]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/kern/processor.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / kern / processor.c
index b0771351f96e6b18374d70f3bba7e44aa4b49ac6..01aa936af947d9949f962dcc5ff36ee82d48f742 100644 (file)
@@ -1,8 +1,8 @@
 /*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- * 
+ *
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
- * 
+ *
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
- * 
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
+ *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
  * @OSF_COPYRIGHT@
  */
-/* 
+/*
  * Mach Operating System
  * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
  * All Rights Reserved.
- * 
+ *
  * Permission to use, copy, modify and distribute this software and its
  * documentation is hereby granted, provided that both the copyright
  * notice and this permission notice appear in all copies of the
  * software, derivative works or modified versions, and any portions
  * thereof, and that both notices appear in supporting documentation.
- * 
+ *
  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- * 
+ *
  * Carnegie Mellon requests users of this software to return to
- * 
+ *
  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
  *  School of Computer Science
  *  Carnegie Mellon University
  *  Pittsburgh PA 15213-3890
- * 
+ *
  * any improvements or extensions that they make and grant Carnegie Mellon
  * the rights to redistribute these changes.
  */
 #include <mach/vm_param.h>
 #include <kern/cpu_number.h>
 #include <kern/host.h>
+#include <kern/ipc_host.h>
+#include <kern/ipc_tt.h>
+#include <kern/kalloc.h>
 #include <kern/machine.h>
 #include <kern/misc_protos.h>
 #include <kern/processor.h>
 #include <kern/sched.h>
 #include <kern/task.h>
 #include <kern/thread.h>
-#include <kern/ipc_host.h>
-#include <kern/ipc_tt.h>
+#include <kern/timer.h>
+#if KPERF
+#include <kperf/kperf.h>
+#endif /* KPERF */
 #include <ipc/ipc_port.h>
-#include <kern/kalloc.h>
+
+#include <security/mac_mach_internal.h>
+
+#if defined(CONFIG_XNUPOST)
+
+#include <tests/xnupost.h>
+
+#endif /* CONFIG_XNUPOST */
 
 /*
  * Exported interface
 #include <mach/mach_host_server.h>
 #include <mach/processor_set_server.h>
 
-struct processor_set   pset0;
-struct pset_node               pset_node0;
-decl_simple_lock_data(static,pset_node_lock)
+struct processor_set    pset0;
+struct pset_node        pset_node0;
+
+static SIMPLE_LOCK_DECLARE(pset_node_lock, 0);
+LCK_GRP_DECLARE(pset_lck_grp, "pset");
+
+queue_head_t            tasks;
+queue_head_t            terminated_tasks;       /* To be used ONLY for stackshot. */
+queue_head_t            corpse_tasks;
+int                     tasks_count;
+int                     terminated_tasks_count;
+queue_head_t            threads;
+queue_head_t            terminated_threads;
+int                     threads_count;
+int                     terminated_threads_count;
+LCK_GRP_DECLARE(task_lck_grp, "task");
+LCK_ATTR_DECLARE(task_lck_attr, 0, 0);
+LCK_MTX_DECLARE_ATTR(tasks_threads_lock, &task_lck_grp, &task_lck_attr);
+LCK_MTX_DECLARE_ATTR(tasks_corpse_lock, &task_lck_grp, &task_lck_attr);
+
+processor_t             processor_list;
+unsigned int            processor_count;
+static processor_t      processor_list_tail;
+SIMPLE_LOCK_DECLARE(processor_list_lock, 0);
+
+uint32_t                processor_avail_count;
+uint32_t                processor_avail_count_user;
+uint32_t                primary_processor_avail_count;
+uint32_t                primary_processor_avail_count_user;
+
+int                     master_cpu = 0;
+
+struct processor        PERCPU_DATA(processor);
+processor_t             processor_array[MAX_SCHED_CPUS] = { 0 };
+processor_set_t         pset_array[MAX_PSETS] = { 0 };
+
+static timer_call_func_t running_timer_funcs[] = {
+       [RUNNING_TIMER_QUANTUM] = thread_quantum_expire,
+       [RUNNING_TIMER_KPERF] = kperf_timer_expire,
+};
+static_assert(sizeof(running_timer_funcs) / sizeof(running_timer_funcs[0])
+    == RUNNING_TIMER_MAX, "missing running timer function");
+
+#if defined(CONFIG_XNUPOST)
+kern_return_t ipi_test(void);
+extern void arm64_ipi_test(void);
+
+kern_return_t
+ipi_test()
+{
+#if __arm64__
+       processor_t p;
+
+       for (p = processor_list; p != NULL; p = p->processor_list) {
+               thread_bind(p);
+               thread_block(THREAD_CONTINUE_NULL);
+               kprintf("Running IPI test on cpu %d\n", p->cpu_id);
+               arm64_ipi_test();
+       }
 
-queue_head_t                   tasks;
-queue_head_t                   terminated_tasks;       /* To be used ONLY for stackshot. */
-int                                            tasks_count;
-queue_head_t                   threads;
-int                                            threads_count;
-decl_lck_mtx_data(,tasks_threads_lock)
+       /* unbind thread from specific cpu */
+       thread_bind(PROCESSOR_NULL);
+       thread_block(THREAD_CONTINUE_NULL);
 
-processor_t                            processor_list;
-unsigned int                   processor_count;
-static processor_t             processor_list_tail;
-decl_simple_lock_data(,processor_list_lock)
+       T_PASS("Done running IPI tests");
+#else
+       T_PASS("Unsupported platform. Not running IPI tests");
 
-uint32_t                               processor_avail_count;
+#endif /* __arm64__ */
 
-processor_t            master_processor;
-int                    master_cpu = 0;
-boolean_t              sched_stats_active = FALSE;
+       return KERN_SUCCESS;
+}
+#endif /* defined(CONFIG_XNUPOST) */
 
-/* Forwards */
-kern_return_t  processor_set_things(
-               processor_set_t         pset,
-               mach_port_t             **thing_list,
-               mach_msg_type_number_t  *count,
-               int                     type);
+int sched_enable_smt = 1;
 
 void
 processor_bootstrap(void)
 {
-       pset_init(&pset0, &pset_node0);
        pset_node0.psets = &pset0;
-
-       simple_lock_init(&pset_node_lock, 0);
+       pset_init(&pset0, &pset_node0);
 
        queue_init(&tasks);
        queue_init(&terminated_tasks);
        queue_init(&threads);
-
-       simple_lock_init(&processor_list_lock, 0);
-
-       master_processor = cpu_to_processor(master_cpu);
+       queue_init(&terminated_threads);
+       queue_init(&corpse_tasks);
 
        processor_init(master_processor, master_cpu, &pset0);
 }
@@ -139,71 +194,207 @@ processor_bootstrap(void)
  */
 void
 processor_init(
-       processor_t                     processor,
-       int                                     cpu_id,
-       processor_set_t         pset)
+       processor_t            processor,
+       int                    cpu_id,
+       processor_set_t        pset)
 {
+       spl_t           s;
+
+       assert(cpu_id < MAX_SCHED_CPUS);
+       processor->cpu_id = cpu_id;
+
        if (processor != master_processor) {
-               /* Scheduler state deferred until sched_init() */
+               /* Scheduler state for master_processor initialized in sched_init() */
                SCHED(processor_init)(processor);
        }
 
        processor->state = PROCESSOR_OFF_LINE;
-       processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL;
+       processor->active_thread = processor->startup_thread = processor->idle_thread = THREAD_NULL;
        processor->processor_set = pset;
-       processor->current_pri = MINPRI;
-       processor->current_thmode = TH_MODE_NONE;
-       processor->cpu_id = cpu_id;
-       timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor);
+       processor_state_update_idle(processor);
+       processor->starting_pri = MINPRI;
+       processor->quantum_end = UINT64_MAX;
        processor->deadline = UINT64_MAX;
-       processor->timeslice = 0;
-       processor->processor_meta = PROCESSOR_META_NULL;
+       processor->first_timeslice = FALSE;
+       processor->processor_offlined = false;
+       processor->processor_primary = processor; /* no SMT relationship known at this point */
+       processor->processor_secondary = NULL;
+       processor->is_SMT = false;
+       processor->is_recommended = true;
        processor->processor_self = IP_NULL;
-       processor_data_init(processor);
        processor->processor_list = NULL;
+       processor->must_idle = false;
+       processor->running_timers_active = false;
+       for (int i = 0; i < RUNNING_TIMER_MAX; i++) {
+               timer_call_setup(&processor->running_timers[i],
+                   running_timer_funcs[i], processor);
+               running_timer_clear(processor, i);
+       }
 
