+++ /dev/null
-/*
- * Copyright (c) 2002-2015 Apple Inc. All rights reserved.
- *
- * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
- * This file contains Original Code and/or Modifications of Original Code
- * as defined in and that are subject to the Apple Public Source License
- * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. The rights granted to you under the License
- * may not be used to create, or enable the creation or redistribution of,
- * unlawful or unlicensed copies of an Apple operating system, or to
- * circumvent, violate, or enable the circumvention or violation of, any
- * terms of an Apple operating system software license agreement.
- *
- * Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
- * The Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- * Please see the License for the specific language governing rights and
- * limitations under the License.
- *
- * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
- */
-#include <sys/param.h>
-#include <sys/systm.h>
-#include <sys/proc.h>
-#include <sys/vnode.h>
-#include <sys/mount.h>
-#include <sys/kernel.h>
-#include <sys/malloc.h>
-#include <sys/time.h>
-#include <sys/ubc.h>
-#include <sys/quota.h>
-#include <sys/kdebug.h>
-#include <libkern/OSByteOrder.h>
-#include <sys/buf_internal.h>
-#include <sys/namei.h>
-
-#include <kern/locks.h>
-
-#include <miscfs/specfs/specdev.h>
-#include <miscfs/fifofs/fifo.h>
-
-#include <hfs/hfs.h>
-#include <hfs/hfs_catalog.h>
-#include <hfs/hfs_cnode.h>
-#include <hfs/hfs_quota.h>
-#include <hfs/hfs_format.h>
-#include <hfs/hfs_kdebug.h>
-#include <hfs/hfs_cprotect.h>
-
-extern int prtactive;
-
-extern lck_attr_t * hfs_lock_attr;
-extern lck_grp_t * hfs_mutex_group;
-extern lck_grp_t * hfs_rwlock_group;
-
-static void hfs_reclaim_cnode(hfsmount_t *hfsmp, struct cnode *);
-static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim);
-static int hfs_isordered(struct cnode *, struct cnode *);
-
-extern int hfs_removefile_callback(struct buf *bp, void *hfsmp);
-
-
-__inline__ int hfs_checkdeleted (struct cnode *cp) {
- return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0);
-}
-
-/*
- * Function used by a special fcntl() that decorates a cnode/vnode that
- * indicates it is backing another filesystem, like a disk image.
- *
- * the argument 'val' indicates whether or not to set the bit in the cnode flags
- *
- * Returns non-zero on failure. 0 on success
- */
-int hfs_set_backingstore (struct vnode *vp, int val) {
- struct cnode *cp = NULL;
- int err = 0;
-
- cp = VTOC(vp);
- if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
- return EINVAL;
- }
-
- /* lock the cnode */
- err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
- if (err) {
- return err;
- }
-
- if (val) {
- cp->c_flag |= C_BACKINGSTORE;
- }
- else {
- cp->c_flag &= ~C_BACKINGSTORE;
- }
-
- /* unlock everything */
- hfs_unlock (cp);
-
- return err;
-}
-
-/*
- * Function used by a special fcntl() that check to see if a cnode/vnode
- * indicates it is backing another filesystem, like a disk image.
- *
- * the argument 'val' is an output argument for whether or not the bit is set
- *
- * Returns non-zero on failure. 0 on success
- */
-
-int hfs_is_backingstore (struct vnode *vp, int *val) {
- struct cnode *cp = NULL;
- int err = 0;
-
- if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
- *val = 0;
- return 0;
- }
-
- cp = VTOC(vp);
-
- /* lock the cnode */
- err = hfs_lock (cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
- if (err) {
- return err;
- }
-
- if (cp->c_flag & C_BACKINGSTORE) {
- *val = 1;
- }
- else {
- *val = 0;
- }
-
- /* unlock everything */
- hfs_unlock (cp);
-
- return err;
-}
-
-
-/*
- * hfs_cnode_teardown
- *
- * This is an internal function that is invoked from both hfs_vnop_inactive
- * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes
- * being recycled and reclaimed, it is important that we do any post-processing
- * necessary for the cnode in both places. Important tasks include things such as
- * releasing the blocks from an open-unlinked file when all references to it have dropped,
- * and handling resource forks separately from data forks.
- *
- * Note that we take only the vnode as an argument here (rather than the cnode).
- * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
- * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
- * vnode we need to reclaim if only the cnode is supplied.
- *
- * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
- * if both are invoked right after the other. In the second call, most of this function's if()
- * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
- * As a quick check to see if this function is necessary, determine if the cnode is already
- * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that
- * remain for cnodes marked in such a fashion is to teardown their fork references and
- * release all directory hints and hardlink origins. However, both of those are done
- * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog
- * entry is no longer there.
- *
- * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are
- * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
- * is totally gone by that point.
- *
- * Assumes that both truncate and cnode locks for 'cp' are held.
- */
-static
-int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim)
-{
- int forkcount = 0;
- enum vtype v_type;
- struct cnode *cp;
- int error = 0;
- bool started_tr = false;
- struct hfsmount *hfsmp = VTOHFS(vp);
- struct proc *p = vfs_context_proc(ctx);
- int truncated = 0;
- cat_cookie_t cookie;
- int cat_reserve = 0;
- int lockflags;
- int ea_error = 0;
-
- v_type = vnode_vtype(vp);
- cp = VTOC(vp);
-
- if (cp->c_datafork) {
- ++forkcount;
- }
- if (cp->c_rsrcfork) {
- ++forkcount;
- }
-
- /*
- * Push file data out for normal files that haven't been evicted from
- * the namespace. We only do this if this function was not called from reclaim,
- * because by that point the UBC information has been totally torn down.
- *
- * There should also be no way that a normal file that has NOT been deleted from
- * the namespace to skip INACTIVE and go straight to RECLAIM. That race only happens
- * when the file becomes open-unlinked.
- */
- if ((v_type == VREG) &&
- (!ISSET(cp->c_flag, C_DELETED)) &&
- (!ISSET(cp->c_flag, C_NOEXISTS)) &&
- (VTOF(vp)->ff_blocks) &&
- (reclaim == 0)) {
- /*
- * If we're called from hfs_vnop_inactive, all this means is at the time
- * the logic for deciding to call this function, there were not any lingering
- * mmap/fd references for this file. However, there is nothing preventing the system
- * from creating a new reference in between the time that logic was checked
- * and we entered hfs_vnop_inactive. As a result, the only time we can guarantee
- * that there aren't any references is during vnop_reclaim.
- */
- hfs_filedone(vp, ctx, 0);
- }
-
- /*
- * Remove any directory hints or cached origins
- */
- if (v_type == VDIR) {
- hfs_reldirhints(cp, 0);
- }
- if (cp->c_flag & C_HARDLINK) {
- hfs_relorigins(cp);
- }
-
- /*
- * -- Handle open unlinked files --
- *
- * If the vnode is in use, it means a force unmount is in progress
- * in which case we defer cleaning up until either we come back
- * through here via hfs_vnop_reclaim, at which point the UBC
- * information will have been torn down and the vnode might no
- * longer be in use, or if it's still in use, it will get cleaned
- * up when next remounted.
- */
- if (ISSET(cp->c_flag, C_DELETED) && !vnode_isinuse(vp, 0)) {
- /*
- * This check is slightly complicated. We should only truncate data
- * in very specific cases for open-unlinked files. This is because
- * we want to ensure that the resource fork continues to be available
- * if the caller has the data fork open. However, this is not symmetric;
- * someone who has the resource fork open need not be able to access the data
- * fork once the data fork has gone inactive.
- *
- * If we're the last fork, then we have cleaning up to do.
- *
- * A) last fork, and vp == c_vp
- * Truncate away own fork data. If rsrc fork is not in core, truncate it too.
- *
- * B) last fork, and vp == c_rsrc_vp
- * Truncate ourselves, assume data fork has been cleaned due to C).
- *
- * If we're not the last fork, then things are a little different:
- *
- * C) not the last fork, vp == c_vp
- * Truncate ourselves. Once the file has gone out of the namespace,
- * it cannot be further opened. Further access to the rsrc fork may
- * continue, however.
- *
- * D) not the last fork, vp == c_rsrc_vp
- * Don't enter the block below, just clean up vnode and push it out of core.
- */
-
- if ((v_type == VREG || v_type == VLNK) &&
- ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
-
- /* Truncate away our own fork data. (Case A, B, C above) */
- if (VTOF(vp)->ff_blocks != 0) {
- /*
- * SYMLINKS only:
- *
- * Encapsulate the entire change (including truncating the link) in
- * nested transactions if we are modifying a symlink, because we know that its
- * file length will be at most 4k, and we can fit both the truncation and
- * any relevant bitmap changes into a single journal transaction. We also want
- * the kill_block code to execute in the same transaction so that any dirty symlink
- * blocks will not be written. Otherwise, rely on
- * hfs_truncate doing its own transactions to ensure that we don't blow up
- * the journal.
- */
- if (!started_tr && (v_type == VLNK)) {
- if (hfs_start_transaction(hfsmp) != 0) {
- error = EINVAL;
- goto out;
- }
- else {
- started_tr = true;
- }
- }
-
- /*
- * At this point, we have decided that this cnode is
- * suitable for full removal. We are about to deallocate
- * its blocks and remove its entry from the catalog.
- * If it was a symlink, then it's possible that the operation
- * which created it is still in the current transaction group
- * due to coalescing. Take action here to kill the data blocks
- * of the symlink out of the journal before moving to
- * deallocate the blocks. We need to be in the middle of
- * a transaction before calling buf_iterate like this.
- *
- * Note: we have to kill any potential symlink buffers out of
- * the journal prior to deallocating their blocks. This is so
- * that we don't race with another thread that may be doing an
- * an allocation concurrently and pick up these blocks. It could
- * generate I/O against them which could go out ahead of our journal
- * transaction.
- */
-
- if (hfsmp->jnl && vnode_islnk(vp)) {
- buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
- }
-
-
- /*
- * This truncate call (and the one below) is fine from VNOP_RECLAIM's
- * context because we're only removing blocks, not zero-filling new
- * ones. The C_DELETED check above makes things much simpler.
