+ * we may not hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+
+ assert(page_aligned(offset));
+
+ assert(!VM_PAGE_WIRED(mem) || mem->vmp_private || mem->vmp_fictitious || (tag != VM_KERN_MEMORY_NONE));
+
+ /* the vm_submap_object is only a placeholder for submaps */
+ assert(object != vm_submap_object);
+
+ vm_object_lock_assert_exclusive(object);
+ LCK_MTX_ASSERT(&vm_page_queue_lock,
+ queues_lock_held ? LCK_MTX_ASSERT_OWNED
+ : LCK_MTX_ASSERT_NOTOWNED);
+
+ if (queues_lock_held == FALSE) {
+ assert(!VM_PAGE_PAGEABLE(mem));
+ }
+
+ if (insert_in_hash == TRUE) {
+#if DEBUG || VM_PAGE_CHECK_BUCKETS
+ if (mem->vmp_tabled || mem->vmp_object) {
+ panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) "
+ "already in (obj=%p,off=0x%llx)",
+ mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset);
+ }
+#endif
+ if (object->internal && (offset >= object->vo_size)) {
+ panic("vm_page_insert_internal: (page=%p,obj=%p,off=0x%llx,size=0x%llx) inserted at offset past object bounds",
+ mem, object, offset, object->vo_size);
+ }
+
+ assert(vm_page_lookup(object, offset) == VM_PAGE_NULL);
+
+ /*
+ * Record the object/offset pair in this page
+ */
+
+ mem->vmp_object = VM_PAGE_PACK_OBJECT(object);
+ mem->vmp_offset = offset;
+
+#if CONFIG_SECLUDED_MEMORY
+ if (object->eligible_for_secluded) {
+ vm_page_secluded.eligible_for_secluded++;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ /*
+ * Insert it into the object_object/offset hash table
+ */
+ hash_id = vm_page_hash(object, offset);
+ bucket = &vm_page_buckets[hash_id];
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ mem->vmp_next_m = bucket->page_list;
+ bucket->page_list = VM_PAGE_PACK_PTR(mem);
+ assert(mem == (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)));
+
+#if MACH_PAGE_HASH_STATS
+ if (++bucket->cur_count > bucket->hi_count) {
+ bucket->hi_count = bucket->cur_count;
+ }
+#endif /* MACH_PAGE_HASH_STATS */
+ mem->vmp_hashed = TRUE;
+ lck_spin_unlock(bucket_lock);
+ }
+
+ {
+ unsigned int cache_attr;
+
+ cache_attr = object->wimg_bits & VM_WIMG_MASK;
+
+ if (cache_attr != VM_WIMG_USE_DEFAULT) {
+ PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op);
+ }
+ }
+ /*
+ * Now link into the object's list of backed pages.
+ */
+ vm_page_queue_enter(&object->memq, mem, vmp_listq);
+ object->memq_hint = mem;
+ mem->vmp_tabled = TRUE;
+
+ /*
+ * Show that the object has one more resident page.
+ */
+
+ object->resident_page_count++;
+ if (VM_PAGE_WIRED(mem)) {
+ assert(mem->vmp_wire_count > 0);
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(object);
+ VM_OBJECT_WIRED_PAGE_ADD(object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag);
+ }
+ assert(object->resident_page_count >= object->wired_page_count);
+
+ if (batch_accounting == FALSE) {
+ if (object->internal) {
+ OSAddAtomic(1, &vm_page_internal_count);
+ } else {
+ OSAddAtomic(1, &vm_page_external_count);
+ }
+ }
+
+ /*
+ * It wouldn't make sense to insert a "reusable" page in
+ * an object (the page would have been marked "reusable" only
+ * at the time of a madvise(MADV_FREE_REUSABLE) if it was already
+ * in the object at that time).
+ * But a page could be inserted in a "all_reusable" object, if
+ * something faults it in (a vm_read() from another task or a
+ * "use-after-free" issue in user space, for example). It can
+ * also happen if we're relocating a page from that object to
+ * a different physical page during a physically-contiguous
+ * allocation.
+ */
+ assert(!mem->vmp_reusable);
+ if (object->all_reusable) {
+ OSAddAtomic(+1, &vm_page_stats_reusable.reusable_count);
+ }
+
+ if (object->purgable == VM_PURGABLE_DENY &&
+ !object->vo_ledger_tag) {
+ owner = TASK_NULL;
+ } else {
+ owner = VM_OBJECT_OWNER(object);
+ vm_object_ledger_tag_ledgers(object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ }
+ if (owner &&
+ (object->purgable == VM_PURGABLE_NONVOLATILE ||
+ object->purgable == VM_PURGABLE_DENY ||
+ VM_PAGE_WIRED(mem))) {
+ if (delayed_ledger_update) {
+ *delayed_ledger_update += PAGE_SIZE;
+ } else {
+ /* more non-volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* more footprint */
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ }
+ } else if (owner &&
+ (object->purgable == VM_PURGABLE_VOLATILE ||
+ object->purgable == VM_PURGABLE_EMPTY)) {
+ assert(!VM_PAGE_WIRED(mem));
+ /* more volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ }
+
+ if (object->purgable == VM_PURGABLE_VOLATILE) {
+ if (VM_PAGE_WIRED(mem)) {
+ OSAddAtomic(+1, &vm_page_purgeable_wired_count);
+ } else {
+ OSAddAtomic(+1, &vm_page_purgeable_count);
+ }
+ } else if (object->purgable == VM_PURGABLE_EMPTY &&
+ mem->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) {
+ /*
+ * This page belongs to a purged VM object but hasn't
+ * been purged (because it was "busy").
+ * It's in the "throttled" queue and hence not
+ * visible to vm_pageout_scan(). Move it to a pageable
+ * queue, so that it can eventually be reclaimed, instead
+ * of lingering in the "empty" object.
+ */
+ if (queues_lock_held == FALSE) {
+ vm_page_lockspin_queues();
+ }
+ vm_page_deactivate(mem);
+ if (queues_lock_held == FALSE) {
+ vm_page_unlock_queues();
+ }
+ }
+
+#if VM_OBJECT_TRACKING_OP_MODIFIED
+ if (vm_object_tracking_inited &&
+ object->internal &&
+ object->resident_page_count == 0 &&
+ object->pager == NULL &&
+ object->shadow != NULL &&
+ object->shadow->copy == object) {
+ void *bt[VM_OBJECT_TRACKING_BTDEPTH];
+ int numsaved = 0;
+
+ numsaved = OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH);
+ btlog_add_entry(vm_object_tracking_btlog,
+ object,
+ VM_OBJECT_TRACKING_OP_MODIFIED,
+ bt,
+ numsaved);
+ }
+#endif /* VM_OBJECT_TRACKING_OP_MODIFIED */
+}
+
+/*
+ * vm_page_replace:
+ *
+ * Exactly like vm_page_insert, except that we first
+ * remove any existing page at the given offset in object.
+ *
+ * The object must be locked.
+ */
+void
+vm_page_replace(
+ vm_page_t mem,
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_bucket_t *bucket;
+ vm_page_t found_m = VM_PAGE_NULL;
+ lck_spin_t *bucket_lock;
+ int hash_id;
+
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+ vm_object_lock_assert_exclusive(object);
+#if DEBUG || VM_PAGE_CHECK_BUCKETS
+ if (mem->vmp_tabled || mem->vmp_object) {
+ panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) "
+ "already in (obj=%p,off=0x%llx)",
+ mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset);
+ }
+#endif
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ assert(!VM_PAGE_PAGEABLE(mem));
+
+ /*
+ * Record the object/offset pair in this page
+ */
+ mem->vmp_object = VM_PAGE_PACK_OBJECT(object);
+ mem->vmp_offset = offset;
+
+ /*
+ * Insert it into the object_object/offset hash table,
+ * replacing any page that might have been there.
+ */
+
+ hash_id = vm_page_hash(object, offset);
+ bucket = &vm_page_buckets[hash_id];
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ if (bucket->page_list) {
+ vm_page_packed_t *mp = &bucket->page_list;
+ vm_page_t m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp));
+
+ do {
+ /*
+ * compare packed object pointers
+ */
+ if (m->vmp_object == mem->vmp_object && m->vmp_offset == offset) {
+ /*
+ * Remove old page from hash list
+ */
+ *mp = m->vmp_next_m;
+ m->vmp_hashed = FALSE;
+ m->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+
+ found_m = m;
+ break;
+ }
+ mp = &m->vmp_next_m;
+ } while ((m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp))));
+
+ mem->vmp_next_m = bucket->page_list;
+ } else {
+ mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+ }
+ /*
+ * insert new page at head of hash list
+ */
+ bucket->page_list = VM_PAGE_PACK_PTR(mem);
+ mem->vmp_hashed = TRUE;
+
+ lck_spin_unlock(bucket_lock);
+
+ if (found_m) {
+ /*
+ * there was already a page at the specified
+ * offset for this object... remove it from
+ * the object and free it back to the free list
+ */
+ vm_page_free_unlocked(found_m, FALSE);
+ }
+ vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, FALSE, FALSE, FALSE, NULL);
+}
+
+/*
+ * vm_page_remove: [ internal use only ]
+ *
+ * Removes the given mem entry from the object/offset-page
+ * table and the object page list.
+ *
+ * The object must be locked.
+ */
+
+void
+vm_page_remove(
+ vm_page_t mem,
+ boolean_t remove_from_hash)
+{
+ vm_page_bucket_t *bucket;
+ vm_page_t this;
+ lck_spin_t *bucket_lock;
+ int hash_id;
+ task_t owner;
+ vm_object_t m_object;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ int do_footprint;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_remove, object 0x%X offset 0x%X page 0x%X\n",
+ m_object, mem->vmp_offset,
+ mem, 0, 0);
+
+ vm_object_lock_assert_exclusive(m_object);
+ assert(mem->vmp_tabled);
+ assert(!mem->vmp_cleaning);
+ assert(!mem->vmp_laundry);
+
+ if (VM_PAGE_PAGEABLE(mem)) {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ }
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+ if (remove_from_hash == TRUE) {
+ /*
+ * Remove from the object_object/offset hash table
+ */
+ hash_id = vm_page_hash(m_object, mem->vmp_offset);
+ bucket = &vm_page_buckets[hash_id];
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ if ((this = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))) == mem) {
+ /* optimize for common case */
+
+ bucket->page_list = mem->vmp_next_m;
+ } else {
+ vm_page_packed_t *prev;
+
+ for (prev = &this->vmp_next_m;
+ (this = (vm_page_t)(VM_PAGE_UNPACK_PTR(*prev))) != mem;
+ prev = &this->vmp_next_m) {
+ continue;
+ }
+ *prev = this->vmp_next_m;
+ }
+#if MACH_PAGE_HASH_STATS
+ bucket->cur_count--;
+#endif /* MACH_PAGE_HASH_STATS */
+ mem->vmp_hashed = FALSE;
+ this->vmp_next_m = VM_PAGE_PACK_PTR(NULL);
+ lck_spin_unlock(bucket_lock);
+ }
+ /*
+ * Now remove from the object's list of backed pages.
+ */
+
+ vm_page_remove_internal(mem);
+
+ /*
+ * And show that the object has one fewer resident
+ * page.
+ */
+
+ assert(m_object->resident_page_count > 0);
+ m_object->resident_page_count--;
+
+ if (m_object->internal) {
+#if DEBUG
+ assert(vm_page_internal_count);
+#endif /* DEBUG */
+
+ OSAddAtomic(-1, &vm_page_internal_count);
+ } else {
+ assert(vm_page_external_count);
+ OSAddAtomic(-1, &vm_page_external_count);
+
+ if (mem->vmp_xpmapped) {
+ assert(vm_page_xpmapped_external_count);
+ OSAddAtomic(-1, &vm_page_xpmapped_external_count);
+ }
+ }
+ if (!m_object->internal &&
+ m_object->cached_list.next &&
+ m_object->cached_list.prev) {
+ if (m_object->resident_page_count == 0) {
+ vm_object_cache_remove(m_object);
+ }
+ }
+
+ if (VM_PAGE_WIRED(mem)) {
+ assert(mem->vmp_wire_count > 0);
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag);
+ }
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+ if (mem->vmp_reusable) {
+ assert(m_object->reusable_page_count > 0);
+ m_object->reusable_page_count--;
+ assert(m_object->reusable_page_count <=
+ m_object->resident_page_count);
+ mem->vmp_reusable = FALSE;
+ OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count);
+ vm_page_stats_reusable.reused_remove++;
+ } else if (m_object->all_reusable) {
+ OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count);
+ vm_page_stats_reusable.reused_remove++;
+ }
+
+ if (m_object->purgable == VM_PURGABLE_DENY &&
+ !m_object->vo_ledger_tag) {
+ owner = TASK_NULL;
+ } else {
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ }
+ if (owner &&
+ (m_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m_object->purgable == VM_PURGABLE_DENY ||
+ VM_PAGE_WIRED(mem))) {
+ /* less non-volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* less footprint */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ } else if (owner &&
+ (m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY)) {
+ assert(!VM_PAGE_WIRED(mem));
+ /* less volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ }
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ if (VM_PAGE_WIRED(mem)) {
+ assert(vm_page_purgeable_wired_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_wired_count);
+ } else {
+ assert(vm_page_purgeable_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_count);
+ }
+ }
+
+ if (m_object->set_cache_attr == TRUE) {
+ pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(mem), 0);
+ }
+
+ mem->vmp_tabled = FALSE;
+ mem->vmp_object = 0;
+ mem->vmp_offset = (vm_object_offset_t) -1;
+}
+
+
+/*
+ * vm_page_lookup:
+ *
+ * Returns the page associated with the object/offset
+ * pair specified; if none is found, VM_PAGE_NULL is returned.
+ *
+ * The object must be locked. No side effects.
+ */
+
+#define VM_PAGE_HASH_LOOKUP_THRESHOLD 10
+
+#if DEBUG_VM_PAGE_LOOKUP
+
+struct {
+ uint64_t vpl_total;
+ uint64_t vpl_empty_obj;
+ uint64_t vpl_bucket_NULL;
+ uint64_t vpl_hit_hint;
+ uint64_t vpl_hit_hint_next;
+ uint64_t vpl_hit_hint_prev;
+ uint64_t vpl_fast;
+ uint64_t vpl_slow;
+ uint64_t vpl_hit;
+ uint64_t vpl_miss;
+
+ uint64_t vpl_fast_elapsed;
+ uint64_t vpl_slow_elapsed;
+} vm_page_lookup_stats __attribute__((aligned(8)));
+
+#endif
+
+#define KDP_VM_PAGE_WALK_MAX 1000
+
+vm_page_t
+kdp_vm_page_lookup(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t cur_page;
+ int num_traversed = 0;
+
+ if (not_in_kdp) {
+ panic("panic: kdp_vm_page_lookup done outside of kernel debugger");
+ }
+
+ vm_page_queue_iterate(&object->memq, cur_page, vmp_listq) {
+ if (cur_page->vmp_offset == offset) {
+ return cur_page;
+ }
+ num_traversed++;
+
+ if (num_traversed >= KDP_VM_PAGE_WALK_MAX) {
+ return VM_PAGE_NULL;
+ }
+ }
+
+ return VM_PAGE_NULL;
+}
+
+vm_page_t
+vm_page_lookup(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t mem;
+ vm_page_bucket_t *bucket;
+ vm_page_queue_entry_t qe;
+ lck_spin_t *bucket_lock = NULL;
+ int hash_id;
+#if DEBUG_VM_PAGE_LOOKUP
+ uint64_t start, elapsed;
+
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_total);
+#endif
+ vm_object_lock_assert_held(object);
+
+ if (object->resident_page_count == 0) {
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_empty_obj);
+#endif
+ return VM_PAGE_NULL;
+ }
+
+ mem = object->memq_hint;
+
+ if (mem != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(mem) == object);
+
+ if (mem->vmp_offset == offset) {
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint);
+#endif
+ return mem;
+ }
+ qe = (vm_page_queue_entry_t)vm_page_queue_next(&mem->vmp_listq);
+
+ if (!vm_page_queue_end(&object->memq, qe)) {
+ vm_page_t next_page;
+
+ next_page = (vm_page_t)((uintptr_t)qe);
+ assert(VM_PAGE_OBJECT(next_page) == object);
+
+ if (next_page->vmp_offset == offset) {
+ object->memq_hint = next_page; /* new hint */
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_next);
+#endif
+ return next_page;
+ }
+ }
+ qe = (vm_page_queue_entry_t)vm_page_queue_prev(&mem->vmp_listq);
+
+ if (!vm_page_queue_end(&object->memq, qe)) {
+ vm_page_t prev_page;
+
+ prev_page = (vm_page_t)((uintptr_t)qe);
+ assert(VM_PAGE_OBJECT(prev_page) == object);
+
+ if (prev_page->vmp_offset == offset) {
+ object->memq_hint = prev_page; /* new hint */
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_prev);
+#endif
+ return prev_page;
+ }
+ }
+ }
+ /*
+ * Search the hash table for this object/offset pair
+ */
+ hash_id = vm_page_hash(object, offset);
+ bucket = &vm_page_buckets[hash_id];
+
+ /*
+ * since we hold the object lock, we are guaranteed that no
+ * new pages can be inserted into this object... this in turn
+ * guarantess that the page we're looking for can't exist
+ * if the bucket it hashes to is currently NULL even when looked
+ * at outside the scope of the hash bucket lock... this is a
+ * really cheap optimiztion to avoid taking the lock
+ */
+ if (!bucket->page_list) {
+#if DEBUG_VM_PAGE_LOOKUP
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_bucket_NULL);
+#endif
+ return VM_PAGE_NULL;
+ }
+
+#if DEBUG_VM_PAGE_LOOKUP
+ start = mach_absolute_time();
+#endif
+ if (object->resident_page_count <= VM_PAGE_HASH_LOOKUP_THRESHOLD) {
+ /*
+ * on average, it's roughly 3 times faster to run a short memq list
+ * than to take the spin lock and go through the hash list
+ */
+ mem = (vm_page_t)vm_page_queue_first(&object->memq);
+
+ while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) {
+ if (mem->vmp_offset == offset) {
+ break;
+ }
+
+ mem = (vm_page_t)vm_page_queue_next(&mem->vmp_listq);
+ }
+ if (vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) {
+ mem = NULL;
+ }
+ } else {
+ vm_page_object_t packed_object;
+
+ packed_object = VM_PAGE_PACK_OBJECT(object);
+
+ bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK];
+
+ lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket);
+
+ for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list));
+ mem != VM_PAGE_NULL;
+ mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m))) {
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(mem);
+#endif
+ if ((mem->vmp_object == packed_object) && (mem->vmp_offset == offset)) {
+ break;
+ }
+ }
+ lck_spin_unlock(bucket_lock);
+ }
+
+#if DEBUG_VM_PAGE_LOOKUP
+ elapsed = mach_absolute_time() - start;
+
+ if (bucket_lock) {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_slow);
+ OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_slow_elapsed);
+ } else {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_fast);
+ OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_fast_elapsed);
+ }
+ if (mem != VM_PAGE_NULL) {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit);
+ } else {
+ OSAddAtomic64(1, &vm_page_lookup_stats.vpl_miss);
+ }
+#endif
+ if (mem != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(mem) == object);
+
+ object->memq_hint = mem;
+ }
+ return mem;
+}
+
+
+/*
+ * vm_page_rename:
+ *
+ * Move the given memory entry from its
+ * current object to the specified target object/offset.
+ *
+ * The object must be locked.
+ */
+void
+vm_page_rename(
+ vm_page_t mem,
+ vm_object_t new_object,
+ vm_object_offset_t new_offset)
+{
+ boolean_t internal_to_external, external_to_internal;
+ vm_tag_t tag;
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ assert(m_object != new_object);
+ assert(m_object);
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_rename, new object 0x%X, offset 0x%X page 0x%X\n",
+ new_object, new_offset,
+ mem, 0, 0);
+
+ /*
+ * Changes to mem->vmp_object require the page lock because
+ * the pageout daemon uses that lock to get the object.
+ */
+ vm_page_lockspin_queues();
+
+ internal_to_external = FALSE;
+ external_to_internal = FALSE;
+
+ if (mem->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q) {
+ /*
+ * it's much easier to get the vm_page_pageable_xxx accounting correct
+ * if we first move the page to the active queue... it's going to end
+ * up there anyway, and we don't do vm_page_rename's frequently enough
+ * for this to matter.
