/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*
* Page fault handling module.
*/
-#ifdef MACH_BSD
-/* remove after component interface available */
-extern int vnode_pager_workaround;
-extern int device_pager_workaround;
-#endif
#include <mach_cluster_stats.h>
#include <mach_pagemap.h>
#include <mach_kdb.h>
+#include <libkern/OSAtomic.h>
-#include <vm/vm_fault.h>
+#include <mach/mach_types.h>
#include <mach/kern_return.h>
#include <mach/message.h> /* for error codes */
+#include <mach/vm_param.h>
+#include <mach/vm_behavior.h>
+#include <mach/memory_object.h>
+ /* For memory_object_data_{request,unlock} */
+#include <mach/sdt.h>
+
+#include <kern/kern_types.h>
#include <kern/host_statistics.h>
#include <kern/counters.h>
#include <kern/task.h>
#include <kern/sched_prim.h>
#include <kern/host.h>
#include <kern/xpr.h>
+#include <kern/mach_param.h>
+#include <kern/macro_help.h>
+#include <kern/zalloc.h>
+#include <kern/misc_protos.h>
+
#include <ppc/proc_reg.h>
-#include <ppc/pmap_internals.h>
-#include <vm/task_working_set.h>
+
+#include <vm/vm_fault.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
+#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <vm/vm_pageout.h>
-#include <mach/vm_param.h>
-#include <mach/vm_behavior.h>
-#include <mach/memory_object.h>
- /* For memory_object_data_{request,unlock} */
-#include <kern/mach_param.h>
-#include <kern/macro_help.h>
-#include <kern/zalloc.h>
-#include <kern/misc_protos.h>
+#include <vm/vm_protos.h>
+#include <vm/vm_external.h>
+#include <vm/memory_object.h>
+#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
#include <sys/kdebug.h>
#define VM_FAULT_CLASSIFY 0
-#define VM_FAULT_STATIC_CONFIG 1
#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
-int vm_object_absent_max = 50;
+int vm_object_pagein_throttle = 16;
-int vm_fault_debug = 0;
-boolean_t vm_page_deactivate_behind = TRUE;
+/*
+ * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
+ * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
+ * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
+ * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
+ * keep the UI active so that the user has a chance to kill the offending task before the system
+ * completely hangs.
+ *
+ * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
+ * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
+ * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
+ * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
+ */
+boolean_t thread_is_io_throttled(void);
-#if !VM_FAULT_STATIC_CONFIG
-boolean_t vm_fault_dirty_handling = FALSE;
-boolean_t vm_fault_interruptible = FALSE;
-boolean_t software_reference_bits = TRUE;
-#endif
+uint64_t vm_hard_throttle_threshold;
+
+extern unsigned int dp_pages_free, dp_pages_reserve;
+
+#define NEED_TO_HARD_THROTTLE_THIS_TASK() (((dp_pages_free + dp_pages_reserve < 2000) && \
+ (get_task_resident_size(current_task()) > vm_hard_throttle_threshold) && \
+ (current_task() != kernel_task) && IP_VALID(memory_manager_default)) || \
+ (vm_page_free_count < vm_page_throttle_limit && thread_is_io_throttled() && \
+ (get_task_resident_size(current_task()) > vm_hard_throttle_threshold)))
+
+
+#define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */
+
+
+extern int cs_debug;
#if MACH_KDB
extern struct db_watchpoint *db_watchpoint_list;
#endif /* MACH_KDB */
+boolean_t current_thread_aborted(void);
+
/* Forward declarations of internal routines. */
extern kern_return_t vm_fault_wire_fast(
vm_map_t map,
- vm_offset_t va,
+ vm_map_offset_t va,
vm_map_entry_t entry,
- pmap_t pmap);
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr);
extern void vm_fault_continue(void);
extern void vm_fault_classify_init(void);
#endif
+unsigned long vm_pmap_enter_blocked = 0;
+
+unsigned long vm_cs_validates = 0;
+unsigned long vm_cs_revalidates = 0;
+unsigned long vm_cs_query_modified = 0;
+unsigned long vm_cs_validated_dirtied = 0;
+#if CONFIG_ENFORCE_SIGNED_CODE
+int cs_enforcement_disable=0;
+#else
+static const int cs_enforcement_disable=1;
+#endif
+
/*
* Routine: vm_fault_init
* Purpose:
void
vm_fault_init(void)
{
+#if !SECURE_KERNEL
+#if CONFIG_ENFORCE_SIGNED_CODE
+ PE_parse_boot_argn("cs_enforcement_disable", &cs_enforcement_disable,
+ sizeof (cs_enforcement_disable));
+#endif
+ PE_parse_boot_argn("cs_debug", &cs_debug, sizeof (cs_debug));
+#endif
+
+ /*
+ * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
+ * computed as a percentage of available memory, and the percentage used is scaled inversely with
+ * the amount of memory. The pertange runs between 10% and 35%. We use 35% for small memory systems
+ * and reduce the value down to 10% for very large memory configurations. This helps give us a
+ * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
+ * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
+ */
+
+ vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
}
/*
vm_object_unlock(object);
if (top_page != VM_PAGE_NULL) {
- object = top_page->object;
- vm_object_lock(object);
- VM_PAGE_FREE(top_page);
- vm_object_paging_end(object);
- vm_object_unlock(object);
+ object = top_page->object;
+
+ vm_object_lock(object);
+ VM_PAGE_FREE(top_page);
+ vm_object_paging_end(object);
+ vm_object_unlock(object);
}
}
#define CLUSTER_STAT(clause)
#endif /* MACH_CLUSTER_STATS */
-/* XXX - temporary */
-boolean_t vm_allow_clustered_pagein = FALSE;
-int vm_pagein_cluster_used = 0;
+#define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
+
+boolean_t vm_page_deactivate_behind = TRUE;
/*
- * Prepage default sizes given VM_BEHAVIOR_DEFAULT reference behavior
+ * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
*/
-int vm_default_ahead = 1; /* Number of pages to prepage ahead */
-int vm_default_behind = 0; /* Number of pages to prepage behind */
+#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
+#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
+ /* we use it to size an array on the stack */
+
+int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
+
+#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
+
+/*
+ * vm_page_is_sequential
+ *
+ * Determine if sequential access is in progress
+ * in accordance with the behavior specified.
+ * Update state to indicate current access pattern.
+ *
+ * object must have at least the shared lock held
+ */
+static
+void
+vm_fault_is_sequential(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_behavior_t behavior)
+{
+ vm_object_offset_t last_alloc;
+ int sequential;
+ int orig_sequential;
+
+ last_alloc = object->last_alloc;
+ sequential = object->sequential;
+ orig_sequential = sequential;
+
+ switch (behavior) {
+ case VM_BEHAVIOR_RANDOM:
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ break;
+
+ case VM_BEHAVIOR_SEQUENTIAL:
+ if (offset && last_alloc == offset - PAGE_SIZE_64) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential < MAX_SEQUENTIAL_RUN)
+ sequential += PAGE_SIZE;
+ } else {
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ }
+ break;
+
+ case VM_BEHAVIOR_RSEQNTL:
+ if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential > -MAX_SEQUENTIAL_RUN)
+ sequential -= PAGE_SIZE;
+ } else {
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ }
+ break;
+
+ case VM_BEHAVIOR_DEFAULT:
+ default:
+ if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential < 0)
+ sequential = 0;
+ if (sequential < MAX_SEQUENTIAL_RUN)
+ sequential += PAGE_SIZE;
+
+ } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
+ /*
+ * advance indicator of sequential behavior
+ */
+ if (sequential > 0)
+ sequential = 0;
+ if (sequential > -MAX_SEQUENTIAL_RUN)
+ sequential -= PAGE_SIZE;
+ } else {
+ /*
+ * reset indicator of sequential behavior
+ */
+ sequential = 0;
+ }
+ break;
+ }
+ if (sequential != orig_sequential) {
+ if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
+ /*
+ * if someone else has already updated object->sequential
+ * don't bother trying to update it or object->last_alloc
+ */
+ return;
+ }
+ }
+ /*
+ * I'd like to do this with a OSCompareAndSwap64, but that
+ * doesn't exist for PPC... however, it shouldn't matter
+ * that much... last_alloc is maintained so that we can determine
+ * if a sequential access pattern is taking place... if only
+ * one thread is banging on this object, no problem with the unprotected
+ * update... if 2 or more threads are banging away, we run the risk of
+ * someone seeing a mangled update... however, in the face of multiple
+ * accesses, no sequential access pattern can develop anyway, so we
+ * haven't lost any real info.
+ */
+ object->last_alloc = offset;
+}
+
+
+int vm_page_deactivate_behind_count = 0;
+
+/*
+ * vm_page_deactivate_behind
+ *
+ * Determine if sequential access is in progress
+ * in accordance with the behavior specified. If
+ * so, compute a potential page to deactivate and
+ * deactivate it.
+ *
+ * object must be locked.
+ *
+ * return TRUE if we actually deactivate a page
+ */
+static
+boolean_t
+vm_fault_deactivate_behind(
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_behavior_t behavior)
+{
+ int n;
+ int pages_in_run = 0;
+ int max_pages_in_run = 0;
+ int sequential_run;
+ int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ vm_object_offset_t run_offset = 0;
+ vm_object_offset_t pg_offset = 0;
+ vm_page_t m;
+ vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
+
+ pages_in_run = 0;
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
+#endif
+
+ if (object == kernel_object || vm_page_deactivate_behind == FALSE) {
+ /*
+ * Do not deactivate pages from the kernel object: they
+ * are not intended to become pageable.
+ * or we've disabled the deactivate behind mechanism
+ */
+ return FALSE;
+ }
+ if ((sequential_run = object->sequential)) {
+ if (sequential_run < 0) {
+ sequential_behavior = VM_BEHAVIOR_RSEQNTL;
+ sequential_run = 0 - sequential_run;
+ } else {
+ sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ }
+ }
+ switch (behavior) {
+ case VM_BEHAVIOR_RANDOM:
+ break;
+ case VM_BEHAVIOR_SEQUENTIAL:
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
+ break;
+ case VM_BEHAVIOR_RSEQNTL:
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
+ break;
+ case VM_BEHAVIOR_DEFAULT:
+ default:
+ { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
+
+ /*
+ * determine if the run of sequential accesss has been
+ * long enough on an object with default access behavior
+ * to consider it for deactivation
+ */
+ if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
+ /*
+ * the comparisons between offset and behind are done
+ * in this kind of odd fashion in order to prevent wrap around
+ * at the end points
+ */
+ if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
+ if (offset >= behind) {
+ run_offset = 0 - behind;
+ pg_offset = PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
+ } else {
+ if (offset < -behind) {
+ run_offset = behind;
+ pg_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
+ }
+ }
+ break;
+ }
+ }
+ for (n = 0; n < max_pages_in_run; n++) {
+ m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
+
+ if (m && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
+ page_run[pages_in_run++] = m;
+ pmap_clear_reference(m->phys_page);
+ }
+ }
+ if (pages_in_run) {
+ vm_page_lockspin_queues();
+
+ for (n = 0; n < pages_in_run; n++) {
+
+ m = page_run[n];
+
+ vm_page_deactivate_internal(m, FALSE);
+
+ vm_page_deactivate_behind_count++;
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
+#endif
+ }
+ vm_page_unlock_queues();
+
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+static boolean_t
+vm_page_throttled(void)
+{
+ clock_sec_t elapsed_sec;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ thread_t thread = current_thread();
+
+ if (thread->options & TH_OPT_VMPRIV)
+ return (FALSE);
+
+ thread->t_page_creation_count++;
+
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK())
+ return (TRUE);
+
+ if (vm_page_free_count < vm_page_throttle_limit &&
+ thread->t_page_creation_count > vm_page_creation_throttle) {
+
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+
+ elapsed_sec = tv_sec - thread->t_page_creation_time;
+
+ if (elapsed_sec <= 6 || (thread->t_page_creation_count / elapsed_sec) >= (vm_page_creation_throttle / 6)) {
+
+ if (elapsed_sec >= 60) {
+ /*
+ * we'll reset our stats to give a well behaved app
+ * that was unlucky enough to accumulate a bunch of pages
+ * over a long period of time a chance to get out of
+ * the throttled state... we reset the counter and timestamp
+ * so that if it stays under the rate limit for the next second
+ * it will be back in our good graces... if it exceeds it, it
+ * will remain in the throttled state
+ */
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = (vm_page_creation_throttle / 6) * 5;
+ }
+ ++vm_page_throttle_count;
+
+ return (TRUE);
+ }
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = 0;
+ }
+ return (FALSE);
+}
+
+
+/*
+ * check for various conditions that would
+ * prevent us from creating a ZF page...
+ * cleanup is based on being called from vm_fault_page
+ *
+ * object must be locked
+ * object == m->object
+ */
+static vm_fault_return_t
+vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state)
+{
+ if (object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
+ /*
+ * Either:
+ * 1. the shadow chain was severed,
+ * 2. the purgeable object is volatile or empty and is marked
+ * to fault on access while volatile.
+ * Just have to return an error at this point
+ */
+ if (m != VM_PAGE_NULL)
+ VM_PAGE_FREE(m);
+ vm_fault_cleanup(object, first_m);
+
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_MEMORY_ERROR);
+ }
+ if (vm_backing_store_low) {
+ /*
+ * are we protecting the system from
+ * backing store exhaustion. If so
+ * sleep unless we are privileged.
+ */
+ if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
+
+ if (m != VM_PAGE_NULL)
+ VM_PAGE_FREE(m);
+ vm_fault_cleanup(object, first_m);
+
+ assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
+
+ thread_block(THREAD_CONTINUE_NULL);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
+ }
+ }
+ if (vm_page_throttled()) {
+ /*
+ * we're throttling zero-fills...
+ * treat this as if we couldn't grab a page
+ */
+ if (m != VM_PAGE_NULL)
+ VM_PAGE_FREE(m);
+ vm_fault_cleanup(object, first_m);
+
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
+ delay(HARD_THROTTLE_DELAY);
+
+ if (current_thread_aborted()) {
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_INTERRUPTED;
+ }
+ }
+
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_MEMORY_SHORTAGE);
+ }
+ return (VM_FAULT_SUCCESS);
+}
+
+
+/*
+ * do the work to zero fill a page and
+ * inject it into the correct paging queue
+ *
+ * m->object must be locked
+ * page queue lock must NOT be held
+ */
+static int
+vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
+{
+ int my_fault = DBG_ZERO_FILL_FAULT;
+
+ /*
+ * This is is a zero-fill page fault...
+ *
+ * Checking the page lock is a waste of
+ * time; this page was absent, so
+ * it can't be page locked by a pager.
+ *
+ * we also consider it undefined
+ * with respect to instruction
+ * execution. i.e. it is the responsibility
+ * of higher layers to call for an instruction
+ * sync after changing the contents and before
+ * sending a program into this area. We
+ * choose this approach for performance
+ */
+ m->pmapped = TRUE;
+
+ m->cs_validated = FALSE;
+ m->cs_tainted = FALSE;
+
+ if (no_zero_fill == TRUE)
+ my_fault = DBG_NZF_PAGE_FAULT;
+ else {
+ vm_page_zero_fill(m);
+
+ VM_STAT_INCR(zero_fill_count);
+ DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
+ }
+ assert(!m->laundry);
+ assert(m->object != kernel_object);
+ //assert(m->pageq.next == NULL && m->pageq.prev == NULL);
+
+ if (!IP_VALID(memory_manager_default) &&
+ (m->object->purgable == VM_PURGABLE_DENY ||
+ m->object->purgable == VM_PURGABLE_NONVOLATILE ||
+ m->object->purgable == VM_PURGABLE_VOLATILE )) {
+ vm_page_lockspin_queues();
+
+ queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
+ m->throttled = TRUE;
+ vm_page_throttled_count++;
+
+ vm_page_unlock_queues();
+ } else {
+ if (current_thread()->t_page_creation_count > vm_page_creation_throttle) {
+ m->zero_fill = TRUE;
+ VM_ZF_COUNT_INCR();
+ }
+ }
+ return (my_fault);
+}
-#define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
/*
* Routine: vm_fault_page
* Additional arguments:
* The required permissions for the page is given
* in "fault_type". Desired permissions are included
- * in "protection". The minimum and maximum valid offsets
- * within the object for the relevant map entry are
- * passed in "lo_offset" and "hi_offset" respectively and
- * the expected page reference pattern is passed in "behavior".
- * These three parameters are used to determine pagein cluster
- * limits.
+ * in "protection".
+ * fault_info is passed along to determine pagein cluster
+ * limits... it contains the expected reference pattern,
+ * cluster size if available, etc...
*
* If the desired page is known to be resident (for
* example, because it was previously wired down), asserting
* be destroyed when this guarantee is no longer required.
* The "result_page" is also left busy. It is not removed
* from the pageout queues.
+ * Special Case:
+ * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
+ * fault succeeded but there's no VM page (i.e. the VM object
+ * does not actually hold VM pages, but device memory or
+ * large pages). The object is still locked and we still hold a
+ * paging_in_progress reference.
*/
+unsigned int vm_fault_page_blocked_access = 0;
vm_fault_return_t
vm_fault_page(
vm_object_offset_t first_offset, /* Offset into object */
vm_prot_t fault_type, /* What access is requested */
boolean_t must_be_resident,/* Must page be resident? */
- int interruptible, /* how may fault be interrupted? */
- vm_object_offset_t lo_offset, /* Map entry start */
- vm_object_offset_t hi_offset, /* Map entry end */
- vm_behavior_t behavior, /* Page reference behavior */
/* Modifies in place: */
vm_prot_t *protection, /* Protection for mapping */
/* Returns: */
/* More arguments: */
kern_return_t *error_code, /* code if page is in error */
boolean_t no_zero_fill, /* don't zero fill absent pages */
+#if MACH_PAGEMAP
boolean_t data_supply, /* treat as data_supply if
* it is a write fault and a full
* page is provided */
- vm_map_t map,
- vm_offset_t vaddr)
+#else
+ __unused boolean_t data_supply,
+#endif
+ vm_object_fault_info_t fault_info)
{
- register
vm_page_t m;
- register
vm_object_t object;
- register
vm_object_offset_t offset;
vm_page_t first_m;
vm_object_t next_object;
boolean_t look_for_page;
vm_prot_t access_required = fault_type;
vm_prot_t wants_copy_flag;
- vm_size_t cluster_size, length;
- vm_object_offset_t cluster_offset;
- vm_object_offset_t cluster_start, cluster_end, paging_offset;
- vm_object_offset_t align_offset;
CLUSTER_STAT(int pages_at_higher_offsets;)
CLUSTER_STAT(int pages_at_lower_offsets;)
- kern_return_t wait_result;
- thread_t cur_thread;
+ kern_return_t wait_result;
boolean_t interruptible_state;
- boolean_t bumped_pagein = FALSE;
+ vm_fault_return_t error;
+ int my_fault;
+ uint32_t try_failed_count;
+ int interruptible; /* how may fault be interrupted? */
+ memory_object_t pager;
+ vm_fault_return_t retval;
-
-#if MACH_PAGEMAP
/*
* MACH page map - an optional optimization where a bit map is maintained
* by the VM subsystem for internal objects to indicate which pages of
* is designed to eliminate pager interaction overhead, if it is
* 'known' that the page does not exist on backing store.
*
- * LOOK_FOR() evaluates to TRUE if the page specified by object/offset is
+ * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
* either marked as paged out in the existence map for the object or no
- * existence map exists for the object. LOOK_FOR() is one of the
+ * existence map exists for the object. MUST_ASK_PAGER() is one of the
* criteria in the decision to invoke the pager. It is also used as one
* of the criteria to terminate the scan for adjacent pages in a clustered
- * pagein operation. Note that LOOK_FOR() always evaluates to TRUE for
+ * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for
* permanent objects. Note also that if the pager for an internal object
* has not been created, the pager is not invoked regardless of the value
- * of LOOK_FOR() and that clustered pagein scans are only done on an object
+ * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object
* for which a pager has been created.
*
* PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
* PAGED_OUT() is used to determine if a page has already been pushed
* into a copy object in order to avoid a redundant page out operation.
*/
-#define LOOK_FOR(o, f) (vm_external_state_get((o)->existence_map, (f)) \
+#if MACH_PAGEMAP
+#define MUST_ASK_PAGER(o, f) (vm_external_state_get((o)->existence_map, (f)) \
!= VM_EXTERNAL_STATE_ABSENT)
#define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \
== VM_EXTERNAL_STATE_EXISTS)
-#else /* MACH_PAGEMAP */
-/*
- * If the MACH page map optimization is not enabled,
- * LOOK_FOR() always evaluates to TRUE. The pager will always be
- * invoked to resolve missing pages in an object, assuming the pager
- * has been created for the object. In a clustered page operation, the
- * absence of a page on backing backing store cannot be used to terminate
- * a scan for adjacent pages since that information is available only in
- * the pager. Hence pages that may not be paged out are potentially
- * included in a clustered request. The vnode pager is coded to deal
- * with any combination of absent/present pages in a clustered
- * pagein request. PAGED_OUT() always evaluates to FALSE, i.e. the pager
- * will always be invoked to push a dirty page into a copy object assuming
- * a pager has been created. If the page has already been pushed, the
- * pager will ingore the new request.