- */
- error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0, ctx);
- if (error) {
- goto out;
- }
- truncated = 1;
-
- /* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */
- if (started_tr) {
- hfs_end_transaction(hfsmp);
- started_tr = false;
- }
-
- }
-
- /*
- * Truncate away the resource fork, if we represent the data fork and
- * it is the last fork. That means, by definition, the rsrc fork is not in
- * core. To avoid bringing a vnode into core for the sole purpose of deleting the
- * data in the resource fork, we call cat_lookup directly, then hfs_release_storage
- * to get rid of the resource fork's data. Note that because we are holding the
- * cnode lock, it is impossible for a competing thread to create the resource fork
- * vnode from underneath us while we do this.
- *
- * This is invoked via case A above only.
- */
- if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
- struct cat_lookup_buffer *lookup_rsrc = NULL;
- struct cat_desc *desc_ptr = NULL;
- lockflags = 0;
-
- MALLOC(lookup_rsrc, struct cat_lookup_buffer*, sizeof (struct cat_lookup_buffer), M_TEMP, M_WAITOK);
- if (lookup_rsrc == NULL) {
- printf("hfs_cnode_teardown: ENOMEM from MALLOC\n");
- error = ENOMEM;
- goto out;
- }
- else {
- bzero (lookup_rsrc, sizeof (struct cat_lookup_buffer));
- }
-
- if (cp->c_desc.cd_namelen == 0) {
- /* Initialize the rsrc descriptor for lookup if necessary*/
- MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid);
-
- lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name;
- lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name);
- lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
- lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid;
-
- desc_ptr = &lookup_rsrc->lookup_desc;
- }
- else {
- desc_ptr = &cp->c_desc;
- }
-
- lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
-
- error = cat_lookup (hfsmp, desc_ptr, 1, 0, (struct cat_desc *) NULL,
- (struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL);
-
- hfs_systemfile_unlock (hfsmp, lockflags);
-
- if (error) {
- FREE (lookup_rsrc, M_TEMP);
- goto out;
- }
-
- /*
- * Make the filefork in our temporary struct look like a real
- * filefork. Fill in the cp, sysfileinfo and rangelist fields..
- */
- rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges);
- lookup_rsrc->lookup_fork.ff_cp = cp;
-
- /*
- * If there were no errors, then we have the catalog's fork information
- * for the resource fork in question. Go ahead and delete the data in it now.
- */
-
- error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid);
- FREE(lookup_rsrc, M_TEMP);
-
- if (error) {
- goto out;
- }
-
- /*
- * This fileid's resource fork extents have now been fully deleted on-disk
- * and this CNID is no longer valid. At this point, we should be able to
- * zero out cp->c_blocks to indicate there is no data left in this file.
- */
- cp->c_blocks = 0;
- }
- }
-
- /*
- * If we represent the last fork (or none in the case of a dir),
- * and the cnode has become open-unlinked...
- *
- * We check c_blocks here because it is possible in the force
- * unmount case for the data fork to be in use but the resource
- * fork to not be in use in which case we will truncate the
- * resource fork, but not the data fork. It will get cleaned
- * up upon next mount.
- */
- if (forkcount <= 1 && !cp->c_blocks) {
- /*
- * If it has EA's, then we need to get rid of them.
- *
- * Note that this must happen outside of any other transactions
- * because it starts/ends its own transactions and grabs its
- * own locks. This is to prevent a file with a lot of attributes
- * from creating a transaction that is too large (which panics).
- */
- if (ISSET(cp->c_attr.ca_recflags, kHFSHasAttributesMask))
- ea_error = hfs_removeallattr(hfsmp, cp->c_fileid, &started_tr);
-
- /*
- * Remove the cnode's catalog entry and release all blocks it
- * may have been using.
- */
-
- /*
- * Mark cnode in transit so that no one can get this
- * cnode from cnode hash.
- */
- // hfs_chash_mark_in_transit(hfsmp, cp);
- // XXXdbg - remove the cnode from the hash table since it's deleted
- // otherwise someone could go to sleep on the cnode and not
- // be woken up until this vnode gets recycled which could be
- // a very long time...
- hfs_chashremove(hfsmp, cp);
-
- cp->c_flag |= C_NOEXISTS; // XXXdbg
- cp->c_rdev = 0;
-
- if (!started_tr) {
- if (hfs_start_transaction(hfsmp) != 0) {
- error = EINVAL;
- goto out;
- }
- started_tr = true;
- }
-
- /*
- * Reserve some space in the Catalog file.
- */
- if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) {
- goto out;
- }
- cat_reserve = 1;
-
- lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
-
- if (cp->c_blocks > 0) {
- printf("hfs_inactive: deleting non-empty%sfile %d, "
- "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
- (int)cp->c_fileid, (int)cp->c_blocks);
- }
-
- //
- // release the name pointer in the descriptor so that
- // cat_delete() will use the file-id to do the deletion.
- // in the case of hard links this is imperative (in the
- // case of regular files the fileid and cnid are the
- // same so it doesn't matter).
- //
- cat_releasedesc(&cp->c_desc);
-
- /*
- * The descriptor name may be zero,
- * in which case the fileid is used.
- */
- error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
-
- if (error && truncated && (error != ENXIO)) {
- printf("hfs_inactive: couldn't delete a truncated file!");
- }
-
- /* Update HFS Private Data dir */
- if (error == 0) {
- hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
- if (vnode_isdir(vp)) {
- DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
- }
- (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
- &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
- }
-
- hfs_systemfile_unlock(hfsmp, lockflags);
-
- if (error) {
- goto out;
- }
-
- #if QUOTA
- if (hfsmp->hfs_flags & HFS_QUOTAS)
- (void)hfs_chkiq(cp, -1, NOCRED, 0);
- #endif /* QUOTA */
-
- /* Already set C_NOEXISTS at the beginning of this block */
- cp->c_flag &= ~C_DELETED;
- cp->c_touch_chgtime = TRUE;
- cp->c_touch_modtime = TRUE;
-
- if (error == 0)
- hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
- }
- } // if <open unlinked>
-
- hfs_update(vp, reclaim ? HFS_UPDATE_FORCE : 0);
-
- /*
- * Since we are about to finish what might be an inactive call, propagate
- * any remaining modified or touch bits from the cnode to the vnode. This
- * serves as a hint to vnode recycling that we shouldn't recycle this vnode
- * synchronously.
- *
- * For now, if the node *only* has a dirty atime, we don't mark
- * the vnode as dirty. VFS's asynchronous recycling can actually
- * lead to worse performance than having it synchronous. When VFS
- * is fixed to be more performant, we can be more honest about
- * marking vnodes as dirty when it's only the atime that's dirty.
- */
- if (hfs_is_dirty(cp) == HFS_DIRTY || ISSET(cp->c_flag, C_DELETED)) {
- vnode_setdirty(vp);
- } else {
- vnode_cleardirty(vp);
- }
-
-out:
- if (cat_reserve)
- cat_postflight(hfsmp, &cookie, p);
-
- if (started_tr) {
- hfs_end_transaction(hfsmp);
- started_tr = false;
- }
-
- return error;
-}
-
-
-/*
- * hfs_vnop_inactive
- *
- * The last usecount on the vnode has gone away, so we need to tear down
- * any remaining data still residing in the cnode. If necessary, write out
- * remaining blocks or delete the cnode's entry in the catalog.
- */
-int
-hfs_vnop_inactive(struct vnop_inactive_args *ap)
-{
- struct vnode *vp = ap->a_vp;
- struct cnode *cp;
- struct hfsmount *hfsmp = VTOHFS(vp);
- struct proc *p = vfs_context_proc(ap->a_context);
- int error = 0;
- int took_trunc_lock = 0;
- enum vtype v_type;
-
- v_type = vnode_vtype(vp);
- cp = VTOC(vp);
-
- if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) ||
- (hfsmp->hfs_freezing_proc == p)) {
- error = 0;
- goto inactive_done;
- }
-
- /*
- * For safety, do NOT call vnode_recycle from inside this function. This can cause
- * problems in the following scenario:
- *
- * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE
- *
- * If we're being invoked as a result of a reclaim that was already in-flight, then we
- * cannot call vnode_recycle again. Being in reclaim means that there are no usecounts or
- * iocounts by definition. As a result, if we were to call vnode_recycle, it would immediately
- * try to re-enter reclaim again and panic.
- *
- * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called.
- * 1) last usecount goes away on the vnode (vnode_rele)
- * 2) last iocount goes away on a vnode that previously had usecounts but didn't have
- * vnode_recycle called (vnode_put)
- * 3) vclean by way of reclaim
- *
- * In this function we would generally want to call vnode_recycle to speed things
- * along to ensure that we don't leak blocks due to open-unlinked files. However, by
- * virtue of being in this function already, we can call hfs_cnode_teardown, which
- * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that
- * there's no entry in the catalog and no backing store anymore. If that's the case,
- * then we really don't care all that much when the vnode actually goes through reclaim.
- * Further, the HFS VNOPs that manipulated the namespace in order to create the open-
- * unlinked file in the first place should have already called vnode_recycle on the vnode
- * to guarantee that it would go through reclaim in a speedy way.
- */
-
- if (cp->c_flag & C_NOEXISTS) {
- /*
- * If the cnode has already had its cat entry removed, then
- * just skip to the end. We don't need to do anything here.
- */
- error = 0;
- goto inactive_done;
- }
-
- if ((v_type == VREG || v_type == VLNK)) {
- hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
- took_trunc_lock = 1;
- }
-
- (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
-
- /*
- * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked
- * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS.
- */
- error = hfs_cnode_teardown (vp, ap->a_context, 0);
-
- /*
- * Drop the truncate lock before unlocking the cnode
- * (which can potentially perform a vnode_put and
- * recycle the vnode which in turn might require the
- * truncate lock)
- */
- if (took_trunc_lock) {
- hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
- }
-
- hfs_unlock(cp);
-
-inactive_done:
-
- return error;
-}
-
-
-/*
- * File clean-up (zero fill and shrink peof).