+ */
+ vm_page_queues_remove(mem, FALSE);
+ vm_page_activate(mem);
+ }
+ if (VM_PAGE_PAGEABLE(mem)) {
+ if (m_object->internal && !new_object->internal) {
+ internal_to_external = TRUE;
+ }
+ if (!m_object->internal && new_object->internal) {
+ external_to_internal = TRUE;
+ }
+ }
+
+ tag = m_object->wire_tag;
+ vm_page_remove(mem, TRUE);
+ vm_page_insert_internal(mem, new_object, new_offset, tag, TRUE, TRUE, FALSE, FALSE, NULL);
+
+ if (internal_to_external) {
+ vm_page_pageable_internal_count--;
+ vm_page_pageable_external_count++;
+ } else if (external_to_internal) {
+ vm_page_pageable_external_count--;
+ vm_page_pageable_internal_count++;
+ }
+
+ vm_page_unlock_queues();
+}
+
+/*
+ * vm_page_init:
+ *
+ * Initialize the fields in a new page.
+ * This takes a structure with random values and initializes it
+ * so that it can be given to vm_page_release or vm_page_insert.
+ */
+void
+vm_page_init(
+ vm_page_t mem,
+ ppnum_t phys_page,
+ boolean_t lopage)
+{
+ uint_t i;
+ uintptr_t *p;
+
+ assert(phys_page);
+
+#if DEBUG
+ if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) {
+ if (!(pmap_valid_page(phys_page))) {
+ panic("vm_page_init: non-DRAM phys_page 0x%x\n", phys_page);
+ }
+ }
+#endif /* DEBUG */
+
+ /*
+ * Initialize the fields of the vm_page. If adding any new fields to vm_page,
+ * try to use initial values which match 0. This minimizes the number of writes
+ * needed for boot-time initialization.
+ *
+ * Kernel bzero() isn't an inline yet, so do it by hand for performance.
+ */
+ assert(VM_PAGE_NOT_ON_Q == 0);
+ assert(sizeof(*mem) % sizeof(uintptr_t) == 0);
+ for (p = (uintptr_t *)(void *)mem, i = sizeof(*mem) / sizeof(uintptr_t); i != 0; --i) {
+ *p++ = 0;
+ }
+ mem->vmp_offset = (vm_object_offset_t)-1;
+ mem->vmp_busy = TRUE;
+ mem->vmp_lopage = lopage;
+
+ VM_PAGE_SET_PHYS_PAGE(mem, phys_page);
+#if 0
+ /*
+ * we're leaving this turned off for now... currently pages
+ * come off the free list and are either immediately dirtied/referenced
+ * due to zero-fill or COW faults, or are used to read or write files...
+ * in the file I/O case, the UPL mechanism takes care of clearing
+ * the state of the HW ref/mod bits in a somewhat fragile way.
+ * Since we may change the way this works in the future (to toughen it up),
+ * I'm leaving this as a reminder of where these bits could get cleared
+ */
+
+ /*
+ * make sure both the h/w referenced and modified bits are
+ * clear at this point... we are especially dependent on
+ * not finding a 'stale' h/w modified in a number of spots
+ * once this page goes back into use
+ */
+ pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED);
+#endif
+}
+
+/*
+ * vm_page_grab_fictitious:
+ *
+ * Remove a fictitious page from the free list.
+ * Returns VM_PAGE_NULL if there are no free pages.
+ */
+int c_vm_page_grab_fictitious = 0;
+int c_vm_page_grab_fictitious_failed = 0;
+int c_vm_page_release_fictitious = 0;
+int c_vm_page_more_fictitious = 0;
+
+vm_page_t
+vm_page_grab_fictitious_common(
+ ppnum_t phys_addr)
+{
+ vm_page_t m;
+
+ if ((m = (vm_page_t)zget(vm_page_zone))) {
+ vm_page_init(m, phys_addr, FALSE);
+ m->vmp_fictitious = TRUE;
+
+ c_vm_page_grab_fictitious++;
+ } else {
+ c_vm_page_grab_fictitious_failed++;
+ }
+
+ return m;
+}
+
+vm_page_t
+vm_page_grab_fictitious(void)
+{
+ return vm_page_grab_fictitious_common(vm_page_fictitious_addr);
+}
+
+int vm_guard_count;
+
+
+vm_page_t
+vm_page_grab_guard(void)
+{
+ vm_page_t page;
+ page = vm_page_grab_fictitious_common(vm_page_guard_addr);
+ if (page) {
+ OSAddAtomic(1, &vm_guard_count);
+ }
+ return page;
+}
+
+
+/*
+ * vm_page_release_fictitious:
+ *
+ * Release a fictitious page to the zone pool
+ */
+void
+vm_page_release_fictitious(
+ vm_page_t m)
+{
+ assert((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || (m->vmp_q_state == VM_PAGE_IS_WIRED));
+ assert(m->vmp_fictitious);
+ assert(VM_PAGE_GET_PHYS_PAGE(m) == vm_page_fictitious_addr ||
+ VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr);
+
+
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
+ OSAddAtomic(-1, &vm_guard_count);
+ }
+
+ c_vm_page_release_fictitious++;
+
+ zfree(vm_page_zone, m);
+}
+
+/*
+ * vm_page_more_fictitious:
+ *
+ * Add more fictitious pages to the zone.
+ * Allowed to block. This routine is way intimate
+ * with the zones code, for several reasons:
+ * 1. we need to carve some page structures out of physical
+ * memory before zones work, so they _cannot_ come from
+ * the zone_map.
+ * 2. the zone needs to be collectable in order to prevent
+ * growth without bound. These structures are used by
+ * the device pager (by the hundreds and thousands), as
+ * private pages for pageout, and as blocking pages for
+ * pagein. Temporary bursts in demand should not result in
+ * permanent allocation of a resource.
+ * 3. To smooth allocation humps, we allocate single pages
+ * with kernel_memory_allocate(), and cram them into the
+ * zone.
+ */
+
+void
+vm_page_more_fictitious(void)
+{
+ vm_offset_t addr;
+ kern_return_t retval;
+
+ c_vm_page_more_fictitious++;
+
+ /*
+ * Allocate a single page from the zone_map. Do not wait if no physical
+ * pages are immediately available, and do not zero the space. We need
+ * our own blocking lock here to prevent having multiple,
+ * simultaneous requests from piling up on the zone_map lock. Exactly
+ * one (of our) threads should be potentially waiting on the map lock.
+ * If winner is not vm-privileged, then the page allocation will fail,
+ * and it will temporarily block here in the vm_page_wait().
+ */
+ lck_mtx_lock(&vm_page_alloc_lock);
+ /*
+ * If another thread allocated space, just bail out now.
+ */
+ if (zone_free_count(vm_page_zone) > 5) {
+ /*
+ * The number "5" is a small number that is larger than the
+ * number of fictitious pages that any single caller will
+ * attempt to allocate. Otherwise, a thread will attempt to
+ * acquire a fictitious page (vm_page_grab_fictitious), fail,
+ * release all of the resources and locks already acquired,
+ * and then call this routine. This routine finds the pages
+ * that the caller released, so fails to allocate new space.
+ * The process repeats infinitely. The largest known number
+ * of fictitious pages required in this manner is 2. 5 is
+ * simply a somewhat larger number.
+ */
+ lck_mtx_unlock(&vm_page_alloc_lock);
+ return;
+ }
+
+ retval = kernel_memory_allocate(zone_map,
+ &addr, PAGE_SIZE, 0,
+ KMA_KOBJECT | KMA_NOPAGEWAIT, VM_KERN_MEMORY_ZONE);
+ if (retval != KERN_SUCCESS) {
+ /*
+ * No page was available. Drop the
+ * lock to give another thread a chance at it, and
+ * wait for the pageout daemon to make progress.
+ */
+ lck_mtx_unlock(&vm_page_alloc_lock);
+ vm_page_wait(THREAD_UNINT);
+ return;
+ }
+
+ zcram(vm_page_zone, addr, PAGE_SIZE);
+
+ lck_mtx_unlock(&vm_page_alloc_lock);
+}
+
+
+/*
+ * vm_pool_low():
+ *
+ * Return true if it is not likely that a non-vm_privileged thread
+ * can get memory without blocking. Advisory only, since the
+ * situation may change under us.
+ */
+int
+vm_pool_low(void)
+{
+ /* No locking, at worst we will fib. */
+ return vm_page_free_count <= vm_page_free_reserved;
+}
+
+boolean_t vm_darkwake_mode = FALSE;
+
+/*
+ * vm_update_darkwake_mode():
+ *
+ * Tells the VM that the system is in / out of darkwake.
+ *
+ * Today, the VM only lowers/raises the background queue target
+ * so as to favor consuming more/less background pages when
+ * darwake is ON/OFF.
+ *
+ * We might need to do more things in the future.
+ */
+
+void
+vm_update_darkwake_mode(boolean_t darkwake_mode)
+{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ vm_page_lockspin_queues();
+
+ if (vm_darkwake_mode == darkwake_mode) {
+ /*
+ * No change.
+ */
+ vm_page_unlock_queues();
+ return;
+ }
+
+ vm_darkwake_mode = darkwake_mode;
+
+ if (vm_darkwake_mode == TRUE) {
+#if CONFIG_BACKGROUND_QUEUE
+
+ /* save background target to restore later */
+ vm_page_background_target_snapshot = vm_page_background_target;
+
+ /* target is set to 0...no protection for background pages */
+ vm_page_background_target = 0;
+
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ } else if (vm_darkwake_mode == FALSE) {
+#if CONFIG_BACKGROUND_QUEUE
+
+ if (vm_page_background_target_snapshot) {
+ vm_page_background_target = vm_page_background_target_snapshot;
+ }
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ }
+ vm_page_unlock_queues();
+}
+
+#if CONFIG_BACKGROUND_QUEUE
+
+void
+vm_page_update_background_state(vm_page_t mem)
+{
+ if (vm_page_background_mode == VM_PAGE_BG_DISABLED) {
+ return;
+ }
+
+ if (mem->vmp_in_background == FALSE) {
+ return;
+ }
+
+ task_t my_task = current_task();
+
+ if (my_task) {
+ if (task_get_darkwake_mode(my_task)) {
+ return;
+ }
+ }
+
+#if BACKGROUNDQ_BASED_ON_QOS
+ if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) {
+ return;
+ }
+#else
+ if (my_task) {
+ if (proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG)) {
+ return;
+ }
+ }
+#endif
+ vm_page_lockspin_queues();
+
+ mem->vmp_in_background = FALSE;
+ vm_page_background_promoted_count++;
+
+ vm_page_remove_from_backgroundq(mem);
+
+ vm_page_unlock_queues();
+}
+
+
+void
+vm_page_assign_background_state(vm_page_t mem)
+{
+ if (vm_page_background_mode == VM_PAGE_BG_DISABLED) {
+ return;
+ }
+
+ task_t my_task = current_task();
+
+ if (my_task) {
+ if (task_get_darkwake_mode(my_task)) {
+ mem->vmp_in_background = TRUE;
+ return;
+ }
+ }
+
+#if BACKGROUNDQ_BASED_ON_QOS
+ if (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_QOS) <= THREAD_QOS_LEGACY) {
+ mem->vmp_in_background = TRUE;
+ } else {
+ mem->vmp_in_background = FALSE;
+ }
+#else
+ if (my_task) {
+ mem->vmp_in_background = proc_get_effective_task_policy(my_task, TASK_POLICY_DARWIN_BG);
+ }
+#endif
+}
+
+
+void
+vm_page_remove_from_backgroundq(
+ vm_page_t mem)
+{
+ vm_object_t m_object;
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (mem->vmp_on_backgroundq) {
+ vm_page_queue_remove(&vm_page_queue_background, mem, vmp_backgroundq);
+
+ mem->vmp_backgroundq.next = 0;
+ mem->vmp_backgroundq.prev = 0;
+ mem->vmp_on_backgroundq = FALSE;
+
+ vm_page_background_count--;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ if (m_object->internal) {
+ vm_page_background_internal_count--;
+ } else {
+ vm_page_background_external_count--;
+ }
+ } else {
+ assert(VM_PAGE_UNPACK_PTR(mem->vmp_backgroundq.next) == (uintptr_t)NULL &&
+ VM_PAGE_UNPACK_PTR(mem->vmp_backgroundq.prev) == (uintptr_t)NULL);
+ }
+}
+
+
+void
+vm_page_add_to_backgroundq(
+ vm_page_t mem,
+ boolean_t first)
+{
+ vm_object_t m_object;
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (vm_page_background_mode == VM_PAGE_BG_DISABLED) {
+ return;
+ }
+
+ if (mem->vmp_on_backgroundq == FALSE) {
+ m_object = VM_PAGE_OBJECT(mem);
+
+ if (vm_page_background_exclude_external && !m_object->internal) {
+ return;
+ }
+
+ if (first == TRUE) {
+ vm_page_queue_enter_first(&vm_page_queue_background, mem, vmp_backgroundq);
+ } else {
+ vm_page_queue_enter(&vm_page_queue_background, mem, vmp_backgroundq);
+ }
+ mem->vmp_on_backgroundq = TRUE;
+
+ vm_page_background_count++;
+
+ if (m_object->internal) {
+ vm_page_background_internal_count++;
+ } else {
+ vm_page_background_external_count++;
+ }
+ }
+}
+
+#endif /* CONFIG_BACKGROUND_QUEUE */
+
+/*
+ * This can be switched to FALSE to help debug drivers
+ * that are having problems with memory > 4G.
+ */
+boolean_t vm_himemory_mode = TRUE;
+
+/*
+ * this interface exists to support hardware controllers
+ * incapable of generating DMAs with more than 32 bits
+ * of address on platforms with physical memory > 4G...
+ */
+unsigned int vm_lopages_allocated_q = 0;
+unsigned int vm_lopages_allocated_cpm_success = 0;
+unsigned int vm_lopages_allocated_cpm_failed = 0;
+vm_page_queue_head_t vm_lopage_queue_free __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
+
+vm_page_t
+vm_page_grablo(void)
+{
+ vm_page_t mem;
+
+ if (vm_lopage_needed == FALSE) {
+ return vm_page_grab();
+ }
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ if (!vm_page_queue_empty(&vm_lopage_queue_free)) {
+ vm_page_queue_remove_first(&vm_lopage_queue_free, mem, vmp_pageq);
+ assert(vm_lopage_free_count);
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ vm_lopage_free_count--;
+ vm_lopages_allocated_q++;
+
+ if (vm_lopage_free_count < vm_lopage_lowater) {
+ vm_lopage_refill = TRUE;
+ }
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(mem);
+#endif
+ } else {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (cpm_allocate(PAGE_SIZE, &mem, atop(PPNUM_MAX), 0, FALSE, KMA_LOMEM) != KERN_SUCCESS) {
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+ vm_lopages_allocated_cpm_failed++;
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ return VM_PAGE_NULL;
+ }
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+
+ mem->vmp_busy = TRUE;
+
+ vm_page_lockspin_queues();
+
+ mem->vmp_gobbled = FALSE;
+ vm_page_gobble_count--;
+ vm_page_wire_count--;
+
+ vm_lopages_allocated_cpm_success++;
+ vm_page_unlock_queues();
+ }
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_pmapped);
+ assert(!mem->vmp_wpmapped);
+ assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)));
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+
+ disable_preemption();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, 0, 1, 0, 0);
+ enable_preemption();
+
+ return mem;
+}
+
+
+/*
+ * vm_page_grab:
+ *
+ * first try to grab a page from the per-cpu free list...
+ * this must be done while pre-emption is disabled... if
+ * a page is available, we're done...
+ * if no page is available, grab the vm_page_queue_free_lock
+ * and see if current number of free pages would allow us
+ * to grab at least 1... if not, return VM_PAGE_NULL as before...
+ * if there are pages available, disable preemption and
+ * recheck the state of the per-cpu free list... we could
+ * have been preempted and moved to a different cpu, or
+ * some other thread could have re-filled it... if still
+ * empty, figure out how many pages we can steal from the
+ * global free queue and move to the per-cpu queue...
+ * return 1 of these pages when done... only wakeup the
+ * pageout_scan thread if we moved pages from the global
+ * list... no need for the wakeup if we've satisfied the
+ * request from the per-cpu queue.
+ */
+
+#if CONFIG_SECLUDED_MEMORY
+vm_page_t vm_page_grab_secluded(void);
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+static inline void
+vm_page_grab_diags(void);
+
+vm_page_t
+vm_page_grab(void)
+{
+ return vm_page_grab_options(VM_PAGE_GRAB_OPTIONS_NONE);
+}
+
+#if HIBERNATION
+boolean_t hibernate_rebuild_needed = FALSE;
+#endif /* HIBERNATION */
+
+vm_page_t
+vm_page_grab_options(
+ int grab_options)
+{
+ vm_page_t mem;
+
+ disable_preemption();
+
+ if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) {
+return_page_from_cpu_list:
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q);
+
+#if HIBERNATION
+ if (hibernate_rebuild_needed) {
+ panic("%s:%d should not modify cpu->free_pages while hibernating", __FUNCTION__, __LINE__);
+ }
+#endif /* HIBERNATION */
+
+ vm_page_grab_diags();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ PROCESSOR_DATA(current_processor(), free_pages) = mem->vmp_snext;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0);
+
+ enable_preemption();
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0);
+ assert(mem->vmp_tabled == FALSE);
+ assert(mem->vmp_object == 0);
+ assert(!mem->vmp_laundry);
+ ASSERT_PMAP_FREE(mem);
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_pmapped);
+ assert(!mem->vmp_wpmapped);
+ assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)));
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(mem);
+#endif
+ return mem;
+ }
+ enable_preemption();
+
+
+ /*
+ * Optionally produce warnings if the wire or gobble
+ * counts exceed some threshold.
+ */
+#if VM_PAGE_WIRE_COUNT_WARNING
+ if (vm_page_wire_count >= VM_PAGE_WIRE_COUNT_WARNING) {
+ printf("mk: vm_page_grab(): high wired page count of %d\n",
+ vm_page_wire_count);
+ }
+#endif
+#if VM_PAGE_GOBBLE_COUNT_WARNING
+ if (vm_page_gobble_count >= VM_PAGE_GOBBLE_COUNT_WARNING) {
+ printf("mk: vm_page_grab(): high gobbled page count of %d\n",
+ vm_page_gobble_count);
+ }
+#endif
+
+ /*
+ * If free count is low and we have delayed pages from early boot,
+ * get one of those instead.
+ */
+ if (__improbable(vm_delayed_count > 0 &&
+ vm_page_free_count <= vm_page_free_target &&
+ (mem = vm_get_delayed_page(grab_options)) != NULL)) {
+ return mem;
+ }
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ /*
+ * Only let privileged threads (involved in pageout)
+ * dip into the reserved pool.
+ */
+ if ((vm_page_free_count < vm_page_free_reserved) &&
+ !(current_thread()->options & TH_OPT_VMPRIV)) {
+ /* no page for us in the free queue... */
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ mem = VM_PAGE_NULL;
+
+#if CONFIG_SECLUDED_MEMORY
+ /* ... but can we try and grab from the secluded queue? */
+ if (vm_page_secluded_count > 0 &&
+ ((grab_options & VM_PAGE_GRAB_SECLUDED) ||
+ task_can_use_secluded_mem(current_task(), TRUE))) {
+ mem = vm_page_grab_secluded();
+ if (grab_options & VM_PAGE_GRAB_SECLUDED) {
+ vm_page_secluded.grab_for_iokit++;
+ if (mem) {
+ vm_page_secluded.grab_for_iokit_success++;
+ }
+ }
+ if (mem) {
+ VM_CHECK_MEMORYSTATUS;
+
+ disable_preemption();
+ vm_page_grab_diags();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0);
+ enable_preemption();
+
+ return mem;
+ }
+ }
+#else /* CONFIG_SECLUDED_MEMORY */
+ (void) grab_options;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ vm_page_t head;
+ vm_page_t tail;
+ unsigned int pages_to_steal;
+ unsigned int color;
+ unsigned int clump_end, sub_count;
+
+ while (vm_page_free_count == 0) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ /*
+ * must be a privileged thread to be
+ * in this state since a non-privileged
+ * thread would have bailed if we were
+ * under the vm_page_free_reserved mark
+ */
+ VM_PAGE_WAIT();
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+ }
+
+ disable_preemption();
+
+ if ((mem = PROCESSOR_DATA(current_processor(), free_pages))) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ /*
+ * we got preempted and moved to another processor
+ * or we got preempted and someone else ran and filled the cache
+ */
+ goto return_page_from_cpu_list;
+ }
+ if (vm_page_free_count <= vm_page_free_reserved) {
+ pages_to_steal = 1;
+ } else {
+ if (vm_free_magazine_refill_limit <= (vm_page_free_count - vm_page_free_reserved)) {
+ pages_to_steal = vm_free_magazine_refill_limit;
+ } else {
+ pages_to_steal = (vm_page_free_count - vm_page_free_reserved);
+ }
+ }
+ color = PROCESSOR_DATA(current_processor(), start_color);
+ head = tail = NULL;
+
+ vm_page_free_count -= pages_to_steal;
+ clump_end = sub_count = 0;
+
+ while (pages_to_steal--) {
+ while (vm_page_queue_empty(&vm_page_queue_free[color].qhead)) {
+ color = (color + 1) & vm_color_mask;
+ }
+#if defined(__x86_64__)
+ vm_page_queue_remove_first_with_clump(&vm_page_queue_free[color].qhead,
+ mem, clump_end);
+#else
+ vm_page_queue_remove_first(&vm_page_queue_free[color].qhead,
+ mem, vmp_pageq);
+#endif
+
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_Q);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+
+#if defined(__arm__) || defined(__arm64__)
+ color = (color + 1) & vm_color_mask;
+#else
+
+#if DEVELOPMENT || DEBUG
+
+ sub_count++;
+ if (clump_end) {
+ vm_clump_update_stats(sub_count);
+ sub_count = 0;
+ color = (color + 1) & vm_color_mask;
+ }
+#else
+ if (clump_end) {
+ color = (color + 1) & vm_color_mask;
+ }
+
+#endif /* if DEVELOPMENT || DEBUG */
+
+#endif /* if defined(__arm__) || defined(__arm64__) */
+
+ if (head == NULL) {
+ head = mem;
+ } else {
+ tail->vmp_snext = mem;
+ }
+ tail = mem;
+
+ assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0);
+ assert(mem->vmp_tabled == FALSE);
+ assert(mem->vmp_object == 0);
+ assert(!mem->vmp_laundry);
+
+ mem->vmp_q_state = VM_PAGE_ON_FREE_LOCAL_Q;
+
+ ASSERT_PMAP_FREE(mem);
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_pmapped);
+ assert(!mem->vmp_wpmapped);
+ assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)));
+ }
+#if defined (__x86_64__) && (DEVELOPMENT || DEBUG)
+ vm_clump_update_stats(sub_count);
+#endif
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+#if HIBERNATION
+ if (hibernate_rebuild_needed) {
+ panic("%s:%d should not modify cpu->free_pages while hibernating", __FUNCTION__, __LINE__);
+ }
+#endif /* HIBERNATION */
+ PROCESSOR_DATA(current_processor(), free_pages) = head->vmp_snext;
+ PROCESSOR_DATA(current_processor(), start_color) = color;
+
+ /*
+ * satisfy this request
+ */
+ vm_page_grab_diags();
+ PROCESSOR_DATA(current_processor(), page_grab_count) += 1;
+ VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0);
+ mem = head;
+ assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(mem);
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ enable_preemption();
+ }
+ /*
+ * Decide if we should poke the pageout daemon.