- */
-#define LOOK_FOR(o, f) TRUE
-#define PAGED_OUT(o, f) FALSE
-#endif /* MACH_PAGEMAP */
+#else
+#define MUST_ASK_PAGER(o, f) (TRUE)
+#define PAGED_OUT(o, f) (FALSE)
+#endif
/*
* Recovery actions
*/
-#define PREPARE_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- vm_page_lock_queues(); \
- MACRO_END
-
-#define DO_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- PAGE_WAKEUP_DONE(m); \
- if (!m->active && !m->inactive) \
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
- MACRO_END
-
#define RELEASE_PAGE(m) \
MACRO_BEGIN \
- PREPARE_RELEASE_PAGE(m); \
- DO_RELEASE_PAGE(m); \
+ PAGE_WAKEUP_DONE(m); \
+ if (!m->active && !m->inactive && !m->throttled) { \
+ vm_page_lockspin_queues(); \
+ if (!m->active && !m->inactive && !m->throttled) \
+ vm_page_activate(m); \
+ vm_page_unlock_queues(); \
+ } \
MACRO_END
#if TRACEFAULTPAGE
#endif
-
-#if !VM_FAULT_STATIC_CONFIG
- if (vm_fault_dirty_handling
-#if MACH_KDB
- /*
- * If there are watchpoints set, then
- * we don't want to give away write permission
- * on a read fault. Make the task write fault,
- * so that the watchpoint code notices the access.
- */
- || db_watchpoint_list
-#endif /* MACH_KDB */
- ) {
- /*
- * If we aren't asking for write permission,
- * then don't give it away. We're using write
- * faults to set the dirty bit.
- */
- if (!(fault_type & VM_PROT_WRITE))
- *protection &= ~VM_PROT_WRITE;
- }
-
- if (!vm_fault_interruptible)
- interruptible = THREAD_UNINT;
-#else /* STATIC_CONFIG */
#if MACH_KDB
/*
* If there are watchpoints set, then
if (!(fault_type & VM_PROT_WRITE))
*protection &= ~VM_PROT_WRITE;
}
-
#endif /* MACH_KDB */
-#endif /* STATIC_CONFIG */
-
- cur_thread = current_thread();
- interruptible_state = cur_thread->interruptible;
- if (interruptible == THREAD_UNINT)
- cur_thread->interruptible = FALSE;
+ interruptible = fault_info->interruptible;
+ interruptible_state = thread_interrupt_level(interruptible);
/*
* INVARIANTS (through entire routine):
* pager access or when waiting for memory, so
* we use a busy page then.
*
- * Note also that we aren't as concerned about more than
- * one thread attempting to memory_object_data_unlock
- * the same page at once, so we don't hold the page
- * as busy then, but do record the highest unlock
- * value so far. [Unlock requests may also be delivered
- * out of order.]
- *
* 2) To prevent another thread from racing us down the
* shadow chain and entering a new page in the top
* object before we do, we must keep a busy page in
* the top object while following the shadow chain.
*
* 3) We must increment paging_in_progress on any object
- * for which we have a busy page
+ * for which we have a busy page before dropping
+ * the object lock
*
* 4) We leave busy pages on the pageout queues.
* If the pageout daemon comes across a busy page,
* it will remove the page from the pageout queues.
*/
- /*
- * Search for the page at object/offset.
- */
-
object = first_object;
offset = first_offset;
first_m = VM_PAGE_NULL;
access_required = fault_type;
+
XPR(XPR_VM_FAULT,
"vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
- (integer_t)object, offset, fault_type, *protection, 0);
+ object, offset, fault_type, *protection, 0);
/*
- * See whether this page is resident
+ * default type of fault
*/
+ my_fault = DBG_CACHE_HIT_FAULT;
while (TRUE) {
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
if (!object->alive) {
+ /*
+ * object is no longer valid
+ * clean up and return error
+ */
vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_ERROR);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_MEMORY_ERROR);
}
- m = vm_page_lookup(object, offset);
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
-#endif
- if (m != VM_PAGE_NULL) {
+
+ if (!object->pager_created && object->phys_contiguous) {
/*
- * If the page was pre-paged as part of a
- * cluster, record the fact.
+ * A physically-contiguous object without a pager:
+ * must be a "large page" object. We do not deal
+ * with VM pages for this object.
*/
- if (m->clustered) {
- vm_pagein_cluster_used++;
- m->clustered = FALSE;
- }
+ m = VM_PAGE_NULL;
+ goto phys_contig_object;
+ }
+ if (object->blocked_access) {
/*
- * If the page is being brought in,
- * wait for it and then retry.
- *
- * A possible optimization: if the page
- * is known to be resident, we can ignore
- * pages that are absent (regardless of
- * whether they're busy).
+ * Access to this VM object has been blocked.
+ * Replace our "paging_in_progress" reference with
+ * a "activity_in_progress" reference and wait for
+ * access to be unblocked.
*/
+ vm_object_activity_begin(object);
+ vm_object_paging_end(object);
+ while (object->blocked_access) {
+ vm_object_sleep(object,
+ VM_OBJECT_EVENT_UNBLOCKED,
+ THREAD_UNINT);
+ }
+ vm_fault_page_blocked_access++;
+ vm_object_paging_begin(object);
+ vm_object_activity_end(object);
+ }
+
+ /*
+ * See whether the page at 'offset' is resident
+ */
+ m = vm_page_lookup(object, offset);
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
+#endif
+ if (m != VM_PAGE_NULL) {
if (m->busy) {
+ /*
+ * The page is being brought in,
+ * wait for it and then retry.
+ *
+ * A possible optimization: if the page
+ * is known to be resident, we can ignore
+ * pages that are absent (regardless of
+ * whether they're busy).
+ */
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
- PAGE_ASSERT_WAIT(m, interruptible);
- vm_object_unlock(object);
+ wait_result = PAGE_SLEEP(object, m, interruptible);
XPR(XPR_VM_FAULT,
"vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
+ object, offset,
+ m, 0, 0);
counter(c_vm_fault_page_block_busy_kernel++);
- wait_result = thread_block((void (*)(void))0);
- vm_object_lock(object);
if (wait_result != THREAD_AWAKENED) {
vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
+ thread_interrupt_level(interruptible_state);
+
if (wait_result == THREAD_RESTART)
- {
- return(VM_FAULT_RETRY);
- }
+ return (VM_FAULT_RETRY);
else
- {
- return(VM_FAULT_INTERRUPTED);
- }
+ return (VM_FAULT_INTERRUPTED);
}
continue;
}
- /*
- * If the page is in error, give up now.
- */
+ if (m->phys_page == vm_page_guard_addr) {
+ /*
+ * Guard page: off limits !
+ */
+ if (fault_type == VM_PROT_NONE) {
+ /*
+ * The fault is not requesting any
+ * access to the guard page, so it must
+ * be just to wire or unwire it.
+ * Let's pretend it succeeded...
+ */
+ m->busy = TRUE;
+ *result_page = m;
+ assert(first_m == VM_PAGE_NULL);
+ *top_page = first_m;
+ if (type_of_fault)
+ *type_of_fault = DBG_GUARD_FAULT;
+ return VM_FAULT_SUCCESS;
+ } else {
+ /*
+ * The fault requests access to the
+ * guard page: let's deny that !
+ */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_MEMORY_ERROR;
+ }
+ }
if (m->error) {
+ /*
+ * The page is in error, give up now.
+ */
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
#endif
if (error_code)
- *error_code = m->page_error;
+ *error_code = KERN_MEMORY_ERROR;
VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_ERROR);
- }
- /*
- * If the pager wants us to restart
- * at the top of the chain,
- * typically because it has moved the
- * page to another pager, then do so.
- */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return (VM_FAULT_MEMORY_ERROR);
+ }
if (m->restart) {
+ /*
+ * The pager wants us to restart
+ * at the top of the chain,
+ * typically because it has moved the
+ * page to another pager, then do so.
+ */
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_RETRY);
- }
- /*
- * If the page isn't busy, but is absent,
- * then it was deemed "unavailable".
- */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return (VM_FAULT_RETRY);
+ }
if (m->absent) {
- /*
+ /*
+ * The page isn't busy, but is absent,
+ * therefore it's deemed "unavailable".
+ *
* Remove the non-existent page (unless it's
* in the top object) and move on down to the
* next object (if there is one).
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
#endif
-
next_object = object->shadow;
- if (next_object == VM_OBJECT_NULL) {
- vm_page_t real_m;
-
- assert(!must_be_resident);
-
- if (object->shadow_severed) {
- vm_fault_cleanup(
- object, first_m);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_MEMORY_ERROR;
- }
+ if (next_object == VM_OBJECT_NULL) {
/*
* Absent page at bottom of shadow
* chain; zero fill the page we left
- * busy in the first object, and flush
- * the absent page. But first we
- * need to allocate a real page.
+ * busy in the first object, and free
+ * the absent page.
*/
- if (VM_PAGE_THROTTLED() ||
- (real_m = vm_page_grab()) == VM_PAGE_NULL) {
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
+ assert(!must_be_resident);
+
+ /*
+ * check for any conditions that prevent
+ * us from creating a new zero-fill page
+ * vm_fault_check will do all of the
+ * fault cleanup in the case of an error condition
+ * including resetting the thread_interrupt_level
+ */
+ error = vm_fault_check(object, m, first_m, interruptible_state);
+
+ if (error != VM_FAULT_SUCCESS)
+ return (error);
XPR(XPR_VM_FAULT,
- "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m,
- (integer_t)first_object, 0);
+ "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
+ object, offset,
+ m,
+ first_object, 0);
+
if (object != first_object) {
+ /*
+ * free the absent page we just found
+ */
VM_PAGE_FREE(m);
+
+ /*
+ * drop reference and lock on current object
+ */
vm_object_paging_end(object);
vm_object_unlock(object);
- object = first_object;
- offset = first_offset;
+
+ /*
+ * grab the original page we
+ * 'soldered' in place and
+ * retake lock on 'first_object'
+ */
m = first_m;
first_m = VM_PAGE_NULL;
- vm_object_lock(object);
- }
- VM_PAGE_FREE(m);
- assert(real_m->busy);
- vm_page_insert(real_m, object, offset);
- m = real_m;
+ object = first_object;
+ offset = first_offset;
+ vm_object_lock(object);
+ } else {
+ /*
+ * we're going to use the absent page we just found
+ * so convert it to a 'busy' page
+ */
+ m->absent = FALSE;
+ m->busy = TRUE;
+ }
/*
- * Drop the lock while zero filling
- * page. Then break because this
- * is the page we wanted. Checking
- * the page lock is a waste of time;
- * this page was either absent or
- * newly allocated -- in both cases
- * it can't be page locked by a pager.
+ * zero-fill the page and put it on
+ * the correct paging queue
*/
- m->no_isync = FALSE;
+ my_fault = vm_fault_zero_page(m, no_zero_fill);
- if (!no_zero_fill) {
- vm_object_unlock(object);
- vm_page_zero_fill(m);
- if (type_of_fault)
- *type_of_fault = DBG_ZERO_FILL_FAULT;
- VM_STAT(zero_fill_count++);
-
- if (bumped_pagein == TRUE) {
- VM_STAT(pageins--);
- current_task()->pageins--;
- }
- vm_object_lock(object);
- }
- pmap_clear_modify(m->phys_addr);
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
- m->page_ticket = vm_page_ticket;
- vm_page_ticket_roll++;
- if(vm_page_ticket_roll ==
- VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket ==
- VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
- }
- queue_enter(&vm_page_queue_inactive,
- m, vm_page_t, pageq);
- m->inactive = TRUE;
- vm_page_inactive_count++;
- vm_page_unlock_queues();
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
+ m->absent = TRUE;
break;
} else {
- if (must_be_resident) {
+ if (must_be_resident)
vm_object_paging_end(object);
- } else if (object != first_object) {
+ else if (object != first_object) {
vm_object_paging_end(object);
VM_PAGE_FREE(m);
} else {
first_m = m;
m->absent = FALSE;
- m->unusual = FALSE;
- vm_object_absent_release(object);
m->busy = TRUE;
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
VM_PAGE_QUEUES_REMOVE(m);
vm_page_unlock_queues();
}
XPR(XPR_VM_FAULT,
"vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
- (integer_t)object, offset,
- (integer_t)next_object,
+ object, offset,
+ next_object,
offset+object->shadow_offset,0);
+
offset += object->shadow_offset;
- hi_offset += object->shadow_offset;
- lo_offset += object->shadow_offset;
+ fault_info->lo_offset += object->shadow_offset;
+ fault_info->hi_offset += object->shadow_offset;
access_required = VM_PROT_READ;
+
vm_object_lock(next_object);
vm_object_unlock(object);
object = next_object;
vm_object_paging_begin(object);
+
+ /*
+ * reset to default type of fault
+ */
+ my_fault = DBG_CACHE_HIT_FAULT;
+
continue;
}
}
-
if ((m->cleaning)
- && ((object != first_object) ||
- (object->copy != VM_OBJECT_NULL))
- && (fault_type & VM_PROT_WRITE)) {
+ && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
+ && (fault_type & VM_PROT_WRITE)) {
/*
* This is a copy-on-write fault that will
* cause us to revoke access to this page, but
#endif
XPR(XPR_VM_FAULT,
"vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
- /* take an extra ref so that object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
+ object, offset,
+ m, 0, 0);
+ /*
+ * take an extra ref so that object won't die
+ */
+ vm_object_reference_locked(object);
+
vm_fault_cleanup(object, first_m);
+
counter(c_vm_fault_page_block_backoff_kernel++);
vm_object_lock(object);
assert(object->ref_count > 0);
+
m = vm_page_lookup(object, offset);
+
if (m != VM_PAGE_NULL && m->cleaning) {
PAGE_ASSERT_WAIT(m, interruptible);
+
vm_object_unlock(object);
- wait_result = thread_block((void (*)(void)) 0);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
vm_object_deallocate(object);
+
goto backoff;
} else {
vm_object_unlock(object);
+
vm_object_deallocate(object);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_RETRY;
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
}
}
+ if (type_of_fault == NULL && m->speculative &&
+ !(fault_info != NULL && fault_info->stealth)) {
+ /*
+ * If we were passed a non-NULL pointer for
+ * "type_of_fault", than we came from
+ * vm_fault... we'll let it deal with
+ * this condition, since it
+ * needs to see m->speculative to correctly
+ * account the pageins, otherwise...
+ * take it off the speculative queue, we'll
+ * let the caller of vm_fault_page deal
+ * with getting it onto the correct queue
+ *
+ * If the caller specified in fault_info that
+ * it wants a "stealth" fault, we also leave
+ * the page in the speculative queue.
+ */
+ vm_page_lockspin_queues();
+ VM_PAGE_QUEUES_REMOVE(m);
+ vm_page_unlock_queues();
+ }
- /*
- * If the desired access to this page has
- * been locked out, request that it be unlocked.
- */
-
- if (access_required & m->page_lock) {
- if ((access_required & m->unlock_request) != access_required) {
- vm_prot_t new_unlock_request;
- kern_return_t rc;
-
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000A, (unsigned int) m, (unsigned int) object->pager_ready); /* (TEST/DEBUG) */
-#endif
- if (!object->pager_ready) {
- XPR(XPR_VM_FAULT,
- "vm_f_page: ready wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n",
- access_required,
- (integer_t)object, offset,
- (integer_t)m, 0);
- /* take an extra ref */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object,
- first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- if (!object->pager_ready) {
- vm_object_assert_wait(
- object,
- VM_OBJECT_EVENT_PAGER_READY,
- interruptible);
- vm_object_unlock(object);
- wait_result = thread_block((void (*)(void))0);
- vm_object_deallocate(object);
- goto backoff;
- } else {
- vm_object_unlock(object);
- vm_object_deallocate(object);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_RETRY;
- }
- }
+ if (m->encrypted) {
+ /*
+ * ENCRYPTED SWAP:
+ * the user needs access to a page that we
+ * encrypted before paging it out.
+ * Decrypt the page now.
+ * Keep it busy to prevent anyone from
+ * accessing it during the decryption.
+ */
+ m->busy = TRUE;
+ vm_page_decrypt(m, 0);
+ assert(object == m->object);
+ assert(m->busy);
+ PAGE_WAKEUP_DONE(m);
- new_unlock_request = m->unlock_request =
- (access_required | m->unlock_request);
- vm_object_unlock(object);
- XPR(XPR_VM_FAULT,
- "vm_f_page: unlock obj 0x%X, offset 0x%X, page 0x%X, unl_req %d\n",
- (integer_t)object, offset,
- (integer_t)m, new_unlock_request, 0);
- if ((rc = memory_object_data_unlock(
- object->pager,
- offset + object->paging_offset,
- PAGE_SIZE,
- new_unlock_request))
- != KERN_SUCCESS) {
- if (vm_fault_debug)
- printf("vm_fault: memory_object_data_unlock failed\n");
- vm_object_lock(object);
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return((rc == MACH_SEND_INTERRUPTED) ?
- VM_FAULT_INTERRUPTED :
- VM_FAULT_MEMORY_ERROR);
- }
- vm_object_lock(object);
- continue;
- }
+ /*
+ * Retry from the top, in case
+ * something changed while we were
+ * decrypting.
+ */
+ continue;
+ }
+ ASSERT_PAGE_DECRYPTED(m);
- XPR(XPR_VM_FAULT,
- "vm_f_page: access wait acc_req %d, obj 0x%X, offset 0x%X, page 0x%X\n",
- access_required, (integer_t)object,
- offset, (integer_t)m, 0);
- /* take an extra ref so object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- vm_fault_cleanup(object, first_m);
- counter(c_vm_fault_page_block_backoff_kernel++);
- vm_object_lock(object);
- assert(object->ref_count > 0);
- m = vm_page_lookup(object, offset);
- if (m != VM_PAGE_NULL &&
- (access_required & m->page_lock) &&
- !((access_required & m->unlock_request) != access_required)) {
- PAGE_ASSERT_WAIT(m, interruptible);
- vm_object_unlock(object);
- wait_result = thread_block((void (*)(void)) 0);
- vm_object_deallocate(object);
- goto backoff;
- } else {
- vm_object_unlock(object);
- vm_object_deallocate(object);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_RETRY;
- }
+ if (m->object->code_signed) {
+ /*
+ * CODE SIGNING:
+ * We just paged in a page from a signed
+ * memory object but we don't need to
+ * validate it now. We'll validate it if
+ * when it gets mapped into a user address
+ * space for the first time or when the page
+ * gets copied to another object as a result
+ * of a copy-on-write.
+ */
}
+
/*
- * We mark the page busy and leave it on
- * the pageout queues. If the pageout
- * deamon comes across it, then it will
- * remove the page.
+ * We mark the page busy and leave it on
+ * the pageout queues. If the pageout
+ * deamon comes across it, then it will
+ * remove the page from the queue, but not the object
*/
-
#if TRACEFAULTPAGE
dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
-
-#if !VM_FAULT_STATIC_CONFIG
- if (!software_reference_bits) {
- vm_page_lock_queues();
- if (m->inactive)
- vm_stat.reactivations++;
-
- VM_PAGE_QUEUES_REMOVE(m);
- vm_page_unlock_queues();
- }
-#endif
XPR(XPR_VM_FAULT,
"vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset, (integer_t)m, 0, 0);
+ object, offset, m, 0, 0);
assert(!m->busy);
- m->busy = TRUE;
assert(!m->absent);
+
+ m->busy = TRUE;
break;
}
+
- look_for_page =
- (object->pager_created) &&
- LOOK_FOR(object, offset) &&
- (!data_supply);
-
+ /*
+ * we get here when there is no page present in the object at
+ * the offset we're interested in... we'll allocate a page
+ * at this point if the pager associated with
+ * this object can provide the data or we're the top object...
+ * object is locked; m == NULL
+ */
+ look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset) == TRUE) && !data_supply);
+
#if TRACEFAULTPAGE
dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
#endif
- if ((look_for_page || (object == first_object))
- && !must_be_resident
- && !(object->phys_contiguous)) {
+ if ((look_for_page || (object == first_object)) && !must_be_resident && !object->phys_contiguous) {
/*
- * Allocate a new page for this object/offset
- * pair.