- */
-
-int
-hfs_filedone(struct vnode *vp, vfs_context_t context,
- hfs_file_done_opts_t opts)
-{
- struct cnode *cp;
- struct filefork *fp;
- struct hfsmount *hfsmp;
- off_t leof;
- u_int32_t blks, blocksize;
-
- cp = VTOC(vp);
- fp = VTOF(vp);
- hfsmp = VTOHFS(vp);
- leof = fp->ff_size;
-
- if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0))
- return (0);
-
- hfs_flush_invalid_ranges(vp);
-
- blocksize = VTOVCB(vp)->blockSize;
- blks = leof / blocksize;
- if (((off_t)blks * (off_t)blocksize) != leof)
- blks++;
- /*
- * Shrink the peof to the smallest size neccessary to contain the leof.
- */
- if (blks < fp->ff_blocks) {
- (void) hfs_truncate(vp, leof, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, context);
- }
-
- if (!ISSET(opts, HFS_FILE_DONE_NO_SYNC)) {
- hfs_unlock(cp);
- cluster_push(vp, IO_CLOSE);
- hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
-
- /*
- * If the hfs_truncate didn't happen to flush the vnode's
- * information out to disk, force it to be updated now that
- * all invalid ranges have been zero-filled and validated:
- */
- hfs_update(vp, 0);
- }
-
- return (0);
-}
-
-
-/*
- * Reclaim a cnode so that it can be used for other purposes.
- */
-int
-hfs_vnop_reclaim(struct vnop_reclaim_args *ap)
-{
- struct vnode *vp = ap->a_vp;
- struct cnode *cp;
- struct filefork *fp = NULL;
- struct filefork *altfp = NULL;
- struct hfsmount *hfsmp = VTOHFS(vp);
- vfs_context_t ctx = ap->a_context;
- int reclaim_cnode = 0;
- int err = 0;
- enum vtype v_type;
-
- v_type = vnode_vtype(vp);
- cp = VTOC(vp);
-
- /*
- * We don't take the truncate lock since by the time reclaim comes along,
- * all dirty pages have been synced and nobody should be competing
- * with us for this thread.
- */
- (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
-
- /*
- * Sync to disk any remaining data in the cnode/vnode. This includes
- * a call to hfs_update if the cnode has outbound data.
- *
- * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
- * because the catalog entry for this cnode is already gone.
- */
- if (!ISSET(cp->c_flag, C_NOEXISTS)) {
- err = hfs_cnode_teardown(vp, ctx, 1);
- }
-
- /*
- * Keep track of an inactive hot file. Don't bother on ssd's since
- * the tracking is done differently (it's done at read() time)
- */
- if (!vnode_isdir(vp) &&
- !vnode_issystem(vp) &&
- !(cp->c_flag & (C_DELETED | C_NOEXISTS)) &&
- !(hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN)) {
- (void) hfs_addhotfile(vp);
- }
- vnode_removefsref(vp);
-
- /*
- * Find file fork for this vnode (if any)
- * Also check if another fork is active
- */
- if (cp->c_vp == vp) {
- fp = cp->c_datafork;
- altfp = cp->c_rsrcfork;
-
- cp->c_datafork = NULL;
- cp->c_vp = NULL;
- } else if (cp->c_rsrc_vp == vp) {
- fp = cp->c_rsrcfork;
- altfp = cp->c_datafork;
-
- cp->c_rsrcfork = NULL;
- cp->c_rsrc_vp = NULL;
- } else {
- panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
- }
- /*
- * On the last fork, remove the cnode from its hash chain.
- */
- if (altfp == NULL) {
- /* If we can't remove it then the cnode must persist! */
- if (hfs_chashremove(hfsmp, cp) == 0)
- reclaim_cnode = 1;
- /*
- * Remove any directory hints
- */
- if (vnode_isdir(vp)) {
- hfs_reldirhints(cp, 0);
- }
-
- if(cp->c_flag & C_HARDLINK) {
- hfs_relorigins(cp);
- }
- }
- /* Release the file fork and related data */
- if (fp) {
- /* Dump cached symlink data */
- if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
- FREE(fp->ff_symlinkptr, M_TEMP);
- }
- rl_remove_all(&fp->ff_invalidranges);
- FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
- }
-
- /*
- * If there was only one active fork then we can release the cnode.
- */
- if (reclaim_cnode) {
- hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
- hfs_unlock(cp);
- hfs_reclaim_cnode(hfsmp, cp);
- }
- else {
- /*
- * cnode in use. If it is a directory, it could have
- * no live forks. Just release the lock.
- */
- hfs_unlock(cp);
- }
-
- vnode_clearfsnode(vp);
- return (0);
-}
-
-
-extern int (**hfs_vnodeop_p) (void *);
-extern int (**hfs_specop_p) (void *);
-#if FIFO
-extern int (**hfs_fifoop_p) (void *);
-#endif
-
-#if CONFIG_HFS_STD
-extern int (**hfs_std_vnodeop_p) (void *);
-#endif
-
-/*
- * hfs_getnewvnode - get new default vnode
- *
- * The vnode is returned with an iocount and the cnode locked.
- * The cnode of the parent vnode 'dvp' may or may not be locked, depending on
- * the circumstances. The cnode in question (if acquiring the resource fork),
- * may also already be locked at the time we enter this function.
- *
- * Note that there are both input and output flag arguments to this function.
- * If one of the input flags (specifically, GNV_USE_VP), is set, then
- * hfs_getnewvnode will use the parameter *vpp, which is traditionally only
- * an output parameter, as both an input and output parameter. It will use
- * the vnode provided in the output, and pass it to vnode_create with the
- * proper flavor so that a new vnode is _NOT_ created on our behalf when
- * we dispatch to VFS. This may be important in various HFS vnode creation
- * routines, such a create or get-resource-fork, because we risk deadlock if
- * jetsam is involved.
- *
- * Deadlock potential exists if jetsam is synchronously invoked while we are waiting
- * for a vnode to be recycled in order to give it the identity we want. If jetsam
- * happens to target a process for termination that is blocked in-kernel, waiting to
- * acquire the cnode lock on our parent 'dvp', while our current thread has it locked,
- * neither side will make forward progress and the watchdog timer will eventually fire.
- * To prevent this, a caller of hfs_getnewvnode may choose to proactively force
- * any necessary vnode reclamation/recycling while it is not holding any locks and
- * thus not prone to deadlock. If this is the case, GNV_USE_VP will be set and
- * the parameter will be used as described above.
- *
- * !!! <NOTE> !!!!
- * In circumstances when GNV_USE_VP is set, this function _MUST_ clean up and either consume
- * or dispose of the provided vnode. We funnel all errors to a single return value so that
- * if provided_vp is still non-NULL, then we will dispose of the vnode. This will occur in
- * all error cases of this function -- anywhere we zero/NULL out the *vpp parameter. It may
- * also occur if the current thread raced with another to create the same vnode, and we
- * find the entry already present in the cnode hash.
- * !!! </NOTE> !!!
- */
-int
-hfs_getnewvnode(
- struct hfsmount *hfsmp,
- struct vnode *dvp,
- struct componentname *cnp,
- struct cat_desc *descp,
- int flags,
- struct cat_attr *attrp,
- struct cat_fork *forkp,
- struct vnode **vpp,
- int *out_flags)
-{
- struct mount *mp = HFSTOVFS(hfsmp);
- struct vnode *vp = NULL;
- struct vnode **cvpp;
- struct vnode *tvp = NULLVP;
- struct cnode *cp = NULL;
- struct filefork *fp = NULL;
- int hfs_standard = 0;
- int retval = 0;
- int issystemfile;
- int wantrsrc;
- int hflags = 0;
- int need_update_identity = 0;
- struct vnode_fsparam vfsp;
- enum vtype vtype;
-
- struct vnode *provided_vp = NULL;
-
-
-#if QUOTA
- int i;
-#endif /* QUOTA */
-
- hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD);
-
- if (flags & GNV_USE_VP) {
- /* Store the provided VP for later use */
- provided_vp = *vpp;
- }
-
- /* Zero out the vpp regardless of provided input */
- *vpp = NULL;
-
- /* Zero out the out_flags */
- *out_flags = 0;
-
- if (attrp->ca_fileid == 0) {
- retval = ENOENT;
- goto gnv_exit;
- }
-
-#if !FIFO
- if (IFTOVT(attrp->ca_mode) == VFIFO) {
- retval = ENOTSUP;
- goto gnv_exit;
- }
-#endif /* !FIFO */
- vtype = IFTOVT(attrp->ca_mode);
- issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
- wantrsrc = flags & GNV_WANTRSRC;
-
- /* Sanity check the vtype and mode */
- if (vtype == VBAD) {
- /* Mark the FS as corrupt and bail out */
- hfs_mark_inconsistent(hfsmp, HFS_INCONSISTENCY_DETECTED);
- retval = EINVAL;
- goto gnv_exit;
- }
-
-#ifdef HFS_CHECK_LOCK_ORDER
- /*
- * The only case where it's permissible to hold the parent cnode
- * lock is during a create operation (hfs_makenode) or when
- * we don't need the cnode lock (GNV_SKIPLOCK).
- */
- if ((dvp != NULL) &&
- (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 &&
- VTOC(dvp)->c_lockowner == current_thread()) {
- panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp));
- }
-#endif /* HFS_CHECK_LOCK_ORDER */
-
- /*
- * Get a cnode (new or existing)
- */
- cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc,
- (flags & GNV_SKIPLOCK), out_flags, &hflags);
-
- /*
- * If the id is no longer valid for lookups we'll get back a NULL cp.
- */
- if (cp == NULL) {
- retval = ENOENT;
- goto gnv_exit;
- }
- /*
- * We may have been provided a vnode via
- * GNV_USE_VP. In this case, we have raced with
- * a 2nd thread to create the target vnode. The provided
- * vnode that was passed in will be dealt with at the
- * end of the function, as we don't zero out the field
- * until we're ready to pass responsibility to VFS.
- */
-
-
- /*
- * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
- * descriptor in the cnode as needed if the cnode represents a hardlink.