+ * We do this if the free count is less than the low
+ * water mark, or if the free count is less than the high
+ * water mark (but above the low water mark) and the inactive
+ * count is less than its target.
+ *
+ * We don't have the counts locked ... if they change a little,
+ * it doesn't really matter.
+ */
+ if (vm_page_free_count < vm_page_free_min) {
+ thread_wakeup((event_t) &vm_page_free_wanted);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+
+ if (mem) {
+// dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(mem);
+#endif
+ }
+ return mem;
+}
+
+#if CONFIG_SECLUDED_MEMORY
+vm_page_t
+vm_page_grab_secluded(void)
+{
+ vm_page_t mem;
+ vm_object_t object;
+ int refmod_state;
+
+ if (vm_page_secluded_count == 0) {
+ /* no secluded pages to grab... */
+ return VM_PAGE_NULL;
+ }
+
+ /* secluded queue is protected by the VM page queue lock */
+ vm_page_lock_queues();
+
+ if (vm_page_secluded_count == 0) {
+ /* no secluded pages to grab... */
+ vm_page_unlock_queues();
+ return VM_PAGE_NULL;
+ }
+
+#if 00
+ /* can we grab from the secluded queue? */
+ if (vm_page_secluded_count > vm_page_secluded_target ||
+ (vm_page_secluded_count > 0 &&
+ task_can_use_secluded_mem(current_task(), TRUE))) {
+ /* OK */
+ } else {
+ /* can't grab from secluded queue... */
+ vm_page_unlock_queues();
+ return VM_PAGE_NULL;
+ }
+#endif
+
+ /* we can grab a page from secluded queue! */
+ assert((vm_page_secluded_count_free +
+ vm_page_secluded_count_inuse) ==
+ vm_page_secluded_count);
+ if (current_task()->task_can_use_secluded_mem) {
+ assert(num_tasks_can_use_secluded_mem > 0);
+ }
+ assert(!vm_page_queue_empty(&vm_page_queue_secluded));
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ mem = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded);
+ assert(mem->vmp_q_state == VM_PAGE_ON_SECLUDED_Q);
+ vm_page_queues_remove(mem, TRUE);
+
+ object = VM_PAGE_OBJECT(mem);
+
+ assert(!mem->vmp_fictitious);
+ assert(!VM_PAGE_WIRED(mem));
+ if (object == VM_OBJECT_NULL) {
+ /* free for grab! */
+ vm_page_unlock_queues();
+ vm_page_secluded.grab_success_free++;
+
+ assert(mem->vmp_busy);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL);
+ assert(mem->vmp_pageq.next == 0);
+ assert(mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0);
+ assert(mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_on_backgroundq == 0);
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ return mem;
+ }
+
+ assert(!object->internal);
+// vm_page_pageable_external_count--;
+
+ if (!vm_object_lock_try(object)) {
+// printf("SECLUDED: page %p: object %p locked\n", mem, object);
+ vm_page_secluded.grab_failure_locked++;
+reactivate_secluded_page:
+ vm_page_activate(mem);
+ vm_page_unlock_queues();
+ return VM_PAGE_NULL;
+ }
+ if (mem->vmp_busy ||
+ mem->vmp_cleaning ||
+ mem->vmp_laundry) {
+ /* can't steal page in this state... */
+ vm_object_unlock(object);
+ vm_page_secluded.grab_failure_state++;
+ goto reactivate_secluded_page;
+ }
+
+ mem->vmp_busy = TRUE;
+ refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem));
+ if (refmod_state & VM_MEM_REFERENCED) {
+ mem->vmp_reference = TRUE;
+ }
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(mem, FALSE);
+ }
+ if (mem->vmp_dirty || mem->vmp_precious) {
+ /* can't grab a dirty page; re-activate */
+// printf("SECLUDED: dirty page %p\n", mem);
+ PAGE_WAKEUP_DONE(mem);
+ vm_page_secluded.grab_failure_dirty++;
+ vm_object_unlock(object);
+ goto reactivate_secluded_page;
+ }
+ if (mem->vmp_reference) {
+ /* it's been used but we do need to grab a page... */
+ }
+
+ vm_page_unlock_queues();
+
+ /* finish what vm_page_free() would have done... */
+ vm_page_free_prepare_object(mem, TRUE);
+ vm_object_unlock(object);
+ object = VM_OBJECT_NULL;
+ if (vm_page_free_verify) {
+ ASSERT_PMAP_FREE(mem);
+ }
+ pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+ vm_page_secluded.grab_success_other++;
+
+ assert(mem->vmp_busy);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL);
+ assert(mem->vmp_pageq.next == 0);
+ assert(mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0);
+ assert(mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_on_backgroundq == 0);
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+#endif /* CONFIG_BACKGROUND_QUEUE */
+
+ return mem;
+}
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+
+static inline void
+vm_page_grab_diags()
+{
+#if DEVELOPMENT || DEBUG
+ task_t task = current_task();
+ if (task == NULL) {
+ return;
+ }
+
+ ledger_credit(task->ledger, task_ledgers.pages_grabbed, 1);
+#endif /* DEVELOPMENT || DEBUG */
+}
+
+/*
+ * vm_page_release:
+ *
+ * Return a page to the free list.
+ */
+
+void
+vm_page_release(
+ vm_page_t mem,
+ boolean_t page_queues_locked)
+{
+ unsigned int color;
+ int need_wakeup = 0;
+ int need_priv_wakeup = 0;
+#if CONFIG_SECLUDED_MEMORY
+ int need_secluded_wakeup = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ if (page_queues_locked) {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ } else {
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+ }
+
+ assert(!mem->vmp_private && !mem->vmp_fictitious);
+ if (vm_page_free_verify) {
+ ASSERT_PMAP_FREE(mem);
+ }
+// dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */
+
+ pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(mem->vmp_busy);
+ assert(!mem->vmp_laundry);
+ assert(mem->vmp_object == 0);
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0 &&
+ mem->vmp_backgroundq.prev == 0 &&
+ mem->vmp_on_backgroundq == FALSE);
+#endif
+ if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) &&
+ vm_lopage_free_count < vm_lopage_free_limit &&
+ VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) {
+ /*
+ * this exists to support hardware controllers
+ * incapable of generating DMAs with more than 32 bits
+ * of address on platforms with physical memory > 4G...
+ */
+ vm_page_queue_enter_first(&vm_lopage_queue_free, mem, vmp_pageq);
+ vm_lopage_free_count++;
+
+ if (vm_lopage_free_count >= vm_lopage_free_limit) {
+ vm_lopage_refill = FALSE;
+ }
+
+ mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q;
+ mem->vmp_lopage = TRUE;
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_free_count > vm_page_free_reserved &&
+ vm_page_secluded_count < vm_page_secluded_target &&
+ num_tasks_can_use_secluded_mem == 0) {
+ /*
+ * XXX FBDP TODO: also avoid refilling secluded queue
+ * when some IOKit objects are already grabbing from it...
+ */
+ if (!page_queues_locked) {
+ if (!vm_page_trylock_queues()) {
+ /* take locks in right order */
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_lock_queues();
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+ }
+ }
+ mem->vmp_lopage = FALSE;
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ vm_page_queue_enter_first(&vm_page_queue_secluded, mem, vmp_pageq);
+ mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q;
+ vm_page_secluded_count++;
+ vm_page_secluded_count_free++;
+ if (!page_queues_locked) {
+ vm_page_unlock_queues();
+ }
+ LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_OWNED);
+ if (vm_page_free_wanted_secluded > 0) {
+ vm_page_free_wanted_secluded--;
+ need_secluded_wakeup = 1;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+
+ color = VM_PAGE_GET_COLOR(mem);
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem);
+#else
+ vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq);
+#endif
+ vm_page_free_count++;
+ /*
+ * Check if we should wake up someone waiting for page.
+ * But don't bother waking them unless they can allocate.
+ *
+ * We wakeup only one thread, to prevent starvation.
+ * Because the scheduling system handles wait queues FIFO,
+ * if we wakeup all waiting threads, one greedy thread
+ * can starve multiple niceguy threads. When the threads
+ * all wakeup, the greedy threads runs first, grabs the page,
+ * and waits for another page. It will be the first to run
+ * when the next page is freed.
+ *
+ * However, there is a slight danger here.
+ * The thread we wake might not use the free page.
+ * Then the other threads could wait indefinitely
+ * while the page goes unused. To forestall this,
+ * the pageout daemon will keep making free pages
+ * as long as vm_page_free_wanted is non-zero.
+ */
+
+ assert(vm_page_free_count > 0);
+ if (vm_page_free_wanted_privileged > 0) {
+ vm_page_free_wanted_privileged--;
+ need_priv_wakeup = 1;
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_free_wanted_secluded > 0 &&
+ vm_page_free_count > vm_page_free_reserved) {
+ vm_page_free_wanted_secluded--;
+ need_secluded_wakeup = 1;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else if (vm_page_free_wanted > 0 &&
+ vm_page_free_count > vm_page_free_reserved) {
+ vm_page_free_wanted--;
+ need_wakeup = 1;
+ }
+ }
+ vm_pageout_vminfo.vm_page_pages_freed++;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, 1, 0, 0, 0);
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (need_priv_wakeup) {
+ thread_wakeup_one((event_t) &vm_page_free_wanted_privileged);
+ }
+#if CONFIG_SECLUDED_MEMORY
+ else if (need_secluded_wakeup) {
+ thread_wakeup_one((event_t) &vm_page_free_wanted_secluded);
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ else if (need_wakeup) {
+ thread_wakeup_one((event_t) &vm_page_free_count);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+}
+
+/*
+ * This version of vm_page_release() is used only at startup
+ * when we are single-threaded and pages are being released
+ * for the first time. Hence, no locking or unnecessary checks are made.
+ * Note: VM_CHECK_MEMORYSTATUS invoked by the caller.
+ */
+void
+vm_page_release_startup(
+ vm_page_t mem)
+{
+ vm_page_queue_t queue_free;
+
+ if (vm_lopage_free_count < vm_lopage_free_limit &&
+ VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) {
+ mem->vmp_lopage = TRUE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q;
+ vm_lopage_free_count++;
+ queue_free = &vm_lopage_queue_free;
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_secluded_count < vm_page_secluded_target) {
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q;
+ vm_page_secluded_count++;
+ vm_page_secluded_count_free++;
+ queue_free = &vm_page_queue_secluded;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+ vm_page_free_count++;
+ queue_free = &vm_page_queue_free[VM_PAGE_GET_COLOR(mem)].qhead;
+ }
+ if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(queue_free, mem);
+#else
+ vm_page_queue_enter(queue_free, mem, vmp_pageq);
+#endif
+ } else {
+ vm_page_queue_enter_first(queue_free, mem, vmp_pageq);
+ }
+}
+
+/*
+ * vm_page_wait:
+ *
+ * Wait for a page to become available.
+ * If there are plenty of free pages, then we don't sleep.
+ *
+ * Returns:
+ * TRUE: There may be another page, try again
+ * FALSE: We were interrupted out of our wait, don't try again
+ */
+
+boolean_t
+vm_page_wait(
+ int interruptible )
+{
+ /*
+ * We can't use vm_page_free_reserved to make this
+ * determination. Consider: some thread might
+ * need to allocate two pages. The first allocation
+ * succeeds, the second fails. After the first page is freed,
+ * a call to vm_page_wait must really block.
+ */
+ kern_return_t wait_result;
+ int need_wakeup = 0;
+ int is_privileged = current_thread()->options & TH_OPT_VMPRIV;
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ if (is_privileged && vm_page_free_count) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return TRUE;
+ }
+
+ if (vm_page_free_count >= vm_page_free_target) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return TRUE;
+ }
+
+ if (is_privileged) {
+ if (vm_page_free_wanted_privileged++ == 0) {
+ need_wakeup = 1;
+ }
+ wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, interruptible);
+#if CONFIG_SECLUDED_MEMORY
+ } else if (secluded_for_apps &&
+ task_can_use_secluded_mem(current_task(), FALSE)) {
+#if 00
+ /* XXX FBDP: need pageq lock for this... */
+ /* XXX FBDP: might wait even if pages available, */
+ /* XXX FBDP: hopefully not for too long... */
+ if (vm_page_secluded_count > 0) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ return TRUE;
+ }
+#endif
+ if (vm_page_free_wanted_secluded++ == 0) {
+ need_wakeup = 1;
+ }
+ wait_result = assert_wait(
+ (event_t)&vm_page_free_wanted_secluded,
+ interruptible);
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ if (vm_page_free_wanted++ == 0) {
+ need_wakeup = 1;
+ }
+ wait_result = assert_wait((event_t)&vm_page_free_count,
+ interruptible);
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ counter(c_vm_page_wait_block++);
+
+ if (need_wakeup) {
+ thread_wakeup((event_t)&vm_page_free_wanted);
+ }
+
+ if (wait_result == THREAD_WAITING) {
+ VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START,
+ vm_page_free_wanted_privileged,
+ vm_page_free_wanted,
+#if CONFIG_SECLUDED_MEMORY
+ vm_page_free_wanted_secluded,
+#else /* CONFIG_SECLUDED_MEMORY */
+ 0,
+#endif /* CONFIG_SECLUDED_MEMORY */
+ 0);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+ VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block,
+ VM_PAGE_WAIT_BLOCK, DBG_FUNC_END, 0, 0, 0, 0);
+ }
+
+ return wait_result == THREAD_AWAKENED;
+}
+
+/*
+ * vm_page_alloc:
+ *
+ * Allocate and return a memory cell associated
+ * with this VM object/offset pair.
+ *
+ * Object must be locked.
+ */
+
+vm_page_t
+vm_page_alloc(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t mem;
+ int grab_options;
+
+ vm_object_lock_assert_exclusive(object);
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ mem = vm_page_grab_options(grab_options);
+ if (mem == VM_PAGE_NULL) {
+ return VM_PAGE_NULL;
+ }
+
+ vm_page_insert(mem, object, offset);
+
+ return mem;
+}
+
+/*
+ * vm_page_alloc_guard:
+ *
+ * Allocate a fictitious page which will be used
+ * as a guard page. The page will be inserted into
+ * the object and returned to the caller.
+ */
+
+vm_page_t
+vm_page_alloc_guard(
+ vm_object_t object,
+ vm_object_offset_t offset)
+{
+ vm_page_t mem;
+
+ vm_object_lock_assert_exclusive(object);
+ mem = vm_page_grab_guard();
+ if (mem == VM_PAGE_NULL) {
+ return VM_PAGE_NULL;
+ }
+
+ vm_page_insert(mem, object, offset);
+
+ return mem;
+}
+
+
+counter(unsigned int c_laundry_pages_freed = 0; )
+
+/*
+ * vm_page_free_prepare:
+ *
+ * Removes page from any queue it may be on
+ * and disassociates it from its VM object.
+ *
+ * Object and page queues must be locked prior to entry.
+ */
+static void
+vm_page_free_prepare(
+ vm_page_t mem)
+{
+ vm_page_free_prepare_queues(mem);
+ vm_page_free_prepare_object(mem, TRUE);
+}
+
+
+void
+vm_page_free_prepare_queues(
+ vm_page_t mem)
+{
+ vm_object_t m_object;
+
+ VM_PAGE_CHECK(mem);
+
+ assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q);
+ assert(!mem->vmp_cleaning);
+ m_object = VM_PAGE_OBJECT(mem);
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ if (m_object) {
+ vm_object_lock_assert_exclusive(m_object);
+ }
+ if (mem->vmp_laundry) {
+ /*
+ * We may have to free a page while it's being laundered
+ * if we lost its pager (due to a forced unmount, for example).
+ * We need to call vm_pageout_steal_laundry() before removing
+ * the page from its VM object, so that we can remove it
+ * from its pageout queue and adjust the laundry accounting
+ */
+ vm_pageout_steal_laundry(mem, TRUE);
+ counter(++c_laundry_pages_freed);
+ }
+
+ vm_page_queues_remove(mem, TRUE);
+
+ if (VM_PAGE_WIRED(mem)) {
+ assert(mem->vmp_wire_count > 0);
+
+ if (m_object) {
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag);
+
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ OSAddAtomic(+1, &vm_page_purgeable_count);
+ assert(vm_page_purgeable_wired_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_wired_count);
+ }
+ if ((m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY) &&
+ m_object->vo_owner != TASK_NULL) {
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(
+ m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ /*
+ * While wired, this page was accounted
+ * as "non-volatile" but it should now
+ * be accounted as "volatile".
+ */
+ /* one less "non-volatile"... */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* ... and "phys_footprint" */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ /* one more "volatile" */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ }
+ }
+ if (!mem->vmp_private && !mem->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+ mem->vmp_wire_count = 0;
+ assert(!mem->vmp_gobbled);
+ } else if (mem->vmp_gobbled) {
+ if (!mem->vmp_private && !mem->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ }
+}
+
+
+void
+vm_page_free_prepare_object(
+ vm_page_t mem,
+ boolean_t remove_from_hash)
+{
+ if (mem->vmp_tabled) {
+ vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */
+ }
+ PAGE_WAKEUP(mem); /* clears wanted */
+
+ if (mem->vmp_private) {
+ mem->vmp_private = FALSE;
+ mem->vmp_fictitious = TRUE;
+ VM_PAGE_SET_PHYS_PAGE(mem, vm_page_fictitious_addr);
+ }
+ if (!mem->vmp_fictitious) {
+ assert(mem->vmp_pageq.next == 0);
+ assert(mem->vmp_pageq.prev == 0);
+ assert(mem->vmp_listq.next == 0);
+ assert(mem->vmp_listq.prev == 0);
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0);
+ assert(mem->vmp_backgroundq.prev == 0);
+#endif /* CONFIG_BACKGROUND_QUEUE */
+ assert(mem->vmp_next_m == 0);
+ ASSERT_PMAP_FREE(mem);
+ vm_page_init(mem, VM_PAGE_GET_PHYS_PAGE(mem), mem->vmp_lopage);
+ }
+}
+
+
+/*
+ * vm_page_free:
+ *
+ * Returns the given page to the free list,
+ * disassociating it with any VM object.
+ *
+ * Object and page queues must be locked prior to entry.
+ */
+void
+vm_page_free(
+ vm_page_t mem)
+{
+ vm_page_free_prepare(mem);
+
+ if (mem->vmp_fictitious) {
+ vm_page_release_fictitious(mem);
+ } else {
+ vm_page_release(mem,
+ TRUE); /* page queues are locked */
+ }
+}
+
+
+void
+vm_page_free_unlocked(
+ vm_page_t mem,
+ boolean_t remove_from_hash)
+{
+ vm_page_lockspin_queues();
+ vm_page_free_prepare_queues(mem);
+ vm_page_unlock_queues();
+
+ vm_page_free_prepare_object(mem, remove_from_hash);
+
+ if (mem->vmp_fictitious) {
+ vm_page_release_fictitious(mem);
+ } else {
+ vm_page_release(mem, FALSE); /* page queues are not locked */
+ }
+}
+
+
+/*
+ * Free a list of pages. The list can be up to several hundred pages,
+ * as blocked up by vm_pageout_scan().