+ * Allocate a new page for this object/offset pair
*/
-
- m = vm_page_grab_fictitious();
+ m = vm_page_grab();
#if TRACEFAULTPAGE
dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
#endif
if (m == VM_PAGE_NULL) {
+
vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_FICTITIOUS_SHORTAGE);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_MEMORY_SHORTAGE);
}
vm_page_insert(m, object, offset);
}
-
- if ((look_for_page && !must_be_resident)) {
+ if (look_for_page && !must_be_resident) {
kern_return_t rc;
/*
#if TRACEFAULTPAGE
dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
- if(m != VM_PAGE_NULL)
- VM_PAGE_FREE(m);
+ if (m != VM_PAGE_NULL)
+ VM_PAGE_FREE(m);
+
XPR(XPR_VM_FAULT,
"vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
- (integer_t)object, offset, 0, 0, 0);
- /* take an extra ref so object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
+ object, offset, 0, 0, 0);
+
+ /*
+ * take an extra ref so object won't die
+ */
+ vm_object_reference_locked(object);
vm_fault_cleanup(object, first_m);
counter(c_vm_fault_page_block_backoff_kernel++);
+
vm_object_lock(object);
assert(object->ref_count > 0);
+
if (!object->pager_ready) {
- vm_object_assert_wait(object,
- VM_OBJECT_EVENT_PAGER_READY,
- interruptible);
+ wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
+
vm_object_unlock(object);
- wait_result = thread_block((void (*)(void))0);
+ if (wait_result == THREAD_WAITING)
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
vm_object_deallocate(object);
+
goto backoff;
} else {
vm_object_unlock(object);
vm_object_deallocate(object);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_RETRY;
- }
- }
+ thread_interrupt_level(interruptible_state);
- if(object->phys_contiguous) {
- if(m != VM_PAGE_NULL) {
- VM_PAGE_FREE(m);
- m = VM_PAGE_NULL;
+ return (VM_FAULT_RETRY);
}
- goto no_clustering;
}
- if (object->internal) {
+ if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
/*
- * Requests to the default pager
- * must reserve a real page in advance,
- * because the pager's data-provided
- * won't block for pages. IMPORTANT:
- * this acts as a throttling mechanism
- * for data_requests to the default
- * pager.
+ * If there are too many outstanding page
+ * requests pending on this external object, we
+ * wait for them to be resolved now.
*/
-
#if TRACEFAULTPAGE
- dbgTrace(0xBEEF000F, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
+ dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
- if (m->fictitious && !vm_page_convert(m)) {
+ if (m != VM_PAGE_NULL)
VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
- } else if (object->absent_count >
- vm_object_absent_max) {
/*
- * If there are too many outstanding page
- * requests pending on this object, we
- * wait for them to be resolved now.
+ * take an extra ref so object won't die
*/
+ vm_object_reference_locked(object);
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- if(m != VM_PAGE_NULL)
- VM_PAGE_FREE(m);
- /* take an extra ref so object won't die */
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
vm_fault_cleanup(object, first_m);
+
counter(c_vm_fault_page_block_backoff_kernel++);
+
vm_object_lock(object);
assert(object->ref_count > 0);
- if (object->absent_count > vm_object_absent_max) {
- vm_object_absent_assert_wait(object,
- interruptible);
+
+ if (object->paging_in_progress > vm_object_pagein_throttle) {
+ vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible);
+
vm_object_unlock(object);
- wait_result = thread_block((void (*)(void))0);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
vm_object_deallocate(object);
+
goto backoff;
} else {
vm_object_unlock(object);
vm_object_deallocate(object);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_RETRY;
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
}
}
-
- /*
- * Indicate that the page is waiting for data
- * from the memory manager.
- */
-
- if(m != VM_PAGE_NULL) {
-
- m->list_req_pending = TRUE;
+ if (m != VM_PAGE_NULL) {
+ /*
+ * Indicate that the page is waiting for data
+ * from the memory manager.
+ */
+ m->list_req_pending = TRUE;
m->absent = TRUE;
- m->unusual = TRUE;
- object->absent_count++;
-
- }
-
- cluster_start = offset;
- length = PAGE_SIZE;
- cluster_size = object->cluster_size;
-
- /*
- * Skip clustered pagein if it is globally disabled
- * or random page reference behavior is expected
- * for the address range containing the faulting
- * address or the object paging block size is
- * equal to the page size.
- */
- if (!vm_allow_clustered_pagein ||
- behavior == VM_BEHAVIOR_RANDOM ||
- m == VM_PAGE_NULL ||
- cluster_size == PAGE_SIZE) {
- cluster_start = trunc_page_64(cluster_start);
- goto no_clustering;
}
- assert(offset >= lo_offset);
- assert(offset < hi_offset);
- assert(ALIGNED(object->paging_offset));
- assert(cluster_size >= PAGE_SIZE);
-
#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0011, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
+ dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
- /*
- * Decide whether to scan ahead or behind for
- * additional pages contiguous to the faulted
- * page in the same paging block. The decision
- * is based on system wide globals and the
- * expected page reference behavior of the
- * address range contained the faulting address.
- * First calculate some constants.
- */
- paging_offset = offset + object->paging_offset;
- cluster_offset = paging_offset & (cluster_size - 1);
- align_offset = paging_offset&(PAGE_SIZE_64-1);
- if (align_offset != 0) {
- cluster_offset = trunc_page_64(cluster_offset);
- }
-
-#define SPANS_CLUSTER(x) ((((x) - align_offset) & (vm_object_offset_t)(cluster_size - 1)) == 0)
-
- /*
- * Backward scan only if reverse sequential
- * behavior has been specified
- */
- CLUSTER_STAT(pages_at_lower_offsets = 0;)
- if (((vm_default_behind != 0 &&
- behavior == VM_BEHAVIOR_DEFAULT) ||
- behavior == VM_BEHAVIOR_RSEQNTL) && offset) {
- vm_object_offset_t cluster_bot;
-
- /*
- * Calculate lower search boundary.
- * Exclude pages that span a cluster boundary.
- * Clip to start of map entry.
- * For default page reference behavior, scan
- * default pages behind.
- */
- cluster_bot = (offset > cluster_offset) ?
- offset - cluster_offset : offset;
- if (align_offset != 0) {
- if ((cluster_bot < offset) &&
- SPANS_CLUSTER(cluster_bot)) {
- cluster_bot += PAGE_SIZE_64;
- }
- }
- if (behavior == VM_BEHAVIOR_DEFAULT) {
- vm_object_offset_t
- bot = (vm_object_offset_t)
- (vm_default_behind * PAGE_SIZE);
-
- if (cluster_bot < (offset - bot))
- cluster_bot = offset - bot;
- }
- if (lo_offset > cluster_bot)
- cluster_bot = lo_offset;
-
- for ( cluster_start = offset - PAGE_SIZE_64;
- (cluster_start >= cluster_bot) &&
- (cluster_start !=
- (align_offset - PAGE_SIZE_64));
- cluster_start -= PAGE_SIZE_64) {
- assert(cluster_size > PAGE_SIZE_64);
-retry_cluster_backw:
- if (!LOOK_FOR(object, cluster_start) ||
- vm_page_lookup(object, cluster_start)
- != VM_PAGE_NULL) {
- break;
- }
- if (object->internal) {
- /*
- * need to acquire a real page in
- * advance because this acts as
- * a throttling mechanism for
- * data_requests to the default
- * pager. If this fails, give up
- * trying to find any more pages
- * in the cluster and send off the
- * request for what we already have.
- */
- if ((m = vm_page_grab())
- == VM_PAGE_NULL) {
- cluster_start += PAGE_SIZE_64;
- cluster_end = offset + PAGE_SIZE_64;
- goto give_up;
- }
- } else if ((m = vm_page_grab_fictitious())
- == VM_PAGE_NULL) {
- vm_object_unlock(object);
- vm_page_more_fictitious();
- vm_object_lock(object);
- goto retry_cluster_backw;
- }
- m->absent = TRUE;
- m->unusual = TRUE;
- m->clustered = TRUE;
- m->list_req_pending = TRUE;
-
- vm_page_insert(m, object, cluster_start);
- CLUSTER_STAT(pages_at_lower_offsets++;)
- object->absent_count++;
- }
- cluster_start += PAGE_SIZE_64;
- assert(cluster_start >= cluster_bot);
- }
- assert(cluster_start <= offset);
/*
- * Forward scan if default or sequential behavior
- * specified
+ * It's possible someone called vm_object_destroy while we weren't
+ * holding the object lock. If that has happened, then bail out
+ * here.
*/
- CLUSTER_STAT(pages_at_higher_offsets = 0;)
- if ((behavior == VM_BEHAVIOR_DEFAULT &&
- vm_default_ahead != 0) ||
- behavior == VM_BEHAVIOR_SEQUENTIAL) {
- vm_object_offset_t cluster_top;
-
- /*
- * Calculate upper search boundary.
- * Exclude pages that span a cluster boundary.
- * Clip to end of map entry.
- * For default page reference behavior, scan
- * default pages ahead.
- */
- cluster_top = (offset + cluster_size) -
- cluster_offset;
- if (align_offset != 0) {
- if ((cluster_top > (offset + PAGE_SIZE_64)) &&
- SPANS_CLUSTER(cluster_top)) {
- cluster_top -= PAGE_SIZE_64;
- }
- }
- if (behavior == VM_BEHAVIOR_DEFAULT) {
- vm_object_offset_t top = (vm_object_offset_t)
- ((vm_default_ahead*PAGE_SIZE)+PAGE_SIZE);
-
- if (cluster_top > (offset + top))
- cluster_top = offset + top;
- }
- if (cluster_top > hi_offset)
- cluster_top = hi_offset;
-
- for (cluster_end = offset + PAGE_SIZE_64;
- cluster_end < cluster_top;
- cluster_end += PAGE_SIZE_64) {
- assert(cluster_size > PAGE_SIZE);
-retry_cluster_forw:
- if (!LOOK_FOR(object, cluster_end) ||
- vm_page_lookup(object, cluster_end)
- != VM_PAGE_NULL) {
- break;
- }
- if (object->internal) {
- /*
- * need to acquire a real page in
- * advance because this acts as
- * a throttling mechanism for
- * data_requests to the default
- * pager. If this fails, give up
- * trying to find any more pages
- * in the cluster and send off the
- * request for what we already have.
- */
- if ((m = vm_page_grab())
- == VM_PAGE_NULL) {
- break;
- }
- } else if ((m = vm_page_grab_fictitious())
- == VM_PAGE_NULL) {
- vm_object_unlock(object);
- vm_page_more_fictitious();
- vm_object_lock(object);
- goto retry_cluster_forw;
- }
- m->absent = TRUE;
- m->unusual = TRUE;
- m->clustered = TRUE;
- m->list_req_pending = TRUE;
-
- vm_page_insert(m, object, cluster_end);
- CLUSTER_STAT(pages_at_higher_offsets++;)
- object->absent_count++;
- }
- assert(cluster_end <= cluster_top);
- }
- else {
- cluster_end = offset + PAGE_SIZE_64;
- }
-give_up:
- assert(cluster_end >= offset + PAGE_SIZE_64);
- length = cluster_end - cluster_start;
-#if MACH_CLUSTER_STATS
- CLUSTER_STAT_HIGHER(pages_at_higher_offsets);
- CLUSTER_STAT_LOWER(pages_at_lower_offsets);
- CLUSTER_STAT_CLUSTER(length/PAGE_SIZE);
-#endif /* MACH_CLUSTER_STATS */
+ pager = object->pager;
-no_clustering:
- /*
- * lengthen the cluster by the pages in the working set
- */
- if((map != NULL) &&
- (current_task()->dynamic_working_set != 0)) {
- cluster_end = cluster_start + length;
- /* tws values for start and end are just a
- * suggestions. Therefore, as long as
- * build_cluster does not use pointers or
- * take action based on values that
- * could be affected by re-entrance we
- * do not need to take the map lock.
- */
- tws_build_cluster((tws_hash_t)
- current_task()->dynamic_working_set,
- object, &cluster_start,
- &cluster_end, 0x16000);
- length = cluster_end - cluster_start;
+ if (pager == MEMORY_OBJECT_NULL) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_MEMORY_ERROR;
}
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
-#endif
- /*
- * We have a busy page, so we can
- * release the object lock.
- */
- vm_object_unlock(object);
/*
- * Call the memory manager to retrieve the data.
+ * We have an absent page in place for the faulting offset,
+ * so we can release the object lock.
*/
- if (type_of_fault)
- *type_of_fault = DBG_PAGEIN_FAULT;
- VM_STAT(pageins++);
- current_task()->pageins++;
- bumped_pagein = TRUE;
+ vm_object_unlock(object);
/*
- * If this object uses a copy_call strategy,
- * and we are interested in a copy of this object
- * (having gotten here only by following a
- * shadow chain), then tell the memory manager
- * via a flag added to the desired_access
- * parameter, so that it can detect a race
- * between our walking down the shadow chain
- * and its pushing pages up into a copy of
- * the object that it manages.
+ * If this object uses a copy_call strategy,
+ * and we are interested in a copy of this object
+ * (having gotten here only by following a
+ * shadow chain), then tell the memory manager
+ * via a flag added to the desired_access
+ * parameter, so that it can detect a race
+ * between our walking down the shadow chain
+ * and its pushing pages up into a copy of
+ * the object that it manages.
*/
-
- if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL &&
- object != first_object) {
+ if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object)
wants_copy_flag = VM_PROT_WANTS_COPY;
- } else {
+ else
wants_copy_flag = VM_PROT_NONE;
- }
XPR(XPR_VM_FAULT,
"vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
- (integer_t)object, offset, (integer_t)m,
+ object, offset, m,
access_required | wants_copy_flag, 0);
- rc = memory_object_data_request(object->pager,
- cluster_start + object->paging_offset,
- length,
- access_required | wants_copy_flag);
-
+ /*
+ * Call the memory manager to retrieve the data.
+ */
+ rc = memory_object_data_request(
+ pager,
+ offset + object->paging_offset,
+ PAGE_SIZE,
+ access_required | wants_copy_flag,
+ (memory_object_fault_info_t)fault_info);
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
#endif
+ vm_object_lock(object);
+
if (rc != KERN_SUCCESS) {
- if (rc != MACH_SEND_INTERRUPTED
- && vm_fault_debug)
- printf("%s(0x%x, 0x%x, 0x%x, 0x%x) failed, rc=%d\n",
- "memory_object_data_request",
- object->pager,
- cluster_start + object->paging_offset,
- length, access_required, rc);
- /*
- * Don't want to leave a busy page around,
- * but the data request may have blocked,
- * so check if it's still there and busy.
- */
- if(!object->phys_contiguous) {
- vm_object_lock(object);
- for (; length; length -= PAGE_SIZE,
- cluster_start += PAGE_SIZE_64) {
- vm_page_t p;
- if ((p = vm_page_lookup(object,
- cluster_start))
- && p->absent && p->busy
- && p != first_m) {
- VM_PAGE_FREE(p);
- }
- }
- }
+
vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return((rc == MACH_SEND_INTERRUPTED) ?
+ thread_interrupt_level(interruptible_state);
+
+ return ((rc == MACH_SEND_INTERRUPTED) ?
VM_FAULT_INTERRUPTED :
VM_FAULT_MEMORY_ERROR);
} else {
-#ifdef notdefcdy
- tws_hash_line_t line;
- task_t task;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+ current_thread()->t_page_creation_time = tv_sec;
+ current_thread()->t_page_creation_count = 0;
+ }
+ if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) {
- task = current_task();
-
- if((map != NULL) &&
- (task->dynamic_working_set != 0)) {
- if(tws_lookup
- ((tws_hash_t)
- task->dynamic_working_set,
- offset, object,
- &line) == KERN_SUCCESS) {
- tws_line_signal((tws_hash_t)
- task->dynamic_working_set,
- map, line, vaddr);
- }
- }
-#endif
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_INTERRUPTED);
}
-
+ if (m == VM_PAGE_NULL && object->phys_contiguous) {
+ /*
+ * No page here means that the object we
+ * initially looked up was "physically
+ * contiguous" (i.e. device memory). However,
+ * with Virtual VRAM, the object might not
+ * be backed by that device memory anymore,
+ * so we're done here only if the object is
+ * still "phys_contiguous".
+ * Otherwise, if the object is no longer
+ * "phys_contiguous", we need to retry the
+ * page fault against the object's new backing
+ * store (different memory object).
+ */
+ phys_contig_object:
+ goto done;
+ }
+ /*
+ * potentially a pagein fault
+ * if we make it through the state checks
+ * above, than we'll count it as such
+ */
+ my_fault = DBG_PAGEIN_FAULT;
+
/*
* Retry with same object/offset, since new data may
* be in a different page (i.e., m is meaningless at
* this point).
*/
- vm_object_lock(object);
- if ((interruptible != THREAD_UNINT) &&
- (current_thread()->state & TH_ABORT)) {
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_INTERRUPTED);
- }
- if(m == VM_PAGE_NULL)
- break;
continue;
}
/*
- * The only case in which we get here is if
- * object has no pager (or unwiring). If the pager doesn't
- * have the page this is handled in the m->absent case above
- * (and if you change things here you should look above).
+ * We get here if the object has no pager, or an existence map
+ * exists and indicates the page isn't present on the pager
+ * or we're unwiring a page. If a pager exists, but there
+ * is no existence map, then the m->absent case above handles
+ * the ZF case when the pager can't provide the page
*/
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
XPR(XPR_VM_FAULT,
"vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)object->shadow, 0);
- /*
- * Move on to the next object. Lock the next
- * object before unlocking the current one.
- */
+ object, offset, m,
+ object->shadow, 0);
+
next_object = object->shadow;
+
if (next_object == VM_OBJECT_NULL) {
- assert(!must_be_resident);
/*
- * If there's no object left, fill the page
- * in the top object with zeros. But first we
- * need to allocate a real page.
+ * we've hit the bottom of the shadown chain,
+ * fill the page in the top object with zeros.
*/
+ assert(!must_be_resident);
if (object != first_object) {
vm_object_paging_end(object);
offset = first_offset;
vm_object_lock(object);
}
-
m = first_m;
assert(m->object == object);
first_m = VM_PAGE_NULL;
- if (object->shadow_severed) {
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, VM_PAGE_NULL);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_MEMORY_ERROR;
- }
+ /*
+ * check for any conditions that prevent
+ * us from creating a new zero-fill page
+ * vm_fault_check will do all of the
+ * fault cleanup in the case of an error condition
+ * including resetting the thread_interrupt_level
+ */
+ error = vm_fault_check(object, m, first_m, interruptible_state);
- if (VM_PAGE_THROTTLED() ||
- (m->fictitious && !vm_page_convert(m))) {
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, VM_PAGE_NULL);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
- m->no_isync = FALSE;
+ if (error != VM_FAULT_SUCCESS)
+ return (error);
- if (!no_zero_fill) {
- vm_object_unlock(object);
- vm_page_zero_fill(m);
- if (type_of_fault)
- *type_of_fault = DBG_ZERO_FILL_FAULT;
- VM_STAT(zero_fill_count++);
-
- if (bumped_pagein == TRUE) {
- VM_STAT(pageins--);
- current_task()->pageins--;
+ if (m == VM_PAGE_NULL) {
+ m = vm_page_grab();
+
+ if (m == VM_PAGE_NULL) {
+ vm_fault_cleanup(object, VM_PAGE_NULL);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_MEMORY_SHORTAGE);
}
- vm_object_lock(object);
+ vm_page_insert(m, object, offset);
}
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
- m->page_ticket = vm_page_ticket;
- vm_page_ticket_roll++;
- if(vm_page_ticket_roll == VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket ==
- VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
- }
- queue_enter(&vm_page_queue_inactive,
- m, vm_page_t, pageq);
- m->inactive = TRUE;
- vm_page_inactive_count++;
- vm_page_unlock_queues();
- pmap_clear_modify(m->phys_addr);
+ my_fault = vm_fault_zero_page(m, no_zero_fill);
+
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
+ m->absent = TRUE;
break;
- }
- else {
+
+ } else {
+ /*
+ * Move on to the next object. Lock the next
+ * object before unlocking the current one.
+ */
if ((object != first_object) || must_be_resident)
vm_object_paging_end(object);
+
offset += object->shadow_offset;
- hi_offset += object->shadow_offset;
- lo_offset += object->shadow_offset;
+ fault_info->lo_offset += object->shadow_offset;
+ fault_info->hi_offset += object->shadow_offset;
access_required = VM_PROT_READ;
+
vm_object_lock(next_object);
vm_object_unlock(object);
+
object = next_object;
vm_object_paging_begin(object);
}
dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
#endif
#if EXTRA_ASSERTIONS
- if(m != VM_PAGE_NULL) {
- assert(m->busy && !m->absent);
- assert((first_m == VM_PAGE_NULL) ||
- (first_m->busy && !first_m->absent &&
- !first_m->active && !first_m->inactive));
- }
+ assert(m->busy && !m->absent);
+ assert((first_m == VM_PAGE_NULL) ||
+ (first_m->busy && !first_m->absent &&
+ !first_m->active && !first_m->inactive));
#endif /* EXTRA_ASSERTIONS */
- XPR(XPR_VM_FAULT,
- "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)first_object, (integer_t)first_m);
/*
- * If the page is being written, but isn't
- * already owned by the top-level object,
- * we have to copy it into a new page owned
- * by the top-level object.