- * We want the caller to get the most up-to-date copy of the descriptor
- * as possible. However, we only do anything here if there was a valid vnode.
- * If there isn't a vnode, then the cnode is brand new and needs to be initialized
- * as it doesn't have a descriptor or cat_attr yet.
- *
- * If we are about to replace the descriptor with the user-supplied one, then validate
- * that the descriptor correctly acknowledges this item is a hardlink. We could be
- * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
- * result but the file was not yet a hardlink. With sufficient delay between there
- * and here, we might accidentally copy in the raw inode ID into the descriptor in the
- * call below. If the descriptor's CNID is the same as the fileID then it must
- * not yet have been a hardlink when the lookup occurred.
- */
-
- if (!(hfs_checkdeleted(cp))) {
- //
- // If the bytes of the filename in the descp do not match the bytes in the
- // cnp (and we're not looking up the resource fork), then we want to update
- // the vnode identity to contain the bytes that HFS stores so that when an
- // fsevent gets generated, it has the correct filename. otherwise daemons
- // that match filenames produced by fsevents with filenames they have stored
- // elsewhere (e.g. bladerunner, backupd, mds), the filenames will not match.
- // See: <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
- // for more details.
- //
-#ifdef CN_WANTSRSRCFORK
- if (*vpp && cnp && cnp->cn_nameptr && !(cnp->cn_flags & CN_WANTSRSRCFORK) && descp && descp->cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)descp->cd_nameptr, descp->cd_namelen) != 0) {
-#else
- if (*vpp && cnp && cnp->cn_nameptr && descp && descp->cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)descp->cd_nameptr, descp->cd_namelen) != 0) {
-#endif
- vnode_update_identity (*vpp, dvp, (const char *)descp->cd_nameptr, descp->cd_namelen, 0, VNODE_UPDATE_NAME);
- }
- if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) {
- /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
- if ((descp->cd_cnid == cp->c_attr.ca_fileid) &&
- (attrp->ca_linkcount != cp->c_attr.ca_linkcount)){
-
- if ((flags & GNV_SKIPLOCK) == 0) {
- /*
- * Then we took the lock. Drop it before calling
- * vnode_put, which may invoke hfs_vnop_inactive and need to take
- * the cnode lock again.
- */
- hfs_unlock(cp);
- }
-
- /*
- * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
- * force a re-drive in the lookup routine.
- * Drop the iocount on the vnode obtained from
- * chash_getcnode if needed.
- */
- if (*vpp != NULL) {
- vnode_put (*vpp);
- *vpp = NULL;
- }
-
- /*
- * If we raced with VNOP_RECLAIM for this vnode, the hash code could
- * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
- * the hash code peeks at those fields without holding the cnode lock because
- * it needs to be fast. As a result, we may have set H_ATTACH in the chash
- * call above. Since we're bailing out, unset whatever flags we just set, and
- * wake up all waiters for this cnode.
- */
- if (hflags) {
- hfs_chashwakeup(hfsmp, cp, hflags);
- }
-
- *out_flags = GNV_CAT_ATTRCHANGED;
- retval = ERECYCLE;
- goto gnv_exit;
- }
- else {
- /*
- * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor.
- *
- * Replacing the descriptor here is fine because we looked up the item without
- * a vnode in hand before. If a vnode existed, its identity must be attached to this
- * item. We are not susceptible to the lookup fastpath issue at this point.
- */
- replace_desc(cp, descp);
-
- /*
- * This item was a hardlink, and its name needed to be updated. By replacing the
- * descriptor above, we've now updated the cnode's internal representation of
- * its link ID/CNID, parent ID, and its name. However, VFS must now be alerted
- * to the fact that this vnode now has a new parent, since we cannot guarantee
- * that the new link lived in the same directory as the alternative name for
- * this item.
- */
- if ((*vpp != NULL) && (cnp || cp->c_desc.cd_nameptr)) {
- /* we could be requesting the rsrc of a hardlink file... */
-#ifdef CN_WANTSRSRCFORK
- if (cp->c_desc.cd_nameptr && (cnp == NULL || !(cnp->cn_flags & CN_WANTSRSRCFORK))) {
-#else
- if (cp->c_desc.cd_nameptr) {
-#endif
- //
- // Update the identity with what we have stored on disk as
- // the name of this file. This is related to:
- // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
- //
- vnode_update_identity (*vpp, dvp, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen, 0,
- (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
- } else if (cnp) {
- vnode_update_identity (*vpp, dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash,
- (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
- }
- }
- }
- }
- }
-
- /*
- * At this point, we have performed hardlink and open-unlinked checks
- * above. We have now validated the state of the vnode that was given back
- * to us from the cnode hash code and find it safe to return.
- */
- if (*vpp != NULL) {
- retval = 0;
- goto gnv_exit;
- }
-
- /*
- * If this is a new cnode then initialize it.
- */
- if (ISSET(cp->c_hflag, H_ALLOC)) {
- lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr);
-#if HFS_COMPRESSION
- cp->c_decmp = NULL;
-#endif
-
- /* Make sure its still valid (ie exists on disk). */
- if (!(flags & GNV_CREATE)) {
- int error = 0;
- if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) {
- hfs_chash_abort(hfsmp, cp);
- if ((flags & GNV_SKIPLOCK) == 0) {
- hfs_unlock(cp);
- }
- hfs_reclaim_cnode(hfsmp, cp);
- *vpp = NULL;
- /*
- * If we hit this case, that means that the entry was there in the catalog when
- * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time
- * that we checked the catalog and the time we went to get a vnode/cnode for it,
- * it had been removed from the namespace and the vnode totally reclaimed. As a result,
- * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
- * an ENOENT. To indicate to the caller that they should really double-check the
- * entry (it could have been renamed over and gotten a new fileid), we mark a bit
- * in the output flags.
- */
- if (error == ENOENT) {
- *out_flags = GNV_CAT_DELETED;
- retval = ENOENT;
- goto gnv_exit;
- }
-
- /*
- * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
- * this function as an argument because the catalog may have changed w.r.t hardlink
- * link counts and the firstlink field. If that validation check fails, then let
- * lookup re-drive itself to get valid/consistent data with the same failure condition below.
- */
- if (error == ERECYCLE) {
- *out_flags = GNV_CAT_ATTRCHANGED;
- retval = ERECYCLE;
- goto gnv_exit;
- }
- }
- }
- bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
- bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
-
- /* The name was inherited so clear descriptor state... */
- descp->cd_namelen = 0;
- descp->cd_nameptr = NULL;
- descp->cd_flags &= ~CD_HASBUF;
-
- /* Tag hardlinks */
- if ((vtype == VREG || vtype == VDIR
- || vtype == VSOCK || vtype == VFIFO)
- && (descp->cd_cnid != attrp->ca_fileid
- || ISSET(attrp->ca_recflags, kHFSHasLinkChainMask))) {
- cp->c_flag |= C_HARDLINK;
- }
- /*
- * Fix-up dir link counts.
- *
- * Earlier versions of Leopard used ca_linkcount for posix
- * nlink support (effectively the sub-directory count + 2).
- * That is now accomplished using the ca_dircount field with
- * the corresponding kHFSHasFolderCountMask flag.
- *
- * For directories the ca_linkcount is the true link count,
- * tracking the number of actual hardlinks to a directory.
- *
- * We only do this if the mount has HFS_FOLDERCOUNT set;
- * at the moment, we only set that for HFSX volumes.
- */
- if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
- (vtype == VDIR) &&
- !(attrp->ca_recflags & kHFSHasFolderCountMask) &&
- (cp->c_attr.ca_linkcount > 1)) {
- if (cp->c_attr.ca_entries == 0)
- cp->c_attr.ca_dircount = 0;
- else
- cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
-
- cp->c_attr.ca_linkcount = 1;
- cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
- if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
- cp->c_flag |= C_MODIFIED;
- }
-#if QUOTA
- if (hfsmp->hfs_flags & HFS_QUOTAS) {
- for (i = 0; i < MAXQUOTAS; i++)
- cp->c_dquot[i] = NODQUOT;
- }
-#endif /* QUOTA */
- /* Mark the output flag that we're vending a new cnode */
- *out_flags |= GNV_NEW_CNODE;
- }
-
- if (vtype == VDIR) {
- if (cp->c_vp != NULL)
- panic("hfs_getnewvnode: orphaned vnode (data)");
- cvpp = &cp->c_vp;
- } else {
- if (forkp && attrp->ca_blocks < forkp->cf_blocks)
- panic("hfs_getnewvnode: bad ca_blocks (too small)");
- /*
- * Allocate and initialize a file fork...