+       timer_init(&processor->idle_state);
+       timer_init(&processor->system_state);
+       timer_init(&processor->user_state);
+
+       s = splsched();
        pset_lock(pset);
-       if (pset->cpu_set_count++ == 0)
+       bit_set(pset->cpu_bitmask, cpu_id);
+       bit_set(pset->recommended_bitmask, cpu_id);
+       bit_set(pset->primary_map, cpu_id);
+       bit_set(pset->cpu_state_map[PROCESSOR_OFF_LINE], cpu_id);
+       if (pset->cpu_set_count++ == 0) {
                pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
-       else {
+       else {
                pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low;
                pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
        }
        pset_unlock(pset);
+       splx(s);
 
-       simple_lock(&processor_list_lock);
-       if (processor_list == NULL)
+       simple_lock(&processor_list_lock, LCK_GRP_NULL);
+       if (processor_list == NULL) {
                processor_list = processor;
-       else
+       } else {
                processor_list_tail->processor_list = processor;
+       }
        processor_list_tail = processor;
        processor_count++;
+       processor_array[cpu_id] = processor;
        simple_unlock(&processor_list_lock);
 }
 
+bool system_is_SMT = false;
+
 void
-processor_meta_init(
-       processor_t             processor,
-       processor_t             primary)
+processor_set_primary(
+       processor_t             processor,
+       processor_t             primary)
 {
-       processor_meta_t        pmeta = primary->processor_meta;
+       assert(processor->processor_primary == primary || processor->processor_primary == processor);
+       /* Re-adjust primary point for this (possibly) secondary processor */
+       processor->processor_primary = primary;
+
+       assert(primary->processor_secondary == NULL || primary->processor_secondary == processor);
+       if (primary != processor) {
+               /* Link primary to secondary, assumes a 2-way SMT model
+                * We'll need to move to a queue if any future architecture
+                * requires otherwise.
+                */
+               assert(processor->processor_secondary == NULL);
+               primary->processor_secondary = processor;
+               /* Mark both processors as SMT siblings */
+               primary->is_SMT = TRUE;
+               processor->is_SMT = TRUE;
+
+               if (!system_is_SMT) {
+                       system_is_SMT = true;
+               }
 
-       if (pmeta == PROCESSOR_META_NULL) {
-               pmeta = kalloc(sizeof (*pmeta));
+               processor_set_t pset = processor->processor_set;
+               spl_t s = splsched();
+               pset_lock(pset);
+               if (!pset->is_SMT) {
+                       pset->is_SMT = true;
+               }
+               bit_clear(pset->primary_map, processor->cpu_id);
+               pset_unlock(pset);
+               splx(s);
+       }
+}
+
+processor_set_t
+processor_pset(
+       processor_t     processor)
+{
+       return processor->processor_set;
+}
 
-               queue_init(&pmeta->idle_queue);
+#if CONFIG_SCHED_EDGE
 
-               pmeta->primary = primary;
+cluster_type_t
+pset_type_for_id(uint32_t cluster_id)
+{
+       return pset_array[cluster_id]->pset_type;
+}
+
+/*
+ * Processor foreign threads
+ *
+ * With the Edge scheduler, each pset maintains a bitmap of processors running threads
+ * which are foreign to the pset/cluster. A thread is defined as foreign for a cluster
+ * if its of a different type than its preferred cluster type (E/P). The bitmap should
+ * be updated every time a new thread is assigned to run on a processor.
+ *
+ * This bitmap allows the Edge scheduler to quickly find CPUs running foreign threads
+ * for rebalancing.
+ */
+static void
+processor_state_update_running_foreign(processor_t processor, thread_t thread)
+{
+       cluster_type_t current_processor_type = pset_type_for_id(processor->processor_set->pset_cluster_id);
+       cluster_type_t thread_type = pset_type_for_id(sched_edge_thread_preferred_cluster(thread));
+
+       /* Update the bitmap for the pset only for unbounded non-RT threads. */
+       if ((processor->current_pri < BASEPRI_RTQUEUES) && (thread->bound_processor == PROCESSOR_NULL) && (current_processor_type != thread_type)) {
+               bit_set(processor->processor_set->cpu_running_foreign, processor->cpu_id);
+       } else {
+               bit_clear(processor->processor_set->cpu_running_foreign, processor->cpu_id);
        }
+}
+#else /* CONFIG_SCHED_EDGE */
+static void
+processor_state_update_running_foreign(__unused processor_t processor, __unused thread_t thread)
+{
+}
+#endif /* CONFIG_SCHED_EDGE */
 
-       processor->processor_meta = pmeta;
+void
+processor_state_update_idle(processor_t processor)
+{
+       processor->current_pri = IDLEPRI;
+       processor->current_sfi_class = SFI_CLASS_KERNEL;
+       processor->current_recommended_pset_type = PSET_SMP;
+#if CONFIG_THREAD_GROUPS
+       processor->current_thread_group = NULL;
+#endif
+       processor->current_perfctl_class = PERFCONTROL_CLASS_IDLE;
+       processor->current_urgency = THREAD_URGENCY_NONE;
+       processor->current_is_NO_SMT = false;
+       processor->current_is_bound = false;
+       processor->current_is_eagerpreempt = false;
+       os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], TH_BUCKET_SCHED_MAX, relaxed);
 }
 
-processor_set_t
-processor_pset(
-       processor_t     processor)
+void
+processor_state_update_from_thread(processor_t processor, thread_t thread)
 {
-       return (processor->processor_set);
+       processor->current_pri = thread->sched_pri;
+       processor->current_sfi_class = thread->sfi_class;
+       processor->current_recommended_pset_type = recommended_pset_type(thread);
+       processor_state_update_running_foreign(processor, thread);
+       /* Since idle and bound threads are not tracked by the edge scheduler, ignore when those threads go on-core */
+       sched_bucket_t bucket = ((thread->state & TH_IDLE) || (thread->bound_processor != PROCESSOR_NULL)) ? TH_BUCKET_SCHED_MAX : thread->th_sched_bucket;
+       os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], bucket, relaxed);
+
+#if CONFIG_THREAD_GROUPS
+       processor->current_thread_group = thread_group_get(thread);
+#endif
+       processor->current_perfctl_class = thread_get_perfcontrol_class(thread);
+       processor->current_urgency = thread_get_urgency(thread, NULL, NULL);
+       processor->current_is_NO_SMT = thread_no_smt(thread);
+       processor->current_is_bound = thread->bound_processor != PROCESSOR_NULL;
+       processor->current_is_eagerpreempt = thread_is_eager_preempt(thread);
+}
+
+void
+processor_state_update_explicit(processor_t processor, int pri, sfi_class_id_t sfi_class,
+    pset_cluster_type_t pset_type, perfcontrol_class_t perfctl_class, thread_urgency_t urgency, sched_bucket_t bucket)
+{
+       processor->current_pri = pri;
+       processor->current_sfi_class = sfi_class;
+       processor->current_recommended_pset_type = pset_type;
+       processor->current_perfctl_class = perfctl_class;
+       processor->current_urgency = urgency;
+       os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], bucket, relaxed);
 }
 
 pset_node_t
@@ -214,61 +405,167 @@ pset_node_root(void)
 
 processor_set_t
 pset_create(
-       pset_node_t                     node)
+       pset_node_t                     node)
 {
-       processor_set_t         *prev, pset = kalloc(sizeof (*pset));
+       /* some schedulers do not support multiple psets */
+       if (SCHED(multiple_psets_enabled) == FALSE) {
+               return processor_pset(master_processor);
+       }
+
+       processor_set_t *prev, pset = zalloc_permanent_type(struct processor_set);
 
        if (pset != PROCESSOR_SET_NULL) {
                pset_init(pset, node);
 
