue[cpu];
+ mp_call_t *callp;
+
+ assert(mp_call_is_locked());
+ callp = mp_call_alloc();
+ if (callp == NULL)
+ return FALSE;
+
+ callp->func = action_func;
+ callp->arg0 = arg0;
+ callp->arg1 = arg1;
+ callp->countp = countp;
+
+ queue_enter(cpu_head, callp, typeof(callp), link);
+
+ return TRUE;
}
/*
* mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
- * If the mode is SYNC, the function is called serially on the target cpus
- * in logical cpu order. If the mode is ASYNC, the function is called in
- * parallel over the specified cpus.
+ * Possible modes are:
+ * SYNC: function is called serially on target cpus in logical cpu order
+ * waiting for each call to be acknowledged before proceeding
+ * ASYNC: function call is queued to the specified cpus
+ * waiting for all calls to complete in parallel before returning
+ * NOSYNC: function calls are queued
+ * but we return before confirmation of calls completing.
* The action function may be NULL.
* The cpu mask may include the local cpu. Offline cpus are ignored.
- * Return does not occur until the function has completed on all cpus.
- * The return value is the number of cpus on which the function was called.
+ * The return value is the number of cpus on which the call was made or queued.
*/
cpu_t
mp_cpus_call(
mp_sync_t mode,
void (*action_func)(void *),
void *arg)
+{
+ return mp_cpus_call1(
+ cpus,
+ mode,
+ (void (*)(void *,void *))action_func,
+ arg,
+ NULL,
+ NULL,
+ NULL);
+}
+
+static void
+mp_cpus_call_wait(boolean_t intrs_enabled,
+ long mp_cpus_signals,
+ volatile long *mp_cpus_calls)
+{
+ queue_t cpu_head;
+
+ cpu_head = &mp_cpus_call_queue[cpu_number()];
+
+ while (*mp_cpus_calls < mp_cpus_signals) {
+ if (!intrs_enabled) {
+ if (!queue_empty(cpu_head))
+ mp_cpus_call_action();
+
+ handle_pending_TLB_flushes();
+ }
+ cpu_pause();
+ }
+}
+
+cpu_t
+mp_cpus_call1(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *, void *),
+ void *arg0,
+ void *arg1,
+ cpumask_t *cpus_calledp,
+ cpumask_t *cpus_notcalledp)
{
cpu_t cpu;
- boolean_t intrs_enabled = ml_get_interrupts_enabled();
+ boolean_t intrs_enabled = FALSE;
boolean_t call_self = FALSE;
+ cpumask_t cpus_called = 0;
+ cpumask_t cpus_notcalled = 0;
+ long mp_cpus_signals = 0;
+ volatile long mp_cpus_calls = 0;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_START,
+ cpus, mode, action_func, arg0, arg1);
if (!smp_initialized) {
if ((cpus & CPUMASK_SELF) == 0)
- return 0;
+ goto out;
if (action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
ml_set_interrupts_enabled(intrs_enabled);
}
- return 1;
+ call_self = TRUE;
+ goto out;
}
-
- /* obtain rendezvous lock */
- simple_lock(&mp_rv_lock);
- /* Use the rendezvous data structures for this call */
- mp_rv_action_func = action_func;
- mp_rv_func_arg = arg;
- mp_rv_ncpus = 0;
- mp_rv_complete = 0;
-
- simple_lock(&x86_topo_lock);
+ /*
+ * Queue the call for each non-local requested cpu.
+ * The topo lock is not taken. Instead we sniff the cpu_running state
+ * and then re-check it after taking the call lock. A cpu being taken
+ * offline runs the action function after clearing the cpu_running.
+ */
for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
!cpu_datap(cpu)->cpu_running)
* we defer our call until we have signalled all others.
*/
call_self = TRUE;
+ cpus_called |= cpu_to_cpumask(cpu);
if (mode == SYNC && action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
- ml_set_interrupts_enabled(intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ action_func, arg0, arg1, 0, 0);
+ action_func(arg0, arg1);
}
} else {
/*
- * Bump count of other cpus called and signal this cpu.
- * Note: we signal asynchronously regardless of mode
- * because we wait on mp_rv_complete either here
- * (if mode == SYNC) or later (if mode == ASYNC).
- * While spinning, poll for TLB flushes if interrupts
- * are disabled.
+ * Here to queue a call to cpu and IPI.
+ * Spinning for request buffer unless NOSYNC.