- */
- MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork),
- M_HFSFORK, M_WAITOK);
- fp->ff_cp = cp;
- if (forkp)
- bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
- else
- bzero(&fp->ff_data, sizeof(struct cat_fork));
- rl_init(&fp->ff_invalidranges);
- fp->ff_sysfileinfo = 0;
-
- if (wantrsrc) {
- if (cp->c_rsrcfork != NULL)
- panic("hfs_getnewvnode: orphaned rsrc fork");
- if (cp->c_rsrc_vp != NULL)
- panic("hfs_getnewvnode: orphaned vnode (rsrc)");
- cp->c_rsrcfork = fp;
- cvpp = &cp->c_rsrc_vp;
- if ( (tvp = cp->c_vp) != NULLVP )
- cp->c_flag |= C_NEED_DVNODE_PUT;
- } else {
- if (cp->c_datafork != NULL)
- panic("hfs_getnewvnode: orphaned data fork");
- if (cp->c_vp != NULL)
- panic("hfs_getnewvnode: orphaned vnode (data)");
- cp->c_datafork = fp;
- cvpp = &cp->c_vp;
- if ( (tvp = cp->c_rsrc_vp) != NULLVP)
- cp->c_flag |= C_NEED_RVNODE_PUT;
- }
- }
- if (tvp != NULLVP) {
- /*
- * grab an iocount on the vnode we weren't
- * interested in (i.e. we want the resource fork
- * but the cnode already has the data fork)
- * to prevent it from being
- * recycled by us when we call vnode_create
- * which will result in a deadlock when we
- * try to take the cnode lock in hfs_vnop_fsync or
- * hfs_vnop_reclaim... vnode_get can be called here
- * because we already hold the cnode lock which will
- * prevent the vnode from changing identity until
- * we drop it.. vnode_get will not block waiting for
- * a change of state... however, it will return an
- * error if the current iocount == 0 and we've already
- * started to terminate the vnode... we don't need/want to
- * grab an iocount in the case since we can't cause
- * the fileystem to be re-entered on this thread for this vp
- *
- * the matching vnode_put will happen in hfs_unlock
- * after we've dropped the cnode lock
- */
- if ( vnode_get(tvp) != 0)
- cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT);
- }
- vfsp.vnfs_mp = mp;
- vfsp.vnfs_vtype = vtype;
- vfsp.vnfs_str = "hfs";
- if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) {
- vfsp.vnfs_dvp = NULL; /* no parent for me! */
- vfsp.vnfs_cnp = NULL; /* no name for me! */
- } else {
- vfsp.vnfs_dvp = dvp;
- vfsp.vnfs_cnp = cnp;
- }
-
- vfsp.vnfs_fsnode = cp;
-
- /*
- * Special Case HFS Standard VNOPs from HFS+, since
- * HFS standard is readonly/deprecated as of 10.6
- */
-
-#if FIFO
- if (vtype == VFIFO )
- vfsp.vnfs_vops = hfs_fifoop_p;
- else
-#endif
- if (vtype == VBLK || vtype == VCHR)
- vfsp.vnfs_vops = hfs_specop_p;
-#if CONFIG_HFS_STD
- else if (hfs_standard)
- vfsp.vnfs_vops = hfs_std_vnodeop_p;
-#endif
- else
- vfsp.vnfs_vops = hfs_vnodeop_p;
-
- if (vtype == VBLK || vtype == VCHR)
- vfsp.vnfs_rdev = attrp->ca_rdev;
- else
- vfsp.vnfs_rdev = 0;
-
- if (forkp)
- vfsp.vnfs_filesize = forkp->cf_size;
- else
- vfsp.vnfs_filesize = 0;
-
- vfsp.vnfs_flags = VNFS_ADDFSREF;
-#ifdef CN_WANTSRSRCFORK
- if (cnp && cnp->cn_nameptr && !(cnp->cn_flags & CN_WANTSRSRCFORK) && cp->c_desc.cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen) != 0) {
-#else
- if (cnp && cnp->cn_nameptr && cp->c_desc.cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen) != 0) {
-#endif
- //
- // We don't want VFS to add an entry for this vnode because the name in the
- // cnp does not match the bytes stored on disk for this file. Instead we'll
- // update the identity later after the vnode is created and we'll do so with
- // the correct bytes for this filename. For more details, see:
- // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
- //
- vfsp.vnfs_flags |= VNFS_NOCACHE;
- need_update_identity = 1;
- } else if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE)) {
- vfsp.vnfs_flags |= VNFS_NOCACHE;
- }
-
- /* Tag system files */
- vfsp.vnfs_marksystem = issystemfile;
-
- /* Tag root directory */
- if (descp->cd_cnid == kHFSRootFolderID)
- vfsp.vnfs_markroot = 1;
- else
- vfsp.vnfs_markroot = 0;
-
- /*
- * If provided_vp was non-NULL, then it is an already-allocated (but not
- * initialized) vnode. We simply need to initialize it to this identity.
- * If it was NULL, then assume that we need to call vnode_create with the
- * normal arguments/types.
- */
- if (provided_vp) {
- vp = provided_vp;
- /*
- * After we assign the value of provided_vp into 'vp' (so that it can be
- * mutated safely by vnode_initialize), we can NULL it out. At this point, the disposal
- * and handling of the provided vnode will be the responsibility of VFS, which will
- * clean it up and vnode_put it properly if vnode_initialize fails.
- */
- provided_vp = NULL;
-
- retval = vnode_initialize (VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &vp);
- /* See error handling below for resolving provided_vp */
- }
- else {
- /* Do a standard vnode_create */
- retval = vnode_create (VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &vp);
- }
-
- /*
- * We used a local variable to hold the result of vnode_create/vnode_initialize so that
- * on error cases in vnode_create we won't accidentally harm the cnode's fields
- */
-
- if (retval) {
- /* Clean up if we encountered an error */
- if (fp) {
- if (fp == cp->c_datafork)
- cp->c_datafork = NULL;
- else
- cp->c_rsrcfork = NULL;
-
- FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
- }
- /*
- * If this is a newly created cnode or a vnode reclaim
- * occurred during the attachment, then cleanup the cnode.
- */
- if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) {
- hfs_chash_abort(hfsmp, cp);
- hfs_reclaim_cnode(hfsmp, cp);
- }
- else {
- hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
- if ((flags & GNV_SKIPLOCK) == 0){
- hfs_unlock(cp);
- }
- }
- *vpp = NULL;
- goto gnv_exit;
- }
-
- /* If no error, then assign the value into the cnode's fields */
- *cvpp = vp;
-
- vnode_settag(vp, VT_HFS);
- if (cp->c_flag & C_HARDLINK) {
- vnode_setmultipath(vp);
- }
-
- if (cp->c_attr.ca_recflags & kHFSFastDevCandidateMask) {
- vnode_setfastdevicecandidate(vp);
- }
-
- if (cp->c_attr.ca_recflags & kHFSAutoCandidateMask) {
- vnode_setautocandidate(vp);
- }
-
-
-
-
- if (vp && need_update_identity) {
- //
- // As above, update the name of the vnode if the bytes stored in hfs do not match
- // the bytes in the cnp. See this radar:
- // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
- // for more details.
- //
- vnode_update_identity (vp, dvp, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen, 0, VNODE_UPDATE_NAME);
- }
-
- /*
- * Tag resource fork vnodes as needing an VNOP_INACTIVE
- * so that any deferred removes (open unlinked files)
- * have the chance to process the resource fork.
- */
- if (VNODE_IS_RSRC(vp)) {
- int err;
-
- KERNEL_DEBUG_CONSTANT(HFSDBG_GETNEWVNODE, VM_KERNEL_ADDRPERM(cp->c_vp), VM_KERNEL_ADDRPERM(cp->c_rsrc_vp), 0, 0, 0);
-
- /* Force VL_NEEDINACTIVE on this vnode */
- err = vnode_ref(vp);
- if (err == 0) {
- vnode_rele(vp);
- }
- }
- hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
-
- /*
- * Stop tracking an active hot file.
- */
- if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile && !(hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN)) {
- (void) hfs_removehotfile(vp);
- }
-
-#if CONFIG_PROTECT
- /* Initialize the cp data structures. The key should be in place now. */
- if (!issystemfile && (*out_flags & GNV_NEW_CNODE)) {
- cp_entry_init(cp, mp);
- }
-#endif
-
- *vpp = vp;
- retval = 0;
-
-gnv_exit:
- if (provided_vp) {
- /* Release our empty vnode if it was not used */
- vnode_put (provided_vp);
- }
- return retval;
-}
-
-
-static void
-hfs_reclaim_cnode(hfsmount_t *hfsmp, struct cnode *cp)
-{
-#if QUOTA
- int i;
-
- for (i = 0; i < MAXQUOTAS; i++) {
- if (cp->c_dquot[i] != NODQUOT) {
- dqreclaim(cp->c_dquot[i]);
- cp->c_dquot[i] = NODQUOT;
- }
- }
-#endif /* QUOTA */
-
- /*
- * If the descriptor has a name then release it
- */
- if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) {
- const char *nameptr;
-
- nameptr = (const char *) cp->c_desc.cd_nameptr;
- cp->c_desc.cd_nameptr = 0;
- cp->c_desc.cd_flags &= ~CD_HASBUF;
- cp->c_desc.cd_namelen = 0;
- vfs_removename(nameptr);
- }
-
- /*
- * We only call this function if we are in hfs_vnop_reclaim and
- * attempting to reclaim a cnode with only one live fork. Because the vnode
- * went through reclaim, any future attempts to use this item will have to
- * go through lookup again, which will need to create a new vnode. Thus,
- * destroying the locks below is safe.
- */
-
- lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group);
- lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group);
-#if HFS_COMPRESSION
- if (cp->c_decmp) {
- decmpfs_cnode_destroy(cp->c_decmp);
- FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE);
- }
-#endif
-#if CONFIG_PROTECT
- cp_entry_destroy(hfsmp, cp->c_cpentry);
- cp->c_cpentry = NULL;
-#else
- (void)hfsmp; // Prevent compiler warning
-#endif
-
- bzero(cp, sizeof(struct cnode));
- FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
-}
-
-
-/*
- * hfs_valid_cnode
- *
- * This function is used to validate data that is stored in-core against what is contained
- * in the catalog. Common uses include validating that the parent-child relationship still exist
- * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
- * the point of the check.
- */
-int
-hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp,
- cnid_t cnid, struct cat_attr *cattr, int *error)
-{
- struct cat_attr attr;
- struct cat_desc cndesc;
- int stillvalid = 0;
- int lockflags;
-
- /* System files are always valid */
- if (cnid < kHFSFirstUserCatalogNodeID) {
- *error = 0;
- return (1);
- }
-
- /* XXX optimization: check write count in dvp */
-
- lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
-
- if (dvp && cnp) {
- int lookup = 0;
- struct cat_fork fork;
- bzero(&cndesc, sizeof(cndesc));
- cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
- cndesc.cd_namelen = cnp->cn_namelen;
- cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
- cndesc.cd_hint = VTOC(dvp)->c_childhint;
-
- /*
- * We have to be careful when calling cat_lookup. The result argument
- * 'attr' may get different results based on whether or not you ask
- * for the filefork to be supplied as output. This is because cat_lookupbykey
- * will attempt to do basic validation/smoke tests against the resident
- * extents if there are no overflow extent records, but it needs someplace
- * in memory to store the on-disk fork structures.