+ * ENCRYPTED SWAP:
+ * If we found a page, we must have decrypted it before we
+ * get here...
*/
+ ASSERT_PAGE_DECRYPTED(m);
- if ((object != first_object) && (m != VM_PAGE_NULL)) {
- /*
- * We only really need to copy if we
- * want to write it.
- */
+ XPR(XPR_VM_FAULT,
+ "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
+ object, offset, m,
+ first_object, first_m);
+
+ /*
+ * If the page is being written, but isn't
+ * already owned by the top-level object,
+ * we have to copy it into a new page owned
+ * by the top-level object.
+ */
+ if (object != first_object) {
#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
+ dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
#endif
if (fault_type & VM_PROT_WRITE) {
vm_page_t copy_m;
+ /*
+ * We only really need to copy if we
+ * want to write it.
+ */
assert(!must_be_resident);
/*
- * If we try to collapse first_object at this
- * point, we may deadlock when we try to get
- * the lock on an intermediate object (since we
- * have the bottom object locked). We can't
- * unlock the bottom object, because the page
- * we found may move (by collapse) if we do.
+ * are we protecting the system from
+ * backing store exhaustion. If so
+ * sleep unless we are privileged.
+ */
+ if (vm_backing_store_low) {
+ if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
+
+ RELEASE_PAGE(m);
+ vm_fault_cleanup(object, first_m);
+
+ assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
+
+ thread_block(THREAD_CONTINUE_NULL);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
+ }
+ }
+ /*
+ * If we try to collapse first_object at this
+ * point, we may deadlock when we try to get
+ * the lock on an intermediate object (since we
+ * have the bottom object locked). We can't
+ * unlock the bottom object, because the page
+ * we found may move (by collapse) if we do.
*
- * Instead, we first copy the page. Then, when
- * we have no more use for the bottom object,
- * we unlock it and try to collapse.
+ * Instead, we first copy the page. Then, when
+ * we have no more use for the bottom object,
+ * we unlock it and try to collapse.
*
- * Note that we copy the page even if we didn't
- * need to... that's the breaks.
+ * Note that we copy the page even if we didn't
+ * need to... that's the breaks.
*/
/*
- * Allocate a page for the copy
+ * Allocate a page for the copy
*/
copy_m = vm_page_grab();
+
if (copy_m == VM_PAGE_NULL) {
RELEASE_PAGE(m);
- vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+ return (VM_FAULT_MEMORY_SHORTAGE);
+ }
XPR(XPR_VM_FAULT,
"vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, (integer_t)copy_m, 0);
+ object, offset,
+ m, copy_m, 0);
+
vm_page_copy(m, copy_m);
/*
- * If another map is truly sharing this
- * page with us, we have to flush all
- * uses of the original page, since we
- * can't distinguish those which want the
- * original from those which need the
- * new copy.
+ * If another map is truly sharing this
+ * page with us, we have to flush all
+ * uses of the original page, since we
+ * can't distinguish those which want the
+ * original from those which need the
+ * new copy.
*
- * XXXO If we know that only one map has
- * access to this page, then we could
- * avoid the pmap_page_protect() call.
+ * XXXO If we know that only one map has
+ * access to this page, then we could
+ * avoid the pmap_disconnect() call.
*/
+ if (m->pmapped)
+ pmap_disconnect(m->phys_page);
- vm_page_lock_queues();
assert(!m->cleaning);
- pmap_page_protect(m->phys_addr, VM_PROT_NONE);
- vm_page_deactivate(m);
- copy_m->dirty = TRUE;
- /*
- * Setting reference here prevents this fault from
- * being counted as a (per-thread) reactivate as well
- * as a copy-on-write.
- */
- first_m->reference = TRUE;
- vm_page_unlock_queues();
/*
- * We no longer need the old page or object.
+ * We no longer need the old page or object.
*/
-
PAGE_WAKEUP_DONE(m);
vm_object_paging_end(object);
vm_object_unlock(object);
- if (type_of_fault)
- *type_of_fault = DBG_COW_FAULT;
- VM_STAT(cow_faults++);
+ my_fault = DBG_COW_FAULT;
+ VM_STAT_INCR(cow_faults);
+ DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
current_task()->cow_faults++;
+
object = first_object;
offset = first_offset;
vm_object_lock(object);
+ /*
+ * get rid of the place holder
+ * page that we soldered in earlier
+ */
VM_PAGE_FREE(first_m);
first_m = VM_PAGE_NULL;
+
+ /*
+ * and replace it with the
+ * page we just copied into
+ */
assert(copy_m->busy);
vm_page_insert(copy_m, object, offset);
- m = copy_m;
+ copy_m->dirty = TRUE;
+ m = copy_m;
/*
- * Now that we've gotten the copy out of the
- * way, let's try to collapse the top object.
- * But we have to play ugly games with
- * paging_in_progress to do that...
+ * Now that we've gotten the copy out of the
+ * way, let's try to collapse the top object.
+ * But we have to play ugly games with
+ * paging_in_progress to do that...
*/
-
vm_object_paging_end(object);
- vm_object_collapse(object);
+ vm_object_collapse(object, offset, TRUE);
vm_object_paging_begin(object);
- }
- else {
+ } else
*protection &= (~VM_PROT_WRITE);
- }
}
-
/*
- * Now check whether the page needs to be pushed into the
- * copy object. The use of asymmetric copy on write for
- * shared temporary objects means that we may do two copies to
- * satisfy the fault; one above to get the page from a
- * shadowed object, and one here to push it into the copy.
+ * Now check whether the page needs to be pushed into the
+ * copy object. The use of asymmetric copy on write for
+ * shared temporary objects means that we may do two copies to
+ * satisfy the fault; one above to get the page from a
+ * shadowed object, and one here to push it into the copy.
*/
+ try_failed_count = 0;
- while (first_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
- (copy_object = first_object->copy) != VM_OBJECT_NULL &&
- (m!= VM_PAGE_NULL)) {
+ while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
vm_object_offset_t copy_offset;
vm_page_t copy_m;
dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
#endif
/*
- * If the page is being written, but hasn't been
- * copied to the copy-object, we have to copy it there.
+ * If the page is being written, but hasn't been
+ * copied to the copy-object, we have to copy it there.
*/
-
if ((fault_type & VM_PROT_WRITE) == 0) {
*protection &= ~VM_PROT_WRITE;
break;
}
/*
- * If the page was guaranteed to be resident,
- * we must have already performed the copy.
+ * If the page was guaranteed to be resident,
+ * we must have already performed the copy.
*/
-
if (must_be_resident)
break;
/*
- * Try to get the lock on the copy_object.
+ * Try to get the lock on the copy_object.
*/
if (!vm_object_lock_try(copy_object)) {
- vm_object_unlock(object);
- mutex_pause(); /* wait a bit */
+ vm_object_unlock(object);
+ try_failed_count++;
+ mutex_pause(try_failed_count); /* wait a bit */
vm_object_lock(object);
+
continue;
}
+ try_failed_count = 0;
/*
- * Make another reference to the copy-object,
- * to keep it from disappearing during the
- * copy.
+ * Make another reference to the copy-object,
+ * to keep it from disappearing during the
+ * copy.
*/
- assert(copy_object->ref_count > 0);
- copy_object->ref_count++;
- VM_OBJ_RES_INCR(copy_object);
+ vm_object_reference_locked(copy_object);
/*
- * Does the page exist in the copy?
+ * Does the page exist in the copy?
*/
copy_offset = first_offset - copy_object->shadow_offset;
+
if (copy_object->size <= copy_offset)
/*
* Copy object doesn't cover this page -- do nothing.
*/
;
- else if ((copy_m =
- vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
- /* Page currently exists in the copy object */
+ else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
+ /*
+ * Page currently exists in the copy object
+ */
if (copy_m->busy) {
/*
- * If the page is being brought
- * in, wait for it and then retry.
+ * If the page is being brought
+ * in, wait for it and then retry.
*/
RELEASE_PAGE(m);
- /* take an extra ref so object won't die */
- assert(copy_object->ref_count > 0);
- copy_object->ref_count++;
- vm_object_res_reference(copy_object);
+
+ /*
+ * take an extra ref so object won't die
+ */
+ vm_object_reference_locked(copy_object);
vm_object_unlock(copy_object);
vm_fault_cleanup(object, first_m);
counter(c_vm_fault_page_block_backoff_kernel++);
+
vm_object_lock(copy_object);
assert(copy_object->ref_count > 0);
VM_OBJ_RES_DECR(copy_object);
+ vm_object_lock_assert_exclusive(copy_object);
copy_object->ref_count--;
assert(copy_object->ref_count > 0);
copy_m = vm_page_lookup(copy_object, copy_offset);
+ /*
+ * ENCRYPTED SWAP:
+ * it's OK if the "copy_m" page is encrypted,
+ * because we're not moving it nor handling its
+ * contents.
+ */
if (copy_m != VM_PAGE_NULL && copy_m->busy) {
PAGE_ASSERT_WAIT(copy_m, interruptible);
+
vm_object_unlock(copy_object);
- wait_result = thread_block((void (*)(void))0);
+ wait_result = thread_block(THREAD_CONTINUE_NULL);
vm_object_deallocate(copy_object);
+
goto backoff;
} else {
vm_object_unlock(copy_object);
vm_object_deallocate(copy_object);
- cur_thread->interruptible = interruptible_state;
- return VM_FAULT_RETRY;
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
}
}
}
* We must copy the page to the copy object.
*/
+ if (vm_backing_store_low) {
+ /*
+ * we are protecting the system from
+ * backing store exhaustion. If so
+ * sleep unless we are privileged.
+ */
+ if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
+ assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
+
+ RELEASE_PAGE(m);
+ VM_OBJ_RES_DECR(copy_object);
+ vm_object_lock_assert_exclusive(copy_object);
+ copy_object->ref_count--;
+ assert(copy_object->ref_count > 0);
+
+ vm_object_unlock(copy_object);
+ vm_fault_cleanup(object, first_m);
+ thread_block(THREAD_CONTINUE_NULL);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
+ }
+ }
/*
- * Allocate a page for the copy
+ * Allocate a page for the copy
*/
copy_m = vm_page_alloc(copy_object, copy_offset);
+
if (copy_m == VM_PAGE_NULL) {
RELEASE_PAGE(m);
+
VM_OBJ_RES_DECR(copy_object);
+ vm_object_lock_assert_exclusive(copy_object);
copy_object->ref_count--;
assert(copy_object->ref_count > 0);
+
vm_object_unlock(copy_object);
vm_fault_cleanup(object, first_m);
- cur_thread->interruptible = interruptible_state;
- return(VM_FAULT_MEMORY_SHORTAGE);
- }
+ thread_interrupt_level(interruptible_state);
+ return (VM_FAULT_MEMORY_SHORTAGE);
+ }
/*
- * Must copy page into copy-object.
+ * Must copy page into copy-object.
*/
-
vm_page_copy(m, copy_m);
/*
- * If the old page was in use by any users
- * of the copy-object, it must be removed
- * from all pmaps. (We can't know which
- * pmaps use it.)
+ * If the old page was in use by any users
+ * of the copy-object, it must be removed
+ * from all pmaps. (We can't know which
+ * pmaps use it.)
*/
-
- vm_page_lock_queues();
- assert(!m->cleaning);
- pmap_page_protect(m->phys_addr, VM_PROT_NONE);
- copy_m->dirty = TRUE;
- vm_page_unlock_queues();
+ if (m->pmapped)
+ pmap_disconnect(m->phys_page);
/*
- * If there's a pager, then immediately
- * page out this page, using the "initialize"
- * option. Else, we use the copy.
+ * If there's a pager, then immediately
+ * page out this page, using the "initialize"
+ * option. Else, we use the copy.
*/
-
- if
-#if MACH_PAGEMAP
- ((!copy_object->pager_created) ||
- vm_external_state_get(
- copy_object->existence_map, copy_offset)
- == VM_EXTERNAL_STATE_ABSENT)
-#else
- (!copy_object->pager_created)
+ if ((!copy_object->pager_created)
+#if MACH_PAGEMAP
+ || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT
#endif
- {
- vm_page_lock_queues();
+ ) {
+
+ vm_page_lockspin_queues();
+ assert(!m->cleaning);
vm_page_activate(copy_m);
vm_page_unlock_queues();
+
+ copy_m->dirty = TRUE;
PAGE_WAKEUP_DONE(copy_m);
}
else {
assert(copy_m->busy == TRUE);
+ assert(!m->cleaning);
/*
- * The page is already ready for pageout:
- * not on pageout queues and busy.
- * Unlock everything except the
- * copy_object itself.
+ * dirty is protected by the object lock
*/
+ copy_m->dirty = TRUE;
+ /*
+ * The page is already ready for pageout:
+ * not on pageout queues and busy.
+ * Unlock everything except the
+ * copy_object itself.
+ */
vm_object_unlock(object);
/*
- * Write the page to the copy-object,
- * flushing it from the kernel.
+ * Write the page to the copy-object,
+ * flushing it from the kernel.
*/
-
vm_pageout_initialize_page(copy_m);
/*
- * Since the pageout may have
- * temporarily dropped the
- * copy_object's lock, we
- * check whether we'll have
- * to deallocate the hard way.
+ * Since the pageout may have
+ * temporarily dropped the
+ * copy_object's lock, we
+ * check whether we'll have
+ * to deallocate the hard way.
*/
-
- if ((copy_object->shadow != object) ||
- (copy_object->ref_count == 1)) {
+ if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
vm_object_unlock(copy_object);
vm_object_deallocate(copy_object);
vm_object_lock(object);
+
continue;
}
-
/*
- * Pick back up the old object's
- * lock. [It is safe to do so,
- * since it must be deeper in the
- * object tree.]
+ * Pick back up the old object's
+ * lock. [It is safe to do so,
+ * since it must be deeper in the
+ * object tree.]
*/
-
vm_object_lock(object);
}
-
/*
- * Because we're pushing a page upward
- * in the object tree, we must restart
- * any faults that are waiting here.
- * [Note that this is an expansion of
- * PAGE_WAKEUP that uses the THREAD_RESTART
- * wait result]. Can't turn off the page's
- * busy bit because we're not done with it.
+ * Because we're pushing a page upward
+ * in the object tree, we must restart
+ * any faults that are waiting here.
+ * [Note that this is an expansion of
+ * PAGE_WAKEUP that uses the THREAD_RESTART
+ * wait result]. Can't turn off the page's
+ * busy bit because we're not done with it.
*/
-
if (m->wanted) {
m->wanted = FALSE;
- thread_wakeup_with_result((event_t) m,
- THREAD_RESTART);
+ thread_wakeup_with_result((event_t) m, THREAD_RESTART);
}
}
-
/*
- * The reference count on copy_object must be
- * at least 2: one for our extra reference,
- * and at least one from the outside world
- * (we checked that when we last locked
- * copy_object).
+ * The reference count on copy_object must be
+ * at least 2: one for our extra reference,
+ * and at least one from the outside world
+ * (we checked that when we last locked
+ * copy_object).
*/
+ vm_object_lock_assert_exclusive(copy_object);
copy_object->ref_count--;
assert(copy_object->ref_count > 0);
+
VM_OBJ_RES_DECR(copy_object);
vm_object_unlock(copy_object);
break;
}
+done:
*result_page = m;
*top_page = first_m;
XPR(XPR_VM_FAULT,
"vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0);
- /*
- * If the page can be written, assume that it will be.
- * [Earlier, we restrict the permission to allow write
- * access only if the fault so required, so we don't
- * mark read-only data as dirty.]
- */
+ object, offset, m, first_m, 0);
-#if !VM_FAULT_STATIC_CONFIG
- if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE) &&
- (m != VM_PAGE_NULL)) {
- m->dirty = TRUE;
- }
-#endif
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_page_deactivate_behind); /* (TEST/DEBUG) */
-#endif
- if (vm_page_deactivate_behind) {
- if (offset && /* don't underflow */
- (object->last_alloc == (offset - PAGE_SIZE_64))) {
- m = vm_page_lookup(object, object->last_alloc);
- if ((m != VM_PAGE_NULL) && !m->busy) {
- vm_page_lock_queues();
- vm_page_deactivate(m);
- vm_page_unlock_queues();
+ if (m != VM_PAGE_NULL) {
+ retval = VM_FAULT_SUCCESS;
+ if (my_fault == DBG_PAGEIN_FAULT) {
+
+ VM_STAT_INCR(pageins);
+ DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
+ DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
+ current_task()->pageins++;
+
+ if (m->object->internal) {
+ DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
+ my_fault = DBG_PAGEIND_FAULT;
+ } else {
+ DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
+ my_fault = DBG_PAGEINV_FAULT;
}
-#if TRACEFAULTPAGE
- dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
-#endif
+
+ /*
+ * evaluate access pattern and update state
+ * vm_fault_deactivate_behind depends on the
+ * state being up to date
+ */
+ vm_fault_is_sequential(object, offset, fault_info->behavior);
+
+ vm_fault_deactivate_behind(object, offset, fault_info->behavior);
}
- object->last_alloc = offset;
+ if (type_of_fault)
+ *type_of_fault = my_fault;
+ } else {
+ retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
+ assert(first_m == VM_PAGE_NULL);
+ assert(object == first_object);
}
+
+ thread_interrupt_level(interruptible_state);
+
#if TRACEFAULTPAGE
dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
#endif
- cur_thread->interruptible = interruptible_state;
- if(*result_page == VM_PAGE_NULL) {
- vm_object_unlock(object);
- }
- return(VM_FAULT_SUCCESS);
+ return retval;
-#if 0
- block_and_backoff:
- vm_fault_cleanup(object, first_m);
-
- counter(c_vm_fault_page_block_backoff_kernel++);
- thread_block((void (*)(void))0);
-#endif
+backoff:
+ thread_interrupt_level(interruptible_state);
- backoff:
- cur_thread->interruptible = interruptible_state;
if (wait_result == THREAD_INTERRUPTED)
- return VM_FAULT_INTERRUPTED;
- return VM_FAULT_RETRY;
+ return (VM_FAULT_INTERRUPTED);
+ return (VM_FAULT_RETRY);
#undef RELEASE_PAGE
}
+
+
/*
- * Routine: vm_fault
- * Purpose:
- * Handle page faults, including pseudo-faults
- * used to change the wiring status of pages.
- * Returns:
- * Explicit continuations have been removed.
- * Implementation:
- * vm_fault and vm_fault_page save mucho state
- * in the moral equivalent of a closure. The state
- * structure is allocated when first entering vm_fault
- * and deallocated when leaving vm_fault.
+ * CODE SIGNING:
+ * When soft faulting a page, we have to validate the page if:
+ * 1. the page is being mapped in user space
+ * 2. the page hasn't already been found to be "tainted"
+ * 3. the page belongs to a code-signed object
+ * 4. the page has not been validated yet or has been mapped for write.
*/
+#define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \
+ ((pmap) != kernel_pmap /*1*/ && \
+ !(page)->cs_tainted /*2*/ && \
+ (page)->object->code_signed /*3*/ && \
+ (!(page)->cs_validated || (page)->wpmapped /*4*/))
+
+/*
+ * page queue lock must NOT be held
+ * m->object must be locked
+ *
+ * NOTE: m->object could be locked "shared" only if we are called
+ * from vm_fault() as part of a soft fault. If so, we must be
+ * careful not to modify the VM object in any way that is not
+ * legal under a shared lock...