*/
- mp_rv_ncpus++;
- i386_signal_cpu(cpu, MP_CALL, ASYNC);
- if (mode == SYNC) {
- simple_unlock(&x86_topo_lock);
- while (mp_rv_complete < mp_rv_ncpus) {
- if (!intrs_enabled)
+ queue_call:
+ intrs_enabled = mp_call_lock();
+ if (!cpu_datap(cpu)->cpu_running) {
+ mp_call_unlock(intrs_enabled);
+ continue;
+ }
+ if (mode == NOSYNC) {
+ if (!mp_call_queue(cpu, action_func, arg0, arg1,
+ NULL)) {
+ cpus_notcalled |= cpu_to_cpumask(cpu);
+ mp_call_unlock(intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ continue;
+ }
+ } else {
+ if (!mp_call_queue(cpu, action_func, arg0, arg1,
+ &mp_cpus_calls)) {
+ mp_call_unlock(intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ if (!intrs_enabled) {
+ mp_cpus_call_action();
handle_pending_TLB_flushes();
+ }
cpu_pause();
+ goto queue_call;
}
- simple_lock(&x86_topo_lock);
+ }
+ mp_cpus_signals++;
+ cpus_called |= cpu_to_cpumask(cpu);
+ i386_signal_cpu(cpu, MP_CALL, ASYNC);
+ mp_call_unlock(intrs_enabled);
+ if (mode == SYNC) {
+ mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
}
}
}
- simple_unlock(&x86_topo_lock);
- /*
- * If calls are being made asynchronously,
- * make the local call now if needed, and then
- * wait for all other cpus to finish their calls.
- */
- if (mode == ASYNC) {
- if (call_self && action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
+ /* Call locally if mode not SYNC */
+ if (mode != SYNC && call_self ) {
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ action_func, arg0, arg1, 0, 0);
+ if (action_func != NULL) {
+ ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
ml_set_interrupts_enabled(intrs_enabled);
}
- while (mp_rv_complete < mp_rv_ncpus) {
- if (!intrs_enabled)
- handle_pending_TLB_flushes();
- cpu_pause();
- }
}
-
- /* Determine the number of cpus called */
- cpu = mp_rv_ncpus + (call_self ? 1 : 0);
- simple_unlock(&mp_rv_lock);
+ /* For ASYNC, now wait for all signaled cpus to complete their calls */
+ if (mode == ASYNC) {
+ mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
+ }
+
+out:
+ cpu = (cpu_t) mp_cpus_signals + (call_self ? 1 : 0);
+
+ if (cpus_calledp)
+ *cpus_calledp = cpus_called;
+ if (cpus_notcalledp)
+ *cpus_notcalledp = cpus_notcalled;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_END,
+ cpu, cpus_called, cpus_notcalled, 0, 0);
return cpu;
}
+
static void
mp_broadcast_action(void)
{
cdp->cpu_running = TRUE;
started_cpu();
simple_unlock(&x86_topo_lock);
+ flush_tlb_raw();
}
extern void etimer_timer_expire(void *arg);
mp_kdp_enter(void)
{
unsigned int cpu;
- unsigned int ncpus;
+ unsigned int ncpus = 0;
unsigned int my_cpu;
uint64_t tsc_timeout;
* stopping others.