- *
- * Since hfs_lookup calls cat_lookup with a filefork argument, we should
- * do the same here, to verify that block count differences are not
- * due to calling the function with different styles. cat_lookupbykey
- * will request the volume be fsck'd if there is true on-disk corruption
- * where the number of blocks does not match the number generated by
- * summing the number of blocks in the resident extents.
- */
-
- lookup = cat_lookup (hfsmp, &cndesc, 0, 0, NULL, &attr, &fork, NULL);
-
- if ((lookup == 0) && (cnid == attr.ca_fileid)) {
- stillvalid = 1;
- *error = 0;
- }
- else {
- *error = ENOENT;
- }
-
- /*
- * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
- * race. Specifically, if there is no vnode/cnode pair for the directory entry
- * being looked up, we have to go to the catalog. But since we don't hold any locks (aside
- * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
- * changing in between the time we do the cat_lookup there and the time we re-grab the
- * catalog lock above to do another cat_lookup.
- *
- * However, we need to check more than just the CNID and parent-child name relationships above.
- * Hardlinks can suffer the same race in the following scenario: Suppose we do a
- * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have
- * the cat_attr in hand (passed in above). But in between then and now, the vnode was
- * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
- * a chance to do anything. This is possible if there are a lot of threads thrashing around
- * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will
- * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
- * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode
- * already exists, as it does in the case of rename and delete.
- */
- if (stillvalid && cattr != NULL) {
- if (cattr->ca_linkcount != attr.ca_linkcount) {
- stillvalid = 0;
- *error = ERECYCLE;
- goto notvalid;
- }
-
- if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) {
- stillvalid = 0;
- *error = ERECYCLE;
- goto notvalid;
- }
-
- if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) {
- stillvalid = 0;
- *error = ERECYCLE;
- goto notvalid;
- }
-
- if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) {
- stillvalid = 0;
- *error = ERECYCLE;
- goto notvalid;
- }
- }
- } else {
- if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0) {
- stillvalid = 1;
- *error = 0;
- }
- else {
- *error = ENOENT;
- }
- }
-notvalid:
- hfs_systemfile_unlock(hfsmp, lockflags);
-
- return (stillvalid);
-}
-
-
-/*
- * Per HI and Finder requirements, HFS should add in the
- * date/time that a particular directory entry was added
- * to the containing directory.
- * This is stored in the extended Finder Info for the
- * item in question.
- *
- * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
- * We must ignore user attempts to set this part of the finderinfo, and
- * so we need to save a local copy of the date added, write in the user
- * finderinfo, then stuff the value back in.
- */
-void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) {
- u_int8_t *finfo = NULL;
-
- /* overlay the FinderInfo to the correct pointer, and advance */
- finfo = (u_int8_t*)attrp->ca_finderinfo;
- finfo = finfo + 16;
-
- /*
- * Make sure to write it out as big endian, since that's how
- * finder info is defined.
- *
- * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
- */
- if (S_ISREG(attrp->ca_mode)) {
- struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
- extinfo->date_added = OSSwapHostToBigInt32(dateadded);
- attrp->ca_recflags |= kHFSHasDateAddedMask;
- }
- else if (S_ISDIR(attrp->ca_mode)) {
- struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
- extinfo->date_added = OSSwapHostToBigInt32(dateadded);
- attrp->ca_recflags |= kHFSHasDateAddedMask;
- }
- /* If it were neither directory/file, then we'd bail out */
- return;
-}
-
-static u_int32_t
-hfs_get_dateadded_internal(const uint8_t *finderinfo, mode_t mode)
-{
- const uint8_t *finfo = NULL;
- u_int32_t dateadded = 0;
-
-
-
- /* overlay the FinderInfo to the correct pointer, and advance */
- finfo = finderinfo + 16;
-
- /*
- * FinderInfo is written out in big endian... make sure to convert it to host
- * native before we use it.
- */
- if (S_ISREG(mode)) {
- const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
- dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
- }
- else if (S_ISDIR(mode)) {
- const struct FndrExtendedDirInfo *extinfo = (const struct FndrExtendedDirInfo *)finfo;
- dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
- }
-
- return dateadded;
-}
-
-u_int32_t
-hfs_get_dateadded(struct cnode *cp)
-{
- if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
- /* Date added was never set. Return 0. */
- return (0);
- }
-
- return (hfs_get_dateadded_internal((u_int8_t*)cp->c_finderinfo,
- cp->c_attr.ca_mode));
-}
-
-u_int32_t
-hfs_get_dateadded_from_blob(const uint8_t *finderinfo, mode_t mode)
-{
- return (hfs_get_dateadded_internal(finderinfo, mode));
-}
-
-/*
- * Per HI and Finder requirements, HFS maintains a "write/generation
- * count" for each file that is incremented on any write & pageout.
- * It should start at 1 to reserve "0" as a special value. If it
- * should ever wrap around, it will skip using 0.
- *
- * Note that finderinfo is manipulated in hfs_vnop_setxattr and care
- * is and should be taken to ignore user attempts to set the part of
- * the finderinfo that records the generation counter.
- *
- * Any change to the generation counter *must* not be visible before
- * the change that caused it (for obvious reasons), and given the
- * limitations of our current architecture, the change to the
- * generation counter may occur some time afterwards (particularly in
- * the case where a file is mapped writable---more on that below).
- *
- * We make no guarantees about the consistency of a file. In other
- * words, a reader that is operating concurrently with a writer might
- * see some, but not all of writer's changes, and the generation
- * counter will *not* necessarily tell you this has happened. To
- * enforce consistency, clients must make their own arrangements
- * e.g. use file locking.
- *
- * We treat files that are mapped writable as a special case: when
- * that happens, clients requesting the generation count will be told
- * it has a generation count of zero and they use that knowledge as a
- * hint that the file is changing and it therefore might be prudent to
- * wait until it is no longer mapped writable. Clients should *not*
- * rely on this behaviour however; we might decide that it's better
- * for us to publish the fact that a file is mapped writable via
- * alternate means and return the generation counter when it is mapped
- * writable as it still has some, albeit limited, use. We reserve the
- * right to make this change.
- *
- * Lastly, it's important to realise that because data and metadata
- * take different paths through the system, it's possible upon crash
- * or sudden power loss and after a restart, that a change may be
- * visible to the rest of the system without a corresponding change to
- * the generation counter. The reverse may also be true, but for all
- * practical applications this shouldn't be an issue.
- */
-void hfs_write_gencount (struct cat_attr *attrp, uint32_t gencount) {
- u_int8_t *finfo = NULL;
-
- /* overlay the FinderInfo to the correct pointer, and advance */
- finfo = (u_int8_t*)attrp->ca_finderinfo;
- finfo = finfo + 16;
-
- /*
- * Make sure to write it out as big endian, since that's how
- * finder info is defined.
- *
- * Generation count is only supported for files.
- */
- if (S_ISREG(attrp->ca_mode)) {
- struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
- extinfo->write_gen_counter = OSSwapHostToBigInt32(gencount);
- }
-
- /* If it were neither directory/file, then we'd bail out */
- return;
-}
-
-/*
- * Increase the gen count by 1; if it wraps around to 0, increment by
- * two. The cnode *must* be locked exclusively by the caller.
- *
- * You may think holding the lock is unnecessary because we only need
- * to change the counter, but consider this sequence of events: thread
- * A calls hfs_incr_gencount and the generation counter is 2 upon
- * entry. A context switch occurs and thread B increments the counter
- * to 3, thread C now gets the generation counter (for whatever
- * purpose), and then another thread makes another change and the
- * generation counter is incremented again---it's now 4. Now thread A
- * continues and it sets the generation counter back to 3. So you can
- * see, thread C would miss the change that caused the generation
- * counter to increment to 4 and for this reason the cnode *must*
- * always be locked exclusively.
- */
-uint32_t hfs_incr_gencount (struct cnode *cp) {
- u_int8_t *finfo = NULL;
- u_int32_t gcount = 0;
-
- /* overlay the FinderInfo to the correct pointer, and advance */
- finfo = (u_int8_t*)cp->c_finderinfo;
- finfo = finfo + 16;
-
- /*
- * FinderInfo is written out in big endian... make sure to convert it to host
- * native before we use it.
- *
- * NOTE: the write_gen_counter is stored in the same location in both the
- * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
- * last 32-bit word) so it is safe to have one code path here.
- */
- if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode)) {
- struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
- gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
-
- /* Was it zero to begin with (file originated in 10.8 or earlier?) */
- if (gcount == 0) {
- gcount++;
- }
-
- /* now bump it */
- gcount++;
-
- /* Did it wrap around ? */
- if (gcount == 0) {
- gcount++;
- }
- extinfo->write_gen_counter = OSSwapHostToBigInt32 (gcount);
-
- SET(cp->c_flag, C_MINOR_MOD);
- }
- else {
- gcount = 0;
- }
-
- return gcount;
-}
-
-/*
- * There is no need for any locks here (other than an iocount on an
- * associated vnode) because reading and writing an aligned 32 bit
- * integer should be atomic on all platforms we support.
- */
-static u_int32_t
-hfs_get_gencount_internal(const uint8_t *finderinfo, mode_t mode)
-{
- const uint8_t *finfo = NULL;
- u_int32_t gcount = 0;
-
- /* overlay the FinderInfo to the correct pointer, and advance */
- finfo = finderinfo;
- finfo = finfo + 16;
-
- /*
- * FinderInfo is written out in big endian... make sure to convert it to host
- * native before we use it.
- *
- * NOTE: the write_gen_counter is stored in the same location in both the
- * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
- * last 32-bit word) so it is safe to have one code path here.
- */
- if (S_ISDIR(mode) || S_ISREG(mode)) {
- const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
- gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
-
- /*
- * Is it zero? File might originate in 10.8 or earlier. We lie and bump it to 1,
- * since the incrementer code is able to handle this case and will double-increment
- * for us.