+ */
+unsigned long cs_enter_tainted_rejected = 0;
+unsigned long cs_enter_tainted_accepted = 0;
kern_return_t
-vm_fault(
- vm_map_t map,
- vm_offset_t vaddr,
- vm_prot_t fault_type,
- boolean_t change_wiring,
- int interruptible)
+vm_fault_enter(vm_page_t m,
+ pmap_t pmap,
+ vm_map_offset_t vaddr,
+ vm_prot_t prot,
+ boolean_t wired,
+ boolean_t change_wiring,
+ boolean_t no_cache,
+ int *type_of_fault)
{
- vm_map_version_t version; /* Map version for verificiation */
- boolean_t wired; /* Should mapping be wired down? */
- vm_object_t object; /* Top-level object */
- vm_object_offset_t offset; /* Top-level offset */
- vm_prot_t prot; /* Protection for mapping */
- vm_behavior_t behavior; /* Expected paging behavior */
- vm_object_offset_t lo_offset, hi_offset;
- vm_object_t old_copy_object; /* Saved copy object */
- vm_page_t result_page; /* Result of vm_fault_page */
- vm_page_t top_page; /* Placeholder page */
- kern_return_t kr;
-
- register
- vm_page_t m; /* Fast access to result_page */
- kern_return_t error_code; /* page error reasons */
- register
- vm_object_t cur_object;
- register
- vm_object_offset_t cur_offset;
- vm_page_t cur_m;
- vm_object_t new_object;
- int type_of_fault;
- vm_map_t pmap_map = map;
- vm_map_t original_map = map;
- pmap_t pmap = NULL;
- boolean_t funnel_set = FALSE;
- funnel_t *curflock;
- thread_t cur_thread;
- boolean_t interruptible_state;
+ unsigned int cache_attr;
+ kern_return_t kr, pe_result;
+ boolean_t previously_pmapped = m->pmapped;
+ boolean_t must_disconnect = 0;
+ boolean_t map_is_switched, map_is_switch_protected;
+ vm_object_lock_assert_held(m->object);
+#if DEBUG
+ lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
+#endif /* DEBUG */
+
+ if (m->phys_page == vm_page_guard_addr) {
+ assert(m->fictitious);
+ return KERN_SUCCESS;
+ }
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_START,
- vaddr,
- 0,
- 0,
- 0,
- 0);
+ cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
- cur_thread = current_thread();
+ if (m->pmapped == FALSE) {
+ /*
+ * This is the first time this page is being
+ * mapped in an address space (pmapped == FALSE).
+ *
+ * Part of that page may still be in the data cache
+ * and not flushed to memory. In case we end up
+ * accessing that page via the instruction cache,
+ * we need to ensure that the 2 caches are in sync.
+ */
+ pmap_sync_page_data_phys(m->phys_page);
+
+ if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) {
+ /*
+ * found it in the cache, but this
+ * is the first fault-in of the page (m->pmapped == FALSE)
+ * so it must have come in as part of
+ * a cluster... account 1 pagein against it
+ */
+ VM_STAT_INCR(pageins);
+ DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
- interruptible_state = cur_thread->interruptible;
- if (interruptible == THREAD_UNINT)
- cur_thread->interruptible = FALSE;
+ if (m->object->internal) {
+ DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
+ *type_of_fault = DBG_PAGEIND_FAULT;
+ } else {
+ DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
+ *type_of_fault = DBG_PAGEINV_FAULT;
+ }
- /*
- * assume we will hit a page in the cache
- * otherwise, explicitly override with
- * the real fault type once we determine it
- */
- type_of_fault = DBG_CACHE_HIT_FAULT;
+ current_task()->pageins++;
+ }
+ VM_PAGE_CONSUME_CLUSTERED(m);
- VM_STAT(faults++);
- current_task()->faults++;
+ } else if (cache_attr != VM_WIMG_DEFAULT)
+ pmap_sync_page_attributes_phys(m->phys_page);
- /*
- * drop funnel if it is already held. Then restore while returning
- */
- if ((cur_thread->funnel_state & TH_FN_OWNED) == TH_FN_OWNED) {
- funnel_set = TRUE;
- curflock = cur_thread->funnel_lock;
- thread_funnel_set( curflock , FALSE);
+ if (*type_of_fault != DBG_COW_FAULT) {
+ DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
+
+ if (pmap == kernel_pmap) {
+ DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
+ }
}
-
- RetryFault: ;
- /*
- * Find the backing store object and offset into
- * it to begin the search.
- */
- map = original_map;
- vm_map_lock_read(map);
- kr = vm_map_lookup_locked(&map, vaddr, fault_type, &version,
- &object, &offset,
- &prot, &wired,
- &behavior, &lo_offset, &hi_offset, &pmap_map);
+ /* Validate code signature if necessary. */
+ if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
+ vm_object_lock_assert_exclusive(m->object);
- pmap = pmap_map->pmap;
+ if (m->cs_validated) {
+ vm_cs_revalidates++;
+ }
- if (kr != KERN_SUCCESS) {
- vm_map_unlock_read(map);
- goto done;
+ /* VM map is locked, so 1 ref will remain on VM object -
+ * so no harm if vm_page_validate_cs drops the object lock */
+ vm_page_validate_cs(m);
}
- /*
- * If the page is wired, we must fault for the current protection
- * value, to avoid further faults.
+#define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
+
+ map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
+ (pmap == vm_map_pmap(current_thread()->map)));
+ map_is_switch_protected = current_thread()->map->switch_protect;
+
+ /* If the map is switched, and is switch-protected, we must protect
+ * some pages from being write-faulted: immutable pages because by
+ * definition they may not be written, and executable pages because that
+ * would provide a way to inject unsigned code.
+ * If the page is immutable, we can simply return. However, we can't
+ * immediately determine whether a page is executable anywhere. But,
+ * we can disconnect it everywhere and remove the executable protection
+ * from the current map. We do that below right before we do the
+ * PMAP_ENTER.
*/
+ if(!cs_enforcement_disable && map_is_switched &&
+ map_is_switch_protected && page_immutable(m, prot) &&
+ (prot & VM_PROT_WRITE))
+ {
+ return KERN_CODESIGN_ERROR;
+ }
- if (wired)
- fault_type = prot | VM_PROT_WRITE;
+ /* A page could be tainted, or pose a risk of being tainted later.
+ * Check whether the receiving process wants it, and make it feel
+ * the consequences (that hapens in cs_invalid_page()).
+ * For CS Enforcement, two other conditions will
+ * cause that page to be tainted as well:
+ * - pmapping an unsigned page executable - this means unsigned code;
+ * - writeable mapping of a validated page - the content of that page
+ * can be changed without the kernel noticing, therefore unsigned
+ * code can be created
+ */
+ if (m->cs_tainted ||
+ ( !cs_enforcement_disable &&
+ (/* The page is unsigned and wants to be executable */
+ (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
+ /* The page should be immutable, but is in danger of being modified
+ * This is the case where we want policy from the code directory -
+ * is the page immutable or not? For now we have to assume that
+ * code pages will be immutable, data pages not.
+ * We'll assume a page is a code page if it has a code directory
+ * and we fault for execution.
+ * That is good enough since if we faulted the code page for
+ * writing in another map before, it is wpmapped; if we fault
+ * it for writing in this map later it will also be faulted for executing
+ * at the same time; and if we fault for writing in another map
+ * later, we will disconnect it from this pmap so we'll notice
+ * the change.
+ */
+ (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
+ ))
+ )
+ {
+ /* We will have a tainted page. Have to handle the special case
+ * of a switched map now. If the map is not switched, standard
+ * procedure applies - call cs_invalid_page().
+ * If the map is switched, the real owner is invalid already.
+ * There is no point in invalidating the switching process since
+ * it will not be executing from the map. So we don't call
+ * cs_invalid_page() in that case. */
+ boolean_t reject_page;
+ if(map_is_switched) {
+ assert(pmap==vm_map_pmap(current_thread()->map));
+ assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
+ reject_page = FALSE;
+ } else {
+ reject_page = cs_invalid_page((addr64_t) vaddr);
+ }
+
+ if (reject_page) {
+ /* reject the tainted page: abort the page fault */
+ kr = KERN_CODESIGN_ERROR;
+ cs_enter_tainted_rejected++;
+ } else {
+ /* proceed with the tainted page */
+ kr = KERN_SUCCESS;
+ /* Page might have been tainted before or not; now it
+ * definitively is. If the page wasn't tainted, we must
+ * disconnect it from all pmaps later. */
+ must_disconnect = !m->cs_tainted;
+ m->cs_tainted = TRUE;
+ cs_enter_tainted_accepted++;
+ }
+ if (cs_debug || kr != KERN_SUCCESS) {
+ printf("CODESIGNING: vm_fault_enter(0x%llx): "
+ "page %p obj %p off 0x%llx *** INVALID PAGE ***\n",
+ (long long)vaddr, m, m->object, m->offset);
+ }
+
+ } else {
+ /* proceed with the valid page */
+ kr = KERN_SUCCESS;
+ }
-#if VM_FAULT_CLASSIFY
- /*
- * Temporary data gathering code
+ /* If we have a KERN_SUCCESS from the previous checks, we either have
+ * a good page, or a tainted page that has been accepted by the process.
+ * In both cases the page will be entered into the pmap.
+ * If the page is writeable, we need to disconnect it from other pmaps
+ * now so those processes can take note.
+ */
+ if (kr == KERN_SUCCESS) {
+ /*
+ * NOTE: we may only hold the vm_object lock SHARED
+ * at this point, but the update of pmapped is ok
+ * since this is the ONLY bit updated behind the SHARED
+ * lock... however, we need to figure out how to do an atomic
+ * update on a bit field to make this less fragile... right
+ * now I don't know how to coerce 'C' to give me the offset info
+ * that's needed for an AtomicCompareAndSwap
+ */
+ m->pmapped = TRUE;
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(m->object);
+ m->wpmapped = TRUE;
+ if(must_disconnect) {
+ /* We can only get here
+ * because of the CSE logic */
+ assert(cs_enforcement_disable == FALSE);
+ pmap_disconnect(m->phys_page);
+ /* If we are faulting for a write, we can clear
+ * the execute bit - that will ensure the page is
+ * checked again before being executable, which
+ * protects against a map switch.
+ * This only happens the first time the page
+ * gets tainted, so we won't get stuck here
+ * to make an already writeable page executable. */
+ prot &= ~VM_PROT_EXECUTE;
+ }
+ }
+
+ /* Prevent a deadlock by not
+ * holding the object lock if we need to wait for a page in
+ * pmap_enter() - <rdar://problem/7138958> */
+ PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, cache_attr,
+ wired, PMAP_OPTIONS_NOWAIT, pe_result);
+
+ if(pe_result == KERN_RESOURCE_SHORTAGE) {
+ /* The nonblocking version of pmap_enter did not succeed.
+ * Use the blocking version instead. Requires marking
+ * the page busy and unlocking the object */
+ boolean_t was_busy = m->busy;
+ m->busy = TRUE;
+ vm_object_unlock(m->object);
+
+ PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired);
+
+ /* Take the object lock again. */
+ vm_object_lock(m->object);
+
+ /* If the page was busy, someone else will wake it up.
+ * Otherwise, we have to do it now. */
+ assert(m->busy);
+ if(!was_busy) {
+ PAGE_WAKEUP_DONE(m);
+ }
+ vm_pmap_enter_blocked++;
+ }
+ }
+
+ /*
+ * Hold queues lock to manipulate
+ * the page queues. Change wiring
+ * case is obvious.
+ */
+ if (change_wiring) {
+ vm_page_lockspin_queues();
+
+ if (wired) {
+ if (kr == KERN_SUCCESS) {
+ vm_page_wire(m);
+ }
+ } else {
+ vm_page_unwire(m, TRUE);
+ }
+ vm_page_unlock_queues();
+
+ } else {
+ if (kr != KERN_SUCCESS) {
+ vm_page_lockspin_queues();
+ vm_page_deactivate(m);
+ vm_page_unlock_queues();
+ } else {
+ if (((!m->active && !m->inactive) || no_cache) && !VM_PAGE_WIRED(m) && !m->throttled) {
+
+ if ( vm_page_local_q && !no_cache && (*type_of_fault == DBG_COW_FAULT || *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
+ struct vpl *lq;
+ uint32_t lid;
+
+ /*
+ * we got a local queue to stuff this new page on...
+ * its safe to manipulate local and local_id at this point
+ * since we're behind an exclusive object lock and the
+ * page is not on any global queue.
+ *
+ * we'll use the current cpu number to select the queue
+ * note that we don't need to disable preemption... we're
+ * going to behind the local queue's lock to do the real
+ * work
+ */
+ lid = cpu_number();
+
+ lq = &vm_page_local_q[lid].vpl_un.vpl;
+
+ VPL_LOCK(&lq->vpl_lock);
+
+ queue_enter(&lq->vpl_queue, m, vm_page_t, pageq);
+ m->local = TRUE;
+ m->local_id = lid;
+ lq->vpl_count++;
+
+ VPL_UNLOCK(&lq->vpl_lock);
+
+ if (lq->vpl_count > vm_page_local_q_soft_limit) {
+ /*
+ * we're beyond the soft limit for the local queue
+ * vm_page_reactivate_local will 'try' to take
+ * the global page queue lock... if it can't that's
+ * ok... we'll let the queue continue to grow up
+ * to the hard limit... at that point we'll wait
+ * for the lock... once we've got the lock, we'll
+ * transfer all of the pages from the local queue
+ * to the global active queue
+ */
+ vm_page_reactivate_local(lid, FALSE, FALSE);
+ }
+ return kr;
+ }
+
+ vm_page_lockspin_queues();
+ /*
+ * test again now that we hold the page queue lock
+ */
+ if (((!m->active && !m->inactive) || no_cache) && !VM_PAGE_WIRED(m)) {
+
+ /*
+ * If this is a no_cache mapping and the page has never been
+ * mapped before or was previously a no_cache page, then we
+ * want to leave pages in the speculative state so that they
+ * can be readily recycled if free memory runs low. Otherwise
+ * the page is activated as normal.
+ */
+
+ if (no_cache && (!previously_pmapped || m->no_cache)) {
+ m->no_cache = TRUE;
+
+ if (m->active || m->inactive)
+ VM_PAGE_QUEUES_REMOVE(m);
+
+ if (!m->speculative)
+ vm_page_speculate(m, TRUE);
+
+ } else if (!m->active && !m->inactive)
+ vm_page_activate(m);
+
+ }
+
+ vm_page_unlock_queues();
+ }
+ }
+ }
+ return kr;
+}
+
+
+/*
+ * Routine: vm_fault
+ * Purpose:
+ * Handle page faults, including pseudo-faults
+ * used to change the wiring status of pages.
+ * Returns:
+ * Explicit continuations have been removed.
+ * Implementation:
+ * vm_fault and vm_fault_page save mucho state
+ * in the moral equivalent of a closure. The state
+ * structure is allocated when first entering vm_fault
+ * and deallocated when leaving vm_fault.
+ */
+
+extern int _map_enter_debug;
+
+unsigned long vm_fault_collapse_total = 0;
+unsigned long vm_fault_collapse_skipped = 0;
+
+kern_return_t
+vm_fault(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t fault_type,
+ boolean_t change_wiring,
+ int interruptible,
+ pmap_t caller_pmap,
+ vm_map_offset_t caller_pmap_addr)
+{
+ vm_map_version_t version; /* Map version for verificiation */
+ boolean_t wired; /* Should mapping be wired down? */
+ vm_object_t object; /* Top-level object */
+ vm_object_offset_t offset; /* Top-level offset */
+ vm_prot_t prot; /* Protection for mapping */
+ vm_object_t old_copy_object; /* Saved copy object */
+ vm_page_t result_page; /* Result of vm_fault_page */
+ vm_page_t top_page; /* Placeholder page */
+ kern_return_t kr;
+
+ vm_page_t m; /* Fast access to result_page */
+ kern_return_t error_code;
+ vm_object_t cur_object;
+ vm_object_offset_t cur_offset;
+ vm_page_t cur_m;
+ vm_object_t new_object;
+ int type_of_fault;
+ pmap_t pmap;
+ boolean_t interruptible_state;
+ vm_map_t real_map = map;
+ vm_map_t original_map = map;
+ vm_prot_t original_fault_type;
+ struct vm_object_fault_info fault_info;
+ boolean_t need_collapse = FALSE;
+ int object_lock_type = 0;
+ int cur_object_lock_type;
+ vm_object_t top_object = VM_OBJECT_NULL;
+
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
+ (int)((uint64_t)vaddr >> 32),
+ (int)vaddr,
+ 0,
+ 0,
+ 0);
+
+ if (get_preemption_level() != 0) {
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
+ (int)((uint64_t)vaddr >> 32),
+ (int)vaddr,
+ KERN_FAILURE,
+ 0,
+ 0);
+
+ return (KERN_FAILURE);
+ }
+
+ interruptible_state = thread_interrupt_level(interruptible);
+
+ VM_STAT_INCR(faults);
+ current_task()->faults++;
+ original_fault_type = fault_type;
+
+ if (fault_type & VM_PROT_WRITE)
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ else
+ object_lock_type = OBJECT_LOCK_SHARED;
+
+ cur_object_lock_type = OBJECT_LOCK_SHARED;
+
+RetryFault:
+ /*
+ * assume we will hit a page in the cache
+ * otherwise, explicitly override with
+ * the real fault type once we determine it
+ */
+ type_of_fault = DBG_CACHE_HIT_FAULT;
+
+ /*
+ * Find the backing store object and offset into
+ * it to begin the search.
+ */
+ fault_type = original_fault_type;
+ map = original_map;
+ vm_map_lock_read(map);
+
+ kr = vm_map_lookup_locked(&map, vaddr, fault_type,
+ object_lock_type, &version,
+ &object, &offset, &prot, &wired,
+ &fault_info,
+ &real_map);
+
+ if (kr != KERN_SUCCESS) {
+ vm_map_unlock_read(map);
+ goto done;
+ }
+ pmap = real_map->pmap;
+ fault_info.interruptible = interruptible;
+ fault_info.stealth = FALSE;
+ fault_info.mark_zf_absent = FALSE;
+
+ /*
+ * If the page is wired, we must fault for the current protection
+ * value, to avoid further faults.
+ */
+ if (wired) {
+ fault_type = prot | VM_PROT_WRITE;
+ /*
+ * since we're treating this fault as a 'write'
+ * we must hold the top object lock exclusively
+ */
+ if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly
+ * take the lock exclusively
+ */
+ vm_object_lock(object);
+ }
+ }
+ }
+
+#if VM_FAULT_CLASSIFY
+ /*
+ * Temporary data gathering code
*/
vm_fault_classify(object, offset, fault_type);
#endif
/*
- * If this page is to be inserted in a copy delay object
- * for writing, and if the object has a copy, then the
- * copy delay strategy is implemented in the slow fault page.
+ * If this page is to be inserted in a copy delay object
+ * for writing, and if the object has a copy, then the
+ * copy delay strategy is implemented in the slow fault page.
*/
- if (object->copy_strategy != MEMORY_OBJECT_COPY_DELAY ||
- object->copy == VM_OBJECT_NULL ||
- (fault_type & VM_PROT_WRITE) == 0) {
+ if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
+ object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE))
+ goto handle_copy_delay;
+
cur_object = object;
cur_offset = offset;
while (TRUE) {
+ if (!cur_object->pager_created &&
+ cur_object->phys_contiguous) /* superpage */
+ break;
+
+ if (cur_object->blocked_access) {
+ /*
+ * Access to this VM object has been blocked.
+ * Let the slow path handle it.
+ */
+ break;
+ }
+
m = vm_page_lookup(cur_object, cur_offset);
+
if (m != VM_PAGE_NULL) {
- if (m->busy)
- break;
+ if (m->busy) {
+ wait_result_t result;
- if (m->unusual && (m->error || m->restart || m->private
- || m->absent || (fault_type & m->page_lock))) {
+ /*
+ * in order to do the PAGE_ASSERT_WAIT, we must
+ * have object that 'm' belongs to locked exclusively
+ */
+ if (object != cur_object) {
+ vm_object_unlock(object);
+
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(cur_object) == FALSE) {
+ /*
+ * couldn't upgrade so go do a full retry
+ * immediately since we've already dropped
+ * the top object lock associated with this page
+ * and the current one got dropped due to the
+ * failed upgrade... the state is no longer valid
+ */
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
+ }
+ }
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
- /*
- * Unusual case. Give up.
+ result = PAGE_ASSERT_WAIT(m, interruptible);
+
+ vm_object_unlock(cur_object);
+
+ if (result == THREAD_WAITING) {
+ result = thread_block(THREAD_CONTINUE_NULL);
+
+ counter(c_vm_fault_page_block_busy_kernel++);
+ }
+ if (result == THREAD_AWAKENED || result == THREAD_RESTART)
+ goto RetryFault;
+
+ kr = KERN_ABORTED;
+ goto done;
+ }
+ if (m->phys_page == vm_page_guard_addr) {
+ /*
+ * Guard page: let the slow path deal with it
*/
break;
}
+ if (m->unusual && (m->error || m->restart || m->private || m->absent)) {
+ /*
+ * Unusual case... let the slow path deal with it
+ */
+ break;
+ }
+ if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) {
+ if (object != cur_object)
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+ vm_object_unlock(cur_object);
+ kr = KERN_MEMORY_ERROR;
+ goto done;
+ }
+
+ if (m->encrypted) {
+ /*
+ * ENCRYPTED SWAP:
+ * We've soft-faulted (because it's not in the page
+ * table) on an encrypted page.