-               simple_lock(&pset_node_lock);
+               simple_lock(&pset_node_lock, LCK_GRP_NULL);
 
                prev = &node->psets;
-               while (*prev != PROCESSOR_SET_NULL)
+               while (*prev != PROCESSOR_SET_NULL) {
                        prev = &(*prev)->pset_list;
+               }
 
                *prev = pset;
 
                simple_unlock(&pset_node_lock);
        }
 
-       return (pset);
+       return pset;
+}
+
+/*
+ *     Find processor set with specified cluster_id.
+ *     Returns default_pset if not found.
+ */
+processor_set_t
+pset_find(
+       uint32_t cluster_id,
+       processor_set_t default_pset)
+{
+       simple_lock(&pset_node_lock, LCK_GRP_NULL);
+       pset_node_t node = &pset_node0;
+       processor_set_t pset = NULL;
+
+       do {
+               pset = node->psets;
+               while (pset != NULL) {
+                       if (pset->pset_cluster_id == cluster_id) {
+                               break;
+                       }
+                       pset = pset->pset_list;
+               }
+       } while (pset == NULL && (node = node->node_list) != NULL);
+       simple_unlock(&pset_node_lock);
+       if (pset == NULL) {
+               return default_pset;
+       }
+       return pset;
+}
+
+#if !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2)
+
+/*
+ * Find the first processor_set for the given pset_cluster_type.
+ * Should be removed with rdar://57340304, as it's only
+ * useful for the workaround described in rdar://57306691.
+ */
+
+processor_set_t
+pset_find_first_by_cluster_type(
+       pset_cluster_type_t pset_cluster_type)
+{
+       simple_lock(&pset_node_lock, LCK_GRP_NULL);
+       pset_node_t node = &pset_node0;
+       processor_set_t pset = NULL;
+
+       do {
+               pset = node->psets;
+               while (pset != NULL) {
+                       if (pset->pset_cluster_type == pset_cluster_type) {
+                               break;
+                       }
+                       pset = pset->pset_list;
+               }
+       } while (pset == NULL && (node = node->node_list) != NULL);
+       simple_unlock(&pset_node_lock);
+       return pset;
 }
 
+#endif /* !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2) */
+
 /*
  *     Initialize the given processor_set structure.
  */
 void
 pset_init(
-       processor_set_t         pset,
-       pset_node_t                     node)
+       processor_set_t         pset,
+       pset_node_t                     node)
 {
+       static uint32_t pset_count = 0;
+
        if (pset != &pset0) {
-               /* Scheduler state deferred until sched_init() */
+               /*
+                * Scheduler runqueue initialization for non-boot psets.
+                * This initialization for pset0 happens in sched_init().
+                */
                SCHED(pset_init)(pset);
+               SCHED(rt_init)(pset);
        }
 
-       queue_init(&pset->active_queue);
-       queue_init(&pset->idle_queue);
        pset->online_processor_count = 0;
-       pset_pri_init_hint(pset, PROCESSOR_NULL);
-       pset_count_init_hint(pset, PROCESSOR_NULL);
+       pset->load_average = 0;
+       bzero(&pset->pset_load_average, sizeof(pset->pset_load_average));
+#if CONFIG_SCHED_EDGE
+       bzero(&pset->pset_execution_time, sizeof(pset->pset_execution_time));
+#endif /* CONFIG_SCHED_EDGE */
        pset->cpu_set_low = pset->cpu_set_hi = 0;
        pset->cpu_set_count = 0;
+       pset->last_chosen = -1;
+       pset->cpu_bitmask = 0;
+       pset->recommended_bitmask = 0;
+       pset->primary_map = 0;
+       pset->realtime_map = 0;
+       pset->cpu_running_foreign = 0;
+
+       for (uint i = 0; i < PROCESSOR_STATE_LEN; i++) {
+               pset->cpu_state_map[i] = 0;
+       }
+       pset->pending_AST_URGENT_cpu_mask = 0;
+       pset->pending_AST_PREEMPT_cpu_mask = 0;
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+       pset->pending_deferred_AST_cpu_mask = 0;
+#endif
+       pset->pending_spill_cpu_mask = 0;
        pset_lock_init(pset);
        pset->pset_self = IP_NULL;
        pset->pset_name_self = IP_NULL;
        pset->pset_list = PROCESSOR_SET_NULL;
        pset->node = node;
+
+       /*
+        * The pset_cluster_type & pset_cluster_id for all psets
+        * on the platform are initialized as part of the SCHED(init).
+        * That works well for small cluster platforms; for large cluster
+        * count systems, it might be cleaner to do all the setup
+        * dynamically in SCHED(pset_init).
+        *
+        * <Edge Multi-cluster Support Needed>
+        */
+       pset->is_SMT = false;
+
+       simple_lock(&pset_node_lock, LCK_GRP_NULL);
+       pset->pset_id = pset_count++;
+       bit_set(node->pset_map, pset->pset_id);
+       simple_unlock(&pset_node_lock);
+
+       pset_array[pset->pset_id] = pset;
 }
 
 kern_return_t
 processor_info_count(
-       processor_flavor_t              flavor,
-       mach_msg_type_number_t  *count)
+       processor_flavor_t              flavor,
+       mach_msg_type_number_t  *count)
 {
        switch (flavor) {
-
        case PROCESSOR_BASIC_INFO:
                *count = PROCESSOR_BASIC_INFO_COUNT;
                break;
@@ -278,119 +575,166 @@ processor_info_count(
                break;
 
        default:
-               return (cpu_info_count(flavor, count));
+               return cpu_info_count(flavor, count);
        }
 
-       return (KERN_SUCCESS);
+       return KERN_SUCCESS;
 }
 
 
 kern_return_t
 processor_info(
-       register processor_t    processor,
-       processor_flavor_t              flavor,
-       host_t                                  *host,
-       processor_info_t                info,
-       mach_msg_type_number_t  *count)
+       processor_t     processor,
+       processor_flavor_t              flavor,
+       host_t                                  *host,
+       processor_info_t                info,
+       mach_msg_type_number_t  *count)
 {
-       register int    cpu_id, state;
-       kern_return_t   result;
+       int     cpu_id, state;
+       kern_return_t   result;
 
-       if (processor == PROCESSOR_NULL)
-               return (KERN_INVALID_ARGUMENT);
+       if (processor == PROCESSOR_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
 
        cpu_id = processor->cpu_id;
 
        switch (flavor) {
-
        case PROCESSOR_BASIC_INFO:
        {
-               register processor_basic_info_t         basic_info;
+               processor_basic_info_t          basic_info;
 
-               if (*count < PROCESSOR_BASIC_INFO_COUNT)
-                       return (KERN_FAILURE);
+               if (*count < PROCESSOR_BASIC_INFO_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                basic_info = (processor_basic_info_t) info;
                basic_info->cpu_type = slot_type(cpu_id);
                basic_info->cpu_subtype = slot_subtype(cpu_id);
                state = processor->state;
-               if (state == PROCESSOR_OFF_LINE)
+               if (state == PROCESSOR_OFF_LINE
+#if defined(__x86_64__)
+                   || !processor->is_recommended
+#endif
+                   ) {
                        basic_info->running = FALSE;
-               else
+               } else {
                        basic_info->running = TRUE;
+               }
                basic_info->slot_num = cpu_id;
-               if (processor == master_processor) 
+               if (processor == master_processor) {
                        basic_info->is_master = TRUE;
-               else
+               } else {
                        basic_info->is_master = FALSE;
+               }
 
                *count = PROCESSOR_BASIC_INFO_COUNT;
                *host = &realhost;
 