- */
- if (gcount == 0) {
- gcount++;
- }
- }
-
- return gcount;
-}
-
-/* Getter for the gen count */
-u_int32_t hfs_get_gencount (struct cnode *cp) {
- return hfs_get_gencount_internal(cp->c_finderinfo, cp->c_attr.ca_mode);
-}
-
-/* Getter for the gen count from a buffer (currently pointer to finderinfo)*/
-u_int32_t hfs_get_gencount_from_blob (const uint8_t *finfoblob, mode_t mode) {
- return hfs_get_gencount_internal(finfoblob, mode);
-}
-
-void hfs_clear_might_be_dirty_flag(cnode_t *cp)
-{
- /*
- * If we're about to touch both mtime and ctime, we can clear the
- * C_MIGHT_BE_DIRTY_FROM_MAPPING since we can guarantee that
- * subsequent page-outs can only be for data made dirty before
- * now.
- */
- CLR(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
-}
-
-/*
- * Touch cnode times based on c_touch_xxx flags
- *
- * cnode must be locked exclusive
- *
- * This will also update the volume modify time
- */
-void
-hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
-{
- vfs_context_t ctx;
-
- if (ISSET(hfsmp->hfs_flags, HFS_READ_ONLY) || ISSET(cp->c_flag, C_NOEXISTS)) {
- cp->c_touch_acctime = FALSE;
- cp->c_touch_chgtime = FALSE;
- cp->c_touch_modtime = FALSE;
- CLR(cp->c_flag, C_NEEDS_DATEADDED);
- return;
- }
-#if CONFIG_HFS_STD
- else if (hfsmp->hfs_flags & HFS_STANDARD) {
- /* HFS Standard doesn't support access times */
- cp->c_touch_acctime = FALSE;
- }
-#endif
-
- ctx = vfs_context_current();
- /*
- * Skip access time updates if:
- * . MNT_NOATIME is set
- * . a file system freeze is in progress
- * . a file system resize is in progress
- * . the vnode associated with this cnode is marked for rapid aging
- */
- if (cp->c_touch_acctime) {
- if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) ||
- hfsmp->hfs_freeze_state != HFS_THAWED ||
- (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) ||
- (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) {
-
- cp->c_touch_acctime = FALSE;
- }
- }
- if (cp->c_touch_acctime || cp->c_touch_chgtime ||
- cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
- struct timeval tv;
- int touchvol = 0;
-
- if (cp->c_touch_modtime && cp->c_touch_chgtime)
- hfs_clear_might_be_dirty_flag(cp);
-
- microtime(&tv);
-
- if (cp->c_touch_acctime) {
- /*
- * When the access time is the only thing changing, we
- * won't necessarily write it to disk immediately. We
- * only do the atime update at vnode recycle time, when
- * fsync is called or when there's another reason to write
- * to the metadata.
- */
- cp->c_atime = tv.tv_sec;
- cp->c_touch_acctime = FALSE;
- }
- if (cp->c_touch_modtime) {
- cp->c_touch_modtime = FALSE;
- time_t new_time = tv.tv_sec;
-#if CONFIG_HFS_STD
- /*
- * HFS dates that WE set must be adjusted for DST
- */
- if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
- new_time += 3600;
- }
-#endif
- if (cp->c_mtime != new_time) {
- cp->c_mtime = new_time;
- cp->c_flag |= C_MINOR_MOD;
- touchvol = 1;
- }
- }
- if (cp->c_touch_chgtime) {
- cp->c_touch_chgtime = FALSE;
- if (cp->c_ctime != tv.tv_sec) {
- cp->c_ctime = tv.tv_sec;
- cp->c_flag |= C_MINOR_MOD;
- touchvol = 1;
- }
- }
-
- if (cp->c_flag & C_NEEDS_DATEADDED) {
- hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
- cp->c_flag |= C_MINOR_MOD;
- /* untwiddle the bit */
- cp->c_flag &= ~C_NEEDS_DATEADDED;
- touchvol = 1;
- }
-
- /* Touch the volume modtime if needed */
- if (touchvol) {
- hfs_note_header_minor_change(hfsmp);
- HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
- }
- }
-}
-
-// Use this if you don't want to check the return code
-void hfs_lock_always(cnode_t *cp, enum hfs_locktype locktype)
-{
- hfs_lock(cp, locktype, HFS_LOCK_ALWAYS);
-}
-
-/*
- * Lock a cnode.
- * N.B. If you add any failure cases, *make* sure hfs_lock_always works
- */
-int
-hfs_lock(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
-{
- thread_t thread = current_thread();
-
- if (cp->c_lockowner == thread) {
- /*
- * Only the extents and bitmap files support lock recursion
- * here. The other system files support lock recursion in
- * hfs_systemfile_lock. Eventually, we should change to
- * handle recursion solely in hfs_systemfile_lock.
- */
- if ((cp->c_fileid == kHFSExtentsFileID) ||
- (cp->c_fileid == kHFSAllocationFileID)) {
- cp->c_syslockcount++;
- } else {
- panic("hfs_lock: locking against myself!");
- }
- } else if (locktype == HFS_SHARED_LOCK) {
- lck_rw_lock_shared(&cp->c_rwlock);
- cp->c_lockowner = HFS_SHARED_OWNER;
-
- } else { /* HFS_EXCLUSIVE_LOCK */
- lck_rw_lock_exclusive(&cp->c_rwlock);
- cp->c_lockowner = thread;
-
- /* Only the extents and bitmap files support lock recursion. */
- if ((cp->c_fileid == kHFSExtentsFileID) ||
- (cp->c_fileid == kHFSAllocationFileID)) {
- cp->c_syslockcount = 1;
- }
- }
-
-#ifdef HFS_CHECK_LOCK_ORDER
- /*
- * Regular cnodes (non-system files) cannot be locked
- * while holding the journal lock or a system file lock.
- */
- if (!(cp->c_desc.cd_flags & CD_ISMETA) &&
- ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) {
- vnode_t vp = NULLVP;
-
- /* Find corresponding vnode. */
- if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) {
- vp = cp->c_vp;
- } else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) {
- vp = cp->c_rsrc_vp;
- }
- if (vp != NULLVP) {
- struct hfsmount *hfsmp = VTOHFS(vp);
-
- if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) {
- /* This will eventually be a panic here. */
- printf("hfs_lock: bad lock order (cnode after journal)\n");
- }
- if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
- panic("hfs_lock: bad lock order (cnode after catalog)");
- }
- if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
- panic("hfs_lock: bad lock order (cnode after attribute)");
- }
- if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
- panic("hfs_lock: bad lock order (cnode after extents)");
- }
- }
- }
-#endif /* HFS_CHECK_LOCK_ORDER */
-
- /*
- * Skip cnodes for regular files that no longer exist
- * (marked deleted, catalog entry gone).
- */
- if (((flags & HFS_LOCK_ALLOW_NOEXISTS) == 0) &&
- ((cp->c_desc.cd_flags & CD_ISMETA) == 0) &&
- (cp->c_flag & C_NOEXISTS)) {
- hfs_unlock(cp);
- return (ENOENT);
- }
- return (0);
-}
-
-bool hfs_lock_upgrade(cnode_t *cp)
-{
- if (lck_rw_lock_shared_to_exclusive(&cp->c_rwlock)) {
- cp->c_lockowner = current_thread();
- return true;
- } else
- return false;
-}
-
-/*
- * Lock a pair of cnodes.
- */
-int
-hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfs_locktype locktype)
-{
- struct cnode *first, *last;
- int error;
-
- /*
- * If cnodes match then just lock one.
- */
- if (cp1 == cp2) {
- return hfs_lock(cp1, locktype, HFS_LOCK_DEFAULT);
- }
-
- /*
- * Lock in cnode address order.
- */
- if (cp1 < cp2) {
- first = cp1;
- last = cp2;
- } else {
- first = cp2;
- last = cp1;
- }
-
- if ( (error = hfs_lock(first, locktype, HFS_LOCK_DEFAULT))) {
- return (error);
- }
- if ( (error = hfs_lock(last, locktype, HFS_LOCK_DEFAULT))) {
- hfs_unlock(first);
- return (error);
- }
- return (0);
-}
-
-/*
- * Check ordering of two cnodes. Return true if they are are in-order.
- */
-static int
-hfs_isordered(struct cnode *cp1, struct cnode *cp2)
-{
- if (cp1 == cp2)
- return (0);
- if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
- return (1);
- if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
- return (0);
- /*
- * Locking order is cnode address order.
- */
- return (cp1 < cp2);
-}
-
-/*
- * Acquire 4 cnode locks.
- * - locked in cnode address order (lesser address first).
- * - all or none of the locks are taken
- * - only one lock taken per cnode (dup cnodes are skipped)
- * - some of the cnode pointers may be null
- */
-int
-hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
- struct cnode *cp4, enum hfs_locktype locktype, struct cnode **error_cnode)
-{
- struct cnode * a[3];
- struct cnode * b[3];
- struct cnode * list[4];
- struct cnode * tmp;
- int i, j, k;
- int error;
- if (error_cnode) {
- *error_cnode = NULL;
- }
-
- if (hfs_isordered(cp1, cp2)) {
- a[0] = cp1; a[1] = cp2;
- } else {
- a[0] = cp2; a[1] = cp1;
- }
- if (hfs_isordered(cp3, cp4)) {
- b[0] = cp3; b[1] = cp4;
- } else {
- b[0] = cp4; b[1] = cp3;
- }
- a[2] = (struct cnode *)0xffffffff; /* sentinel value */
- b[2] = (struct cnode *)0xffffffff; /* sentinel value */
-
- /*
- * Build the lock list, skipping over duplicates
- */
- for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
- tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
- if (k == 0 || tmp != list[k-1])
- list[k++] = tmp;
- }
-
- /*
- * Now we can lock using list[0 - k].
- * Skip over NULL entries.
- */
- for (i = 0; i < k; ++i) {
- if (list[i])
- if ((error = hfs_lock(list[i], locktype, HFS_LOCK_DEFAULT))) {
- /* Only stuff error_cnode if requested */
- if (error_cnode) {
- *error_cnode = list[i];
- }
- /* Drop any locks we acquired. */
- while (--i >= 0) {
- if (list[i])
- hfs_unlock(list[i]);
- }
- return (error);
- }
- }
- return (0);
-}
-
-
-/*
- * Unlock a cnode.