+ * Keep the page "busy" so that no one messes with
+ * it during the decryption.
+ * Release the extra locks we're holding, keep only
+ * the page's VM object lock.
+ *
+ * in order to set 'busy' on 'm', we must
+ * have object that 'm' belongs to locked exclusively
+ */
+ if (object != cur_object) {
+ vm_object_unlock(object);
+
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(cur_object) == FALSE) {
+ /*
+ * couldn't upgrade so go do a full retry
+ * immediately since we've already dropped
+ * the top object lock associated with this page
+ * and the current one got dropped due to the
+ * failed upgrade... the state is no longer valid
+ */
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
+ }
+ }
+ m->busy = TRUE;
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ vm_page_decrypt(m, 0);
+
+ assert(m->busy);
+ PAGE_WAKEUP_DONE(m);
+
+ vm_object_unlock(cur_object);
+ /*
+ * Retry from the top, in case anything
+ * changed while we were decrypting...
+ */
+ goto RetryFault;
+ }
+ ASSERT_PAGE_DECRYPTED(m);
+
+ if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m)) {
+ /*
+ * We might need to validate this page
+ * against its code signature, so we
+ * want to hold the VM object exclusively.
+ */
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
+
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+ goto RetryFault;
+ }
+
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
+ }
+ }
+ }
/*
* Two cases of map in faults:
* - At top level w/o copy object.
* --> must disallow write.
*/
- if (object == cur_object &&
- object->copy == VM_OBJECT_NULL)
- goto FastMapInFault;
+ if (object == cur_object && object->copy == VM_OBJECT_NULL) {
+ if ((fault_type & VM_PROT_WRITE) == 0) {
+ /*
+ * This is not a "write" fault, so we
+ * might not have taken the object lock
+ * exclusively and we might not be able
+ * to update the "wpmapped" bit in
+ * vm_fault_enter().
+ * Let's just grant read access to
+ * the page for now and we'll
+ * soft-fault again if we need write
+ * access later...
+ */
+ prot &= ~VM_PROT_WRITE;
+ }
+ goto FastPmapEnter;
+ }
if ((fault_type & VM_PROT_WRITE) == 0) {
prot &= ~VM_PROT_WRITE;
- /*
- * Set up to map the page ...
- * mark the page busy, drop
- * locks and take a paging reference
- * on the object with the page.
- */
-
if (object != cur_object) {
- vm_object_unlock(object);
+ /*
+ * We still need to hold the top object
+ * lock here to prevent a race between
+ * a read fault (taking only "shared"
+ * locks) and a write fault (taking
+ * an "exclusive" lock on the top
+ * object.
+ * Otherwise, as soon as we release the
+ * top lock, the write fault could
+ * proceed and actually complete before
+ * the read fault, and the copied page's
+ * translation could then be overwritten
+ * by the read fault's translation for
+ * the original page.
+ *
+ * Let's just record what the top object
+ * is and we'll release it later.
+ */
+ top_object = object;
+
+ /*
+ * switch to the object that has the new page
+ */
object = cur_object;
+ object_lock_type = cur_object_lock_type;
}
-FastMapInFault:
- m->busy = TRUE;
-
- vm_object_paging_begin(object);
- vm_object_unlock(object);
-
FastPmapEnter:
/*
- * Check a couple of global reasons to
- * be conservative about write access.
- * Then do the pmap_enter.
+ * prepare for the pmap_enter...
+ * object and map are both locked
+ * m contains valid data
+ * object == m->object
+ * cur_object == NULL or it's been unlocked
+ * no paging references on either object or cur_object
*/
-#if !VM_FAULT_STATIC_CONFIG
- if (vm_fault_dirty_handling
-#if MACH_KDB
- || db_watchpoint_list
-#endif
- && (fault_type & VM_PROT_WRITE) == 0)
- prot &= ~VM_PROT_WRITE;
-#else /* STATIC_CONFIG */
#if MACH_KDB
- if (db_watchpoint_list
- && (fault_type & VM_PROT_WRITE) == 0)
+ if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0)
prot &= ~VM_PROT_WRITE;
-#endif /* MACH_KDB */
-#endif /* STATIC_CONFIG */
- if (m->no_isync == TRUE)
- pmap_sync_caches_phys(m->phys_addr);
-
- PMAP_ENTER(pmap, vaddr, m, prot, wired);
- {
- tws_hash_line_t line;
- task_t task;
-
- task = current_task();
- if((map != NULL) &&
- (task->dynamic_working_set != 0)) {
- if(tws_lookup
- ((tws_hash_t)
- task->dynamic_working_set,
- cur_offset, object,
- &line) != KERN_SUCCESS) {
- if(tws_insert((tws_hash_t)
- task->dynamic_working_set,
- m->offset, m->object,
- vaddr, pmap_map)
- == KERN_NO_SPACE) {
- tws_expand_working_set(
- task->dynamic_working_set,
- TWS_HASH_LINE_COUNT);
- }
- }
- }
+#endif
+ if (caller_pmap) {
+ kr = vm_fault_enter(m,
+ caller_pmap,
+ caller_pmap_addr,
+ prot,
+ wired,
+ change_wiring,
+ fault_info.no_cache,
+ &type_of_fault);
+ } else {
+ kr = vm_fault_enter(m,
+ pmap,
+ vaddr,
+ prot,
+ wired,
+ change_wiring,
+ fault_info.no_cache,
+ &type_of_fault);
}
- /*
- * Grab the object lock to manipulate
- * the page queues. Change wiring
- * case is obvious. In soft ref bits
- * case activate page only if it fell
- * off paging queues, otherwise just
- * activate it if it's inactive.
- *
- * NOTE: original vm_fault code will
- * move active page to back of active
- * queue. This code doesn't.
- */
- vm_object_lock(object);
- vm_page_lock_queues();
- if (m->clustered) {
- vm_pagein_cluster_used++;
- m->clustered = FALSE;
+ if (top_object != VM_OBJECT_NULL) {
+ /*
+ * It's safe to drop the top object
+ * now that we've done our
+ * vm_fault_enter(). Any other fault
+ * in progress for that virtual
+ * address will either find our page
+ * and translation or put in a new page
+ * and translation.
+ */
+ vm_object_unlock(top_object);
+ top_object = VM_OBJECT_NULL;
}
- /*
- * we did the isync above (if needed)... we're clearing
- * the flag here to avoid holding a lock
- * while calling pmap functions, however
- * we need hold the object lock before
- * we can modify the flag
- */
- m->no_isync = FALSE;
- m->reference = TRUE;
- if (change_wiring) {
- if (wired)
- vm_page_wire(m);
- else
- vm_page_unwire(m);
- }
-#if VM_FAULT_STATIC_CONFIG
- else {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- }
-#else
- else if (software_reference_bits) {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- }
- else if (!m->active) {
- vm_page_activate(m);
- }
-#endif
- vm_page_unlock_queues();
+ if (need_collapse == TRUE)
+ vm_object_collapse(object, offset, TRUE);
+ if (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT) {
+ /*
+ * evaluate access pattern and update state
+ * vm_fault_deactivate_behind depends on the
+ * state being up to date
+ */
+ vm_fault_is_sequential(object, cur_offset, fault_info.behavior);
+
+ vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior);
+ }
/*
- * That's it, clean up and return.
+ * That's it, clean up and return.
*/
- PAGE_WAKEUP_DONE(m);
- vm_object_paging_end(object);
+ if (m->busy)
+ PAGE_WAKEUP_DONE(m);
+
vm_object_unlock(object);
- vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if (funnel_set) {
- thread_funnel_set( curflock, TRUE);
- funnel_set = FALSE;
- }
- cur_thread->interruptible = interruptible_state;
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END,
- vaddr,
- type_of_fault,
- KERN_SUCCESS,
- 0,
- 0);
- return KERN_SUCCESS;
+ goto done;
}
-
/*
- * Copy on write fault. If objects match, then
- * object->copy must not be NULL (else control
- * would be in previous code block), and we
- * have a potential push into the copy object
- * with which we won't cope here.
+ * COPY ON WRITE FAULT
*/
+ assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
- if (cur_object == object)
+ if (vm_page_throttled()) {
+ /*
+ * drop all of our locks...
+ * wait until the free queue is
+ * pumped back up and then
+ * redrive the fault
+ */
+ if (object != cur_object)
+ vm_object_unlock(cur_object);
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK())
+ delay(HARD_THROTTLE_DELAY);
+
+ if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
+ THREAD_UNINT :
+ THREAD_ABORTSAFE))
+ goto RetryFault;
+ kr = KERN_ABORTED;
+ goto done;
+ }
+ /*
+ * If objects match, then
+ * object->copy must not be NULL (else control
+ * would be in previous code block), and we
+ * have a potential push into the copy object
+ * with which we can't cope with here.
+ */
+ if (cur_object == object) {
+ /*
+ * must take the slow path to
+ * deal with the copy push
+ */
break;
-
+ }
/*
- * This is now a shadow based copy on write
- * fault -- it requires a copy up the shadow
- * chain.
+ * This is now a shadow based copy on write
+ * fault -- it requires a copy up the shadow
+ * chain.
+ *
+ * Allocate a page in the original top level
+ * object. Give up if allocate fails. Also
+ * need to remember current page, as it's the
+ * source of the copy.
*
- * Allocate a page in the original top level
- * object. Give up if allocate fails. Also
- * need to remember current page, as it's the
- * source of the copy.
+ * at this point we hold locks on both
+ * object and cur_object... no need to take
+ * paging refs or mark pages BUSY since
+ * we don't drop either object lock until
+ * the page has been copied and inserted
*/
cur_m = m;
m = vm_page_grab();
+
if (m == VM_PAGE_NULL) {
+ /*
+ * no free page currently available...
+ * must take the slow path
+ */
break;
}
-
/*
- * Now do the copy. Mark the source busy
- * and take out paging references on both
- * objects.
+ * Now do the copy. Mark the source page busy...
*
* NOTE: This code holds the map lock across
* the page copy.
*/
-
- cur_m->busy = TRUE;
vm_page_copy(cur_m, m);
vm_page_insert(m, object, offset);
-
- vm_object_paging_begin(cur_object);
- vm_object_paging_begin(object);
-
- type_of_fault = DBG_COW_FAULT;
- VM_STAT(cow_faults++);
- current_task()->cow_faults++;
+ m->dirty = TRUE;
/*
- * Now cope with the source page and object
- * If the top object has a ref count of 1
- * then no other map can access it, and hence
- * it's not necessary to do the pmap_page_protect.
+ * Now cope with the source page and object
*/
-
-
- vm_page_lock_queues();
- vm_page_deactivate(cur_m);
- m->dirty = TRUE;
- pmap_page_protect(cur_m->phys_addr,
- VM_PROT_NONE);
- vm_page_unlock_queues();
-
- PAGE_WAKEUP_DONE(cur_m);
- vm_object_paging_end(cur_object);
+ if (object->ref_count > 1 && cur_m->pmapped)
+ pmap_disconnect(cur_m->phys_page);
+
+ need_collapse = TRUE;
+
+ if (!cur_object->internal &&
+ cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
+ /*
+ * The object from which we've just
+ * copied a page is most probably backed
+ * by a vnode. We don't want to waste too
+ * much time trying to collapse the VM objects
+ * and create a bottleneck when several tasks
+ * map the same file.
+ */
+ if (cur_object->copy == object) {
+ /*
+ * Shared mapping or no COW yet.
+ * We can never collapse a copy
+ * object into its backing object.
+ */
+ need_collapse = FALSE;
+ } else if (cur_object->copy == object->shadow &&
+ object->shadow->resident_page_count == 0) {
+ /*
+ * Shared mapping after a COW occurred.
+ */
+ need_collapse = FALSE;
+ }
+ }
vm_object_unlock(cur_object);
- /*
- * Slight hack to call vm_object collapse
- * and then reuse common map in code.
- * note that the object lock was taken above.
- */
-
- vm_object_paging_end(object);
- vm_object_collapse(object);
- vm_object_paging_begin(object);
- vm_object_unlock(object);
+ if (need_collapse == FALSE)
+ vm_fault_collapse_skipped++;
+ vm_fault_collapse_total++;
+
+ type_of_fault = DBG_COW_FAULT;
+ VM_STAT_INCR(cow_faults);
+ DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
+ current_task()->cow_faults++;
goto FastPmapEnter;
- }
- else {
+ } else {
/*
- * No page at cur_object, cur_offset
+ * No page at cur_object, cur_offset... m == NULL
*/
-
if (cur_object->pager_created) {
-
+ if (MUST_ASK_PAGER(cur_object, cur_offset) == TRUE) {
+ /*
+ * May have to talk to a pager...
+ * take the slow path.
+ */
+ break;
+ }
/*
- * Have to talk to the pager. Give up.
+ * existence map present and indicates
+ * that the pager doesn't have this page
*/
-
- break;
}
-
-
if (cur_object->shadow == VM_OBJECT_NULL) {
-
- if (cur_object->shadow_severed) {
- vm_object_paging_end(object);
+ /*
+ * Zero fill fault. Page gets
+ * inserted into the original object.
+ */
+ if (cur_object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object))
+ {
+ if (object != cur_object)
+ vm_object_unlock(cur_object);
vm_object_unlock(object);
- vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if (funnel_set) {
- thread_funnel_set( curflock, TRUE);
- funnel_set = FALSE;
- }
- cur_thread->interruptible = interruptible_state;
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
- return VM_FAULT_MEMORY_ERROR;
+ kr = KERN_MEMORY_ERROR;
+ goto done;
}
+ if (vm_page_throttled()) {
+ /*
+ * drop all of our locks...
+ * wait until the free queue is
+ * pumped back up and then
+ * redrive the fault
+ */
+ if (object != cur_object)
+ vm_object_unlock(cur_object);
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK())
+ delay(HARD_THROTTLE_DELAY);
+
+ if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
+ THREAD_UNINT :
+ THREAD_ABORTSAFE))
+ goto RetryFault;
+ kr = KERN_ABORTED;
+ goto done;
+ }
+ if (vm_backing_store_low) {
+ /*
+ * we are protecting the system from
+ * backing store exhaustion...
+ * must take the slow path if we're
+ * not privileged
+ */
+ if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV))
+ break;
+ }
+ if (cur_object != object) {
+ vm_object_unlock(cur_object);
- /*
- * Zero fill fault. Page gets
- * filled in top object. Insert
- * page, then drop any lower lock.
- * Give up if no page.
- */
- if ((vm_page_free_target -
- ((vm_page_free_target-vm_page_free_min)>>2))
- > vm_page_free_count) {
- break;
+ cur_object = object;
+ }
+ if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade so do a full retry on the fault
+ * since we dropped the object lock which
+ * could allow another thread to insert
+ * a page at this offset
+ */
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
}
m = vm_page_alloc(object, offset);
+
if (m == VM_PAGE_NULL) {
+ /*
+ * no free page currently available...
+ * must take the slow path
+ */
break;
}
- /*
- * This is a zero-fill or initial fill
- * page fault. As such, we consider it
- * undefined with respect to instruction
- * execution. i.e. it is the responsibility
- * of higher layers to call for an instruction
- * sync after changing the contents and before
- * sending a program into this area. We
- * choose this approach for performance
- */
-
- m->no_isync = FALSE;
-
- if (cur_object != object)
- vm_object_unlock(cur_object);
-
- vm_object_paging_begin(object);
- vm_object_unlock(object);
/*
- * Now zero fill page and map it.
- * the page is probably going to
- * be written soon, so don't bother
- * to clear the modified bit
+ * Now zero fill page...
+ * the page is probably going to
+ * be written soon, so don't bother
+ * to clear the modified bit
*
- * NOTE: This code holds the map
- * lock across the zero fill.
+ * NOTE: This code holds the map
+ * lock across the zero fill.
*/
+ type_of_fault = vm_fault_zero_page(m, map->no_zero_fill);
- if (!map->no_zero_fill) {
- vm_page_zero_fill(m);
- type_of_fault = DBG_ZERO_FILL_FAULT;
- VM_STAT(zero_fill_count++);
- }
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
-
- m->page_ticket = vm_page_ticket;
- vm_page_ticket_roll++;
- if(vm_page_ticket_roll ==
- VM_PAGE_TICKETS_IN_ROLL) {
- vm_page_ticket_roll = 0;
- if(vm_page_ticket ==
- VM_PAGE_TICKET_ROLL_IDS)
- vm_page_ticket= 0;
- else
- vm_page_ticket++;
- }
-
- queue_enter(&vm_page_queue_inactive,
- m, vm_page_t, pageq);
- m->inactive = TRUE;
- vm_page_inactive_count++;
- vm_page_unlock_queues();
goto FastPmapEnter;
}
-
/*
- * On to the next level
+ * On to the next level in the shadow chain
*/
-
cur_offset += cur_object->shadow_offset;
new_object = cur_object->shadow;
- vm_object_lock(new_object);
+
+ /*
+ * take the new_object's lock with the indicated state
+ */
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED)
+ vm_object_lock_shared(new_object);
+ else
+ vm_object_lock(new_object);
+
if (cur_object != object)
vm_object_unlock(cur_object);
+
cur_object = new_object;
continue;
}
}
-
/*
- * Cleanup from fast fault failure. Drop any object
- * lock other than original and drop map lock.
+ * Cleanup from fast fault failure. Drop any object
+ * lock other than original and drop map lock.
*/
-
if (object != cur_object)
vm_object_unlock(cur_object);
+
+ /*
+ * must own the object lock exclusively at this point
+ */
+ if (object_lock_type == OBJECT_LOCK_SHARED) {
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly
+ * take the lock exclusively
+ * no need to retry the fault at this
+ * point since "vm_fault_page" will
+ * completely re-evaluate the state
+ */
+ vm_object_lock(object);
+ }
}
+
+handle_copy_delay:
vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
/*
- * Make a reference to this object to
- * prevent its disposal while we are messing with
- * it. Once we have the reference, the map is free
- * to be diddled. Since objects reference their
- * shadows (and copies), they will stay around as well.
+ * Make a reference to this object to
+ * prevent its disposal while we are messing with
+ * it. Once we have the reference, the map is free
+ * to be diddled. Since objects reference their
+ * shadows (and copies), they will stay around as well.
*/
-
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
+ vm_object_reference_locked(object);
vm_object_paging_begin(object);
XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0);
+
+ error_code = 0;
+
kr = vm_fault_page(object, offset, fault_type,
(change_wiring && !wired),
- interruptible,
- lo_offset, hi_offset, behavior,
&prot, &result_page, &top_page,
&type_of_fault,
- &error_code, map->no_zero_fill, FALSE, map, vaddr);
+ &error_code, map->no_zero_fill,
+ FALSE, &fault_info);
/*
- * If we didn't succeed, lose the object reference immediately.
+ * if kr != VM_FAULT_SUCCESS, then the paging reference
+ * has been dropped and the object unlocked... the ref_count
+ * is still held
+ *
+ * if kr == VM_FAULT_SUCCESS, then the paging reference
+ * is still held along with the ref_count on the original object
+ *
+ * the object is returned locked with a paging reference
+ *
+ * if top_page != NULL, then it's BUSY and the
+ * object it belongs to has a paging reference
+ * but is returned unlocked
*/
-
- if (kr != VM_FAULT_SUCCESS)
+ if (kr != VM_FAULT_SUCCESS &&
+ kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
+ /*
+ * we didn't succeed, lose the object reference immediately.
+ */
vm_object_deallocate(object);
- /*
- * See why we failed, and take corrective action.
- */
-
- switch (kr) {
- case VM_FAULT_SUCCESS:
- break;
+ /*
+ * See why we failed, and take corrective action.
+ */
+ switch (kr) {
case VM_FAULT_MEMORY_SHORTAGE:
if (vm_page_wait((change_wiring) ?
THREAD_UNINT :
THREAD_ABORTSAFE))
goto RetryFault;
- /* fall thru */
+ /*
+ * fall thru
+ */
case VM_FAULT_INTERRUPTED:
kr = KERN_ABORTED;
goto done;
case VM_FAULT_RETRY:
goto RetryFault;
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- goto RetryFault;
case VM_FAULT_MEMORY_ERROR:
if (error_code)
kr = error_code;
else
kr = KERN_MEMORY_ERROR;
goto done;
+ default:
+ panic("vm_fault: unexpected error 0x%x from "
+ "vm_fault_page()\n", kr);
+ }
}
-
m = result_page;
- if(m != VM_PAGE_NULL) {
+ if (m != VM_PAGE_NULL) {
assert((change_wiring && !wired) ?
(top_page == VM_PAGE_NULL) :
((top_page == VM_PAGE_NULL) == (m->object == object)));
}
/*
- * How to clean up the result of vm_fault_page. This
- * happens whether the mapping is entered or not.