-           return (KERN_SUCCESS);
+               return KERN_SUCCESS;
        }
 
        case PROCESSOR_CPU_LOAD_INFO:
        {
-               register processor_cpu_load_info_t      cpu_load_info;
-
-               if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
-                       return (KERN_FAILURE);
+               processor_cpu_load_info_t       cpu_load_info;
+               timer_t         idle_state;
+               uint64_t        idle_time_snapshot1, idle_time_snapshot2;
+               uint64_t        idle_time_tstamp1, idle_time_tstamp2;
+
+               /*
+                * We capture the accumulated idle time twice over
+                * the course of this function, as well as the timestamps
+                * when each were last updated. Since these are
+                * all done using non-atomic racy mechanisms, the
+                * most we can infer is whether values are stable.
+                * timer_grab() is the only function that can be
+                * used reliably on another processor's per-processor
+                * data.
+                */
+
+               if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                cpu_load_info = (processor_cpu_load_info_t) info;
-               cpu_load_info->cpu_ticks[CPU_STATE_USER] =
-                                                       (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval);
-               cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
-                                                       (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval);
-               {
-               timer_data_t    idle_temp;
-               timer_t         idle_state;
-
-               idle_state = &PROCESSOR_DATA(processor, idle_state);
-               idle_temp = *idle_state;
-
-               if (PROCESSOR_DATA(processor, current_state) != idle_state ||
-                   timer_grab(&idle_temp) != timer_grab(idle_state))
+               if (precise_user_kernel_time) {
+                       cpu_load_info->cpu_ticks[CPU_STATE_USER] =
+                           (uint32_t)(timer_grab(&processor->user_state) / hz_tick_interval);
+                       cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
+                           (uint32_t)(timer_grab(&processor->system_state) / hz_tick_interval);
+               } else {
+                       uint64_t tval = timer_grab(&processor->user_state) +
+                           timer_grab(&processor->system_state);
+
+                       cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval);
+                       cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
+               }
+
+               idle_state = &processor->idle_state;
+               idle_time_snapshot1 = timer_grab(idle_state);
+               idle_time_tstamp1 = idle_state->tstamp;
+
+               /*
+                * Idle processors are not continually updating their
+                * per-processor idle timer, so it may be extremely
+                * out of date, resulting in an over-representation
+                * of non-idle time between two measurement
+                * intervals by e.g. top(1). If we are non-idle, or
+                * have evidence that the timer is being updated
+                * concurrently, we consider its value up-to-date.
+                */
+               if (processor->current_state != idle_state) {
                        cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
-                                                       (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, idle_state)) / hz_tick_interval);
-               else {
-                       timer_advance(&idle_temp, mach_absolute_time() - idle_temp.tstamp);
-                               
+                           (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+               } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
+                   (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))) {
+                       /* Idle timer is being updated concurrently, second stamp is good enough */
                        cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
-                               (uint32_t)(timer_grab(&idle_temp) / hz_tick_interval);
-               }
+                           (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
+               } else {
+                       /*
+                        * Idle timer may be very stale. Fortunately we have established
+                        * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
+                        */
+                       idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
+
+                       cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+                           (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
                }
+
                cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
 
-           *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
-           *host = &realhost;
+               *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
+               *host = &realhost;
 
-           return (KERN_SUCCESS);
+               return KERN_SUCCESS;
        }
 
        default:
-           result = cpu_info(flavor, cpu_id, info, count);
-           if (result == KERN_SUCCESS)
-                       *host = &realhost;                 
+               result = cpu_info(flavor, cpu_id, info, count);
+               if (result == KERN_SUCCESS) {
+                       *host = &realhost;
+               }
 
-           return (result);
+               return result;
        }
 }
 
 kern_return_t
 processor_start(
-       processor_t                     processor)
+       processor_t                     processor)
 {
-       processor_set_t         pset;
-       thread_t                        thread;   
-       kern_return_t           result;
-       spl_t                           s;
+       processor_set_t         pset;
+       thread_t                        thread;
+       kern_return_t           result;
+       spl_t                           s;
 
-       if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL)
-               return (KERN_INVALID_ARGUMENT);
+       if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
 
        if (processor == master_processor) {
-               processor_t             prev;
+               processor_t             prev;
 
                prev = thread_bind(processor);
                thread_block(THREAD_CONTINUE_NULL);
@@ -399,20 +743,35 @@ processor_start(
 
                thread_bind(prev);
 
-               return (result);
+               return result;
        }
 
+       bool scheduler_disable = false;
+
+       if ((processor->processor_primary != processor) && (sched_enable_smt == 0)) {
+               if (cpu_can_exit(processor->cpu_id)) {
+                       return KERN_SUCCESS;
+               }
+               /*
+                * This secondary SMT processor must start in order to service interrupts,
+                * so instead it will be disabled at the scheduler level.
+                */
+               scheduler_disable = true;
+       }
+
+       ml_cpu_begin_state_transition(processor->cpu_id);
        s = splsched();
        pset = processor->processor_set;
        pset_lock(pset);
        if (processor->state != PROCESSOR_OFF_LINE) {
                pset_unlock(pset);
                splx(s);
+               ml_cpu_end_state_transition(processor->cpu_id);
 
-               return (KERN_FAILURE);
+               return KERN_FAILURE;
        }
 
-       processor->state = PROCESSOR_START;
+       pset_update_processor_state(pset, processor, PROCESSOR_START);
        pset_unlock(pset);
        splx(s);
 
@@ -424,11 +783,12 @@ processor_start(
                if (result != KERN_SUCCESS) {
                        s = splsched();
                        pset_lock(pset);
-                       processor->state = PROCESSOR_OFF_LINE;
+                       pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
                        pset_unlock(pset);
                        splx(s);
+                       ml_cpu_end_state_transition(processor->cpu_id);
 
-                       return (result);
+                       return result;
                }
        }
 
@@ -437,159 +797,264 @@ processor_start(
         *      has never been started.  Create a dedicated
         *      start up thread.
         */
-       if (    processor->active_thread == THREAD_NULL         &&
-                       processor->next_thread == THREAD_NULL           ) {
-               result = kernel_thread_create((thread_continue_t)processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
+       if (processor->active_thread == THREAD_NULL &&
+           processor->startup_thread == THREAD_NULL) {
+               result = kernel_thread_create(processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
                if (result != KERN_SUCCESS) {
                        s = splsched();
                        pset_lock(pset);
-                       processor->state = PROCESSOR_OFF_LINE;
+                       pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
                        pset_unlock(pset);
                        splx(s);
+                       ml_cpu_end_state_transition(processor->cpu_id);
 
-                       return (result);
+                       return result;
                }
 
                s = splsched();
                thread_lock(thread);
                thread->bound_processor = processor;
-               processor->next_thread = thread;
+               processor->startup_thread = thread;
                thread->state = TH_RUN;
+               thread->last_made_runnable_time = mach_absolute_time();
                thread_unlock(thread);
                splx(s);
 
                thread_deallocate(thread);
        }
 
-       if (processor->processor_self == IP_NULL)
+       if (processor->processor_self == IP_NULL) {
                ipc_processor_init(processor);
+       }
 
+       ml_broadcast_cpu_event(CPU_BOOT_REQUESTED, processor->cpu_id);
        result = cpu_start(processor->cpu_id);
        if (result != KERN_SUCCESS) {
                s = splsched();
                pset_lock(pset);
-               processor->state = PROCESSOR_OFF_LINE;
+               pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
                pset_unlock(pset);
                splx(s);
+               ml_cpu_end_state_transition(processor->cpu_id);
 
-               return (result);
+               return result;
+       }
+       if (scheduler_disable) {
+               assert(processor->processor_primary != processor);
+               sched_processor_enable(processor, FALSE);
        }
 
        ipc_processor_enable(processor);
+       ml_cpu_end_state_transition(processor->cpu_id);
+       ml_broadcast_cpu_event(CPU_ACTIVE, processor->cpu_id);
 
-       return (KERN_SUCCESS);
+       return KERN_SUCCESS;
 }
 
+
 kern_return_t
 processor_exit(
-       processor_t     processor)
+       processor_t     processor)
+{
+       if (processor == PROCESSOR_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       return processor_shutdown(processor);
+}
+
+
+kern_return_t
+processor_start_from_user(
+       processor_t                     processor)
 {
-       if (processor == PROCESSOR_NULL)
-               return(KERN_INVALID_ARGUMENT);
+       kern_return_t ret;
+
+       if (processor == PROCESSOR_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       if (!cpu_can_exit(processor->cpu_id)) {
+               ret = sched_processor_enable(processor, TRUE);
+       } else {
+               ret = processor_start(processor);
+       }
 