+ * The big win is not having to take the free list lock once
+ * per page.
+ *
+ * The VM page queues lock (vm_page_queue_lock) should NOT be held.
+ * The VM page free queues lock (vm_page_queue_free_lock) should NOT be held.
+ */
+void
+vm_page_free_list(
+ vm_page_t freeq,
+ boolean_t prepare_object)
+{
+ vm_page_t mem;
+ vm_page_t nxt;
+ vm_page_t local_freeq;
+ int pg_count;
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+ LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_NOTOWNED);
+
+ while (freeq) {
+ pg_count = 0;
+ local_freeq = VM_PAGE_NULL;
+ mem = freeq;
+
+ /*
+ * break up the processing into smaller chunks so
+ * that we can 'pipeline' the pages onto the
+ * free list w/o introducing too much
+ * contention on the global free queue lock
+ */
+ while (mem && pg_count < 64) {
+ assert((mem->vmp_q_state == VM_PAGE_NOT_ON_Q) ||
+ (mem->vmp_q_state == VM_PAGE_IS_WIRED));
+#if CONFIG_BACKGROUND_QUEUE
+ assert(mem->vmp_backgroundq.next == 0 &&
+ mem->vmp_backgroundq.prev == 0 &&
+ mem->vmp_on_backgroundq == FALSE);
+#endif
+ nxt = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+ assert(mem->vmp_pageq.prev == 0);
+
+ if (vm_page_free_verify && !mem->vmp_fictitious && !mem->vmp_private) {
+ ASSERT_PMAP_FREE(mem);
+ }
+ if (prepare_object == TRUE) {
+ vm_page_free_prepare_object(mem, TRUE);
+ }
+
+ if (!mem->vmp_fictitious) {
+ assert(mem->vmp_busy);
+
+ if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) &&
+ vm_lopage_free_count < vm_lopage_free_limit &&
+ VM_PAGE_GET_PHYS_PAGE(mem) < max_valid_low_ppnum) {
+ vm_page_release(mem, FALSE); /* page queues are not locked */
+#if CONFIG_SECLUDED_MEMORY
+ } else if (vm_page_secluded_count < vm_page_secluded_target &&
+ num_tasks_can_use_secluded_mem == 0) {
+ vm_page_release(mem,
+ FALSE); /* page queues are not locked */
+#endif /* CONFIG_SECLUDED_MEMORY */
+ } else {
+ /*
+ * IMPORTANT: we can't set the page "free" here
+ * because that would make the page eligible for
+ * a physically-contiguous allocation (see
+ * vm_page_find_contiguous()) right away (we don't
+ * hold the vm_page_queue_free lock). That would
+ * cause trouble because the page is not actually
+ * in the free queue yet...
+ */
+ mem->vmp_snext = local_freeq;
+ local_freeq = mem;
+ pg_count++;
+
+ pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+ }
+ } else {
+ assert(VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_fictitious_addr ||
+ VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_guard_addr);
+ vm_page_release_fictitious(mem);
+ }
+ mem = nxt;
+ }
+ freeq = mem;
+
+ if ((mem = local_freeq)) {
+ unsigned int avail_free_count;
+ unsigned int need_wakeup = 0;
+ unsigned int need_priv_wakeup = 0;
+#if CONFIG_SECLUDED_MEMORY
+ unsigned int need_wakeup_secluded = 0;
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ lck_mtx_lock_spin(&vm_page_queue_free_lock);
+
+ while (mem) {
+ int color;
+
+ nxt = mem->vmp_snext;
+
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(mem->vmp_busy);
+ mem->vmp_lopage = FALSE;
+ mem->vmp_q_state = VM_PAGE_ON_FREE_Q;
+
+ color = VM_PAGE_GET_COLOR(mem);
+#if defined(__x86_64__)
+ vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem);
+#else
+ vm_page_queue_enter(&vm_page_queue_free[color].qhead,
+ mem, vmp_pageq);
+#endif
+ mem = nxt;
+ }
+ vm_pageout_vminfo.vm_page_pages_freed += pg_count;
+ vm_page_free_count += pg_count;
+ avail_free_count = vm_page_free_count;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, pg_count, 0, 0, 0);
+
+ if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) {
+ if (avail_free_count < vm_page_free_wanted_privileged) {
+ need_priv_wakeup = avail_free_count;
+ vm_page_free_wanted_privileged -= avail_free_count;
+ avail_free_count = 0;
+ } else {
+ need_priv_wakeup = vm_page_free_wanted_privileged;
+ avail_free_count -= vm_page_free_wanted_privileged;
+ vm_page_free_wanted_privileged = 0;
+ }
+ }
+#if CONFIG_SECLUDED_MEMORY
+ if (vm_page_free_wanted_secluded > 0 &&
+ avail_free_count > vm_page_free_reserved) {
+ unsigned int available_pages;
+ available_pages = (avail_free_count -
+ vm_page_free_reserved);
+ if (available_pages <
+ vm_page_free_wanted_secluded) {
+ need_wakeup_secluded = available_pages;
+ vm_page_free_wanted_secluded -=
+ available_pages;
+ avail_free_count -= available_pages;
+ } else {
+ need_wakeup_secluded =
+ vm_page_free_wanted_secluded;
+ avail_free_count -=
+ vm_page_free_wanted_secluded;
+ vm_page_free_wanted_secluded = 0;
+ }
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) {
+ unsigned int available_pages;
+
+ available_pages = avail_free_count - vm_page_free_reserved;
+
+ if (available_pages >= vm_page_free_wanted) {
+ need_wakeup = vm_page_free_wanted;
+ vm_page_free_wanted = 0;
+ } else {
+ need_wakeup = available_pages;
+ vm_page_free_wanted -= available_pages;
+ }
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ if (need_priv_wakeup != 0) {
+ /*
+ * There shouldn't be that many VM-privileged threads,
+ * so let's wake them all up, even if we don't quite
+ * have enough pages to satisfy them all.
+ */
+ thread_wakeup((event_t)&vm_page_free_wanted_privileged);
+ }
+#if CONFIG_SECLUDED_MEMORY
+ if (need_wakeup_secluded != 0 &&
+ vm_page_free_wanted_secluded == 0) {
+ thread_wakeup((event_t)
+ &vm_page_free_wanted_secluded);
+ } else {
+ for (;
+ need_wakeup_secluded != 0;
+ need_wakeup_secluded--) {
+ thread_wakeup_one(
+ (event_t)
+ &vm_page_free_wanted_secluded);
+ }
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+ if (need_wakeup != 0 && vm_page_free_wanted == 0) {
+ /*
+ * We don't expect to have any more waiters
+ * after this, so let's wake them all up at
+ * once.
+ */
+ thread_wakeup((event_t) &vm_page_free_count);
+ } else {
+ for (; need_wakeup != 0; need_wakeup--) {
+ /*
+ * Wake up one waiter per page we just released.
+ */
+ thread_wakeup_one((event_t) &vm_page_free_count);
+ }
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+ }
+ }
+}
+
+
+/*
+ * vm_page_wire:
+ *
+ * Mark this page as wired down by yet
+ * another map, removing it from paging queues
+ * as necessary.
+ *
+ * The page's object and the page queues must be locked.
+ */
+
+
+void
+vm_page_wire(
+ vm_page_t mem,
+ vm_tag_t tag,
+ boolean_t check_memorystatus)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+// dbgLog(current_thread(), mem->vmp_offset, m_object, 1); /* (TEST/DEBUG) */
+
+ VM_PAGE_CHECK(mem);
+ if (m_object) {
+ vm_object_lock_assert_exclusive(m_object);
+ } else {
+ /*
+ * In theory, the page should be in an object before it
+ * gets wired, since we need to hold the object lock
+ * to update some fields in the page structure.
+ * However, some code (i386 pmap, for example) might want
+ * to wire a page before it gets inserted into an object.
+ * That's somewhat OK, as long as nobody else can get to
+ * that page and update it at the same time.
+ */
+ }
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ if (!VM_PAGE_WIRED(mem)) {
+ if (mem->vmp_laundry) {
+ vm_pageout_steal_laundry(mem, TRUE);
+ }
+
+ vm_page_queues_remove(mem, TRUE);
+
+ assert(mem->vmp_wire_count == 0);
+ mem->vmp_q_state = VM_PAGE_IS_WIRED;
+
+ if (m_object) {
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_ADD(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, tag);
+
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ assert(vm_page_purgeable_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_count);
+ OSAddAtomic(1, &vm_page_purgeable_wired_count);
+ }
+ if ((m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY) &&
+ m_object->vo_owner != TASK_NULL) {
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(
+ m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ /* less volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ /* more not-quite-volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* more footprint */
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ }
+ if (m_object->all_reusable) {
+ /*
+ * Wired pages are not counted as "re-usable"
+ * in "all_reusable" VM objects, so nothing
+ * to do here.
+ */
+ } else if (mem->vmp_reusable) {
+ /*
+ * This page is not "re-usable" when it's
+ * wired, so adjust its state and the
+ * accounting.
+ */
+ vm_object_reuse_pages(m_object,
+ mem->vmp_offset,
+ mem->vmp_offset + PAGE_SIZE_64,
+ FALSE);
+ }
+ }
+ assert(!mem->vmp_reusable);
+
+ if (!mem->vmp_private && !mem->vmp_fictitious && !mem->vmp_gobbled) {
+ vm_page_wire_count++;
+ }
+ if (mem->vmp_gobbled) {
+ vm_page_gobble_count--;
+ }
+ mem->vmp_gobbled = FALSE;
+
+ if (check_memorystatus == TRUE) {
+ VM_CHECK_MEMORYSTATUS;
+ }
+ }
+ assert(!mem->vmp_gobbled);
+ assert(mem->vmp_q_state == VM_PAGE_IS_WIRED);
+ mem->vmp_wire_count++;
+ if (__improbable(mem->vmp_wire_count == 0)) {
+ panic("vm_page_wire(%p): wire_count overflow", mem);
+ }
+ VM_PAGE_CHECK(mem);
+}
+
+/*
+ * vm_page_unwire:
+ *
+ * Release one wiring of this page, potentially
+ * enabling it to be paged again.
+ *
+ * The page's object and the page queues must be locked.
+ */
+void
+vm_page_unwire(
+ vm_page_t mem,
+ boolean_t queueit)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+// dbgLog(current_thread(), mem->vmp_offset, m_object, 0); /* (TEST/DEBUG) */
+
+ VM_PAGE_CHECK(mem);
+ assert(VM_PAGE_WIRED(mem));
+ assert(mem->vmp_wire_count > 0);
+ assert(!mem->vmp_gobbled);
+ assert(m_object != VM_OBJECT_NULL);
+ vm_object_lock_assert_exclusive(m_object);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ if (--mem->vmp_wire_count == 0) {
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+
+ VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object);
+ VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem);
+ VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag);
+ if (!mem->vmp_private && !mem->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+
+ assert(m_object->resident_page_count >=
+ m_object->wired_page_count);
+ if (m_object->purgable == VM_PURGABLE_VOLATILE) {
+ OSAddAtomic(+1, &vm_page_purgeable_count);
+ assert(vm_page_purgeable_wired_count > 0);
+ OSAddAtomic(-1, &vm_page_purgeable_wired_count);
+ }
+ if ((m_object->purgable == VM_PURGABLE_VOLATILE ||
+ m_object->purgable == VM_PURGABLE_EMPTY) &&
+ m_object->vo_owner != TASK_NULL) {
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ owner = VM_OBJECT_OWNER(m_object);
+ vm_object_ledger_tag_ledgers(
+ m_object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ /* more volatile bytes */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ PAGE_SIZE);
+ /* less not-quite-volatile bytes */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ PAGE_SIZE);
+ if (do_footprint) {
+ /* less footprint */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ PAGE_SIZE);
+ }
+ }
+ assert(m_object != kernel_object);
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+
+ if (queueit == TRUE) {
+ if (m_object->purgable == VM_PURGABLE_EMPTY) {
+ vm_page_deactivate(mem);
+ } else {
+ vm_page_activate(mem);
+ }
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+ }
+ VM_PAGE_CHECK(mem);
+}
+
+/*
+ * vm_page_deactivate:
+ *
+ * Returns the given page to the inactive list,
+ * indicating that no physical maps have access
+ * to this page. [Used by the physical mapping system.]
+ *
+ * The page queues must be locked.
+ */
+void
+vm_page_deactivate(
+ vm_page_t m)
+{
+ vm_page_deactivate_internal(m, TRUE);
+}
+
+
+void
+vm_page_deactivate_internal(
+ vm_page_t m,
+ boolean_t clear_hw_reference)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ VM_PAGE_CHECK(m);
+ assert(m_object != kernel_object);
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+
+// dbgLog(VM_PAGE_GET_PHYS_PAGE(m), vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ /*
+ * This page is no longer very interesting. If it was
+ * interesting (active or inactive/referenced), then we
+ * clear the reference bit and (re)enter it in the
+ * inactive queue. Note wired pages should not have
+ * their reference bit cleared.
+ */
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+
+ if (m->vmp_gobbled) { /* can this happen? */
+ assert( !VM_PAGE_WIRED(m));
+
+ if (!m->vmp_private && !m->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ m->vmp_gobbled = FALSE;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) ||
+ VM_PAGE_WIRED(m)) {
+ return;
+ }
+ if (!m->vmp_absent && clear_hw_reference == TRUE) {
+ pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ m->vmp_reference = FALSE;
+ m->vmp_no_cache = FALSE;
+
+ if (!VM_PAGE_INACTIVE(m)) {
+ vm_page_queues_remove(m, FALSE);
+
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ m->vmp_dirty && m_object->internal &&
+ (m_object->purgable == VM_PURGABLE_DENY ||
+ m_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m_object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
+ } else {
+ if (m_object->named && m_object->ref_count == 1) {
+ vm_page_speculate(m, FALSE);
+#if DEVELOPMENT || DEBUG
+ vm_page_speculative_recreated++;
+#endif
+ } else {
+ vm_page_enqueue_inactive(m, FALSE);
+ }
+ }
+ }
+}
+
+/*
+ * vm_page_enqueue_cleaned
+ *
+ * Put the page on the cleaned queue, mark it cleaned, etc.
+ * Being on the cleaned queue (and having m->clean_queue set)
+ * does ** NOT ** guarantee that the page is clean!
+ *
+ * Call with the queues lock held.
+ */
+
+void
+vm_page_enqueue_cleaned(vm_page_t m)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+
+ if (VM_PAGE_WIRED(m)) {
+ return;
+ }
+
+ if (m->vmp_gobbled) {
+ if (!m->vmp_private && !m->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ m->vmp_gobbled = FALSE;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ return;
+ }
+ vm_page_queues_remove(m, FALSE);
+
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&vm_page_queue_cleaned, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_INACTIVE_CLEANED_Q;
+ vm_page_cleaned_count++;
+
+ vm_page_inactive_count++;
+ if (m_object->internal) {
+ vm_page_pageable_internal_count++;
+ } else {
+ vm_page_pageable_external_count++;
+ }
+#if CONFIG_BACKGROUND_QUEUE
+ if (m->vmp_in_background) {
+ vm_page_add_to_backgroundq(m, TRUE);
+ }
+#endif
+ VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1);
+}
+
+/*
+ * vm_page_activate:
+ *
+ * Put the specified page on the active list (if appropriate).
+ *
+ * The page queues must be locked.
+ */
+
+void
+vm_page_activate(
+ vm_page_t m)
+{
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ VM_PAGE_CHECK(m);
+#ifdef FIXME_4778297
+ assert(m_object != kernel_object);
+#endif
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+
+ if (m->vmp_gobbled) {
+ assert( !VM_PAGE_WIRED(m));
+ if (!m->vmp_private && !m->vmp_fictitious) {
+ vm_page_wire_count--;
+ }
+ vm_page_gobble_count--;
+ m->vmp_gobbled = FALSE;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ return;
+ }
+
+#if DEBUG
+ if (m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q) {
+ panic("vm_page_activate: already active");
+ }
+#endif
+
+ if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
+ DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL);
+ }
+
+ vm_page_queues_remove(m, FALSE);
+
+ if (!VM_PAGE_WIRED(m)) {
+ vm_page_check_pageable_safe(m);
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ m->vmp_dirty && m_object->internal &&
+ (m_object->purgable == VM_PURGABLE_DENY ||
+ m_object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m_object->purgable == VM_PURGABLE_VOLATILE)) {
+ vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
+ } else {
+#if CONFIG_SECLUDED_MEMORY
+ if (secluded_for_filecache &&
+ vm_page_secluded_target != 0 &&
+ num_tasks_can_use_secluded_mem == 0 &&
+ m_object->eligible_for_secluded) {
+ vm_page_queue_enter(&vm_page_queue_secluded, m, vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_SECLUDED_Q;
+ vm_page_secluded_count++;
+ vm_page_secluded_count_inuse++;
+ assert(!m_object->internal);
+// vm_page_pageable_external_count++;
+ } else
+#endif /* CONFIG_SECLUDED_MEMORY */
+ vm_page_enqueue_active(m, FALSE);
+ }
+ m->vmp_reference = TRUE;
+ m->vmp_no_cache = FALSE;
+ }
+ VM_PAGE_CHECK(m);
+}
+
+
+/*
+ * vm_page_speculate:
+ *
+ * Put the specified page on the speculative list (if appropriate).
+ *
+ * The page queues must be locked.
+ */
+void
+vm_page_speculate(
+ vm_page_t m,
+ boolean_t new)
+{
+ struct vm_speculative_age_q *aq;
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ VM_PAGE_CHECK(m);
+ vm_page_check_pageable_safe(m);
+
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ assert( !(m->vmp_absent && !m->vmp_unusual));
+ assert(m_object->internal == FALSE);
+
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ return;
+ }
+
+ vm_page_queues_remove(m, FALSE);
+
+ if (!VM_PAGE_WIRED(m)) {
+ mach_timespec_t ts;
+ clock_sec_t sec;
+ clock_nsec_t nsec;
+
+ clock_get_system_nanotime(&sec, &nsec);
+ ts.tv_sec = (unsigned int) sec;
+ ts.tv_nsec = nsec;
+
+ if (vm_page_speculative_count == 0) {
+ speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+ speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+
+ aq = &vm_page_queue_speculative[speculative_age_index];
+
+ /*
+ * set the timer to begin a new group
+ */
+ aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000;
+ aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC;
+ ADD_MACH_TIMESPEC(&aq->age_ts, &ts);
+ } else {
+ aq = &vm_page_queue_speculative[speculative_age_index];
+
+ if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) {
+ speculative_age_index++;
+
+ if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
+ speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+ }
+ if (speculative_age_index == speculative_steal_index) {
+ speculative_steal_index = speculative_age_index + 1;
+
+ if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
+ speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
+ }
+ }
+ aq = &vm_page_queue_speculative[speculative_age_index];
+
+ if (!vm_page_queue_empty(&aq->age_q)) {
+ vm_page_speculate_ageit(aq);
+ }
+
+ aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000;
+ aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC;
+ ADD_MACH_TIMESPEC(&aq->age_ts, &ts);
+ }
+ }
+ vm_page_enqueue_tail(&aq->age_q, &m->vmp_pageq);
+ m->vmp_q_state = VM_PAGE_ON_SPECULATIVE_Q;
+ vm_page_speculative_count++;
+ vm_page_pageable_external_count++;
+
+ if (new == TRUE) {
+ vm_object_lock_assert_exclusive(m_object);
+
+ m_object->pages_created++;
+#if DEVELOPMENT || DEBUG
+ vm_page_speculative_created++;
+#endif
+ }
+ }
+ VM_PAGE_CHECK(m);
+}
+
+
+/*
+ * move pages from the specified aging bin to
+ * the speculative bin that pageout_scan claims from
+ *
+ * The page queues must be locked.