- */
-
-#define UNLOCK_AND_DEALLOCATE \
- MACRO_BEGIN \
- vm_fault_cleanup(m->object, top_page); \
- vm_object_deallocate(object); \
- MACRO_END
-
- /*
- * What to do with the resulting page from vm_fault_page
- * if it doesn't get entered into the physical map:
+ * What to do with the resulting page from vm_fault_page
+ * if it doesn't get entered into the physical map:
*/
-
#define RELEASE_PAGE(m) \
MACRO_BEGIN \
PAGE_WAKEUP_DONE(m); \
- vm_page_lock_queues(); \
- if (!m->active && !m->inactive) \
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
+ if (!m->active && !m->inactive && !m->throttled) { \
+ vm_page_lockspin_queues(); \
+ if (!m->active && !m->inactive && !m->throttled) \
+ vm_page_activate(m); \
+ vm_page_unlock_queues(); \
+ } \
MACRO_END
/*
- * We must verify that the maps have not changed
- * since our last lookup.
+ * We must verify that the maps have not changed
+ * since our last lookup.
*/
-
- if(m != VM_PAGE_NULL) {
+ if (m != VM_PAGE_NULL) {
old_copy_object = m->object->copy;
-
vm_object_unlock(m->object);
} else {
old_copy_object = VM_OBJECT_NULL;
+ vm_object_unlock(object);
}
+
+ /*
+ * no object locks are held at this point
+ */
if ((map != original_map) || !vm_map_verify(map, &version)) {
vm_object_t retry_object;
vm_object_offset_t retry_offset;
vm_prot_t retry_prot;
/*
- * To avoid trying to write_lock the map while another
- * thread has it read_locked (in vm_map_pageable), we
- * do not try for write permission. If the page is
- * still writable, we will get write permission. If it
- * is not, or has been marked needs_copy, we enter the
- * mapping without write permission, and will merely
- * take another fault.
+ * To avoid trying to write_lock the map while another
+ * thread has it read_locked (in vm_map_pageable), we
+ * do not try for write permission. If the page is
+ * still writable, we will get write permission. If it
+ * is not, or has been marked needs_copy, we enter the
+ * mapping without write permission, and will merely
+ * take another fault.
*/
map = original_map;
vm_map_lock_read(map);
+
kr = vm_map_lookup_locked(&map, vaddr,
- fault_type & ~VM_PROT_WRITE, &version,
- &retry_object, &retry_offset, &retry_prot,
- &wired, &behavior, &lo_offset, &hi_offset,
- &pmap_map);
- pmap = pmap_map->pmap;
+ fault_type & ~VM_PROT_WRITE,
+ OBJECT_LOCK_EXCLUSIVE, &version,
+ &retry_object, &retry_offset, &retry_prot,
+ &wired,
+ &fault_info,
+ &real_map);
+ pmap = real_map->pmap;
if (kr != KERN_SUCCESS) {
vm_map_unlock_read(map);
- if(m != VM_PAGE_NULL) {
+
+ if (m != VM_PAGE_NULL) {
+ /*
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup and do the
+ * PAGE_WAKEUP_DONE in RELEASE_PAGE
+ */
vm_object_lock(m->object);
+
RELEASE_PAGE(m);
- UNLOCK_AND_DEALLOCATE;
+
+ vm_fault_cleanup(m->object, top_page);
} else {
- vm_object_deallocate(object);
+ /*
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup
+ */
+ vm_object_lock(object);
+
+ vm_fault_cleanup(object, top_page);
}
+ vm_object_deallocate(object);
+
goto done;
}
-
vm_object_unlock(retry_object);
- if(m != VM_PAGE_NULL) {
- vm_object_lock(m->object);
- } else {
- vm_object_lock(object);
- }
- if ((retry_object != object) ||
- (retry_offset != offset)) {
+ if ((retry_object != object) || (retry_offset != offset)) {
+
vm_map_unlock_read(map);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if(m != VM_PAGE_NULL) {
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ if (m != VM_PAGE_NULL) {
+ /*
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup and do the
+ * PAGE_WAKEUP_DONE in RELEASE_PAGE
+ */
+ vm_object_lock(m->object);
+
RELEASE_PAGE(m);
- UNLOCK_AND_DEALLOCATE;
+
+ vm_fault_cleanup(m->object, top_page);
} else {
- vm_object_deallocate(object);
+ /*
+ * retake the lock so that
+ * we can drop the paging reference
+ * in vm_fault_cleanup
+ */
+ vm_object_lock(object);
+
+ vm_fault_cleanup(object, top_page);
}
+ vm_object_deallocate(object);
+
goto RetryFault;
}
-
/*
- * Check whether the protection has changed or the object
- * has been copied while we left the map unlocked.
+ * Check whether the protection has changed or the object
+ * has been copied while we left the map unlocked.
*/
prot &= retry_prot;
- if(m != VM_PAGE_NULL) {
- vm_object_unlock(m->object);
- } else {
- vm_object_unlock(object);
- }
}
- if(m != VM_PAGE_NULL) {
+ if (m != VM_PAGE_NULL) {
vm_object_lock(m->object);
- } else {
- vm_object_lock(object);
- }
- /*
- * If the copy object changed while the top-level object
- * was unlocked, then we must take away write permission.
- */
-
- if(m != VM_PAGE_NULL) {
- if (m->object->copy != old_copy_object)
+ if (m->object->copy != old_copy_object) {
+ /*
+ * The copy object changed while the top-level object
+ * was unlocked, so take away write permission.
+ */
prot &= ~VM_PROT_WRITE;
- }
+ }
+ } else
+ vm_object_lock(object);
/*
- * If we want to wire down this page, but no longer have
- * adequate permissions, we must start all over.
+ * If we want to wire down this page, but no longer have
+ * adequate permissions, we must start all over.
*/
+ if (wired && (fault_type != (prot | VM_PROT_WRITE))) {
- if (wired && (fault_type != (prot|VM_PROT_WRITE))) {
vm_map_verify_done(map, &version);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if(m != VM_PAGE_NULL) {
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ if (m != VM_PAGE_NULL) {
RELEASE_PAGE(m);
- UNLOCK_AND_DEALLOCATE;
- } else {
- vm_object_deallocate(object);
- }
+
+ vm_fault_cleanup(m->object, top_page);
+ } else
+ vm_fault_cleanup(object, top_page);
+
+ vm_object_deallocate(object);
+
goto RetryFault;
}
-
- /*
- * Put this page into the physical map.
- * We had to do the unlock above because pmap_enter
- * may cause other faults. The page may be on
- * the pageout queues. If the pageout daemon comes
- * across the page, it will remove it from the queues.
- */
if (m != VM_PAGE_NULL) {
- if (m->no_isync == TRUE) {
- pmap_sync_caches_phys(m->phys_addr);
-
- m->no_isync = FALSE;
- }
- vm_object_unlock(m->object);
-
- PMAP_ENTER(pmap, vaddr, m, prot, wired);
- {
- tws_hash_line_t line;
- task_t task;
-
- task = current_task();
- if((map != NULL) &&
- (task->dynamic_working_set != 0)) {
- if(tws_lookup
- ((tws_hash_t)
- task->dynamic_working_set,
- m->offset, m->object,
- &line) != KERN_SUCCESS) {
- tws_insert((tws_hash_t)
- task->dynamic_working_set,
- m->offset, m->object,
- vaddr, pmap_map);
- if(tws_insert((tws_hash_t)
- task->dynamic_working_set,
- m->offset, m->object,
- vaddr, pmap_map)
- == KERN_NO_SPACE) {
- tws_expand_working_set(
- task->dynamic_working_set,
- TWS_HASH_LINE_COUNT);
- }
- }
- }
+ /*
+ * Put this page into the physical map.
+ * We had to do the unlock above because pmap_enter
+ * may cause other faults. The page may be on
+ * the pageout queues. If the pageout daemon comes
+ * across the page, it will remove it from the queues.
+ */
+ if (caller_pmap) {
+ kr = vm_fault_enter(m,
+ caller_pmap,
+ caller_pmap_addr,
+ prot,
+ wired,
+ change_wiring,
+ fault_info.no_cache,
+ &type_of_fault);
+ } else {
+ kr = vm_fault_enter(m,
+ pmap,
+ vaddr,
+ prot,
+ wired,
+ change_wiring,
+ fault_info.no_cache,
+ &type_of_fault);
+ }
+ if (kr != KERN_SUCCESS) {
+ /* abort this page fault */
+ vm_map_verify_done(map, &version);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+ PAGE_WAKEUP_DONE(m);
+ vm_fault_cleanup(m->object, top_page);
+ vm_object_deallocate(object);
+ goto done;
}
} else {
-/* if __ppc__ not working until figure out phys copy on block maps */
-#ifdef notdefcdy
- int memattr;
- struct phys_entry *pp;
+ vm_map_entry_t entry;
+ vm_map_offset_t laddr;
+ vm_map_offset_t ldelta, hdelta;
+
/*
* do a pmap block mapping from the physical address
* in the object
*/
- if(pp = pmap_find_physentry(
- (vm_offset_t)object->shadow_offset)) {
- memattr = ((pp->pte1 & 0x00000078) >> 3);
- } else {
- memattr = PTE_WIMG_UNCACHED_COHERENT_GUARDED;
- }
-
- pmap_map_block(pmap, vaddr,
- (vm_offset_t)object->shadow_offset,
- object->size, prot,
- memattr, 0); /* Set up a block mapped area */
-//#else
- vm_offset_t off;
- for (off = 0; off < object->size; off += page_size) {
- pmap_enter(pmap, vaddr + off,
- object->shadow_offset + off, prot, TRUE);
- /* Map it in */
- }
-#endif
- }
+#ifdef ppc
+ /* While we do not worry about execution protection in */
+ /* general, certian pages may have instruction execution */
+ /* disallowed. We will check here, and if not allowed */
+ /* to execute, we return with a protection failure. */
- /*
- * If the page is not wired down and isn't already
- * on a pageout queue, then put it where the
- * pageout daemon can find it.
- */
- if(m != VM_PAGE_NULL) {
- vm_object_lock(m->object);
- vm_page_lock_queues();
+ if ((fault_type & VM_PROT_EXECUTE) &&
+ (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) {
- if (change_wiring) {
- if (wired)
- vm_page_wire(m);
- else
- vm_page_unwire(m);
+ vm_map_verify_done(map, &version);
+
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ vm_fault_cleanup(object, top_page);
+ vm_object_deallocate(object);
+
+ kr = KERN_PROTECTION_FAILURE;
+ goto done;
}
-#if VM_FAULT_STATIC_CONFIG
- else {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- m->reference = TRUE;
+#endif /* ppc */
+
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ if (original_map != map) {
+ vm_map_unlock_read(map);
+ vm_map_lock_read(original_map);
+ map = original_map;
}
-#else
- else if (software_reference_bits) {
- if (!m->active && !m->inactive)
- vm_page_activate(m);
- m->reference = TRUE;
- } else {
- vm_page_activate(m);
+ real_map = map;
+
+ laddr = vaddr;
+ hdelta = 0xFFFFF000;
+ ldelta = 0xFFFFF000;
+
+ while (vm_map_lookup_entry(map, laddr, &entry)) {
+ if (ldelta > (laddr - entry->vme_start))
+ ldelta = laddr - entry->vme_start;
+ if (hdelta > (entry->vme_end - laddr))
+ hdelta = entry->vme_end - laddr;
+ if (entry->is_sub_map) {
+
+ laddr = (laddr - entry->vme_start)
+ + entry->offset;
+ vm_map_lock_read(entry->object.sub_map);
+
+ if (map != real_map)
+ vm_map_unlock_read(map);
+ if (entry->use_pmap) {
+ vm_map_unlock_read(real_map);
+ real_map = entry->object.sub_map;
+ }
+ map = entry->object.sub_map;
+
+ } else {
+ break;
+ }
+ }
+
+ if (vm_map_lookup_entry(map, laddr, &entry) &&
+ (entry->object.vm_object != NULL) &&
+ (entry->object.vm_object == object)) {
+
+ int superpage = (!object->pager_created && object->phys_contiguous)? VM_MEM_SUPERPAGE : 0;
+ if (caller_pmap) {
+ /*
+ * Set up a block mapped area
+ */
+ assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
+ pmap_map_block(caller_pmap,
+ (addr64_t)(caller_pmap_addr - ldelta),
+ (ppnum_t)((((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) +
+ entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
+ (uint32_t)((ldelta + hdelta) >> 12), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
+ } else {
+ /*
+ * Set up a block mapped area
+ */
+ assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
+ pmap_map_block(real_map->pmap,
+ (addr64_t)(vaddr - ldelta),
+ (ppnum_t)((((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) +
+ entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
+ (uint32_t)((ldelta + hdelta) >> 12), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
+ }
}
-#endif
- vm_page_unlock_queues();
}
/*
- * Unlock everything, and return
+ * Unlock everything, and return
*/
-
vm_map_verify_done(map, &version);
- if(pmap_map != map)
- vm_map_unlock(pmap_map);
- if(m != VM_PAGE_NULL) {
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ if (m != VM_PAGE_NULL) {
PAGE_WAKEUP_DONE(m);
- UNLOCK_AND_DEALLOCATE;
- } else {
- vm_fault_cleanup(object, top_page);
- vm_object_deallocate(object);
- }
- kr = KERN_SUCCESS;
-#undef UNLOCK_AND_DEALLOCATE
+ vm_fault_cleanup(m->object, top_page);
+ } else
+ vm_fault_cleanup(object, top_page);
+
+ vm_object_deallocate(object);
+
#undef RELEASE_PAGE
- done:
- if (funnel_set) {
- thread_funnel_set( curflock, TRUE);
- funnel_set = FALSE;
- }
- cur_thread->interruptible = interruptible_state;
+ kr = KERN_SUCCESS;
+done:
+ thread_interrupt_level(interruptible_state);
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 0)) | DBG_FUNC_END,
- vaddr,
- type_of_fault,
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
+ (int)((uint64_t)vaddr >> 32),
+ (int)vaddr,
kr,
- 0,
+ type_of_fault,
0);
- return(kr);
+
+ return (kr);
}
/*
vm_fault_wire(
vm_map_t map,
vm_map_entry_t entry,
- pmap_t pmap)
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr)
{
- register vm_offset_t va;
- register vm_offset_t end_addr = entry->vme_end;
+ register vm_map_offset_t va;
+ register vm_map_offset_t end_addr = entry->vme_end;
register kern_return_t rc;
assert(entry->in_transition);
+ if ((entry->object.vm_object != NULL) &&
+ !entry->is_sub_map &&
+ entry->object.vm_object->phys_contiguous) {
+ return KERN_SUCCESS;
+ }
+
/*
* Inform the physical mapping system that the
* range of addresses may not fault, so that
* page tables and such can be locked down as well.
*/
- pmap_pageable(pmap, entry->vme_start, end_addr, FALSE);
+ pmap_pageable(pmap, pmap_addr,
+ pmap_addr + (end_addr - entry->vme_start), FALSE);
/*
* We simulate a fault to get the page and enter it
for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
if ((rc = vm_fault_wire_fast(
- map, va, entry, pmap)) != KERN_SUCCESS) {
+ map, va, entry, pmap,
+ pmap_addr + (va - entry->vme_start)
+ )) != KERN_SUCCESS) {
rc = vm_fault(map, va, VM_PROT_NONE, TRUE,
- (pmap == kernel_pmap) ? THREAD_UNINT : THREAD_ABORTSAFE);
+ (pmap == kernel_pmap) ?
+ THREAD_UNINT : THREAD_ABORTSAFE,
+ pmap, pmap_addr + (va - entry->vme_start));
+ DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
}
if (rc != KERN_SUCCESS) {
/* unwire wired pages */
tmp_entry.vme_end = va;
- vm_fault_unwire(map, &tmp_entry, FALSE, pmap);
+ vm_fault_unwire(map,
+ &tmp_entry, FALSE, pmap, pmap_addr);
return rc;
}
vm_map_t map,
vm_map_entry_t entry,
boolean_t deallocate,
- pmap_t pmap)
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr)
{
- register vm_offset_t va;
- register vm_offset_t end_addr = entry->vme_end;
+ register vm_map_offset_t va;
+ register vm_map_offset_t end_addr = entry->vme_end;
vm_object_t object;
+ struct vm_object_fault_info fault_info;
object = (entry->is_sub_map)
? VM_OBJECT_NULL : entry->object.vm_object;
+ /*
+ * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
+ * do anything since such memory is wired by default. So we don't have
+ * anything to undo here.
+ */
+
+ if (object != VM_OBJECT_NULL && object->phys_contiguous)
+ return;
+
+ fault_info.interruptible = THREAD_UNINT;
+ fault_info.behavior = entry->behavior;
+ fault_info.user_tag = entry->alias;
+ fault_info.lo_offset = entry->offset;
+ fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset;
+ fault_info.no_cache = entry->no_cache;
+ fault_info.stealth = TRUE;
+ fault_info.mark_zf_absent = FALSE;
+
/*
* Since the pages are wired down, we must be able to
* get their mappings from the physical map system.
*/
for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
- pmap_change_wiring(pmap, va, FALSE);
if (object == VM_OBJECT_NULL) {
- (void) vm_fault(map, va, VM_PROT_NONE, TRUE, THREAD_UNINT);
+ if (pmap) {
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+ }
+ (void) vm_fault(map, va, VM_PROT_NONE,
+ TRUE, THREAD_UNINT, pmap, pmap_addr);
} else {
vm_prot_t prot;
vm_page_t result_page;
vm_object_t result_object;
vm_fault_return_t result;
+ if (end_addr - va > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info.cluster_size = (vm_size_t) (end_addr - va);
+ assert(fault_info.cluster_size == end_addr - va);
+ }
+
do {
prot = VM_PROT_NONE;
XPR(XPR_VM_FAULT,
"vm_fault_unwire -> vm_fault_page\n",
0,0,0,0,0);
- result = vm_fault_page(object,
- entry->offset +
- (va - entry->vme_start),
- VM_PROT_NONE, TRUE,
- THREAD_UNINT,
- entry->offset,
- entry->offset +
- (entry->vme_end
- - entry->vme_start),
- entry->behavior,
- &prot,
- &result_page,
- &top_page,
- (int *)0,
- 0, map->no_zero_fill,
- FALSE, NULL, 0);
+ result = vm_fault_page(
+ object,
+ entry->offset + (va - entry->vme_start),
+ VM_PROT_NONE, TRUE,
+ &prot, &result_page, &top_page,
+ (int *)0,
+ NULL, map->no_zero_fill,
+ FALSE, &fault_info);
} while (result == VM_FAULT_RETRY);
+ /*
+ * If this was a mapping to a file on a device that has been forcibly
+ * unmounted, then we won't get a page back from vm_fault_page(). Just
+ * move on to the next one in case the remaining pages are mapped from
+ * different objects. During a forced unmount, the object is terminated
+ * so the alive flag will be false if this happens. A forced unmount will
+ * will occur when an external disk is unplugged before the user does an
+ * eject, so we don't want to panic in that situation.
+ */
+
+ if (result == VM_FAULT_MEMORY_ERROR && !object->alive)
+ continue;
+
if (result != VM_FAULT_SUCCESS)
panic("vm_fault_unwire: failure");
result_object = result_page->object;
+
+ if ((pmap) && (result_page->phys_page != vm_page_guard_addr)) {
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+ }
if (deallocate) {
- assert(!result_page->fictitious);
- pmap_page_protect(result_page->phys_addr,
- VM_PROT_NONE);
+ assert(result_page->phys_page !=
+ vm_page_fictitious_addr);
+ pmap_disconnect(result_page->phys_page);
VM_PAGE_FREE(result_page);
} else {
- vm_page_lock_queues();
- vm_page_unwire(result_page);
- vm_page_unlock_queues();
+ if (VM_PAGE_WIRED(result_page)) {
+ vm_page_lockspin_queues();
+ vm_page_unwire(result_page, TRUE);
+ vm_page_unlock_queues();
+ }
+ if(entry->zero_wired_pages) {
+ pmap_zero_page(result_page->phys_page);
+ entry->zero_wired_pages = FALSE;
+ }
+
PAGE_WAKEUP_DONE(result_page);
}
-
vm_fault_cleanup(result_object, top_page);
}
}
* such may be unwired themselves.