- */
-void
-hfs_unlock(struct cnode *cp)
-{
- vnode_t rvp = NULLVP;
- vnode_t vp = NULLVP;
- u_int32_t c_flag;
-
- /*
- * Only the extents and bitmap file's support lock recursion.
- */
- if ((cp->c_fileid == kHFSExtentsFileID) ||
- (cp->c_fileid == kHFSAllocationFileID)) {
- if (--cp->c_syslockcount > 0) {
- return;
- }
- }
-
- const thread_t thread = current_thread();
-
- if (cp->c_lockowner == thread) {
- c_flag = cp->c_flag;
-
- // If we have the truncate lock, we must defer the puts
- if (cp->c_truncatelockowner == thread) {
- if (ISSET(c_flag, C_NEED_DVNODE_PUT)
- && !cp->c_need_dvnode_put_after_truncate_unlock) {
- CLR(c_flag, C_NEED_DVNODE_PUT);
- cp->c_need_dvnode_put_after_truncate_unlock = true;
- }
- if (ISSET(c_flag, C_NEED_RVNODE_PUT)
- && !cp->c_need_rvnode_put_after_truncate_unlock) {
- CLR(c_flag, C_NEED_RVNODE_PUT);
- cp->c_need_rvnode_put_after_truncate_unlock = true;
- }
- }
-
- CLR(cp->c_flag, (C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE
- | C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT));
-
- if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) {
- vp = cp->c_vp;
- }
- if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) {
- rvp = cp->c_rsrc_vp;
- }
-
- cp->c_lockowner = NULL;
- lck_rw_unlock_exclusive(&cp->c_rwlock);
- } else {
- lck_rw_unlock_shared(&cp->c_rwlock);
- }
-
- /* Perform any vnode post processing after cnode lock is dropped. */
- if (vp) {
- if (c_flag & C_NEED_DATA_SETSIZE) {
- ubc_setsize(vp, VTOF(vp)->ff_size);
-#if HFS_COMPRESSION
- /*
- * If this is a compressed file, we need to reset the
- * compression state. We will have set the size to zero
- * above and it will get fixed up later (in exactly the
- * same way that new vnodes are fixed up). Note that we
- * should only be able to get here if the truncate lock is
- * held exclusively and so we do the reset when that's
- * unlocked.
- */
- decmpfs_cnode *dp = VTOCMP(vp);
- if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
- cp->c_need_decmpfs_reset = true;
-#endif
- }
- if (c_flag & C_NEED_DVNODE_PUT)
- vnode_put(vp);
- }
- if (rvp) {
- if (c_flag & C_NEED_RSRC_SETSIZE)
- ubc_setsize(rvp, VTOF(rvp)->ff_size);
- if (c_flag & C_NEED_RVNODE_PUT)
- vnode_put(rvp);
- }
-}
-
-/*
- * Unlock a pair of cnodes.
- */
-void
-hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
-{
- hfs_unlock(cp1);
- if (cp2 != cp1)
- hfs_unlock(cp2);
-}
-
-/*
- * Unlock a group of cnodes.
- */
-void
-hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
-{
- struct cnode * list[4];
- int i, k = 0;
-
- if (cp1) {
- hfs_unlock(cp1);
- list[k++] = cp1;
- }
- if (cp2) {
- for (i = 0; i < k; ++i) {
- if (list[i] == cp2)
- goto skip1;
- }
- hfs_unlock(cp2);
- list[k++] = cp2;
- }
-skip1:
- if (cp3) {
- for (i = 0; i < k; ++i) {
- if (list[i] == cp3)
- goto skip2;
- }
- hfs_unlock(cp3);
- list[k++] = cp3;
- }
-skip2:
- if (cp4) {
- for (i = 0; i < k; ++i) {
- if (list[i] == cp4)
- return;
- }
- hfs_unlock(cp4);
- }
-}
-
-
-/*
- * Protect a cnode against a truncation.
- *
- * Used mainly by read/write since they don't hold the
- * cnode lock across calls to the cluster layer.
- *
- * The process doing a truncation must take the lock
- * exclusive. The read/write processes can take it
- * shared. The locktype argument is the same as supplied to
- * hfs_lock.
- */
-void
-hfs_lock_truncate(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
-{
- thread_t thread = current_thread();
-
- if (cp->c_truncatelockowner == thread) {
- /*
- * Ignore grabbing the lock if it the current thread already
- * holds exclusive lock.
- *
- * This is needed on the hfs_vnop_pagein path where we need to ensure
- * the file does not change sizes while we are paging in. However,
- * we may already hold the lock exclusive due to another
- * VNOP from earlier in the call stack. So if we already hold
- * the truncate lock exclusive, allow it to proceed, but ONLY if
- * it's in the recursive case.
- */
- if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
- panic("hfs_lock_truncate: cnode %p locked!", cp);
- }
- } else if (locktype == HFS_SHARED_LOCK) {
- lck_rw_lock_shared(&cp->c_truncatelock);
- cp->c_truncatelockowner = HFS_SHARED_OWNER;
- } else { /* HFS_EXCLUSIVE_LOCK */
- lck_rw_lock_exclusive(&cp->c_truncatelock);
- cp->c_truncatelockowner = thread;
- }
-}
-
-bool hfs_truncate_lock_upgrade(struct cnode *cp)
-{
- assert(cp->c_truncatelockowner == HFS_SHARED_OWNER);
- if (!lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock))
- return false;
- cp->c_truncatelockowner = current_thread();
- return true;
-}
-
-void hfs_truncate_lock_downgrade(struct cnode *cp)
-{
- assert(cp->c_truncatelockowner == current_thread());
- lck_rw_lock_exclusive_to_shared(&cp->c_truncatelock);
- cp->c_truncatelockowner = HFS_SHARED_OWNER;
-}
-
-/*
- * Attempt to get the truncate lock. If it cannot be acquired, error out.
- * This function is needed in the degenerate hfs_vnop_pagein during force unmount
- * case. To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will
- * temporarily need to disable V2 semantics.
- */
-int hfs_try_trunclock (struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
-{
- thread_t thread = current_thread();
- boolean_t didlock = false;
-
- if (cp->c_truncatelockowner == thread) {
- /*
- * Ignore grabbing the lock if the current thread already
- * holds exclusive lock.
- *
- * This is needed on the hfs_vnop_pagein path where we need to ensure
- * the file does not change sizes while we are paging in. However,
- * we may already hold the lock exclusive due to another
- * VNOP from earlier in the call stack. So if we already hold
- * the truncate lock exclusive, allow it to proceed, but ONLY if
- * it's in the recursive case.
- */
- if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
- panic("hfs_lock_truncate: cnode %p locked!", cp);
- }
- } else if (locktype == HFS_SHARED_LOCK) {
- didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED);
- if (didlock) {
- cp->c_truncatelockowner = HFS_SHARED_OWNER;
- }
- } else { /* HFS_EXCLUSIVE_LOCK */
- didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE);
- if (didlock) {
- cp->c_truncatelockowner = thread;
- }
- }
-
- return didlock;
-}
-
-
-/*
- * Unlock the truncate lock, which protects against size changes.
- *
- * If HFS_LOCK_SKIP_IF_EXCLUSIVE flag was set, it means that a previous
- * hfs_lock_truncate() might have skipped grabbing a lock because
- * the current thread was already holding the lock exclusive and
- * we may need to return from this function without actually unlocking
- * the truncate lock.
- */
-void
-hfs_unlock_truncate(struct cnode *cp, enum hfs_lockflags flags)
-{
- thread_t thread = current_thread();
-
- /*
- * If HFS_LOCK_SKIP_IF_EXCLUSIVE is set in the flags AND the current
- * lock owner of the truncate lock is our current thread, then
- * we must have skipped taking the lock earlier by in
- * hfs_lock_truncate() by setting HFS_LOCK_SKIP_IF_EXCLUSIVE in the
- * flags (as the current thread was current lock owner).
- *
- * If HFS_LOCK_SKIP_IF_EXCLUSIVE is not set (most of the time) then
- * we check the lockowner field to infer whether the lock was taken
- * exclusively or shared in order to know what underlying lock
- * routine to call.
- */
- if (flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) {
- if (cp->c_truncatelockowner == thread) {
- return;
- }
- }
-
- /* HFS_LOCK_EXCLUSIVE */
- if (thread == cp->c_truncatelockowner) {
- vnode_t vp = NULL, rvp = NULL;
-
- /*
- * If there are pending set sizes, the cnode lock should be dropped
- * first.
- */
-#if DEBUG
- assert(!(cp->c_lockowner == thread
- && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)));
-#elif DEVELOPMENT
- if (cp->c_lockowner == thread
- && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)) {
- printf("hfs: hfs_unlock_truncate called with C_NEED_DATA/RSRC_SETSIZE set (caller: 0x%llx)\n",
- (uint64_t)VM_KERNEL_UNSLIDE(__builtin_return_address(0)));
- }
-#endif
-
- if (cp->c_need_dvnode_put_after_truncate_unlock) {
- vp = cp->c_vp;
- cp->c_need_dvnode_put_after_truncate_unlock = false;
- }
- if (cp->c_need_rvnode_put_after_truncate_unlock) {
- rvp = cp->c_rsrc_vp;
- cp->c_need_rvnode_put_after_truncate_unlock = false;
- }
-
-#if HFS_COMPRESSION
- bool reset_decmpfs = cp->c_need_decmpfs_reset;
- cp->c_need_decmpfs_reset = false;
-#endif
-
- cp->c_truncatelockowner = NULL;
- lck_rw_unlock_exclusive(&cp->c_truncatelock);
-
-#if HFS_COMPRESSION
- if (reset_decmpfs) {
- decmpfs_cnode *dp = cp->c_decmp;
- if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
- decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
- }
-#endif
-
- // Do the puts now
- if (vp)
- vnode_put(vp);
- if (rvp)
- vnode_put(rvp);
- } else { /* HFS_LOCK_SHARED */
- lck_rw_unlock_shared(&cp->c_truncatelock);
- }
-}