+ */
+void
+vm_page_speculate_ageit(struct vm_speculative_age_q *aq)
+{
+ struct vm_speculative_age_q *sq;
+ vm_page_t t;
+
+ sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
+
+ if (vm_page_queue_empty(&sq->age_q)) {
+ sq->age_q.next = aq->age_q.next;
+ sq->age_q.prev = aq->age_q.prev;
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.next);
+ t->vmp_pageq.prev = VM_PAGE_PACK_PTR(&sq->age_q);
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev);
+ t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q);
+ } else {
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev);
+ t->vmp_pageq.next = aq->age_q.next;
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.next);
+ t->vmp_pageq.prev = sq->age_q.prev;
+
+ t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.prev);
+ t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q);
+
+ sq->age_q.prev = aq->age_q.prev;
+ }
+ vm_page_queue_init(&aq->age_q);
+}
+
+
+void
+vm_page_lru(
+ vm_page_t m)
+{
+ VM_PAGE_CHECK(m);
+ assert(VM_PAGE_OBJECT(m) != kernel_object);
+ assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q) {
+ /*
+ * we don't need to do all the other work that
+ * vm_page_queues_remove and vm_page_enqueue_inactive
+ * bring along for the ride
+ */
+ assert(!m->vmp_laundry);
+ assert(!m->vmp_private);
+
+ m->vmp_no_cache = FALSE;
+
+ vm_page_queue_remove(&vm_page_queue_inactive, m, vmp_pageq);
+ vm_page_queue_enter(&vm_page_queue_inactive, m, vmp_pageq);
+
+ return;
+ }
+ /*
+ * if this page is currently on the pageout queue, we can't do the
+ * vm_page_queues_remove (which doesn't handle the pageout queue case)
+ * and we can't remove it manually since we would need the object lock
+ * (which is not required here) to decrement the activity_in_progress
+ * reference which is held on the object while the page is in the pageout queue...
+ * just let the normal laundry processing proceed
+ */
+ if (m->vmp_laundry || m->vmp_private ||
+ (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) ||
+ VM_PAGE_WIRED(m)) {
+ return;
+ }
+
+ m->vmp_no_cache = FALSE;
+
+ vm_page_queues_remove(m, FALSE);
+
+ vm_page_enqueue_inactive(m, FALSE);
+}
+
+
+void
+vm_page_reactivate_all_throttled(void)
+{
+ vm_page_t first_throttled, last_throttled;
+ vm_page_t first_active;
+ vm_page_t m;
+ int extra_active_count;
+ int extra_internal_count, extra_external_count;
+ vm_object_t m_object;
+
+ if (!VM_DYNAMIC_PAGING_ENABLED()) {
+ return;
+ }
+
+ extra_active_count = 0;
+ extra_internal_count = 0;
+ extra_external_count = 0;
+ vm_page_lock_queues();
+ if (!vm_page_queue_empty(&vm_page_queue_throttled)) {
+ /*
+ * Switch "throttled" pages to "active".
+ */
+ vm_page_queue_iterate(&vm_page_queue_throttled, m, vmp_pageq) {
+ VM_PAGE_CHECK(m);
+ assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q);
+
+ m_object = VM_PAGE_OBJECT(m);
+
+ extra_active_count++;
+ if (m_object->internal) {
+ extra_internal_count++;
+ } else {
+ extra_external_count++;
+ }
+
+ m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
+ VM_PAGE_CHECK(m);
+#if CONFIG_BACKGROUND_QUEUE
+ if (m->vmp_in_background) {
+ vm_page_add_to_backgroundq(m, FALSE);
+ }
+#endif
+ }
+
+ /*
+ * Transfer the entire throttled queue to a regular LRU page queues.
+ * We insert it at the head of the active queue, so that these pages
+ * get re-evaluated by the LRU algorithm first, since they've been
+ * completely out of it until now.
+ */
+ first_throttled = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled);
+ last_throttled = (vm_page_t) vm_page_queue_last(&vm_page_queue_throttled);
+ first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+ if (vm_page_queue_empty(&vm_page_queue_active)) {
+ vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled);
+ } else {
+ first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled);
+ }
+ vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_throttled);
+ first_throttled->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active);
+ last_throttled->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active);
+
+#if DEBUG
+ printf("reactivated %d throttled pages\n", vm_page_throttled_count);
+#endif
+ vm_page_queue_init(&vm_page_queue_throttled);
+ /*
+ * Adjust the global page counts.
+ */
+ vm_page_active_count += extra_active_count;
+ vm_page_pageable_internal_count += extra_internal_count;
+ vm_page_pageable_external_count += extra_external_count;
+ vm_page_throttled_count = 0;
+ }
+ assert(vm_page_throttled_count == 0);
+ assert(vm_page_queue_empty(&vm_page_queue_throttled));
+ vm_page_unlock_queues();
+}
+
+
+/*
+ * move pages from the indicated local queue to the global active queue
+ * its ok to fail if we're below the hard limit and force == FALSE
+ * the nolocks == TRUE case is to allow this function to be run on
+ * the hibernate path
+ */
+
+void
+vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks)
+{
+ struct vpl *lq;
+ vm_page_t first_local, last_local;
+ vm_page_t first_active;
+ vm_page_t m;
+ uint32_t count = 0;
+
+ if (vm_page_local_q == NULL) {
+ return;
+ }
+
+ lq = &vm_page_local_q[lid].vpl_un.vpl;
+
+ if (nolocks == FALSE) {
+ if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) {
+ if (!vm_page_trylockspin_queues()) {
+ return;
+ }
+ } else {
+ vm_page_lockspin_queues();
+ }
+
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ if (lq->vpl_count) {
+ /*
+ * Switch "local" pages to "active".
+ */
+ assert(!vm_page_queue_empty(&lq->vpl_queue));
+
+ vm_page_queue_iterate(&lq->vpl_queue, m, vmp_pageq) {
+ VM_PAGE_CHECK(m);
+ vm_page_check_pageable_safe(m);
+ assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q);
+ assert(!m->vmp_fictitious);
+
+ if (m->vmp_local_id != lid) {
+ panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid", m);
+ }
+
+ m->vmp_local_id = 0;
+ m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
+ VM_PAGE_CHECK(m);
+#if CONFIG_BACKGROUND_QUEUE
+ if (m->vmp_in_background) {
+ vm_page_add_to_backgroundq(m, FALSE);
+ }
+#endif
+ count++;
+ }
+ if (count != lq->vpl_count) {
+ panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d\n", count, lq->vpl_count);
+ }
+
+ /*
+ * Transfer the entire local queue to a regular LRU page queues.
+ */
+ first_local = (vm_page_t) vm_page_queue_first(&lq->vpl_queue);
+ last_local = (vm_page_t) vm_page_queue_last(&lq->vpl_queue);
+ first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+
+ if (vm_page_queue_empty(&vm_page_queue_active)) {
+ vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
+ } else {
+ first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
+ }
+ vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
+ first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active);
+ last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active);
+
+ vm_page_queue_init(&lq->vpl_queue);
+ /*
+ * Adjust the global page counts.
+ */
+ vm_page_active_count += lq->vpl_count;
+ vm_page_pageable_internal_count += lq->vpl_internal_count;
+ vm_page_pageable_external_count += lq->vpl_external_count;
+ lq->vpl_count = 0;
+ lq->vpl_internal_count = 0;
+ lq->vpl_external_count = 0;
+ }
+ assert(vm_page_queue_empty(&lq->vpl_queue));
+
+ if (nolocks == FALSE) {
+ VPL_UNLOCK(&lq->vpl_lock);
+
+ vm_page_balance_inactive(count / 4);
+ vm_page_unlock_queues();
+ }
+}
+
+/*
+ * vm_page_part_zero_fill:
+ *
+ * Zero-fill a part of the page.
+ */
+#define PMAP_ZERO_PART_PAGE_IMPLEMENTED
+void
+vm_page_part_zero_fill(
+ vm_page_t m,
+ vm_offset_t m_pa,
+ vm_size_t len)
+{
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(m);
+#endif
+
+#ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED
+ pmap_zero_part_page(VM_PAGE_GET_PHYS_PAGE(m), m_pa, len);
+#else
+ vm_page_t tmp;
+ while (1) {
+ tmp = vm_page_grab();
+ if (tmp == VM_PAGE_NULL) {
+ vm_page_wait(THREAD_UNINT);
+ continue;
+ }
+ break;
+ }
+ vm_page_zero_fill(tmp);
+ if (m_pa != 0) {
+ vm_page_part_copy(m, 0, tmp, 0, m_pa);
+ }
+ if ((m_pa + len) < PAGE_SIZE) {
+ vm_page_part_copy(m, m_pa + len, tmp,
+ m_pa + len, PAGE_SIZE - (m_pa + len));
+ }
+ vm_page_copy(tmp, m);
+ VM_PAGE_FREE(tmp);
+#endif
+}
+
+/*
+ * vm_page_zero_fill:
+ *
+ * Zero-fill the specified page.
+ */
+void
+vm_page_zero_fill(
+ vm_page_t m)
+{
+ XPR(XPR_VM_PAGE,
+ "vm_page_zero_fill, object 0x%X offset 0x%X page 0x%X\n",
+ VM_PAGE_OBJECT(m), m->vmp_offset, m, 0, 0);
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(m);
+#endif
+
+// dbgTrace(0xAEAEAEAE, VM_PAGE_GET_PHYS_PAGE(m), 0); /* (BRINGUP) */
+ pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m));
+}
+
+/*
+ * vm_page_part_copy:
+ *
+ * copy part of one page to another
+ */
+
+void
+vm_page_part_copy(
+ vm_page_t src_m,
+ vm_offset_t src_pa,
+ vm_page_t dst_m,
+ vm_offset_t dst_pa,
+ vm_size_t len)
+{
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(src_m);
+ VM_PAGE_CHECK(dst_m);
+#endif
+ pmap_copy_part_page(VM_PAGE_GET_PHYS_PAGE(src_m), src_pa,
+ VM_PAGE_GET_PHYS_PAGE(dst_m), dst_pa, len);
+}
+
+/*
+ * vm_page_copy:
+ *
+ * Copy one page to another
+ */
+
+int vm_page_copy_cs_validations = 0;
+int vm_page_copy_cs_tainted = 0;
+
+void
+vm_page_copy(
+ vm_page_t src_m,
+ vm_page_t dest_m)
+{
+ vm_object_t src_m_object;
+
+ src_m_object = VM_PAGE_OBJECT(src_m);
+
+ XPR(XPR_VM_PAGE,
+ "vm_page_copy, object 0x%X offset 0x%X to object 0x%X offset 0x%X\n",
+ src_m_object, src_m->vmp_offset,
+ VM_PAGE_OBJECT(dest_m), dest_m->vmp_offset,
+ 0);
+#if 0
+ /*
+ * we don't hold the page queue lock
+ * so this check isn't safe to make
+ */
+ VM_PAGE_CHECK(src_m);
+ VM_PAGE_CHECK(dest_m);
+#endif
+ vm_object_lock_assert_held(src_m_object);
+
+ if (src_m_object != VM_OBJECT_NULL &&
+ src_m_object->code_signed) {
+ /*
+ * We're copying a page from a code-signed object.
+ * Whoever ends up mapping the copy page might care about
+ * the original page's integrity, so let's validate the
+ * source page now.
+ */
+ vm_page_copy_cs_validations++;
+ vm_page_validate_cs(src_m);
+#if DEVELOPMENT || DEBUG
+ DTRACE_VM4(codesigned_copy,
+ vm_object_t, src_m_object,
+ vm_object_offset_t, src_m->vmp_offset,
+ int, src_m->vmp_cs_validated,
+ int, src_m->vmp_cs_tainted);
+#endif /* DEVELOPMENT || DEBUG */
+ }
+
+ /*
+ * Propagate the cs_tainted bit to the copy page. Do not propagate
+ * the cs_validated bit.
+ */
+ dest_m->vmp_cs_tainted = src_m->vmp_cs_tainted;
+ if (dest_m->vmp_cs_tainted) {
+ vm_page_copy_cs_tainted++;
+ }
+ dest_m->vmp_error = src_m->vmp_error; /* sliding src_m might have failed... */
+ pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(src_m), VM_PAGE_GET_PHYS_PAGE(dest_m));
+}
+
+#if MACH_ASSERT
+static void
+_vm_page_print(
+ vm_page_t p)
+{
+ printf("vm_page %p: \n", p);
+ printf(" pageq: next=%p prev=%p\n",
+ (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.next),
+ (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.prev));
+ printf(" listq: next=%p prev=%p\n",
+ (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.next)),
+ (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.prev)));
+ printf(" next=%p\n", (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m)));
+ printf(" object=%p offset=0x%llx\n", VM_PAGE_OBJECT(p), p->vmp_offset);
+ printf(" wire_count=%u\n", p->vmp_wire_count);
+ printf(" q_state=%u\n", p->vmp_q_state);
+
+ printf(" %slaundry, %sref, %sgobbled, %sprivate\n",
+ (p->vmp_laundry ? "" : "!"),
+ (p->vmp_reference ? "" : "!"),
+ (p->vmp_gobbled ? "" : "!"),
+ (p->vmp_private ? "" : "!"));
+ printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n",
+ (p->vmp_busy ? "" : "!"),
+ (p->vmp_wanted ? "" : "!"),
+ (p->vmp_tabled ? "" : "!"),
+ (p->vmp_fictitious ? "" : "!"),
+ (p->vmp_pmapped ? "" : "!"),
+ (p->vmp_wpmapped ? "" : "!"));
+ printf(" %sfree_when_done, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n",
+ (p->vmp_free_when_done ? "" : "!"),
+ (p->vmp_absent ? "" : "!"),
+ (p->vmp_error ? "" : "!"),
+ (p->vmp_dirty ? "" : "!"),
+ (p->vmp_cleaning ? "" : "!"),
+ (p->vmp_precious ? "" : "!"),
+ (p->vmp_clustered ? "" : "!"));
+ printf(" %soverwriting, %srestart, %sunusual\n",
+ (p->vmp_overwriting ? "" : "!"),
+ (p->vmp_restart ? "" : "!"),
+ (p->vmp_unusual ? "" : "!"));
+ printf(" %scs_validated, %scs_tainted, %scs_nx, %sno_cache\n",
+ (p->vmp_cs_validated ? "" : "!"),
+ (p->vmp_cs_tainted ? "" : "!"),
+ (p->vmp_cs_nx ? "" : "!"),
+ (p->vmp_no_cache ? "" : "!"));
+
+ printf("phys_page=0x%x\n", VM_PAGE_GET_PHYS_PAGE(p));
+}
+
+/*
+ * Check that the list of pages is ordered by
+ * ascending physical address and has no holes.
+ */
+static int
+vm_page_verify_contiguous(
+ vm_page_t pages,
+ unsigned int npages)
+{
+ vm_page_t m;
+ unsigned int page_count;
+ vm_offset_t prev_addr;
+
+ prev_addr = VM_PAGE_GET_PHYS_PAGE(pages);
+ page_count = 1;
+ for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) {
+ if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) {
+ printf("m %p prev_addr 0x%lx, current addr 0x%x\n",
+ m, (long)prev_addr, VM_PAGE_GET_PHYS_PAGE(m));
+ printf("pages %p page_count %d npages %d\n", pages, page_count, npages);
+ panic("vm_page_verify_contiguous: not contiguous!");
+ }
+ prev_addr = VM_PAGE_GET_PHYS_PAGE(m);
+ ++page_count;
+ }
+ if (page_count != npages) {
+ printf("pages %p actual count 0x%x but requested 0x%x\n",
+ pages, page_count, npages);
+ panic("vm_page_verify_contiguous: count error");
+ }
+ return 1;
+}
+
+
+/*
+ * Check the free lists for proper length etc.
+ */
+static boolean_t vm_page_verify_this_free_list_enabled = FALSE;
+static unsigned int
+vm_page_verify_free_list(
+ vm_page_queue_head_t *vm_page_queue,
+ unsigned int color,
+ vm_page_t look_for_page,
+ boolean_t expect_page)
+{
+ unsigned int npages;
+ vm_page_t m;
+ vm_page_t prev_m;
+ boolean_t found_page;
+
+ if (!vm_page_verify_this_free_list_enabled) {
+ return 0;
+ }
+
+ found_page = FALSE;
+ npages = 0;
+ prev_m = (vm_page_t)((uintptr_t)vm_page_queue);
+
+ vm_page_queue_iterate(vm_page_queue, m, vmp_pageq) {
+ if (m == look_for_page) {
+ found_page = TRUE;
+ }
+ if ((vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev) != prev_m) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p\n",
+ color, npages, m, (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev), prev_m);
+ }
+ if (!m->vmp_busy) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy\n",
+ color, npages, m);
+ }
+ if (color != (unsigned int) -1) {
+ if (VM_PAGE_GET_COLOR(m) != color) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u\n",
+ color, npages, m, VM_PAGE_GET_COLOR(m), color);
+ }
+ if (m->vmp_q_state != VM_PAGE_ON_FREE_Q) {
+ panic("vm_page_verify_free_list(color=%u, npages=%u): page %p - expecting q_state == VM_PAGE_ON_FREE_Q, found %d\n",
+ color, npages, m, m->vmp_q_state);
+ }
+ } else {
+ if (m->vmp_q_state != VM_PAGE_ON_FREE_LOCAL_Q) {
+ panic("vm_page_verify_free_list(npages=%u): local page %p - expecting q_state == VM_PAGE_ON_FREE_LOCAL_Q, found %d\n",
+ npages, m, m->vmp_q_state);
+ }
+ }
+ ++npages;
+ prev_m = m;
+ }
+ if (look_for_page != VM_PAGE_NULL) {
+ unsigned int other_color;
+
+ if (expect_page && !found_page) {
+ printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n",
+ color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page));
+ _vm_page_print(look_for_page);
+ for (other_color = 0;
+ other_color < vm_colors;
+ other_color++) {
+ if (other_color == color) {
+ continue;
+ }
+ vm_page_verify_free_list(&vm_page_queue_free[other_color].qhead,
+ other_color, look_for_page, FALSE);
+ }
+ if (color == (unsigned int) -1) {
+ vm_page_verify_free_list(&vm_lopage_queue_free,
+ (unsigned int) -1, look_for_page, FALSE);
+ }
+ panic("vm_page_verify_free_list(color=%u)\n", color);
+ }
+ if (!expect_page && found_page) {
+ printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n",
+ color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page));
+ }
+ }
+ return npages;
+}
+
+static boolean_t vm_page_verify_all_free_lists_enabled = FALSE;
+static void
+vm_page_verify_free_lists( void )
+{
+ unsigned int color, npages, nlopages;
+ boolean_t toggle = TRUE;
+
+ if (!vm_page_verify_all_free_lists_enabled) {
+ return;
+ }
+
+ npages = 0;
+
+ lck_mtx_lock(&vm_page_queue_free_lock);
+
+ if (vm_page_verify_this_free_list_enabled == TRUE) {
+ /*
+ * This variable has been set globally for extra checking of
+ * each free list Q. Since we didn't set it, we don't own it
+ * and we shouldn't toggle it.
+ */
+ toggle = FALSE;
+ }
+
+ if (toggle == TRUE) {
+ vm_page_verify_this_free_list_enabled = TRUE;
+ }
+
+ for (color = 0; color < vm_colors; color++) {
+ npages += vm_page_verify_free_list(&vm_page_queue_free[color].qhead,
+ color, VM_PAGE_NULL, FALSE);
+ }
+ nlopages = vm_page_verify_free_list(&vm_lopage_queue_free,
+ (unsigned int) -1,
+ VM_PAGE_NULL, FALSE);
+ if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) {
+ panic("vm_page_verify_free_lists: "
+ "npages %u free_count %d nlopages %u lo_free_count %u",
+ npages, vm_page_free_count, nlopages, vm_lopage_free_count);
+ }
+
+ if (toggle == TRUE) {
+ vm_page_verify_this_free_list_enabled = FALSE;
+ }
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+}
+
+#endif /* MACH_ASSERT */
+
+
+extern boolean_t(*volatile consider_buffer_cache_collect)(int);
+
+/*
+ * CONTIGUOUS PAGE ALLOCATION
+ *
+ * Find a region large enough to contain at least n pages
+ * of contiguous physical memory.
+ *
+ * This is done by traversing the vm_page_t array in a linear fashion
+ * we assume that the vm_page_t array has the avaiable physical pages in an
+ * ordered, ascending list... this is currently true of all our implementations
+ * and must remain so... there can be 'holes' in the array... we also can
+ * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed
+ * which use to happen via 'vm_page_convert'... that function was no longer
+ * being called and was removed...
+ *
+ * The basic flow consists of stabilizing some of the interesting state of
+ * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our
+ * sweep at the beginning of the array looking for pages that meet our criterea
+ * for a 'stealable' page... currently we are pretty conservative... if the page
+ * meets this criterea and is physically contiguous to the previous page in the 'run'
+ * we keep developing it. If we hit a page that doesn't fit, we reset our state
+ * and start to develop a new run... if at this point we've already considered
+ * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold,
+ * and mutex_pause (which will yield the processor), to keep the latency low w/r
+ * to other threads trying to acquire free pages (or move pages from q to q),
+ * and then continue from the spot we left off... we only make 1 pass through the
+ * array. Once we have a 'run' that is long enough, we'll go into the loop which
+ * which steals the pages from the queues they're currently on... pages on the free
+ * queue can be stolen directly... pages that are on any of the other queues
+ * must be removed from the object they are tabled on... this requires taking the
+ * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails
+ * or if the state of the page behind the vm_object lock is no longer viable, we'll
+ * dump the pages we've currently stolen back to the free list, and pick up our
+ * scan from the point where we aborted the 'current' run.