*/
- pmap_pageable(pmap, entry->vme_start, end_addr, TRUE);
+ pmap_pageable(pmap, pmap_addr,
+ pmap_addr + (end_addr - entry->vme_start), TRUE);
}
*/
kern_return_t
vm_fault_wire_fast(
- vm_map_t map,
- vm_offset_t va,
+ __unused vm_map_t map,
+ vm_map_offset_t va,
vm_map_entry_t entry,
- pmap_t pmap)
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr)
{
vm_object_t object;
vm_object_offset_t offset;
register vm_page_t m;
vm_prot_t prot;
- thread_act_t thr_act;
+ thread_t thread = current_thread();
+ int type_of_fault;
+ kern_return_t kr;
- VM_STAT(faults++);
+ VM_STAT_INCR(faults);
- if((thr_act=current_act()) && (thr_act->task != TASK_NULL))
- thr_act->task->faults++;
+ if (thread != THREAD_NULL && thread->task != TASK_NULL)
+ thread->task->faults++;
/*
* Recovery actions
#undef RELEASE_PAGE
#define RELEASE_PAGE(m) { \
PAGE_WAKEUP_DONE(m); \
- vm_page_lock_queues(); \
- vm_page_unwire(m); \
+ vm_page_lockspin_queues(); \
+ vm_page_unwire(m, TRUE); \
vm_page_unlock_queues(); \
}
#undef UNLOCK_THINGS
#define UNLOCK_THINGS { \
- object->paging_in_progress--; \
- vm_object_unlock(object); \
+ vm_object_paging_end(object); \
+ vm_object_unlock(object); \
}
#undef UNLOCK_AND_DEALLOCATE
*/
vm_object_lock(object);
- assert(object->ref_count > 0);
- object->ref_count++;
- vm_object_res_reference(object);
- object->paging_in_progress++;
+ vm_object_reference_locked(object);
+ vm_object_paging_begin(object);
/*
* INVARIANTS (through entire routine):
/*
* Look for page in top-level object. If it's not there or
* there's something going on, give up.
+ * ENCRYPTED SWAP: use the slow fault path, since we'll need to
+ * decrypt the page before wiring it down.
*/
m = vm_page_lookup(object, offset);
- if ((m == VM_PAGE_NULL) || (m->busy) ||
- (m->unusual && ( m->error || m->restart || m->absent ||
- prot & m->page_lock))) {
+ if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) ||
+ (m->unusual && ( m->error || m->restart || m->absent))) {
GIVE_UP;
}
+ ASSERT_PAGE_DECRYPTED(m);
+
+ if (m->fictitious &&
+ m->phys_page == vm_page_guard_addr) {
+ /*
+ * Guard pages are fictitious pages and are never
+ * entered into a pmap, so let's say it's been wired...
+ */
+ kr = KERN_SUCCESS;
+ goto done;
+ }
/*
* Wire the page down now. All bail outs beyond this
* point must unwire the page.
*/
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(m);
vm_page_unlock_queues();
/*
* Put this page into the physical map.
- * We have to unlock the object because pmap_enter
- * may cause other faults.
- */
- if (m->no_isync == TRUE) {
- pmap_sync_caches_phys(m->phys_addr);
-
- m->no_isync = FALSE;
- }
- vm_object_unlock(object);
-
- PMAP_ENTER(pmap, va, m, prot, TRUE);
-
- /*
- * Must relock object so that paging_in_progress can be cleared.
*/
- vm_object_lock(object);
-
+ type_of_fault = DBG_CACHE_HIT_FAULT;
+ kr = vm_fault_enter(m,
+ pmap,
+ pmap_addr,
+ prot,
+ TRUE,
+ FALSE,
+ FALSE,
+ &type_of_fault);
+
+done:
/*
* Unlock everything, and return
*/
PAGE_WAKEUP_DONE(m);
UNLOCK_AND_DEALLOCATE;
- return(KERN_SUCCESS);
+ return kr;
}
vm_object_lock(object);
PAGE_WAKEUP_DONE(page);
- vm_page_lock_queues();
- if (!page->active && !page->inactive)
- vm_page_activate(page);
- vm_page_unlock_queues();
+ if (!page->active && !page->inactive && !page->throttled) {
+ vm_page_lockspin_queues();
+ if (!page->active && !page->inactive && !page->throttled)
+ vm_page_activate(page);
+ vm_page_unlock_queues();
+ }
vm_fault_cleanup(object, top_page);
}
if (page != VM_PAGE_NULL) {
object = page->object;
vm_object_lock(object);
- vm_page_lock_queues();
- vm_page_unwire(page);
+ vm_page_lockspin_queues();
+ vm_page_unwire(page, TRUE);
vm_page_unlock_queues();
vm_object_paging_end(object);
vm_object_unlock(object);
vm_fault_copy(
vm_object_t src_object,
vm_object_offset_t src_offset,
- vm_size_t *src_size, /* INOUT */
+ vm_map_size_t *copy_size, /* INOUT */
vm_object_t dst_object,
vm_object_offset_t dst_offset,
vm_map_t dst_map,
vm_page_t dst_top_page;
vm_prot_t dst_prot;
- vm_size_t amount_left;
+ vm_map_size_t amount_left;
vm_object_t old_copy_object;
kern_return_t error = 0;
+ vm_fault_return_t result;
- vm_size_t part_size;
+ vm_map_size_t part_size;
+ struct vm_object_fault_info fault_info_src;
+ struct vm_object_fault_info fault_info_dst;
/*
* In order not to confuse the clustered pageins, align
* the different offsets on a page boundary.
*/
- vm_object_offset_t src_lo_offset = trunc_page_64(src_offset);
- vm_object_offset_t dst_lo_offset = trunc_page_64(dst_offset);
- vm_object_offset_t src_hi_offset = round_page_64(src_offset + *src_size);
- vm_object_offset_t dst_hi_offset = round_page_64(dst_offset + *src_size);
#define RETURN(x) \
MACRO_BEGIN \
- *src_size -= amount_left; \
+ *copy_size -= amount_left; \
MACRO_RETURN(x); \
MACRO_END
- amount_left = *src_size;
+ amount_left = *copy_size;
+
+ fault_info_src.interruptible = interruptible;
+ fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info_src.user_tag = 0;
+ fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
+ fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
+ fault_info_src.no_cache = FALSE;
+ fault_info_src.stealth = TRUE;
+ fault_info_src.mark_zf_absent = FALSE;
+
+ fault_info_dst.interruptible = interruptible;
+ fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info_dst.user_tag = 0;
+ fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
+ fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
+ fault_info_dst.no_cache = FALSE;
+ fault_info_dst.stealth = TRUE;
+ fault_info_dst.mark_zf_absent = FALSE;
+
do { /* while (amount_left > 0) */
/*
* There may be a deadlock if both source and destination
vm_object_lock(dst_object);
vm_object_paging_begin(dst_object);
+ if (amount_left > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info_dst.cluster_size = (vm_size_t) amount_left;
+ assert(fault_info_dst.cluster_size == amount_left);
+ }
+
XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
- switch (vm_fault_page(dst_object,
- trunc_page_64(dst_offset),
- VM_PROT_WRITE|VM_PROT_READ,
- FALSE,
- interruptible,
- dst_lo_offset,
- dst_hi_offset,
- VM_BEHAVIOR_SEQUENTIAL,
- &dst_prot,
- &dst_page,
- &dst_top_page,
- (int *)0,
- &error,
- dst_map->no_zero_fill,
- FALSE, NULL, 0)) {
+ result = vm_fault_page(dst_object,
+ vm_object_trunc_page(dst_offset),
+ VM_PROT_WRITE|VM_PROT_READ,
+ FALSE,
+ &dst_prot, &dst_page, &dst_top_page,
+ (int *)0,
+ &error,
+ dst_map->no_zero_fill,
+ FALSE, &fault_info_dst);
+ switch (result) {
case VM_FAULT_SUCCESS:
break;
case VM_FAULT_RETRY:
/* fall thru */
case VM_FAULT_INTERRUPTED:
RETURN(MACH_SEND_INTERRUPTED);
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- goto RetryDestinationFault;
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail the copy */
+ vm_object_paging_end(dst_object);
+ vm_object_unlock(dst_object);
+ /*FALLTHROUGH*/
case VM_FAULT_MEMORY_ERROR:
if (error)
return (error);
else
return(KERN_MEMORY_ERROR);
+ default:
+ panic("vm_fault_copy: unexpected error 0x%x from "
+ "vm_fault_page()\n", result);
}
assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
* holding the dest page so it doesn't go away.
*/
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(dst_page);
vm_page_unlock_queues();
PAGE_WAKEUP_DONE(dst_page);
} else {
vm_object_lock(src_object);
src_page = vm_page_lookup(src_object,
- trunc_page_64(src_offset));
+ vm_object_trunc_page(src_offset));
if (src_page == dst_page) {
src_prot = dst_prot;
result_page = VM_PAGE_NULL;
src_prot = VM_PROT_READ;
vm_object_paging_begin(src_object);
+ if (amount_left > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info_src.cluster_size = (vm_size_t) amount_left;
+ assert(fault_info_src.cluster_size == amount_left);
+ }
+
XPR(XPR_VM_FAULT,
"vm_fault_copy(2) -> vm_fault_page\n",
0,0,0,0,0);
- switch (vm_fault_page(src_object,
- trunc_page_64(src_offset),
- VM_PROT_READ,
- FALSE,
- interruptible,
- src_lo_offset,
- src_hi_offset,
- VM_BEHAVIOR_SEQUENTIAL,
- &src_prot,
- &result_page,
- &src_top_page,
- (int *)0,
- &error,
- FALSE,
- FALSE, NULL, 0)) {
-
+ result = vm_fault_page(
+ src_object,
+ vm_object_trunc_page(src_offset),
+ VM_PROT_READ, FALSE,
+ &src_prot,
+ &result_page, &src_top_page,
+ (int *)0, &error, FALSE,
+ FALSE, &fault_info_src);
+
+ switch (result) {
case VM_FAULT_SUCCESS:
break;
case VM_FAULT_RETRY:
case VM_FAULT_INTERRUPTED:
vm_fault_copy_dst_cleanup(dst_page);
RETURN(MACH_SEND_INTERRUPTED);
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- goto RetrySourceFault;
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail */
+ vm_object_paging_end(src_object);
+ vm_object_unlock(src_object);
+ /*FALLTHROUGH*/
case VM_FAULT_MEMORY_ERROR:
vm_fault_copy_dst_cleanup(dst_page);
if (error)
return (error);
else
return(KERN_MEMORY_ERROR);
+ default:
+ panic("vm_fault_copy(2): unexpected "
+ "error 0x%x from "
+ "vm_fault_page()\n", result);
}
vm_object_offset_t src_po,
dst_po;
- src_po = src_offset - trunc_page_64(src_offset);
- dst_po = dst_offset - trunc_page_64(dst_offset);
+ src_po = src_offset - vm_object_trunc_page(src_offset);
+ dst_po = dst_offset - vm_object_trunc_page(dst_offset);
if (dst_po > src_po) {
part_size = PAGE_SIZE - dst_po;
}
if (result_page == VM_PAGE_NULL) {
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
vm_page_part_zero_fill(dst_page,
- dst_po, part_size);
+ (vm_offset_t) dst_po,
+ (vm_size_t) part_size);
} else {
- vm_page_part_copy(result_page, src_po,
- dst_page, dst_po, part_size);
+ assert((vm_offset_t) src_po == src_po);
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
+ vm_page_part_copy(result_page,
+ (vm_offset_t) src_po,
+ dst_page,
+ (vm_offset_t) dst_po,
+ (vm_size_t)part_size);
if(!dst_page->dirty){
vm_object_lock(dst_object);
dst_page->dirty = TRUE;
/*NOTREACHED*/
}
-#ifdef notdef
-
-/*
- * Routine: vm_fault_page_overwrite
- *
- * Description:
- * A form of vm_fault_page that assumes that the
- * resulting page will be overwritten in its entirety,
- * making it unnecessary to obtain the correct *contents*
- * of the page.
- *
- * Implementation:
- * XXX Untested. Also unused. Eventually, this technology
- * could be used in vm_fault_copy() to advantage.
- */
-vm_fault_return_t
-vm_fault_page_overwrite(
- register
- vm_object_t dst_object,
- vm_object_offset_t dst_offset,
- vm_page_t *result_page) /* OUT */
-{
- register
- vm_page_t dst_page;
- kern_return_t wait_result;
-
-#define interruptible THREAD_UNINT /* XXX */
-
- while (TRUE) {
- /*
- * Look for a page at this offset
- */
-
- while ((dst_page = vm_page_lookup(dst_object, dst_offset))
- == VM_PAGE_NULL) {
- /*
- * No page, no problem... just allocate one.
- */
-
- dst_page = vm_page_alloc(dst_object, dst_offset);
- if (dst_page == VM_PAGE_NULL) {
- vm_object_unlock(dst_object);
- VM_PAGE_WAIT();
- vm_object_lock(dst_object);
- continue;
- }
-
- /*
- * Pretend that the memory manager
- * write-protected the page.
- *
- * Note that we will be asking for write
- * permission without asking for the data
- * first.
- */
-
- dst_page->overwriting = TRUE;
- dst_page->page_lock = VM_PROT_WRITE;
- dst_page->absent = TRUE;
- dst_page->unusual = TRUE;
- dst_object->absent_count++;
-
- break;
-
- /*
- * When we bail out, we might have to throw
- * away the page created here.
- */
-
-#define DISCARD_PAGE \
- MACRO_BEGIN \
- vm_object_lock(dst_object); \
- dst_page = vm_page_lookup(dst_object, dst_offset); \
- if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \
- VM_PAGE_FREE(dst_page); \
- vm_object_unlock(dst_object); \
- MACRO_END
- }
-
- /*
- * If the page is write-protected...
- */
-
- if (dst_page->page_lock & VM_PROT_WRITE) {
- /*
- * ... and an unlock request hasn't been sent
- */
-
- if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) {
- vm_prot_t u;
- kern_return_t rc;
-
- /*
- * ... then send one now.
- */
-
- if (!dst_object->pager_ready) {
- vm_object_assert_wait(dst_object,
- VM_OBJECT_EVENT_PAGER_READY,
- interruptible);
- vm_object_unlock(dst_object);
- wait_result = thread_block((void (*)(void))0);
- if (wait_result != THREAD_AWAKENED) {
- DISCARD_PAGE;
- return(VM_FAULT_INTERRUPTED);
- }
- continue;
- }
-
- u = dst_page->unlock_request |= VM_PROT_WRITE;
- vm_object_unlock(dst_object);
-
- if ((rc = memory_object_data_unlock(
- dst_object->pager,
- dst_offset + dst_object->paging_offset,
- PAGE_SIZE,
- u)) != KERN_SUCCESS) {
- if (vm_fault_debug)
- printf("vm_object_overwrite: memory_object_data_unlock failed\n");
- DISCARD_PAGE;
- return((rc == MACH_SEND_INTERRUPTED) ?
- VM_FAULT_INTERRUPTED :
- VM_FAULT_MEMORY_ERROR);
- }
- vm_object_lock(dst_object);
- continue;
- }
-
- /* ... fall through to wait below */
- } else {
- /*
- * If the page isn't being used for other
- * purposes, then we're done.
- */
- if ( ! (dst_page->busy || dst_page->absent ||
- dst_page->error || dst_page->restart) )
- break;
- }
-
- PAGE_ASSERT_WAIT(dst_page, interruptible);
- vm_object_unlock(dst_object);
- wait_result = thread_block((void (*)(void))0);
- if (wait_result != THREAD_AWAKENED) {
- DISCARD_PAGE;
- return(VM_FAULT_INTERRUPTED);
- }
- }
-
- *result_page = dst_page;
- return(VM_FAULT_SUCCESS);
-
-#undef interruptible
-#undef DISCARD_PAGE
-}
-
-#endif /* notdef */
-
#if VM_FAULT_CLASSIFY
/*
* Temporary statistics gathering support.
while (TRUE) {
m = vm_page_lookup(object, offset);
if (m != VM_PAGE_NULL) {
- if (m->busy || m->error || m->restart || m->absent ||
- fault_type & m->page_lock) {
+ if (m->busy || m->error || m->restart || m->absent) {
type = VM_FAULT_TYPE_OTHER;
break;
}
return;
}
#endif /* VM_FAULT_CLASSIFY */
+
+
+extern int cs_validation;
+
+void
+vm_page_validate_cs_mapped(
+ vm_page_t page,
+ const void *kaddr)
+{
+ vm_object_t object;
+ vm_object_offset_t offset;
+ kern_return_t kr;
+ memory_object_t pager;
+ void *blobs;
+ boolean_t validated, tainted;
+
+ assert(page->busy);
+ vm_object_lock_assert_exclusive(page->object);
+
+ if (!cs_validation) {
+ return;
+ }
+
+ if (page->wpmapped && !page->cs_tainted) {
+ /*
+ * This page was mapped for "write" access sometime in the
+ * past and could still be modifiable in the future.
+ * Consider it tainted.
+ * [ If the page was already found to be "tainted", no
+ * need to re-validate. ]
+ */
+ page->cs_validated = TRUE;
+ page->cs_tainted = TRUE;
+ if (cs_debug) {
+ printf("CODESIGNING: vm_page_validate_cs: "
+ "page %p obj %p off 0x%llx "
+ "was modified\n",
+ page, page->object, page->offset);
+ }
+ vm_cs_validated_dirtied++;
+ }
+
+ if (page->cs_validated) {
+ return;
+ }
+
+ vm_cs_validates++;
+
+ object = page->object;
+ assert(object->code_signed);
+ offset = page->offset;
+
+ if (!object->alive || object->terminating || object->pager == NULL) {
+ /*
+ * The object is terminating and we don't have its pager
+ * so we can't validate the data...
+ */
+ return;
+ }
+ /*
+ * Since we get here to validate a page that was brought in by
+ * the pager, we know that this pager is all setup and ready
+ * by now.
+ */
+ assert(!object->internal);
+ assert(object->pager != NULL);
+ assert(object->pager_ready);
+
+ pager = object->pager;
+ assert(object->paging_in_progress);
+ kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
+ if (kr != KERN_SUCCESS) {
+ blobs = NULL;
+ }
+
+ /* verify the SHA1 hash for this page */
+ validated = cs_validate_page(blobs,
+ offset + object->paging_offset,
+ (const void *)kaddr,
+ &tainted);
+
+ page->cs_validated = validated;
+ if (validated) {
+ page->cs_tainted = tainted;
+ }
+}
+
+void
+vm_page_validate_cs(
+ vm_page_t page)
+{
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_map_offset_t koffset;
+ vm_map_size_t ksize;
+ vm_offset_t kaddr;
+ kern_return_t kr;
+ boolean_t busy_page;
+
+ vm_object_lock_assert_held(page->object);
+
+ if (!cs_validation) {
+ return;
+ }
+
+ if (page->wpmapped && !page->cs_tainted) {
+ vm_object_lock_assert_exclusive(page->object);
+
+ /*
+ * This page was mapped for "write" access sometime in the
+ * past and could still be modifiable in the future.
+ * Consider it tainted.
+ * [ If the page was already found to be "tainted", no
+ * need to re-validate. ]
+ */
+ page->cs_validated = TRUE;
+ page->cs_tainted = TRUE;
+ if (cs_debug) {
+ printf("CODESIGNING: vm_page_validate_cs: "
+ "page %p obj %p off 0x%llx "
+ "was modified\n",
+ page, page->object, page->offset);
+ }
+ vm_cs_validated_dirtied++;
+ }
+
+ if (page->cs_validated) {
+ return;
+ }
+
+ vm_object_lock_assert_exclusive(page->object);
+
+ object = page->object;
+ assert(object->code_signed);
+ offset = page->offset;
+
+ busy_page = page->busy;
+ if (!busy_page) {
+ /* keep page busy while we map (and unlock) the VM object */
+ page->busy = TRUE;
+ }
+
+ /*
+ * Take a paging reference on the VM object
+ * to protect it from collapse or bypass,
+ * and keep it from disappearing too.
+ */
+ vm_object_paging_begin(object);
+
+ /* map the page in the kernel address space */
+ koffset = 0;
+ ksize = PAGE_SIZE_64;
+ kr = vm_paging_map_object(&koffset,
+ page,
+ object,
+ offset,
+ &ksize,
+ VM_PROT_READ,
+ FALSE); /* can't unlock object ! */
+ if (kr != KERN_SUCCESS) {
+ panic("vm_page_validate_cs: could not map page: 0x%x\n", kr);
+ }
+ kaddr = CAST_DOWN(vm_offset_t, koffset);
+
+ /* validate the mapped page */
+ vm_page_validate_cs_mapped(page, (const void *) kaddr);
+
+ assert(page->busy);
+ assert(object == page->object);
+ vm_object_lock_assert_exclusive(object);
+
+ if (!busy_page) {
+ PAGE_WAKEUP_DONE(page);
+ }
+ if (koffset != 0) {
+ /* unmap the map from the kernel address space */
+ vm_paging_unmap_object(object, koffset, koffset + ksize);
+ koffset = 0;
+ ksize = 0;
+ kaddr = 0;
+ }
+ vm_object_paging_end(object);
+}