-       return(processor_shutdown(processor));
+       return ret;
+}
+
+kern_return_t
+processor_exit_from_user(
+       processor_t     processor)
+{
+       kern_return_t ret;
+
+       if (processor == PROCESSOR_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       if (!cpu_can_exit(processor->cpu_id)) {
+               ret = sched_processor_enable(processor, FALSE);
+       } else {
+               ret = processor_shutdown(processor);
+       }
+
+       return ret;
+}
+
+kern_return_t
+enable_smt_processors(bool enable)
+{
+       if (machine_info.logical_cpu_max == machine_info.physical_cpu_max) {
+               /* Not an SMT system */
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       int ncpus = machine_info.logical_cpu_max;
+
+       for (int i = 1; i < ncpus; i++) {
+               processor_t processor = processor_array[i];
+
+               if (processor->processor_primary != processor) {
+                       if (enable) {
+                               processor_start_from_user(processor);
+                       } else { /* Disable */
+                               processor_exit_from_user(processor);
+                       }
+               }
+       }
+
+#define BSD_HOST 1
+       host_basic_info_data_t hinfo;
+       mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+       kern_return_t kret = host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
+       if (kret != KERN_SUCCESS) {
+               return kret;
+       }
+
+       if (enable && (hinfo.logical_cpu != hinfo.logical_cpu_max)) {
+               return KERN_FAILURE;
+       }
+
+       if (!enable && (hinfo.logical_cpu != hinfo.physical_cpu)) {
+               return KERN_FAILURE;
+       }
+
+       return KERN_SUCCESS;
 }
 
 kern_return_t
 processor_control(
-       processor_t             processor,
-       processor_info_t        info,
-       mach_msg_type_number_t  count)
+       processor_t             processor,
+       processor_info_t        info,
+       mach_msg_type_number_t  count)
 {
-       if (processor == PROCESSOR_NULL)
-               return(KERN_INVALID_ARGUMENT);
+       if (processor == PROCESSOR_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
 
-       return(cpu_control(processor->cpu_id, info, count));
+       return cpu_control(processor->cpu_id, info, count);
 }
-           
+
 kern_return_t
 processor_set_create(
-       __unused host_t         host,
-       __unused processor_set_t        *new_set,
-       __unused processor_set_t        *new_name)
+       __unused host_t         host,
+       __unused processor_set_t        *new_set,
+       __unused processor_set_t        *new_name)
 {
-       return(KERN_FAILURE);
+       return KERN_FAILURE;
 }
 
 kern_return_t
 processor_set_destroy(
-       __unused processor_set_t        pset)
+       __unused processor_set_t        pset)
 {
-       return(KERN_FAILURE);
+       return KERN_FAILURE;
 }
 
 kern_return_t
 processor_get_assignment(
-       processor_t     processor,
-       processor_set_t *pset)
+       processor_t     processor,
+       processor_set_t *pset)
 {
        int state;
 
+       if (processor == PROCESSOR_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
        state = processor->state;
-       if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE)
-               return(KERN_FAILURE);
+       if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE) {
+               return KERN_FAILURE;
+       }
 
        *pset = &pset0;
 
-       return(KERN_SUCCESS);
+       return KERN_SUCCESS;
 }
 
 kern_return_t
 processor_set_info(
-       processor_set_t         pset,
-       int                     flavor,
-       host_t                  *host,
-       processor_set_info_t    info,
-       mach_msg_type_number_t  *count)
+       processor_set_t         pset,
+       int                     flavor,
+       host_t                  *host,
+       processor_set_info_t    info,
+       mach_msg_type_number_t  *count)
 {
-       if (pset == PROCESSOR_SET_NULL)
-               return(KERN_INVALID_ARGUMENT);
+       if (pset == PROCESSOR_SET_NULL) {
+               return KERN_INVALID_ARGUMENT;
+       }
 
        if (flavor == PROCESSOR_SET_BASIC_INFO) {
-               register processor_set_basic_info_t     basic_info;
+               processor_set_basic_info_t      basic_info;
 
-               if (*count < PROCESSOR_SET_BASIC_INFO_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < PROCESSOR_SET_BASIC_INFO_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                basic_info = (processor_set_basic_info_t) info;
+#if defined(__x86_64__)
+               basic_info->processor_count = processor_avail_count_user;
+#else
                basic_info->processor_count = processor_avail_count;
+#endif
                basic_info->default_policy = POLICY_TIMESHARE;
 
                *count = PROCESSOR_SET_BASIC_INFO_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
-               register policy_timeshare_base_t        ts_base;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
+               policy_timeshare_base_t ts_base;
 
-               if (*count < POLICY_TIMESHARE_BASE_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < POLICY_TIMESHARE_BASE_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                ts_base = (policy_timeshare_base_t) info;
                ts_base->base_priority = BASEPRI_DEFAULT;
 
                *count = POLICY_TIMESHARE_BASE_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
-               register policy_fifo_base_t             fifo_base;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
+               policy_fifo_base_t              fifo_base;
 
-               if (*count < POLICY_FIFO_BASE_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < POLICY_FIFO_BASE_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                fifo_base = (policy_fifo_base_t) info;
                fifo_base->base_priority = BASEPRI_DEFAULT;
 
                *count = POLICY_FIFO_BASE_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
-               register policy_rr_base_t               rr_base;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
+               policy_rr_base_t                rr_base;
 
-               if (*count < POLICY_RR_BASE_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < POLICY_RR_BASE_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                rr_base = (policy_rr_base_t) info;
                rr_base->base_priority = BASEPRI_DEFAULT;
@@ -597,86 +1062,88 @@ processor_set_info(
 
                *count = POLICY_RR_BASE_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
-               register policy_timeshare_limit_t       ts_limit;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
+               policy_timeshare_limit_t        ts_limit;
 
-               if (*count < POLICY_TIMESHARE_LIMIT_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < POLICY_TIMESHARE_LIMIT_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                ts_limit = (policy_timeshare_limit_t) info;
                ts_limit->max_priority = MAXPRI_KERNEL;
 
                *count = POLICY_TIMESHARE_LIMIT_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
-               register policy_fifo_limit_t            fifo_limit;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
+               policy_fifo_limit_t             fifo_limit;
 
-               if (*count < POLICY_FIFO_LIMIT_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < POLICY_FIFO_LIMIT_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                fifo_limit = (policy_fifo_limit_t) info;
                fifo_limit->max_priority = MAXPRI_KERNEL;
 
                *count = POLICY_FIFO_LIMIT_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_RR_LIMITS) {
-               register policy_rr_limit_t              rr_limit;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_RR_LIMITS) {
+               policy_rr_limit_t               rr_limit;
 
-               if (*count < POLICY_RR_LIMIT_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < POLICY_RR_LIMIT_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                rr_limit = (policy_rr_limit_t) info;
                rr_limit->max_priority = MAXPRI_KERNEL;
 
                *count = POLICY_RR_LIMIT_COUNT;
                *host = &realhost;
-               return(KERN_SUCCESS);
-       }
-       else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
-               register int                            *enabled;
+               return KERN_SUCCESS;
+       } else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
+               int                             *enabled;
 
-               if (*count < (sizeof(*enabled)/sizeof(int)))
-                       return(KERN_FAILURE);
+               if (*count < (sizeof(*enabled) / sizeof(int))) {
+                       return KERN_FAILURE;
+               }
 
                enabled = (int *) info;
                *enabled = POLICY_TIMESHARE | POLICY_RR | POLICY_FIFO;
 
-               *count = sizeof(*enabled)/sizeof(int);
+               *count = sizeof(*enabled) / sizeof(int);
                *host = &realhost;
-               return(KERN_SUCCESS);
+               return KERN_SUCCESS;
        }
 
 
        *host = HOST_NULL;
-       return(KERN_INVALID_ARGUMENT);
+       return KERN_INVALID_ARGUMENT;
 }
 