+ *
+ *
+ * Requirements:
+ * - neither vm_page_queue nor vm_free_list lock can be held on entry
+ *
+ * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL.
+ *
+ * Algorithm:
+ */
+
+#define MAX_CONSIDERED_BEFORE_YIELD 1000
+
+
+#define RESET_STATE_OF_RUN() \
+ MACRO_BEGIN \
+ prevcontaddr = -2; \
+ start_pnum = -1; \
+ free_considered = 0; \
+ substitute_needed = 0; \
+ npages = 0; \
+ MACRO_END
+
+/*
+ * Can we steal in-use (i.e. not free) pages when searching for
+ * physically-contiguous pages ?
+ */
+#define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1
+
+static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0;
+#if DEBUG
+int vm_page_find_contig_debug = 0;
+#endif
+
+static vm_page_t
+vm_page_find_contiguous(
+ unsigned int contig_pages,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask,
+ boolean_t wire,
+ int flags)
+{
+ vm_page_t m = NULL;
+ ppnum_t prevcontaddr = 0;
+ ppnum_t start_pnum = 0;
+ unsigned int npages = 0, considered = 0, scanned = 0;
+ unsigned int page_idx = 0, start_idx = 0, last_idx = 0, orig_last_idx = 0;
+ unsigned int idx_last_contig_page_found = 0;
+ int free_considered = 0, free_available = 0;
+ int substitute_needed = 0;
+ boolean_t wrapped, zone_gc_called = FALSE;
+ kern_return_t kr;
+#if DEBUG
+ clock_sec_t tv_start_sec = 0, tv_end_sec = 0;
+ clock_usec_t tv_start_usec = 0, tv_end_usec = 0;
+#endif
+
+ int yielded = 0;
+ int dumped_run = 0;
+ int stolen_pages = 0;
+ int compressed_pages = 0;
+
+
+ if (contig_pages == 0) {
+ return VM_PAGE_NULL;
+ }
+
+full_scan_again:
+
+#if MACH_ASSERT
+ vm_page_verify_free_lists();
+#endif
+#if DEBUG
+ clock_get_system_microtime(&tv_start_sec, &tv_start_usec);
+#endif
+ PAGE_REPLACEMENT_ALLOWED(TRUE);
+
+ /*
+ * If there are still delayed pages, try to free up some that match.
+ */
+ if (__improbable(vm_delayed_count != 0 && contig_pages != 0)) {
+ vm_free_delayed_pages_contig(contig_pages, max_pnum, pnum_mask);
+ }
+
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+
+ RESET_STATE_OF_RUN();
+
+ scanned = 0;
+ considered = 0;
+ free_available = vm_page_free_count - vm_page_free_reserved;
+
+ wrapped = FALSE;
+
+ if (flags & KMA_LOMEM) {
+ idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx;
+ } else {
+ idx_last_contig_page_found = vm_page_find_contiguous_last_idx;
+ }
+
+ orig_last_idx = idx_last_contig_page_found;
+ last_idx = orig_last_idx;
+
+ for (page_idx = last_idx, start_idx = last_idx;
+ npages < contig_pages && page_idx < vm_pages_count;
+ page_idx++) {
+retry:
+ if (wrapped &&
+ npages == 0 &&
+ page_idx >= orig_last_idx) {
+ /*
+ * We're back where we started and we haven't
+ * found any suitable contiguous range. Let's
+ * give up.
+ */
+ break;
+ }
+ scanned++;
+ m = &vm_pages[page_idx];
+
+ assert(!m->vmp_fictitious);
+ assert(!m->vmp_private);
+
+ if (max_pnum && VM_PAGE_GET_PHYS_PAGE(m) > max_pnum) {
+ /* no more low pages... */
+ break;
+ }
+ if (!npages & ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0)) {
+ /*
+ * not aligned
+ */
+ RESET_STATE_OF_RUN();
+ } else if (VM_PAGE_WIRED(m) || m->vmp_gobbled ||
+ m->vmp_laundry || m->vmp_wanted ||
+ m->vmp_cleaning || m->vmp_overwriting || m->vmp_free_when_done) {
+ /*
+ * page is in a transient state
+ * or a state we don't want to deal
+ * with, so don't consider it which
+ * means starting a new run
+ */
+ RESET_STATE_OF_RUN();
+ } else if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q) ||
+ (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ /*
+ * page needs to be on one of our queues (other then the pageout or special free queues)
+ * or it needs to belong to the compressor pool (which is now indicated
+ * by vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR and falls out
+ * from the check for VM_PAGE_NOT_ON_Q)
+ * in order for it to be stable behind the
+ * locks we hold at this point...
+ * if not, don't consider it which
+ * means starting a new run
+ */
+ RESET_STATE_OF_RUN();
+ } else if ((m->vmp_q_state != VM_PAGE_ON_FREE_Q) && (!m->vmp_tabled || m->vmp_busy)) {
+ /*
+ * pages on the free list are always 'busy'
+ * so we couldn't test for 'busy' in the check
+ * for the transient states... pages that are
+ * 'free' are never 'tabled', so we also couldn't
+ * test for 'tabled'. So we check here to make
+ * sure that a non-free page is not busy and is
+ * tabled on an object...
+ * if not, don't consider it which
+ * means starting a new run
+ */
+ RESET_STATE_OF_RUN();
+ } else {
+ if (VM_PAGE_GET_PHYS_PAGE(m) != prevcontaddr + 1) {
+ if ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0) {
+ RESET_STATE_OF_RUN();
+ goto did_consider;
+ } else {
+ npages = 1;
+ start_idx = page_idx;
+ start_pnum = VM_PAGE_GET_PHYS_PAGE(m);
+ }
+ } else {
+ npages++;
+ }
+ prevcontaddr = VM_PAGE_GET_PHYS_PAGE(m);
+
+ VM_PAGE_CHECK(m);
+ if (m->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+ free_considered++;
+ } else {
+ /*
+ * This page is not free.
+ * If we can't steal used pages,
+ * we have to give up this run
+ * and keep looking.
+ * Otherwise, we might need to
+ * move the contents of this page
+ * into a substitute page.
+ */
+#if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL
+ if (m->vmp_pmapped || m->vmp_dirty || m->vmp_precious) {
+ substitute_needed++;
+ }
+#else
+ RESET_STATE_OF_RUN();
+#endif
+ }
+
+ if ((free_considered + substitute_needed) > free_available) {
+ /*
+ * if we let this run continue
+ * we will end up dropping the vm_page_free_count
+ * below the reserve limit... we need to abort
+ * this run, but we can at least re-consider this
+ * page... thus the jump back to 'retry'
+ */
+ RESET_STATE_OF_RUN();
+
+ if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) {
+ considered++;
+ goto retry;
+ }
+ /*
+ * free_available == 0
+ * so can't consider any free pages... if
+ * we went to retry in this case, we'd
+ * get stuck looking at the same page
+ * w/o making any forward progress
+ * we also want to take this path if we've already
+ * reached our limit that controls the lock latency
+ */
+ }
+ }
+did_consider:
+ if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) {
+ PAGE_REPLACEMENT_ALLOWED(FALSE);
+
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+
+ mutex_pause(0);
+
+ PAGE_REPLACEMENT_ALLOWED(TRUE);
+
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+
+ RESET_STATE_OF_RUN();
+ /*
+ * reset our free page limit since we
+ * dropped the lock protecting the vm_page_free_queue
+ */
+ free_available = vm_page_free_count - vm_page_free_reserved;
+ considered = 0;
+
+ yielded++;
+
+ goto retry;
+ }
+ considered++;
+ }
+ m = VM_PAGE_NULL;
+
+ if (npages != contig_pages) {
+ if (!wrapped) {
+ /*
+ * We didn't find a contiguous range but we didn't
+ * start from the very first page.
+ * Start again from the very first page.
+ */
+ RESET_STATE_OF_RUN();
+ if (flags & KMA_LOMEM) {
+ idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0;
+ } else {
+ idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0;
+ }
+ last_idx = 0;
+ page_idx = last_idx;
+ wrapped = TRUE;
+ goto retry;
+ }
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ } else {
+ vm_page_t m1;
+ vm_page_t m2;
+ unsigned int cur_idx;
+ unsigned int tmp_start_idx;
+ vm_object_t locked_object = VM_OBJECT_NULL;
+ boolean_t abort_run = FALSE;
+
+ assert(page_idx - start_idx == contig_pages);
+
+ tmp_start_idx = start_idx;
+
+ /*
+ * first pass through to pull the free pages
+ * off of the free queue so that in case we
+ * need substitute pages, we won't grab any
+ * of the free pages in the run... we'll clear
+ * the 'free' bit in the 2nd pass, and even in
+ * an abort_run case, we'll collect all of the
+ * free pages in this run and return them to the free list
+ */
+ while (start_idx < page_idx) {
+ m1 = &vm_pages[start_idx++];
+
+#if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL
+ assert(m1->vmp_q_state == VM_PAGE_ON_FREE_Q);
+#endif
+
+ if (m1->vmp_q_state == VM_PAGE_ON_FREE_Q) {
+ unsigned int color;
+
+ color = VM_PAGE_GET_COLOR(m1);
+#if MACH_ASSERT
+ vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, m1, TRUE);
+#endif
+ vm_page_queue_remove(&vm_page_queue_free[color].qhead, m1, vmp_pageq);
+
+ VM_PAGE_ZERO_PAGEQ_ENTRY(m1);
+#if MACH_ASSERT
+ vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, VM_PAGE_NULL, FALSE);
+#endif
+ /*
+ * Clear the "free" bit so that this page
+ * does not get considered for another
+ * concurrent physically-contiguous allocation.
+ */
+ m1->vmp_q_state = VM_PAGE_NOT_ON_Q;
+ assert(m1->vmp_busy);
+
+ vm_page_free_count--;
+ }
+ }
+ if (flags & KMA_LOMEM) {
+ vm_page_lomem_find_contiguous_last_idx = page_idx;
+ } else {
+ vm_page_find_contiguous_last_idx = page_idx;
+ }
+
+ /*
+ * we can drop the free queue lock at this point since
+ * we've pulled any 'free' candidates off of the list
+ * we need it dropped so that we can do a vm_page_grab
+ * when substituing for pmapped/dirty pages
+ */
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+
+ start_idx = tmp_start_idx;
+ cur_idx = page_idx - 1;
+
+ while (start_idx++ < page_idx) {
+ /*
+ * must go through the list from back to front
+ * so that the page list is created in the
+ * correct order - low -> high phys addresses
+ */
+ m1 = &vm_pages[cur_idx--];
+
+ if (m1->vmp_object == 0) {
+ /*
+ * page has already been removed from
+ * the free list in the 1st pass
+ */
+ assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(m1->vmp_offset == (vm_object_offset_t) -1);
+ assert(m1->vmp_busy);
+ assert(!m1->vmp_wanted);
+ assert(!m1->vmp_laundry);
+ } else {
+ vm_object_t object;
+ int refmod;
+ boolean_t disconnected, reusable;
+
+ if (abort_run == TRUE) {
+ continue;
+ }
+
+ assert(m1->vmp_q_state != VM_PAGE_NOT_ON_Q);
+
+ object = VM_PAGE_OBJECT(m1);
+
+ if (object != locked_object) {
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+ if (vm_object_lock_try(object)) {
+ locked_object = object;
+ }
+ }
+ if (locked_object == VM_OBJECT_NULL ||
+ (VM_PAGE_WIRED(m1) || m1->vmp_gobbled ||
+ m1->vmp_laundry || m1->vmp_wanted ||
+ m1->vmp_cleaning || m1->vmp_overwriting || m1->vmp_free_when_done || m1->vmp_busy) ||
+ (m1->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) {
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+ tmp_start_idx = cur_idx;
+ abort_run = TRUE;
+ continue;
+ }
+
+ disconnected = FALSE;
+ reusable = FALSE;
+
+ if ((m1->vmp_reusable ||
+ object->all_reusable) &&
+ (m1->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) &&
+ !m1->vmp_dirty &&
+ !m1->vmp_reference) {
+ /* reusable page... */
+ refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1));
+ disconnected = TRUE;
+ if (refmod == 0) {
+ /*
+ * ... not reused: can steal
+ * without relocating contents.
+ */
+ reusable = TRUE;
+ }
+ }
+
+ if ((m1->vmp_pmapped &&
+ !reusable) ||
+ m1->vmp_dirty ||
+ m1->vmp_precious) {
+ vm_object_offset_t offset;
+
+ m2 = vm_page_grab_options(VM_PAGE_GRAB_Q_LOCK_HELD);
+
+ if (m2 == VM_PAGE_NULL) {
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+ tmp_start_idx = cur_idx;
+ abort_run = TRUE;
+ continue;
+ }
+ if (!disconnected) {
+ if (m1->vmp_pmapped) {
+ refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m1));
+ } else {
+ refmod = 0;
+ }
+ }
+
+ /* copy the page's contents */
+ pmap_copy_page(VM_PAGE_GET_PHYS_PAGE(m1), VM_PAGE_GET_PHYS_PAGE(m2));
+ /* copy the page's state */
+ assert(!VM_PAGE_WIRED(m1));
+ assert(m1->vmp_q_state != VM_PAGE_ON_FREE_Q);
+ assert(m1->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q);
+ assert(!m1->vmp_laundry);
+ m2->vmp_reference = m1->vmp_reference;
+ assert(!m1->vmp_gobbled);
+ assert(!m1->vmp_private);
+ m2->vmp_no_cache = m1->vmp_no_cache;
+ m2->vmp_xpmapped = 0;
+ assert(!m1->vmp_busy);
+ assert(!m1->vmp_wanted);
+ assert(!m1->vmp_fictitious);
+ m2->vmp_pmapped = m1->vmp_pmapped; /* should flush cache ? */
+ m2->vmp_wpmapped = m1->vmp_wpmapped;
+ assert(!m1->vmp_free_when_done);
+ m2->vmp_absent = m1->vmp_absent;
+ m2->vmp_error = m1->vmp_error;
+ m2->vmp_dirty = m1->vmp_dirty;
+ assert(!m1->vmp_cleaning);
+ m2->vmp_precious = m1->vmp_precious;
+ m2->vmp_clustered = m1->vmp_clustered;
+ assert(!m1->vmp_overwriting);
+ m2->vmp_restart = m1->vmp_restart;
+ m2->vmp_unusual = m1->vmp_unusual;
+ m2->vmp_cs_validated = m1->vmp_cs_validated;
+ m2->vmp_cs_tainted = m1->vmp_cs_tainted;
+ m2->vmp_cs_nx = m1->vmp_cs_nx;
+
+ /*
+ * If m1 had really been reusable,
+ * we would have just stolen it, so
+ * let's not propagate it's "reusable"
+ * bit and assert that m2 is not
+ * marked as "reusable".
+ */
+ // m2->vmp_reusable = m1->vmp_reusable;
+ assert(!m2->vmp_reusable);
+
+ // assert(!m1->vmp_lopage);
+
+ if (m1->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ m2->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR;
+ }
+
+ /*
+ * page may need to be flushed if
+ * it is marshalled into a UPL
+ * that is going to be used by a device
+ * that doesn't support coherency
+ */
+ m2->vmp_written_by_kernel = TRUE;
+
+ /*
+ * make sure we clear the ref/mod state
+ * from the pmap layer... else we risk
+ * inheriting state from the last time
+ * this page was used...
+ */
+ pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m2), VM_MEM_MODIFIED | VM_MEM_REFERENCED);
+
+ if (refmod & VM_MEM_REFERENCED) {
+ m2->vmp_reference = TRUE;
+ }
+ if (refmod & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m2, TRUE);
+ }
+ offset = m1->vmp_offset;
+
+ /*
+ * completely cleans up the state
+ * of the page so that it is ready
+ * to be put onto the free list, or
+ * for this purpose it looks like it
+ * just came off of the free list
+ */
+ vm_page_free_prepare(m1);
+
+ /*
+ * now put the substitute page
+ * on the object
+ */
+ vm_page_insert_internal(m2, locked_object, offset, VM_KERN_MEMORY_NONE, TRUE, TRUE, FALSE, FALSE, NULL);
+
+ if (m2->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ m2->vmp_pmapped = TRUE;
+ m2->vmp_wpmapped = TRUE;
+
+ PMAP_ENTER(kernel_pmap, m2->vmp_offset, m2,
+ VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE, kr);
+
+ assert(kr == KERN_SUCCESS);
+
+ compressed_pages++;
+ } else {
+ if (m2->vmp_reference) {
+ vm_page_activate(m2);
+ } else {
+ vm_page_deactivate(m2);
+ }
+ }
+ PAGE_WAKEUP_DONE(m2);
+ } else {
+ assert(m1->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
+
+ /*
+ * completely cleans up the state
+ * of the page so that it is ready
+ * to be put onto the free list, or
+ * for this purpose it looks like it
+ * just came off of the free list
+ */
+ vm_page_free_prepare(m1);
+ }
+
+ stolen_pages++;
+ }
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_assign_background_state(m1);
+#endif
+ VM_PAGE_ZERO_PAGEQ_ENTRY(m1);
+ m1->vmp_snext = m;
+ m = m1;
+ }
+ if (locked_object) {
+ vm_object_unlock(locked_object);
+ locked_object = VM_OBJECT_NULL;
+ }
+
+ if (abort_run == TRUE) {
+ /*
+ * want the index of the last
+ * page in this run that was
+ * successfully 'stolen', so back
+ * it up 1 for the auto-decrement on use
+ * and 1 more to bump back over this page
+ */
+ page_idx = tmp_start_idx + 2;
+ if (page_idx >= vm_pages_count) {
+ if (wrapped) {
+ if (m != VM_PAGE_NULL) {
+ vm_page_unlock_queues();
+ vm_page_free_list(m, FALSE);
+ vm_page_lock_queues();
+ m = VM_PAGE_NULL;
+ }
+ dumped_run++;
+ goto done_scanning;
+ }
+ page_idx = last_idx = 0;
+ wrapped = TRUE;
+ }
+ abort_run = FALSE;
+
+ /*
+ * We didn't find a contiguous range but we didn't
+ * start from the very first page.
+ * Start again from the very first page.
+ */
+ RESET_STATE_OF_RUN();
+
+ if (flags & KMA_LOMEM) {
+ idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx;
+ } else {
+ idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx;
+ }
+
+ last_idx = page_idx;
+
+ if (m != VM_PAGE_NULL) {
+ vm_page_unlock_queues();
+ vm_page_free_list(m, FALSE);
+ vm_page_lock_queues();
+ m = VM_PAGE_NULL;
+ }
+ dumped_run++;
+
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ /*
+ * reset our free page limit since we
+ * dropped the lock protecting the vm_page_free_queue
+ */
+ free_available = vm_page_free_count - vm_page_free_reserved;
+ goto retry;
+ }
+
+ for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) {
+ assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ assert(m1->vmp_wire_count == 0);
+
+ if (wire == TRUE) {
+ m1->vmp_wire_count++;
+ m1->vmp_q_state = VM_PAGE_IS_WIRED;
+ } else {
+ m1->vmp_gobbled = TRUE;
+ }
+ }
+ if (wire == FALSE) {
+ vm_page_gobble_count += npages;
+ }
+
+ /*
+ * gobbled pages are also counted as wired pages
+ */
+ vm_page_wire_count += npages;
+
+ assert(vm_page_verify_contiguous(m, npages));
+ }
+done_scanning:
+ PAGE_REPLACEMENT_ALLOWED(FALSE);
+
+ vm_page_unlock_queues();
+
+#if DEBUG
+ clock_get_system_microtime(&tv_end_sec, &tv_end_usec);
+
+ tv_end_sec -= tv_start_sec;
+ if (tv_end_usec < tv_start_usec) {
+ tv_end_sec--;
+ tv_end_usec += 1000000;
+ }
+ tv_end_usec -= tv_start_usec;
+ if (tv_end_usec >= 1000000) {
+ tv_end_sec++;
+ tv_end_sec -= 1000000;
+ }
+ if (vm_page_find_contig_debug) {
+ printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages\n",
+ __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT,
+ (long)tv_end_sec, tv_end_usec, orig_last_idx,
+ scanned, yielded, dumped_run, stolen_pages, compressed_pages);
+ }
+
+#endif
+#if MACH_ASSERT
+ vm_page_verify_free_lists();
+#endif
+ if (m == NULL && zone_gc_called == FALSE) {
+ printf("%s(num=%d,low=%d): found %d pages at 0x%llx...scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages... wired count is %d\n",
+ __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT,
+ scanned, yielded, dumped_run, stolen_pages, compressed_pages, vm_page_wire_count);
+
+ if (consider_buffer_cache_collect != NULL) {
+ (void)(*consider_buffer_cache_collect)(1);
+ }
+
+ consider_zone_gc(FALSE);
+
+ zone_gc_called = TRUE;
+
+ printf("vm_page_find_contiguous: zone_gc called... wired count is %d\n", vm_page_wire_count);
+ goto full_scan_again;
+ }
+
+ return m;
+}
+
+/*
+ * Allocate a list of contiguous, wired pages.