*/
mp_kdp_state = ml_set_interrupts_enabled(FALSE);
+ my_cpu = cpu_number();
+
+ if (my_cpu == (unsigned) debugger_cpu) {
+ kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n");
+ kdp_reset();
+ return;
+ }
+
+ cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time();
simple_lock(&mp_kdp_lock);
- debugger_entry_time = mach_absolute_time();
- if (pmsafe_debug)
+
+ if (pmsafe_debug && !kdp_snapshot)
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
while (mp_kdp_trap) {
#endif
simple_lock(&mp_kdp_lock);
}
- my_cpu = cpu_number();
debugger_cpu = my_cpu;
+ ncpus = 1;
mp_kdp_ncpus = 1; /* self */
mp_kdp_trap = TRUE;
+ debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time;
simple_unlock(&mp_kdp_lock);
/*
*/
DBG("mp_kdp_enter() signaling other processors\n");
if (force_immediate_debugger_NMI == FALSE) {
- for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
ncpus++;
cpu_NMI_interrupt(cpu);
}
- DBG("mp_kdp_enter() %u processors done %s\n",
- mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+ DBG("mp_kdp_enter() %lu processors done %s\n",
+ (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
postcode(MP_KDP_ENTER);
}
mca_check_save();
#endif
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
-
atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
while (mp_kdp_trap || (isNMI == TRUE)) {
/*
cpu_pause();
}
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
-
atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
DBG("mp_kdp_wait() done\n");
}
cpu_pause();
}
- if (pmsafe_debug)
+ if (pmsafe_debug && !kdp_snapshot)
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ debugger_exit_time = mach_absolute_time();
+
DBG("mp_kdp_exit() done\n");
(void) ml_set_interrupts_enabled(mp_kdp_state);
postcode(0);
boolean_t
mp_recent_debugger_activity() {
- return (((mach_absolute_time() - debugger_entry_time) < LastDebuggerEntryAllowance) ||
- ((mach_absolute_time() - debugger_exit_time) < LastDebuggerEntryAllowance));
+ uint64_t abstime = mach_absolute_time();
+ return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
+ ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance));
}
/*ARGSUSED*/
if (cpu != cpu_number()) {
i386_signal_cpu(cpu, MP_AST, ASYNC);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0);
}
}
cpu_pause();
}
- DBG("mp_kdp_enter() %d processors done %s\n",
+ DBG("mp_kdp_enter() %lu processors done %s\n",
mp_kdb_ncpus, (mp_kdb_ncpus == kdb_ncpus) ? "OK" : "timed out");
}
* Cold start
*/
clock_init();
-
cpu_machine_init(); /* Interrupts enabled hereafter */
+ mp_cpus_call_cpu_init();
}
}
#endif /* TRAP_DEBUG */
#endif /* MACH_KDB */
+static void
+cpu_prewarm_init()
+{
+ int i;
+
+ simple_lock_init(&cpu_warm_lock, 0);
+ queue_init(&cpu_warm_call_list);
+ for (i = 0; i < NUM_CPU_WARM_CALLS; i++) {
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]);
+ }
+}
+
+static timer_call_t
+grab_warm_timer_call()
+{
+ spl_t x;
+ timer_call_t call = NULL;
+
+ x = splsched();
+ simple_lock(&cpu_warm_lock);
+ if (!queue_empty(&cpu_warm_call_list)) {
+ call = (timer_call_t) dequeue_head(&cpu_warm_call_list);
+ }
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
+
+ return call;
+}
+
+static void
+free_warm_timer_call(timer_call_t call)
+{
+ spl_t x;
+
+ x = splsched();
+ simple_lock(&cpu_warm_lock);
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)call);
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
+}
+
+/*
+ * Runs in timer call context (interrupts disabled).
+ */
+static void
+cpu_warm_timer_call_func(
+ call_entry_param_t p0,
+ __unused call_entry_param_t p1)
+{
+ free_warm_timer_call((timer_call_t)p0);
+ return;
+}
+
+/*
+ * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0).
+ */
+static void
+_cpu_warm_setup(
+ void *arg)
+{
+ cpu_warm_data_t cwdp = (cpu_warm_data_t)arg;
+
+ timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_CRITICAL | TIMER_CALL_LOCAL);
+ cwdp->cwd_result = 0;
+
+ return;
+}
+
+/*
+ * Not safe to call with interrupts disabled.
+ */
+kern_return_t
+ml_interrupt_prewarm(
+ uint64_t deadline)
+{
+ struct cpu_warm_data cwd;
+ timer_call_t call;
+ cpu_t ct;
+
+ if (ml_get_interrupts_enabled() == FALSE) {
+ panic("%s: Interrupts disabled?\n", __FUNCTION__);
+ }
+
+ /*
+ * If the platform doesn't need our help, say that we succeeded.
+ */
+ if (!ml_get_interrupt_prewake_applicable()) {
+ return KERN_SUCCESS;
+ }
+
+ /*
+ * Grab a timer call to use.
+ */
+ call = grab_warm_timer_call();
+ if (call == NULL) {
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ timer_call_setup(call, cpu_warm_timer_call_func, call);
+ cwd.cwd_call = call;
+ cwd.cwd_deadline = deadline;
+ cwd.cwd_result = 0;
+
+ /*
+ * For now, non-local interrupts happen on the master processor.
+ */
+ ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd);
+ if (ct == 0) {
+ free_warm_timer_call(call);
+ return KERN_FAILURE;
+ } else {
+ return cwd.cwd_result;
+ }
+}