 /*
  *     processor_set_statistics
  *
- *     Returns scheduling statistics for a processor set. 
+ *     Returns scheduling statistics for a processor set.
  */
-kern_return_t 
+kern_return_t
 processor_set_statistics(
        processor_set_t         pset,
        int                     flavor,
        processor_set_info_t    info,
-       mach_msg_type_number_t  *count)
+       mach_msg_type_number_t  *count)
 {
-       if (pset == PROCESSOR_SET_NULL || pset != &pset0)
-               return (KERN_INVALID_PROCESSOR_SET);
+       if (pset == PROCESSOR_SET_NULL || pset != &pset0) {
+               return KERN_INVALID_PROCESSOR_SET;
+       }
 
        if (flavor == PROCESSOR_SET_LOAD_INFO) {
-               register processor_set_load_info_t     load_info;
+               processor_set_load_info_t     load_info;
 
-               if (*count < PROCESSOR_SET_LOAD_INFO_COUNT)
-                       return(KERN_FAILURE);
+               if (*count < PROCESSOR_SET_LOAD_INFO_COUNT) {
+                       return KERN_FAILURE;
+               }
 
                load_info = (processor_set_load_info_t) info;
 
@@ -687,10 +1154,10 @@ processor_set_statistics(
                load_info->thread_count = threads_count;
 
                *count = PROCESSOR_SET_LOAD_INFO_COUNT;
-               return(KERN_SUCCESS);
+               return KERN_SUCCESS;
        }
 
-       return(KERN_INVALID_ARGUMENT);
+       return KERN_INVALID_ARGUMENT;
 }
 
 /*
@@ -698,15 +1165,15 @@ processor_set_statistics(
  *
  *     Specify max priority permitted on processor set.  This affects
  *     newly created and assigned threads.  Optionally change existing
- *     ones.
+ *      ones.
  */
 kern_return_t
 processor_set_max_priority(
-       __unused processor_set_t        pset,
-       __unused int                    max_priority,
-       __unused boolean_t              change_threads)
+       __unused processor_set_t        pset,
+       __unused int                    max_priority,
+       __unused boolean_t              change_threads)
 {
-       return (KERN_INVALID_ARGUMENT);
+       return KERN_INVALID_ARGUMENT;
 }
 
 /*
@@ -717,10 +1184,10 @@ processor_set_max_priority(
 
 kern_return_t
 processor_set_policy_enable(
-       __unused processor_set_t        pset,
-       __unused int                    policy)
+       __unused processor_set_t        pset,
+       __unused int                    policy)
 {
-       return (KERN_INVALID_ARGUMENT);
+       return KERN_INVALID_ARGUMENT;
 }
 
 /*
@@ -731,200 +1198,341 @@ processor_set_policy_enable(
  */
 kern_return_t
 processor_set_policy_disable(
-       __unused processor_set_t        pset,
-       __unused int                    policy,
-       __unused boolean_t              change_threads)
+       __unused processor_set_t        pset,
+       __unused int                    policy,
+       __unused boolean_t              change_threads)
 {
-       return (KERN_INVALID_ARGUMENT);
+       return KERN_INVALID_ARGUMENT;
 }
 
-#define THING_TASK     0
-#define THING_THREAD   1
-
 /*
  *     processor_set_things:
  *
  *     Common internals for processor_set_{threads,tasks}
  */
-kern_return_t
+static kern_return_t
 processor_set_things(
-       processor_set_t                 pset,
-       mach_port_t                             **thing_list,
-       mach_msg_type_number_t  *count,
-       int                                             type)
+       processor_set_t pset,
+       void **thing_list,
+       mach_msg_type_number_t *count,
+       int type,
+       mach_task_flavor_t flavor)
 {
-       unsigned int actual;    /* this many things */
-       unsigned int maxthings;
        unsigned int i;
+       task_t task;
+       thread_t thread;
+
+       task_t *task_list;
+       unsigned int actual_tasks;
+       vm_size_t task_size, task_size_needed;
 
+       thread_t *thread_list;
+       unsigned int actual_threads;
+       vm_size_t thread_size, thread_size_needed;
+
+       void *addr, *newaddr;
        vm_size_t size, size_needed;
-       void  *addr;
 
-       if (pset == PROCESSOR_SET_NULL || pset != &pset0)
-               return (KERN_INVALID_ARGUMENT);
+       if (pset == PROCESSOR_SET_NULL || pset != &pset0) {
+               return KERN_INVALID_ARGUMENT;
+       }
+
+       task_size = 0;
+       task_size_needed = 0;
+       task_list = NULL;
+       actual_tasks = 0;
 
-       size = 0;
-       addr = NULL;
+       thread_size = 0;
+       thread_size_needed = 0;
+       thread_list = NULL;
+       actual_threads = 0;
 
        for (;;) {
                lck_mtx_lock(&tasks_threads_lock);
 
-               if (type == THING_TASK)
-                       maxthings = tasks_count;
-               else
-                       maxthings = threads_count;
-
                /* do we have the memory we need? */
+               if (type == PSET_THING_THREAD) {
+                       thread_size_needed = threads_count * sizeof(void *);
+               }
+#if !CONFIG_MACF
+               else
+#endif
+               task_size_needed = tasks_count * sizeof(void *);
 
-               size_needed = maxthings * sizeof (mach_port_t);
-               if (size_needed <= size)
+               if (task_size_needed <= task_size &&
+                   thread_size_needed <= thread_size) {
                        break;
+               }
 
                /* unlock and allocate more memory */
                lck_mtx_unlock(&tasks_threads_lock);
 
-               if (size != 0)
-                       kfree(addr, size);
-
-               assert(size_needed > 0);
-               size = size_needed;
+               /* grow task array */
+               if (task_size_needed > task_size) {
+                       if (task_size != 0) {
+                               kfree(task_list, task_size);
+                       }
 
-               addr = kalloc(size);
-               if (addr == 0)
-                       return (KERN_RESOURCE_SHORTAGE);
-       }
+                       assert(task_size_needed > 0);
+                       task_size = task_size_needed;
 
-       /* OK, have memory and the list locked */
+                       task_list = (task_t *)kalloc(task_size);
+                       if (task_list == NULL) {
+                               if (thread_size != 0) {
+                                       kfree(thread_list, thread_size);
+                               }
+                               return KERN_RESOURCE_SHORTAGE;
+                       }
+               }
 
-       actual = 0;
-       switch (type) {
+               /* grow thread array */
+               if (thread_size_needed > thread_size) {
+                       if (thread_size != 0) {
+                               kfree(thread_list, thread_size);
+                       }
 
-       case THING_TASK: {
-               task_t          task, *task_list = (task_t *)addr;
+                       assert(thread_size_needed > 0);
+                       thread_size = thread_size_needed;
 
-               for (task = (task_t)queue_first(&tasks);
-                                               !queue_end(&tasks, (queue_entry_t)task);
-                                                               task = (task_t)queue_next(&task->tasks)) {
-#if defined(SECURE_KERNEL)
-                       if (task != kernel_task) {
-#endif
-                               task_reference_internal(task);
-                               task_list[actual++] = task;
-#if defined(SECURE_KERNEL)
+                       thread_list = (thread_t *)kalloc(thread_size);
+                       if (thread_list == 0) {
+                               if (task_size != 0) {
+                                       kfree(task_list, task_size);
+                               }
+                               return KERN_RESOURCE_SHORTAGE;
                        }
-#endif
                }
-
-               break;
        }
 
-       case THING_THREAD: {
-               thread_t        thread, *thread_list = (thread_t *)addr;
+       /* OK, have memory and the list locked */
 