+ */
+kern_return_t
+cpm_allocate(
+ vm_size_t size,
+ vm_page_t *list,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask,
+ boolean_t wire,
+ int flags)
+{
+ vm_page_t pages;
+ unsigned int npages;
+
+ if (size % PAGE_SIZE != 0) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ npages = (unsigned int) (size / PAGE_SIZE);
+ if (npages != size / PAGE_SIZE) {
+ /* 32-bit overflow */
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ /*
+ * Obtain a pointer to a subset of the free
+ * list large enough to satisfy the request;
+ * the region will be physically contiguous.
+ */
+ pages = vm_page_find_contiguous(npages, max_pnum, pnum_mask, wire, flags);
+
+ if (pages == VM_PAGE_NULL) {
+ return KERN_NO_SPACE;
+ }
+ /*
+ * determine need for wakeups
+ */
+ if (vm_page_free_count < vm_page_free_min) {
+ thread_wakeup((event_t) &vm_page_free_wanted);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+
+ /*
+ * The CPM pages should now be available and
+ * ordered by ascending physical address.
+ */
+ assert(vm_page_verify_contiguous(pages, npages));
+
+ *list = pages;
+ return KERN_SUCCESS;
+}
+
+
+unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT;
+
+/*
+ * when working on a 'run' of pages, it is necessary to hold
+ * the vm_page_queue_lock (a hot global lock) for certain operations
+ * on the page... however, the majority of the work can be done
+ * while merely holding the object lock... in fact there are certain
+ * collections of pages that don't require any work brokered by the
+ * vm_page_queue_lock... to mitigate the time spent behind the global
+ * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT
+ * while doing all of the work that doesn't require the vm_page_queue_lock...
+ * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the
+ * necessary work for each page... we will grab the busy bit on the page
+ * if it's not already held so that vm_page_do_delayed_work can drop the object lock
+ * if it can't immediately take the vm_page_queue_lock in order to compete
+ * for the locks in the same order that vm_pageout_scan takes them.
+ * the operation names are modeled after the names of the routines that
+ * need to be called in order to make the changes very obvious in the
+ * original loop
+ */
+
+void
+vm_page_do_delayed_work(
+ vm_object_t object,
+ vm_tag_t tag,
+ struct vm_page_delayed_work *dwp,
+ int dw_count)
+{
+ int j;
+ vm_page_t m;
+ vm_page_t local_free_q = VM_PAGE_NULL;
+
+ /*
+ * pageout_scan takes the vm_page_lock_queues first
+ * then tries for the object lock... to avoid what
+ * is effectively a lock inversion, we'll go to the
+ * trouble of taking them in that same order... otherwise
+ * if this object contains the majority of the pages resident
+ * in the UBC (or a small set of large objects actively being
+ * worked on contain the majority of the pages), we could
+ * cause the pageout_scan thread to 'starve' in its attempt
+ * to find pages to move to the free queue, since it has to
+ * successfully acquire the object lock of any candidate page
+ * before it can steal/clean it.
+ */
+ if (!vm_page_trylockspin_queues()) {
+ vm_object_unlock(object);
+
+ vm_page_lockspin_queues();
+
+ for (j = 0;; j++) {
+ if (!vm_object_lock_avoid(object) &&
+ _vm_object_lock_try(object)) {
+ break;
+ }
+ vm_page_unlock_queues();
+ mutex_pause(j);
+ vm_page_lockspin_queues();
+ }
+ }
+ for (j = 0; j < dw_count; j++, dwp++) {
+ m = dwp->dw_m;
+
+ if (dwp->dw_mask & DW_vm_pageout_throttle_up) {
+ vm_pageout_throttle_up(m);
+ }
+#if CONFIG_PHANTOM_CACHE
+ if (dwp->dw_mask & DW_vm_phantom_cache_update) {
+ vm_phantom_cache_update(m);
+ }
+#endif
+ if (dwp->dw_mask & DW_vm_page_wire) {
+ vm_page_wire(m, tag, FALSE);
+ } else if (dwp->dw_mask & DW_vm_page_unwire) {
+ boolean_t queueit;
+
+ queueit = (dwp->dw_mask & (DW_vm_page_free | DW_vm_page_deactivate_internal)) ? FALSE : TRUE;
+
+ vm_page_unwire(m, queueit);
+ }
+ if (dwp->dw_mask & DW_vm_page_free) {
+ vm_page_free_prepare_queues(m);
+
+ assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
+ /*
+ * Add this page to our list of reclaimed pages,
+ * to be freed later.
+ */
+ m->vmp_snext = local_free_q;
+ local_free_q = m;
+ } else {
+ if (dwp->dw_mask & DW_vm_page_deactivate_internal) {
+ vm_page_deactivate_internal(m, FALSE);
+ } else if (dwp->dw_mask & DW_vm_page_activate) {
+ if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) {
+ vm_page_activate(m);
+ }
+ } else if (dwp->dw_mask & DW_vm_page_speculate) {
+ vm_page_speculate(m, TRUE);
+ } else if (dwp->dw_mask & DW_enqueue_cleaned) {
+ /*
+ * if we didn't hold the object lock and did this,
+ * we might disconnect the page, then someone might
+ * soft fault it back in, then we would put it on the
+ * cleaned queue, and so we would have a referenced (maybe even dirty)
+ * page on that queue, which we don't want
+ */
+ int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if ((refmod_state & VM_MEM_REFERENCED)) {
+ /*
+ * this page has been touched since it got cleaned; let's activate it
+ * if it hasn't already been
+ */
+ VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1);
+ VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
+
+ if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) {
+ vm_page_activate(m);
+ }
+ } else {
+ m->vmp_reference = FALSE;
+ vm_page_enqueue_cleaned(m);
+ }
+ } else if (dwp->dw_mask & DW_vm_page_lru) {
+ vm_page_lru(m);
+ } else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) {
+ if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) {
+ vm_page_queues_remove(m, TRUE);
+ }
+ }
+ if (dwp->dw_mask & DW_set_reference) {
+ m->vmp_reference = TRUE;
+ } else if (dwp->dw_mask & DW_clear_reference) {
+ m->vmp_reference = FALSE;
+ }
+
+ if (dwp->dw_mask & DW_move_page) {
+ if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) {
+ vm_page_queues_remove(m, FALSE);
+
+ assert(VM_PAGE_OBJECT(m) != kernel_object);
+
+ vm_page_enqueue_inactive(m, FALSE);
+ }
+ }
+ if (dwp->dw_mask & DW_clear_busy) {
+ m->vmp_busy = FALSE;
+ }
+
+ if (dwp->dw_mask & DW_PAGE_WAKEUP) {
+ PAGE_WAKEUP(m);
+ }
+ }
+ }
+ vm_page_unlock_queues();
+
+ if (local_free_q) {
+ vm_page_free_list(local_free_q, TRUE);
+ }
+
+ VM_CHECK_MEMORYSTATUS;
+}
+
+kern_return_t
+vm_page_alloc_list(
+ int page_count,
+ int flags,
+ vm_page_t *list)
+{
+ vm_page_t lo_page_list = VM_PAGE_NULL;
+ vm_page_t mem;
+ int i;
+
+ if (!(flags & KMA_LOMEM)) {
+ panic("vm_page_alloc_list: called w/o KMA_LOMEM");
+ }
+
+ for (i = 0; i < page_count; i++) {
+ mem = vm_page_grablo();
+
+ if (mem == VM_PAGE_NULL) {
+ if (lo_page_list) {
+ vm_page_free_list(lo_page_list, FALSE);
+ }
+
+ *list = VM_PAGE_NULL;
+
+ return KERN_RESOURCE_SHORTAGE;
+ }
+ mem->vmp_snext = lo_page_list;
+ lo_page_list = mem;
+ }
+ *list = lo_page_list;
+
+ return KERN_SUCCESS;
+}
+
+void
+vm_page_set_offset(vm_page_t page, vm_object_offset_t offset)
+{
+ page->vmp_offset = offset;
+}
+
+vm_page_t
+vm_page_get_next(vm_page_t page)
+{
+ return page->vmp_snext;
+}
+
+vm_object_offset_t
+vm_page_get_offset(vm_page_t page)
+{
+ return page->vmp_offset;
+}
+
+ppnum_t
+vm_page_get_phys_page(vm_page_t page)
+{
+ return VM_PAGE_GET_PHYS_PAGE(page);
+}
+
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+#if HIBERNATION
+
+static vm_page_t hibernate_gobble_queue;
+
+static int hibernate_drain_pageout_queue(struct vm_pageout_queue *);
+static int hibernate_flush_dirty_pages(int);
+static int hibernate_flush_queue(vm_page_queue_head_t *, int);
+
+void hibernate_flush_wait(void);
+void hibernate_mark_in_progress(void);
+void hibernate_clear_in_progress(void);
+
+void hibernate_free_range(int, int);
+void hibernate_hash_insert_page(vm_page_t);
+uint32_t hibernate_mark_as_unneeded(addr64_t, addr64_t, hibernate_page_list_t *, hibernate_page_list_t *);
+void hibernate_rebuild_vm_structs(void);
+uint32_t hibernate_teardown_vm_structs(hibernate_page_list_t *, hibernate_page_list_t *);
+ppnum_t hibernate_lookup_paddr(unsigned int);
+
+struct hibernate_statistics {
+ int hibernate_considered;
+ int hibernate_reentered_on_q;
+ int hibernate_found_dirty;
+ int hibernate_skipped_cleaning;
+ int hibernate_skipped_transient;
+ int hibernate_skipped_precious;
+ int hibernate_skipped_external;
+ int hibernate_queue_nolock;
+ int hibernate_queue_paused;
+ int hibernate_throttled;
+ int hibernate_throttle_timeout;
+ int hibernate_drained;
+ int hibernate_drain_timeout;
+ int cd_lock_failed;
+ int cd_found_precious;
+ int cd_found_wired;
+ int cd_found_busy;
+ int cd_found_unusual;
+ int cd_found_cleaning;
+ int cd_found_laundry;
+ int cd_found_dirty;
+ int cd_found_xpmapped;
+ int cd_skipped_xpmapped;
+ int cd_local_free;
+ int cd_total_free;
+ int cd_vm_page_wire_count;
+ int cd_vm_struct_pages_unneeded;
+ int cd_pages;
+ int cd_discarded;
+ int cd_count_wire;
+} hibernate_stats;
+
+
+/*
+ * clamp the number of 'xpmapped' pages we'll sweep into the hibernation image
+ * so that we don't overrun the estimated image size, which would
+ * result in a hibernation failure.
+ */
+#define HIBERNATE_XPMAPPED_LIMIT 40000
+
+
+static int
+hibernate_drain_pageout_queue(struct vm_pageout_queue *q)
+{
+ wait_result_t wait_result;
+
+ vm_page_lock_queues();
+
+ while (!vm_page_queue_empty(&q->pgo_pending)) {
+ q->pgo_draining = TRUE;
+
+ assert_wait_timeout((event_t) (&q->pgo_laundry + 1), THREAD_INTERRUPTIBLE, 5000, 1000 * NSEC_PER_USEC);
+
+ vm_page_unlock_queues();
+
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+
+ if (wait_result == THREAD_TIMED_OUT && !vm_page_queue_empty(&q->pgo_pending)) {
+ hibernate_stats.hibernate_drain_timeout++;
+
+ if (q == &vm_pageout_queue_external) {
+ return 0;
+ }
+
+ return 1;
+ }
+ vm_page_lock_queues();
+
+ hibernate_stats.hibernate_drained++;
+ }
+ vm_page_unlock_queues();
+
+ return 0;
+}
+
+
+boolean_t hibernate_skip_external = FALSE;
+
+static int
+hibernate_flush_queue(vm_page_queue_head_t *q, int qcount)
+{
+ vm_page_t m;
+ vm_object_t l_object = NULL;
+ vm_object_t m_object = NULL;
+ int refmod_state = 0;
+ int try_failed_count = 0;
+ int retval = 0;
+ int current_run = 0;
+ struct vm_pageout_queue *iq;
+ struct vm_pageout_queue *eq;
+ struct vm_pageout_queue *tq;
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START,
+ VM_KERNEL_UNSLIDE_OR_PERM(q), qcount);
+
+ iq = &vm_pageout_queue_internal;
+ eq = &vm_pageout_queue_external;
+
+ vm_page_lock_queues();
+
+ while (qcount && !vm_page_queue_empty(q)) {
+ if (current_run++ == 1000) {
+ if (hibernate_should_abort()) {
+ retval = 1;
+ break;
+ }
+ current_run = 0;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(q);
+ m_object = VM_PAGE_OBJECT(m);
+
+ /*
+ * check to see if we currently are working
+ * with the same object... if so, we've
+ * already got the lock
+ */
+ if (m_object != l_object) {
+ /*
+ * the object associated with candidate page is
+ * different from the one we were just working
+ * with... dump the lock if we still own it
+ */
+ if (l_object != NULL) {
+ vm_object_unlock(l_object);
+ l_object = NULL;
+ }
+ /*
+ * Try to lock object; since we've alread got the
+ * page queues lock, we can only 'try' for this one.
+ * if the 'try' fails, we need to do a mutex_pause
+ * to allow the owner of the object lock a chance to
+ * run...
+ */
+ if (!vm_object_lock_try_scan(m_object)) {
+ if (try_failed_count > 20) {
+ hibernate_stats.hibernate_queue_nolock++;
+
+ goto reenter_pg_on_q;
+ }
+
+ vm_page_unlock_queues();
+ mutex_pause(try_failed_count++);
+ vm_page_lock_queues();
+
+ hibernate_stats.hibernate_queue_paused++;
+ continue;
+ } else {
+ l_object = m_object;
+ }
+ }
+ if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error) {
+ /*
+ * page is not to be cleaned
+ * put it back on the head of its queue
+ */
+ if (m->vmp_cleaning) {
+ hibernate_stats.hibernate_skipped_cleaning++;
+ } else {
+ hibernate_stats.hibernate_skipped_transient++;
+ }
+
+ goto reenter_pg_on_q;
+ }
+ if (m_object->copy == VM_OBJECT_NULL) {
+ if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) {
+ /*
+ * let the normal hibernate image path
+ * deal with these
+ */
+ goto reenter_pg_on_q;
+ }
+ }
+ if (!m->vmp_dirty && m->vmp_pmapped) {
+ refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if ((refmod_state & VM_MEM_MODIFIED)) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ } else {
+ refmod_state = 0;
+ }
+
+ if (!m->vmp_dirty) {
+ /*
+ * page is not to be cleaned
+ * put it back on the head of its queue
+ */
+ if (m->vmp_precious) {
+ hibernate_stats.hibernate_skipped_precious++;
+ }
+
+ goto reenter_pg_on_q;
+ }
+
+ if (hibernate_skip_external == TRUE && !m_object->internal) {
+ hibernate_stats.hibernate_skipped_external++;
+
+ goto reenter_pg_on_q;
+ }
+ tq = NULL;
+
+ if (m_object->internal) {
+ if (VM_PAGE_Q_THROTTLED(iq)) {
+ tq = iq;
+ }
+ } else if (VM_PAGE_Q_THROTTLED(eq)) {
+ tq = eq;
+ }
+
+ if (tq != NULL) {
+ wait_result_t wait_result;
+ int wait_count = 5;
+
+ if (l_object != NULL) {
+ vm_object_unlock(l_object);
+ l_object = NULL;
+ }
+
+ while (retval == 0) {
+ tq->pgo_throttled = TRUE;
+
+ assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000 * NSEC_PER_USEC);
+
+ vm_page_unlock_queues();
+
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
+
+ vm_page_lock_queues();
+
+ if (wait_result != THREAD_TIMED_OUT) {
+ break;
+ }
+ if (!VM_PAGE_Q_THROTTLED(tq)) {
+ break;
+ }
+
+ if (hibernate_should_abort()) {
+ retval = 1;
+ }
+
+ if (--wait_count == 0) {
+ hibernate_stats.hibernate_throttle_timeout++;
+
+ if (tq == eq) {
+ hibernate_skip_external = TRUE;
+ break;
+ }
+ retval = 1;
+ }
+ }
+ if (retval) {
+ break;
+ }
+
+ hibernate_stats.hibernate_throttled++;
+
+ continue;
+ }
+ /*
+ * we've already factored out pages in the laundry which
+ * means this page can't be on the pageout queue so it's
+ * safe to do the vm_page_queues_remove
+ */
+ vm_page_queues_remove(m, TRUE);
+
+ if (m_object->internal == TRUE) {
+ pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m), PMAP_OPTIONS_COMPRESSOR, NULL);
+ }
+
+ vm_pageout_cluster(m);
+
+ hibernate_stats.hibernate_found_dirty++;
+
+ goto next_pg;
+
+reenter_pg_on_q:
+ vm_page_queue_remove(q, m, vmp_pageq);
+ vm_page_queue_enter(q, m, vmp_pageq);
+
+ hibernate_stats.hibernate_reentered_on_q++;
+next_pg:
+ hibernate_stats.hibernate_considered++;
+
+ qcount--;
+ try_failed_count = 0;
+ }
+ if (l_object != NULL) {
+ vm_object_unlock(l_object);
+ l_object = NULL;
+ }
+
+ vm_page_unlock_queues();
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0);
+
+ return retval;
+}
+
+
+static int
+hibernate_flush_dirty_pages(int pass)
+{
+ struct vm_speculative_age_q *aq;
+ uint32_t i;
+
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ vm_page_reactivate_local(i, TRUE, FALSE);
+ }
+ }
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ int qcount;
+ vm_page_t m;
+
+ aq = &vm_page_queue_speculative[i];
+
+ if (vm_page_queue_empty(&aq->age_q)) {
+ continue;
+ }
+ qcount = 0;
+
+ vm_page_lockspin_queues();
+
+ vm_page_queue_iterate(&aq->age_q, m, vmp_pageq) {
+ qcount++;
+ }
+ vm_page_unlock_queues();
+
+ if (qcount) {
+ if (hibernate_flush_queue(&aq->age_q, qcount)) {
+ return 1;
+ }
+ }
+ }
+ if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) {
+ return 1;
+ }
+ /* XXX FBDP TODO: flush secluded queue */
+ if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) {
+ return 1;
+ }
+ if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) {
+ return 1;
+ }
+ if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) {
+ return 1;
+ }
+
+ if (pass == 1) {
+ vm_compressor_record_warmup_start();
+ }
+
+ if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) {
+ if (pass == 1) {
+ vm_compressor_record_warmup_end();
+ }
+ return 1;
+ }
+ if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) {
+ if (pass == 1) {
+ vm_compressor_record_warmup_end();
+ }
+ return 1;
+ }
+ if (pass == 1) {
+ vm_compressor_record_warmup_end();
+ }
+
+ if (hibernate_skip_external == FALSE && hibernate_drain_pageout_queue(&vm_pageout_queue_external)) {
+ return 1;
+ }
+
+ return 0;
+}
+
+
+void
+hibernate_reset_stats()
+{
+ bzero(&hibernate_stats, sizeof(struct hibernate_statistics));
+}
+
+
+int
+hibernate_flush_memory()
+{
+ int retval;
+
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0);
+
+ hibernate_cleaning_in_progress = TRUE;
+ hibernate_skip_external = FALSE;
+
+ if ((retval = hibernate_flush_dirty_pages(1)) == 0) {
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_START, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0);
+
+ vm_compressor_flush();
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_END, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0);
+
+ if (consider_buffer_cache_collect != NULL) {
+ unsigned int orig_wire_count;
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, 0, 0, 0, 0, 0);
+ orig_wire_count = vm_page_wire_count;
+
+ (void)(*consider_buffer_cache_collect)(1);
+ consider_zone_gc(FALSE);
+
+ HIBLOG("hibernate_flush_memory: buffer_cache_gc freed up %d wired pages\n", orig_wire_count - vm_page_wire_count);
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, orig_wire_count - vm_page_wire_count, 0, 0, 0, 0);
+ }
+ }
+ hibernate_cleaning_in_progress = FALSE;
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0);
+
+ if (retval) {
+ HIBLOG("hibernate_flush_memory() failed to finish - vm_page_compressor_count(%d)\n", VM_PAGE_COMPRESSOR_COUNT);
+ }
+
+
+ HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n",
+ hibernate_stats.hibernate_considered,
+ hibernate_stats.hibernate_reentered_on_q,
+ hibernate_stats.hibernate_found_dirty);
+ HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) skipped_external(%d) queue_nolock(%d)\n",
+ hibernate_stats.hibernate_skipped_cleaning,
+ hibernate_stats.hibernate_skipped_transient,
+ hibernate_stats.hibernate_skipped_precious,
+ hibernate_stats.hibernate_skipped_external,
+ hibernate_stats.hibernate_queue_nolock);
+ HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n",
+ hibernate_stats.hibernate_queue_paused,
+ hibernate_stats.hibernate_throttled,
+ hibernate_stats.hibernate_throttle_timeout,
+ hibernate_stats.hibernate_drained,
+ hibernate_stats.hibernate_drain_timeout);
+
+ return retval;
+}
+
+
+static void
+hibernate_page_list_zero(hibernate_page_list_t *list)
+{
+ uint32_t bank;
+ hibernate_bitmap_t * bitmap;
+
+ bitmap = &list->bank_bitmap[0];
+ for (bank = 0; bank < list->bank_count; bank++) {
+ uint32_t last_bit;
+
+ bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2);
+ // set out-of-bound bits at end of bitmap.