+       /* If we need it, get the thread list */
+       if (type == PSET_THING_THREAD) {
                for (thread = (thread_t)queue_first(&threads);
-                                               !queue_end(&threads, (queue_entry_t)thread);
-                                                               thread = (thread_t)queue_next(&thread->threads)) {
+                   !queue_end(&threads, (queue_entry_t)thread);
+                   thread = (thread_t)queue_next(&thread->threads)) {
+#if defined(SECURE_KERNEL)
+                       if (thread->task != kernel_task) {
+#endif
                        thread_reference_internal(thread);
-                       thread_list[actual++] = thread;
+                       thread_list[actual_threads++] = thread;
+#if defined(SECURE_KERNEL)
+               }
+#endif
                }
-
-               break;
        }
-
+#if !CONFIG_MACF
+       else {
+#endif
+       /* get a list of the tasks */
+       for (task = (task_t)queue_first(&tasks);
+           !queue_end(&tasks, (queue_entry_t)task);
+           task = (task_t)queue_next(&task->tasks)) {
+#if defined(SECURE_KERNEL)
+               if (task != kernel_task) {
+#endif
+               task_reference_internal(task);
+               task_list[actual_tasks++] = task;
+#if defined(SECURE_KERNEL)
        }
-               
-       lck_mtx_unlock(&tasks_threads_lock);
-
-       if (actual < maxthings)
-               size_needed = actual * sizeof (mach_port_t);
-
-       if (actual == 0) {
-               /* no things, so return null pointer and deallocate memory */
-               *thing_list = NULL;
-               *count = 0;
-
-               if (size != 0)
-                       kfree(addr, size);
+#endif
        }
-       else {
-               /* if we allocated too much, must copy */
-
-               if (size_needed < size) {
-                       void *newaddr;
+#if !CONFIG_MACF
+}
+#endif
 
-                       newaddr = kalloc(size_needed);
-                       if (newaddr == 0) {
-                               switch (type) {
+       lck_mtx_unlock(&tasks_threads_lock);
 
-                               case THING_TASK: {
-                                       task_t          *task_list = (task_t *)addr;
+#if CONFIG_MACF
+       unsigned int j, used;
 
-                                       for (i = 0; i < actual; i++)
-                                               task_deallocate(task_list[i]);
+       /* for each task, make sure we are allowed to examine it */
+       for (i = used = 0; i < actual_tasks; i++) {
+               if (mac_task_check_expose_task(task_list[i], flavor)) {
+                       task_deallocate(task_list[i]);
+                       continue;
+               }
+               task_list[used++] = task_list[i];
+       }
+       actual_tasks = used;
+       task_size_needed = actual_tasks * sizeof(void *);
+
+       if (type == PSET_THING_THREAD) {
+               /* for each thread (if any), make sure it's task is in the allowed list */
+               for (i = used = 0; i < actual_threads; i++) {
+                       boolean_t found_task = FALSE;
+
+                       task = thread_list[i]->task;
+                       for (j = 0; j < actual_tasks; j++) {
+                               if (task_list[j] == task) {
+                                       found_task = TRUE;
                                        break;
                                }
+                       }
+                       if (found_task) {
+                               thread_list[used++] = thread_list[i];
+                       } else {
+                               thread_deallocate(thread_list[i]);
+                       }
+               }
+               actual_threads = used;
+               thread_size_needed = actual_threads * sizeof(void *);
 
-                               case THING_THREAD: {
-                                       thread_t        *thread_list = (thread_t *)addr;
+               /* done with the task list */
+               for (i = 0; i < actual_tasks; i++) {
+                       task_deallocate(task_list[i]);
+               }
+               kfree(task_list, task_size);
+               task_size = 0;
+               actual_tasks = 0;
+               task_list = NULL;
+       }
+#endif
 
-                                       for (i = 0; i < actual; i++)
-                                               thread_deallocate(thread_list[i]);
-                                       break;
-                               }
+       if (type == PSET_THING_THREAD) {
+               if (actual_threads == 0) {
+                       /* no threads available to return */
+                       assert(task_size == 0);
+                       if (thread_size != 0) {
+                               kfree(thread_list, thread_size);
+                       }
+                       *thing_list = NULL;
+                       *count = 0;
+                       return KERN_SUCCESS;
+               }
+               size_needed = actual_threads * sizeof(void *);
+               size = thread_size;
+               addr = thread_list;
+       } else {
+               if (actual_tasks == 0) {
+                       /* no tasks available to return */
+                       assert(thread_size == 0);
+                       if (task_size != 0) {
+                               kfree(task_list, task_size);
+                       }
+                       *thing_list = NULL;
+                       *count = 0;
+                       return KERN_SUCCESS;
+               }
+               size_needed = actual_tasks * sizeof(void *);
+               size = task_size;
+               addr = task_list;
+       }
 
+       /* if we allocated too much, must copy */
+       if (size_needed < size) {
+               newaddr = kalloc(size_needed);
+               if (newaddr == 0) {
+                       for (i = 0; i < actual_tasks; i++) {
+                               if (type == PSET_THING_THREAD) {
+                                       thread_deallocate(thread_list[i]);
+                               } else {
+                                       task_deallocate(task_list[i]);
                                }
-
+                       }
+                       if (size) {
                                kfree(addr, size);
-                               return (KERN_RESOURCE_SHORTAGE);
                        }
-
-                       bcopy((void *) addr, (void *) newaddr, size_needed);
-                       kfree(addr, size);
-                       addr = newaddr;
+                       return KERN_RESOURCE_SHORTAGE;
                }
 
-               *thing_list = (mach_port_t *)addr;
-               *count = actual;
+               bcopy((void *) addr, (void *) newaddr, size_needed);
+               kfree(addr, size);
 
-               /* do the conversion that Mig should handle */
+               addr = newaddr;
+               size = size_needed;
+       }
 
-               switch (type) {
+       *thing_list = (void **)addr;
+       *count = (unsigned int)size / sizeof(void *);
 
-               case THING_TASK: {
-                       task_t          *task_list = (task_t *)addr;
+       return KERN_SUCCESS;
+}
 
-                       for (i = 0; i < actual; i++)
-                               (*thing_list)[i] = convert_task_to_port(task_list[i]);
-                       break;
-               }
+/*
+ *     processor_set_tasks:
+ *
+ *     List all tasks in the processor set.
+ */
+static kern_return_t
+processor_set_tasks_internal(
+       processor_set_t         pset,
+       task_array_t            *task_list,
+       mach_msg_type_number_t  *count,
+       mach_task_flavor_t      flavor)
+{
+       kern_return_t ret;
+       mach_msg_type_number_t i;
 
-               case THING_THREAD: {
-                       thread_t        *thread_list = (thread_t *)addr;
+       ret = processor_set_things(pset, (void **)task_list, count, PSET_THING_TASK, flavor);
+       if (ret != KERN_SUCCESS) {
+               return ret;
+       }
 
-                       for (i = 0; i < actual; i++)
-                               (*thing_list)[i] = convert_thread_to_port(thread_list[i]);
-                       break;
+       /* do the conversion that Mig should handle */
+       switch (flavor) {
+       case TASK_FLAVOR_CONTROL:
+               for (i = 0; i < *count; i++) {
+                       if ((*task_list)[i] == current_task()) {
+                               /* if current_task(), return pinned port */
+                               (*task_list)[i] = (task_t)convert_task_to_port_pinned((*task_list)[i]);
+                       } else {
+                               (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]);
+                       }
                }
-
+               break;
+       case TASK_FLAVOR_READ:
+               for (i = 0; i < *count; i++) {
+                       (*task_list)[i] = (task_t)convert_task_read_to_port((*task_list)[i]);
                }
+               break;
+       case TASK_FLAVOR_INSPECT:
+               for (i = 0; i < *count; i++) {
+                       (*task_list)[i] = (task_t)convert_task_inspect_to_port((*task_list)[i]);
+               }
+               break;
+       case TASK_FLAVOR_NAME:
+               for (i = 0; i < *count; i++) {
+                       (*task_list)[i] = (task_t)convert_task_name_to_port((*task_list)[i]);
+               }
+               break;
+       default:
+               return KERN_INVALID_ARGUMENT;
        }
 
-       return (KERN_SUCCESS);
+       return KERN_SUCCESS;
 }
 
+kern_return_t
+processor_set_tasks(
+       processor_set_t         pset,
+       task_array_t            *task_list,
+       mach_msg_type_number_t  *count)
+{
+       return processor_set_tasks_internal(pset, task_list, count, TASK_FLAVOR_CONTROL);
+}
 