+ last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31);
+ if (last_bit) {
+ bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit);
+ }
+
+ bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords];
+ }
+}
+
+void
+hibernate_free_gobble_pages(void)
+{
+ vm_page_t m, next;
+ uint32_t count = 0;
+
+ m = (vm_page_t) hibernate_gobble_queue;
+ while (m) {
+ next = m->vmp_snext;
+ vm_page_free(m);
+ count++;
+ m = next;
+ }
+ hibernate_gobble_queue = VM_PAGE_NULL;
+
+ if (count) {
+ HIBLOG("Freed %d pages\n", count);
+ }
+}
+
+static boolean_t
+hibernate_consider_discard(vm_page_t m, boolean_t preflight)
+{
+ vm_object_t object = NULL;
+ int refmod_state;
+ boolean_t discard = FALSE;
+
+ do{
+ if (m->vmp_private) {
+ panic("hibernate_consider_discard: private");
+ }
+
+ object = VM_PAGE_OBJECT(m);
+
+ if (!vm_object_lock_try(object)) {
+ object = NULL;
+ if (!preflight) {
+ hibernate_stats.cd_lock_failed++;
+ }
+ break;
+ }
+ if (VM_PAGE_WIRED(m)) {
+ if (!preflight) {
+ hibernate_stats.cd_found_wired++;
+ }
+ break;
+ }
+ if (m->vmp_precious) {
+ if (!preflight) {
+ hibernate_stats.cd_found_precious++;
+ }
+ break;
+ }
+ if (m->vmp_busy || !object->alive) {
+ /*
+ * Somebody is playing with this page.
+ */
+ if (!preflight) {
+ hibernate_stats.cd_found_busy++;
+ }
+ break;
+ }
+ if (m->vmp_absent || m->vmp_unusual || m->vmp_error) {
+ /*
+ * If it's unusual in anyway, ignore it
+ */
+ if (!preflight) {
+ hibernate_stats.cd_found_unusual++;
+ }
+ break;
+ }
+ if (m->vmp_cleaning) {
+ if (!preflight) {
+ hibernate_stats.cd_found_cleaning++;
+ }
+ break;
+ }
+ if (m->vmp_laundry) {
+ if (!preflight) {
+ hibernate_stats.cd_found_laundry++;
+ }
+ break;
+ }
+ if (!m->vmp_dirty) {
+ refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
+
+ if (refmod_state & VM_MEM_REFERENCED) {
+ m->vmp_reference = TRUE;
+ }
+ if (refmod_state & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ }
+
+ /*
+ * If it's clean or purgeable we can discard the page on wakeup.
+ */
+ discard = (!m->vmp_dirty)
+ || (VM_PURGABLE_VOLATILE == object->purgable)
+ || (VM_PURGABLE_EMPTY == object->purgable);
+
+
+ if (discard == FALSE) {
+ if (!preflight) {
+ hibernate_stats.cd_found_dirty++;
+ }
+ } else if (m->vmp_xpmapped && m->vmp_reference && !object->internal) {
+ if (hibernate_stats.cd_found_xpmapped < HIBERNATE_XPMAPPED_LIMIT) {
+ if (!preflight) {
+ hibernate_stats.cd_found_xpmapped++;
+ }
+ discard = FALSE;
+ } else {
+ if (!preflight) {
+ hibernate_stats.cd_skipped_xpmapped++;
+ }
+ }
+ }
+ }while (FALSE);
+
+ if (object) {
+ vm_object_unlock(object);
+ }
+
+ return discard;
+}
+
+
+static void
+hibernate_discard_page(vm_page_t m)
+{
+ vm_object_t m_object;
+
+ if (m->vmp_absent || m->vmp_unusual || m->vmp_error) {
+ /*
+ * If it's unusual in anyway, ignore
+ */
+ return;
+ }
+
+ m_object = VM_PAGE_OBJECT(m);
+
+#if MACH_ASSERT || DEBUG
+ if (!vm_object_lock_try(m_object)) {
+ panic("hibernate_discard_page(%p) !vm_object_lock_try", m);
+ }
+#else
+ /* No need to lock page queue for token delete, hibernate_vm_unlock()
+ * makes sure these locks are uncontended before sleep */
+#endif /* MACH_ASSERT || DEBUG */
+
+ if (m->vmp_pmapped == TRUE) {
+ __unused int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (m->vmp_laundry) {
+ panic("hibernate_discard_page(%p) laundry", m);
+ }
+ if (m->vmp_private) {
+ panic("hibernate_discard_page(%p) private", m);
+ }
+ if (m->vmp_fictitious) {
+ panic("hibernate_discard_page(%p) fictitious", m);
+ }
+
+ if (VM_PURGABLE_VOLATILE == m_object->purgable) {
+ /* object should be on a queue */
+ assert((m_object->objq.next != NULL) && (m_object->objq.prev != NULL));
+ purgeable_q_t old_queue = vm_purgeable_object_remove(m_object);
+ assert(old_queue);
+ if (m_object->purgeable_when_ripe) {
+ vm_purgeable_token_delete_first(old_queue);
+ }
+ vm_object_lock_assert_exclusive(m_object);
+ m_object->purgable = VM_PURGABLE_EMPTY;
+
+ /*
+ * Purgeable ledgers: pages of VOLATILE and EMPTY objects are
+ * accounted in the "volatile" ledger, so no change here.
+ * We have to update vm_page_purgeable_count, though, since we're
+ * effectively purging this object.
+ */
+ unsigned int delta;
+ assert(m_object->resident_page_count >= m_object->wired_page_count);
+ delta = (m_object->resident_page_count - m_object->wired_page_count);
+ assert(vm_page_purgeable_count >= delta);
+ assert(delta > 0);
+ OSAddAtomic(-delta, (SInt32 *)&vm_page_purgeable_count);
+ }
+
+ vm_page_free(m);
+
+#if MACH_ASSERT || DEBUG
+ vm_object_unlock(m_object);
+#endif /* MACH_ASSERT || DEBUG */
+}
+
+/*
+ * Grab locks for hibernate_page_list_setall()
+ */
+void
+hibernate_vm_lock_queues(void)
+{
+ vm_object_lock(compressor_object);
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ if (vm_page_local_q) {
+ uint32_t i;
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ }
+}
+
+void
+hibernate_vm_unlock_queues(void)
+{
+ if (vm_page_local_q) {
+ uint32_t i;
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_UNLOCK(&lq->vpl_lock);
+ }
+ }
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+ vm_object_unlock(compressor_object);
+}
+
+/*
+ * Bits zero in the bitmaps => page needs to be saved. All pages default to be saved,
+ * pages known to VM to not need saving are subtracted.
+ * Wired pages to be saved are present in page_list_wired, pageable in page_list.
+ */
+
+void
+hibernate_page_list_setall(hibernate_page_list_t * page_list,
+ hibernate_page_list_t * page_list_wired,
+ hibernate_page_list_t * page_list_pal,
+ boolean_t preflight,
+ boolean_t will_discard,
+ uint32_t * pagesOut)
+{
+ uint64_t start, end, nsec;
+ vm_page_t m;
+ vm_page_t next;
+ uint32_t pages = page_list->page_count;
+ uint32_t count_anonymous = 0, count_throttled = 0, count_compressor = 0;
+ uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0;
+ uint32_t count_wire = pages;
+ uint32_t count_discard_active = 0;
+ uint32_t count_discard_inactive = 0;
+ uint32_t count_discard_cleaned = 0;
+ uint32_t count_discard_purgeable = 0;
+ uint32_t count_discard_speculative = 0;
+ uint32_t count_discard_vm_struct_pages = 0;
+ uint32_t i;
+ uint32_t bank;
+ hibernate_bitmap_t * bitmap;
+ hibernate_bitmap_t * bitmap_wired;
+ boolean_t discard_all;
+ boolean_t discard;
+
+ HIBLOG("hibernate_page_list_setall(preflight %d) start\n", preflight);
+
+ if (preflight) {
+ page_list = NULL;
+ page_list_wired = NULL;
+ page_list_pal = NULL;
+ discard_all = FALSE;
+ } else {
+ discard_all = will_discard;
+ }
+
+#if MACH_ASSERT || DEBUG
+ if (!preflight) {
+ assert(hibernate_vm_locks_are_safe());
+ vm_page_lock_queues();
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ }
+ }
+#endif /* MACH_ASSERT || DEBUG */
+
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0);
+
+ clock_get_uptime(&start);
+
+ if (!preflight) {
+ hibernate_page_list_zero(page_list);
+ hibernate_page_list_zero(page_list_wired);
+ hibernate_page_list_zero(page_list_pal);
+
+ hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count;
+ hibernate_stats.cd_pages = pages;
+ }
+
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ vm_page_reactivate_local(i, TRUE, !preflight);
+ }
+ }
+
+ if (preflight) {
+ vm_object_lock(compressor_object);
+ vm_page_lock_queues();
+ lck_mtx_lock(&vm_page_queue_free_lock);
+ }
+
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ hibernation_vmqueues_inspection = TRUE;
+
+ m = (vm_page_t) hibernate_gobble_queue;
+ while (m) {
+ pages--;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ m = m->vmp_snext;
+ }
+
+ if (!preflight) {
+ for (i = 0; i < real_ncpus; i++) {
+ if (cpu_data_ptr[i] && cpu_data_ptr[i]->cpu_processor) {
+ for (m = PROCESSOR_DATA(cpu_data_ptr[i]->cpu_processor, free_pages); m; m = m->vmp_snext) {
+ assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q);
+
+ pages--;
+ count_wire--;
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+
+ hibernate_stats.cd_local_free++;
+ hibernate_stats.cd_total_free++;
+ }
+ }
+ }
+ }
+
+ for (i = 0; i < vm_colors; i++) {
+ vm_page_queue_iterate(&vm_page_queue_free[i].qhead, m, vmp_pageq) {
+ assert(m->vmp_q_state == VM_PAGE_ON_FREE_Q);
+
+ pages--;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+
+ hibernate_stats.cd_total_free++;
+ }
+ }
+ }
+
+ vm_page_queue_iterate(&vm_lopage_queue_free, m, vmp_pageq) {
+ assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q);
+
+ pages--;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+
+ hibernate_stats.cd_total_free++;
+ }
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled);
+ while (m && !vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode)
+ && hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ count_discard_inactive++;
+ discard = discard_all;
+ } else {
+ count_throttled++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t)vm_page_queue_first(&vm_page_queue_anonymous);
+ while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ discard = discard_all;
+ } else {
+ count_anonymous++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
+ while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_cleaned++;
+ }
+ discard = discard_all;
+ } else {
+ count_cleaned++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+ while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_active++;
+ }
+ discard = discard_all;
+ } else {
+ count_active++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
+ while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ discard = discard_all;
+ } else {
+ count_inactive++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ /* XXX FBDP TODO: secluded queue */
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q);
+ while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) {
+ assertf(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q,
+ "Bad page: %p (0x%x:0x%x) on queue %d has state: %d (Discard: %d, Preflight: %d)",
+ m, m->vmp_pageq.next, m->vmp_pageq.prev, i, m->vmp_q_state, discard, preflight);
+
+ next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ discard = FALSE;
+ if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) &&
+ hibernate_consider_discard(m, preflight)) {
+ if (!preflight) {
+ hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ count_discard_speculative++;
+ discard = discard_all;
+ } else {
+ count_speculative++;
+ }
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ if (discard) {
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ }
+
+ vm_page_queue_iterate(&compressor_object->memq, m, vmp_listq) {
+ assert(m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR);
+
+ count_compressor++;
+ count_wire--;
+ if (!preflight) {
+ hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m));
+ }
+ }
+
+ if (preflight == FALSE && discard_all == TRUE) {
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_START);
+
+ HIBLOG("hibernate_teardown started\n");
+ count_discard_vm_struct_pages = hibernate_teardown_vm_structs(page_list, page_list_wired);
+ HIBLOG("hibernate_teardown completed - discarded %d\n", count_discard_vm_struct_pages);
+
+ pages -= count_discard_vm_struct_pages;
+ count_wire -= count_discard_vm_struct_pages;
+
+ hibernate_stats.cd_vm_struct_pages_unneeded = count_discard_vm_struct_pages;
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_END);
+ }
+
+ if (!preflight) {
+ // pull wired from hibernate_bitmap
+ bitmap = &page_list->bank_bitmap[0];
+ bitmap_wired = &page_list_wired->bank_bitmap[0];
+ for (bank = 0; bank < page_list->bank_count; bank++) {
+ for (i = 0; i < bitmap->bitmapwords; i++) {
+ bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i];
+ }
+ bitmap = (hibernate_bitmap_t *)&bitmap->bitmap[bitmap->bitmapwords];
+ bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords];
+ }
+ }
+
+ // machine dependent adjustments
+ hibernate_page_list_setall_machine(page_list, page_list_wired, preflight, &pages);
+
+ if (!preflight) {
+ hibernate_stats.cd_count_wire = count_wire;
+ hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable +
+ count_discard_speculative + count_discard_cleaned + count_discard_vm_struct_pages;
+ }
+
+ clock_get_uptime(&end);
+ absolutetime_to_nanoseconds(end - start, &nsec);
+ HIBLOG("hibernate_page_list_setall time: %qd ms\n", nsec / 1000000ULL);
+
+ HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, compr %d, xpmapped %d\n %s discard act %d inact %d purgeable %d spec %d cleaned %d\n",
+ pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_anonymous, count_throttled, count_compressor, hibernate_stats.cd_found_xpmapped,
+ discard_all ? "did" : "could",
+ count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned);
+
+ if (hibernate_stats.cd_skipped_xpmapped) {
+ HIBLOG("WARNING: hibernate_page_list_setall skipped %d xpmapped pages\n", hibernate_stats.cd_skipped_xpmapped);
+ }
+
+ *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned;
+
+ if (preflight && will_discard) {
+ *pagesOut -= count_compressor + count_throttled + count_anonymous + count_inactive + count_cleaned + count_speculative + count_active;
+ }
+
+ hibernation_vmqueues_inspection = FALSE;
+
+#if MACH_ASSERT || DEBUG
+ if (!preflight) {
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_UNLOCK(&lq->vpl_lock);
+ }
+ }
+ vm_page_unlock_queues();
+ }
+#endif /* MACH_ASSERT || DEBUG */
+
+ if (preflight) {
+ lck_mtx_unlock(&vm_page_queue_free_lock);
+ vm_page_unlock_queues();
+ vm_object_unlock(compressor_object);
+ }
+
+ KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0);
+}
+
+void
+hibernate_page_list_discard(hibernate_page_list_t * page_list)
+{
+ uint64_t start, end, nsec;
+ vm_page_t m;
+ vm_page_t next;
+ uint32_t i;
+ uint32_t count_discard_active = 0;
+ uint32_t count_discard_inactive = 0;
+ uint32_t count_discard_purgeable = 0;
+ uint32_t count_discard_cleaned = 0;
+ uint32_t count_discard_speculative = 0;
+
+
+#if MACH_ASSERT || DEBUG
+ vm_page_lock_queues();
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_LOCK(&lq->vpl_lock);
+ }
+ }
+#endif /* MACH_ASSERT || DEBUG */
+
+ clock_get_uptime(&start);
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
+ while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) {
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q);
+ while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ count_discard_speculative++;
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
+ while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_inactive++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+ /* XXX FBDP TODO: secluded queue */
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
+ while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_active++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+ m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
+ while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) {
+ assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q);
+
+ next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next);
+ if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) {
+ if (m->vmp_dirty) {
+ count_discard_purgeable++;
+ } else {
+ count_discard_cleaned++;
+ }
+ hibernate_discard_page(m);
+ }
+ m = next;
+ }
+
+#if MACH_ASSERT || DEBUG
+ if (vm_page_local_q) {
+ for (i = 0; i < vm_page_local_q_count; i++) {
+ struct vpl *lq;
+ lq = &vm_page_local_q[i].vpl_un.vpl;
+ VPL_UNLOCK(&lq->vpl_lock);
+ }
+ }
+ vm_page_unlock_queues();
+#endif /* MACH_ASSERT || DEBUG */
+
+ clock_get_uptime(&end);
+ absolutetime_to_nanoseconds(end - start, &nsec);
+ HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n",
+ nsec / 1000000ULL,
+ count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned);
+}
+
+boolean_t hibernate_paddr_map_inited = FALSE;
+unsigned int hibernate_teardown_last_valid_compact_indx = -1;
+vm_page_t hibernate_rebuild_hash_list = NULL;
+
+unsigned int hibernate_teardown_found_tabled_pages = 0;
+unsigned int hibernate_teardown_found_created_pages = 0;
+unsigned int hibernate_teardown_found_free_pages = 0;
+unsigned int hibernate_teardown_vm_page_free_count;
+
+
+struct ppnum_mapping {
+ struct ppnum_mapping *ppnm_next;
+ ppnum_t ppnm_base_paddr;
+ unsigned int ppnm_sindx;
+ unsigned int ppnm_eindx;
+};
+
+struct ppnum_mapping *ppnm_head;
+struct ppnum_mapping *ppnm_last_found = NULL;
+
+
+void
+hibernate_create_paddr_map()
+{
+ unsigned int i;
+ ppnum_t next_ppnum_in_run = 0;
+ struct ppnum_mapping *ppnm = NULL;
+
+ if (hibernate_paddr_map_inited == FALSE) {
+ for (i = 0; i < vm_pages_count; i++) {
+ if (ppnm) {
+ ppnm->ppnm_eindx = i;
+ }
+
+ if (ppnm == NULL || VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) != next_ppnum_in_run) {
+ ppnm = kalloc(sizeof(struct ppnum_mapping));
+
+ ppnm->ppnm_next = ppnm_head;
+ ppnm_head = ppnm;
+
+ ppnm->ppnm_sindx = i;
+ ppnm->ppnm_base_paddr = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]);
+ }
+ next_ppnum_in_run = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) + 1;
+ }
+ ppnm->ppnm_eindx++;
+
+ hibernate_paddr_map_inited = TRUE;
+ }
+}
+
+ppnum_t
+hibernate_lookup_paddr(unsigned int indx)
+{
+ struct ppnum_mapping *ppnm = NULL;
+
+ ppnm = ppnm_last_found;
+
+ if (ppnm) {
+ if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) {
+ goto done;
+ }
+ }
+ for (ppnm = ppnm_head; ppnm; ppnm = ppnm->ppnm_next) {
+ if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) {
+ ppnm_last_found = ppnm;
+ break;
+ }
+ }
+ if (ppnm == NULL) {
+ panic("hibernate_lookup_paddr of %d failed\n", indx);
+ }
+done:
+ return ppnm->ppnm_base_paddr + (indx - ppnm->ppnm_sindx);
+}
+
+
+uint32_t
+hibernate_mark_as_unneeded(addr64_t saddr, addr64_t eaddr, hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired)
+{
+ addr64_t saddr_aligned;
+ addr64_t eaddr_aligned;
+ addr64_t addr;
+ ppnum_t paddr;
+ unsigned int mark_as_unneeded_pages = 0;
+
+ saddr_aligned = (saddr + PAGE_MASK_64) & ~PAGE_MASK_64;
+ eaddr_aligned = eaddr & ~PAGE_MASK_64;
+
+ for (addr = saddr_aligned; addr < eaddr_aligned; addr += PAGE_SIZE_64) {
+ paddr = pmap_find_phys(kernel_pmap, addr);
+
+ assert(paddr);
+
+ hibernate_page_bitset(page_list, TRUE, paddr);
+ hibernate_page_bitset(page_list_wired, TRUE, paddr);
+
+ mark_as_unneeded_pages++;
+ }
+ return mark_as_unneeded_pages;
+}
+
+
+void
+hibernate_hash_insert_page(vm_page_t mem)
+{
+ vm_page_bucket_t *bucket;
+ int hash_id;
+ vm_object_t m_object;
+
+ m_object = VM_PAGE_OBJECT(mem);
+
+ assert(mem->vmp_hashed);
+ assert(m_object);
+ assert(mem->vmp_offset != (vm_object_offset_t) -1);
+
+ /*
+ * Insert it into the object_object/offset hash table