 /*
- *     processor_set_tasks:
+ *     processor_set_tasks_with_flavor:
  *
- *     List all tasks in the processor set.
+ *     Based on flavor, return task/inspect/read port to all tasks in the processor set.
  */
 kern_return_t
-processor_set_tasks(
-       processor_set_t         pset,
-       task_array_t            *task_list,
-       mach_msg_type_number_t  *count)
+processor_set_tasks_with_flavor(
+       processor_set_t         pset,
+       mach_task_flavor_t      flavor,
+       task_array_t            *task_list,
+       mach_msg_type_number_t  *count)
 {
-    return(processor_set_things(pset, (mach_port_t **)task_list, count, THING_TASK));
+       switch (flavor) {
+       case TASK_FLAVOR_CONTROL:
+       case TASK_FLAVOR_READ:
+       case TASK_FLAVOR_INSPECT:
+       case TASK_FLAVOR_NAME:
+               return processor_set_tasks_internal(pset, task_list, count, flavor);
+       default:
+               return KERN_INVALID_ARGUMENT;
+       }
 }
 
 /*
@@ -935,29 +1543,41 @@ processor_set_tasks(
 #if defined(SECURE_KERNEL)
 kern_return_t
 processor_set_threads(
-       __unused processor_set_t                pset,
-       __unused thread_array_t         *thread_list,
-       __unused mach_msg_type_number_t *count)
+       __unused processor_set_t                pset,
+       __unused thread_array_t         *thread_list,
+       __unused mach_msg_type_number_t *count)
 {
-    return KERN_FAILURE;
+       return KERN_FAILURE;
 }
-#elif defined(CONFIG_EMBEDDED)
+#elif !defined(XNU_TARGET_OS_OSX)
 kern_return_t
 processor_set_threads(
-       __unused processor_set_t                pset,
-       __unused thread_array_t         *thread_list,
-       __unused mach_msg_type_number_t *count)
+       __unused processor_set_t                pset,
+       __unused thread_array_t         *thread_list,
+       __unused mach_msg_type_number_t *count)
 {
-    return KERN_NOT_SUPPORTED;
+       return KERN_NOT_SUPPORTED;
 }
 #else
 kern_return_t
 processor_set_threads(
-       processor_set_t         pset,
-       thread_array_t          *thread_list,
-       mach_msg_type_number_t  *count)
+       processor_set_t         pset,
+       thread_array_t          *thread_list,
+       mach_msg_type_number_t  *count)
 {
-    return(processor_set_things(pset, (mach_port_t **)thread_list, count, THING_THREAD));
+       kern_return_t ret;
+       mach_msg_type_number_t i;
+
+       ret = processor_set_things(pset, (void **)thread_list, count, PSET_THING_THREAD, TASK_FLAVOR_CONTROL);
+       if (ret != KERN_SUCCESS) {
+               return ret;
+       }
+
+       /* do the conversion that Mig should handle */
+       for (i = 0; i < *count; i++) {
+               (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]);
+       }
+       return KERN_SUCCESS;
 }
 #endif
 
@@ -970,20 +1590,20 @@ processor_set_threads(
  */
 kern_return_t
 processor_set_policy_control(
-       __unused processor_set_t                pset,
-       __unused int                            flavor,
-       __unused processor_set_info_t   policy_info,
-       __unused mach_msg_type_number_t count,
-       __unused boolean_t                      change)
+       __unused processor_set_t                pset,
+       __unused int                            flavor,
+       __unused processor_set_info_t   policy_info,
+       __unused mach_msg_type_number_t count,
+       __unused boolean_t                      change)
 {
-       return (KERN_INVALID_ARGUMENT);
+       return KERN_INVALID_ARGUMENT;
 }
 
 #undef pset_deallocate
 void pset_deallocate(processor_set_t pset);
 void
 pset_deallocate(
-__unused processor_set_t       pset)
+       __unused processor_set_t        pset)
 {
        return;
 }
@@ -992,7 +1612,124 @@ __unused processor_set_t pset)
 void pset_reference(processor_set_t pset);
 void
 pset_reference(
-__unused processor_set_t       pset)
+       __unused processor_set_t        pset)
 {
        return;
 }
+
+#if CONFIG_THREAD_GROUPS
+
+pset_cluster_type_t
+thread_group_pset_recommendation(__unused struct thread_group *tg, __unused cluster_type_t recommendation)
+{
+#if __AMP__
+       switch (recommendation) {
+       case CLUSTER_TYPE_SMP:
+       default:
+               /*
+                * In case of SMP recommendations, check if the thread
+                * group has special flags which restrict it to the E
+                * cluster.
+                */
+               if (thread_group_smp_restricted(tg)) {
+                       return PSET_AMP_E;
+               }
+               return PSET_AMP_P;
+       case CLUSTER_TYPE_E:
+               return PSET_AMP_E;
+       case CLUSTER_TYPE_P:
+               return PSET_AMP_P;
+       }
+#else /* __AMP__ */
+       return PSET_SMP;
+#endif /* __AMP__ */
+}
+
+#endif
+
+pset_cluster_type_t
+recommended_pset_type(thread_t thread)
+{
+#if CONFIG_THREAD_GROUPS && __AMP__
+       if (thread == THREAD_NULL) {
+               return PSET_AMP_E;
+       }
+
+       if (thread->sched_flags & TH_SFLAG_ECORE_ONLY) {
+               return PSET_AMP_E;
+       } else if (thread->sched_flags & TH_SFLAG_PCORE_ONLY) {
+               return PSET_AMP_P;
+       }
+
+       if (thread->base_pri <= MAXPRI_THROTTLE) {
+               if (os_atomic_load(&sched_perfctl_policy_bg, relaxed) != SCHED_PERFCTL_POLICY_FOLLOW_GROUP) {
+                       return PSET_AMP_E;
+               }
+       } else if (thread->base_pri <= BASEPRI_UTILITY) {
+               if (os_atomic_load(&sched_perfctl_policy_util, relaxed) != SCHED_PERFCTL_POLICY_FOLLOW_GROUP) {
+                       return PSET_AMP_E;
+               }
+       }
+
+#if DEVELOPMENT || DEBUG
+       extern bool system_ecore_only;
+       extern processor_set_t pcore_set;
+       if (system_ecore_only) {
+               if (thread->task->pset_hint == pcore_set) {
+                       return PSET_AMP_P;
+               }
+               return PSET_AMP_E;
+       }
+#endif
+
+       struct thread_group *tg = thread_group_get(thread);
+       cluster_type_t recommendation = thread_group_recommendation(tg);
+       switch (recommendation) {
+       case CLUSTER_TYPE_SMP:
+       default:
+               if (thread->task == kernel_task) {
+                       return PSET_AMP_E;
+               }
+               return PSET_AMP_P;
+       case CLUSTER_TYPE_E:
+               return PSET_AMP_E;
+       case CLUSTER_TYPE_P:
+               return PSET_AMP_P;
+       }
+#else
+       (void)thread;
+       return PSET_SMP;
+#endif
+}
+
+#if CONFIG_THREAD_GROUPS && __AMP__
+
+void
+sched_perfcontrol_inherit_recommendation_from_tg(perfcontrol_class_t perfctl_class, boolean_t inherit)
+{
+       sched_perfctl_class_policy_t sched_policy = inherit ? SCHED_PERFCTL_POLICY_FOLLOW_GROUP : SCHED_PERFCTL_POLICY_RESTRICT_E;
+
+       KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_AMP_PERFCTL_POLICY_CHANGE) | DBG_FUNC_NONE, perfctl_class, sched_policy, 0, 0);
+
+       switch (perfctl_class) {
+       case PERFCONTROL_CLASS_UTILITY:
+               os_atomic_store(&sched_perfctl_policy_util, sched_policy, relaxed);
+               break;
+       case PERFCONTROL_CLASS_BACKGROUND:
+               os_atomic_store(&sched_perfctl_policy_bg, sched_policy, relaxed);
+               break;
+       default:
+               panic("perfctl_class invalid");
+               break;
+       }
+}
+
+#elif defined(__arm64__)
+
+/* Define a stub routine since this symbol is exported on all arm64 platforms */
+void
+sched_perfcontrol_inherit_recommendation_from_tg(__unused perfcontrol_class_t perfctl_class, __unused boolean_t inherit)
+{
+}
+
+#endif /* defined(__arm64__) */