+ CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
+ }
+
+ } else {
+ /*
+ * Disabling limits does not touch the stored variants.
+ * Set the cached limit fields to system_wide defaults.
+ */
+ p->p_memstat_memlimit = -1;
+ p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT;
+ is_fatal = TRUE;
+ }
+
+ /*
+ * Enforce the cached limit by writing to the ledger.
+ */
+ task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal);
+
+ p = memorystatus_get_next_proc_locked(&b, p, TRUE);
+ }
+
+ memorystatus_highwater_enabled = enable;
+
+ proc_list_unlock();
+
+ return 0;
+
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I", "");
+
+#if VM_PRESSURE_EVENTS
+
+/*
+ * This routine is used for targeted notifications regardless of system memory pressure
+ * and regardless of whether or not the process has already been notified.
+ * It bypasses and has no effect on the only-one-notification per soft-limit policy.
+ *
+ * "memnote" is the current user.
+ */
+
+static int
+sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+
+ int error = 0, pid = 0;
+ struct knote *kn = NULL;
+ boolean_t found_knote = FALSE;
+ int fflags = 0; /* filter flags for EVFILT_MEMORYSTATUS */
+ uint64_t value = 0;
+
+ error = sysctl_handle_quad(oidp, &value, 0, req);
+ if (error || !req->newptr)
+ return (error);
+
+ /*
+ * Find the pid in the low 32 bits of value passed in.
+ */
+ pid = (int)(value & 0xFFFFFFFF);
+
+ /*
+ * Find notification in the high 32 bits of the value passed in.
+ */
+ fflags = (int)((value >> 32) & 0xFFFFFFFF);
+
+ /*
+ * For backwards compatibility, when no notification is
+ * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN
+ */
+ if (fflags == 0) {
+ fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN;
+ // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags);
+ }
+
+ /*
+ * See event.h ... fflags for EVFILT_MEMORYSTATUS
+ */
+ if (!((fflags == NOTE_MEMORYSTATUS_PRESSURE_NORMAL)||
+ (fflags == NOTE_MEMORYSTATUS_PRESSURE_WARN) ||
+ (fflags == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) ||
+ (fflags == NOTE_MEMORYSTATUS_LOW_SWAP) ||
+ (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) ||
+ (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) ||
+ (((fflags & NOTE_MEMORYSTATUS_MSL_STATUS) != 0 &&
+ ((fflags & ~NOTE_MEMORYSTATUS_MSL_STATUS) == 0))))) {
+
+ printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n", fflags);
+ error = 1;
+ return (error);
+ }
+
+ /*
+ * Forcibly send pid a memorystatus notification.
+ */
+
+ memorystatus_klist_lock();
+
+ SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
+ proc_t knote_proc = knote_get_kq(kn)->kq_p;
+ pid_t knote_pid = knote_proc->p_pid;
+
+ if (knote_pid == pid) {
+ /*
+ * Forcibly send this pid a memorystatus notification.
+ */
+ kn->kn_fflags = fflags;
+ found_knote = TRUE;
+ }
+ }
+
+ if (found_knote) {
+ KNOTE(&memorystatus_klist, 0);
+ printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n", value, fflags, pid);
+ error = 0;
+ } else {
+ printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n", value, fflags, pid);
+ error = 1;
+ }
+
+ memorystatus_klist_unlock();
+
+ return (error);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_send, CTLTYPE_QUAD|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorystatus_vm_pressure_send, "Q", "");
+
+#endif /* VM_PRESSURE_EVENTS */
+
+SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, "");
+
+#if CONFIG_JETSAM
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, "");
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, "");
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, "");
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RW, &memorystatus_policy_more_free_offset_pages, 0, "");
+
+static unsigned int memorystatus_jetsam_panic_debug = 0;
+static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic = 0;
+
+/* Diagnostic code */
+
+enum {
+ kJetsamDiagnosticModeNone = 0,
+ kJetsamDiagnosticModeAll = 1,
+ kJetsamDiagnosticModeStopAtFirstActive = 2,
+ kJetsamDiagnosticModeCount
+} jetsam_diagnostic_mode = kJetsamDiagnosticModeNone;
+
+static int jetsam_diagnostic_suspended_one_active_proc = 0;
+
+static int
+sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+
+ const char *diagnosticStrings[] = {
+ "jetsam: diagnostic mode: resetting critical level.",
+ "jetsam: diagnostic mode: will examine all processes",
+ "jetsam: diagnostic mode: will stop at first active process"
+ };
+
+ int error, val = jetsam_diagnostic_mode;
+ boolean_t changed = FALSE;
+
+ error = sysctl_handle_int(oidp, &val, 0, req);
+ if (error || !req->newptr)
+ return (error);
+ if ((val < 0) || (val >= kJetsamDiagnosticModeCount)) {
+ printf("jetsam: diagnostic mode: invalid value - %d\n", val);
+ return EINVAL;
+ }
+
+ proc_list_lock();
+
+ if ((unsigned int) val != jetsam_diagnostic_mode) {
+ jetsam_diagnostic_mode = val;
+
+ memorystatus_jetsam_policy &= ~kPolicyDiagnoseActive;
+
+ switch (jetsam_diagnostic_mode) {
+ case kJetsamDiagnosticModeNone:
+ /* Already cleared */
+ break;
+ case kJetsamDiagnosticModeAll:
+ memorystatus_jetsam_policy |= kPolicyDiagnoseAll;
+ break;
+ case kJetsamDiagnosticModeStopAtFirstActive:
+ memorystatus_jetsam_policy |= kPolicyDiagnoseFirst;
+ break;
+ default:
+ /* Already validated */
+ break;
+ }
+
+ memorystatus_update_levels_locked(FALSE);
+ changed = TRUE;
+ }
+
+ proc_list_unlock();
+
+ if (changed) {
+ printf("%s\n", diagnosticStrings[val]);
+ }
+
+ return (0);
+}
+
+SYSCTL_PROC(_debug, OID_AUTO, jetsam_diagnostic_mode, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY,
+ &jetsam_diagnostic_mode, 0, sysctl_jetsam_diagnostic_mode, "I", "Jetsam Diagnostic Mode");
+
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jetsam_policy_offset_pages_diagnostic, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jetsam_policy_offset_pages_diagnostic, 0, "");
+
+#if VM_PRESSURE_EVENTS
+
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, "");
+
+#endif /* VM_PRESSURE_EVENTS */
+
+#endif /* CONFIG_JETSAM */
+
+#if CONFIG_FREEZE
+
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_daily_mb_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_daily_mb_max, 0, "");
+
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_threshold, 0, "");
+
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_min, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_min, 0, "");
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_max, 0, "");
+
+SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_count, "");
+SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_pageouts, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_pageouts, "");
+SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_throttle_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_count, "");
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_min_processes, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_suspended_threshold, 0, "");
+
+boolean_t memorystatus_freeze_throttle_enabled = TRUE;
+SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_throttle_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_enabled, 0, "");
+
+#define VM_PAGES_FOR_ALL_PROCS (2)
+/*
+ * Manual trigger of freeze and thaw for dev / debug kernels only.
+ */
+static int
+sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+ int error, pid = 0;
+ proc_t p;
+
+ if (memorystatus_freeze_enabled == FALSE) {
+ return ENOTSUP;
+ }
+
+ error = sysctl_handle_int(oidp, &pid, 0, req);
+ if (error || !req->newptr)
+ return (error);
+
+ if (pid == VM_PAGES_FOR_ALL_PROCS) {
+ vm_pageout_anonymous_pages();
+
+ return 0;
+ }
+
+ lck_mtx_lock(&freezer_mutex);
+
+ p = proc_find(pid);
+ if (p != NULL) {
+ uint32_t purgeable, wired, clean, dirty;
+ boolean_t shared;
+ uint32_t max_pages = 0;
+
+ if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
+
+ unsigned int avail_swap_space = 0; /* in pages. */
+
+ /*
+ * Freezer backed by the compressor and swap file(s)
+ * while will hold compressed data.
+ */
+ avail_swap_space = vm_swap_get_free_space() / PAGE_SIZE_64;
+
+ max_pages = MIN(avail_swap_space, memorystatus_freeze_pages_max);
+
+ } else {
+ /*
+ * We only have the compressor without any swap.
+ */
+ max_pages = UINT32_MAX - 1;
+ }
+
+ error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE);
+ proc_rele(p);
+
+ if (error)
+ error = EIO;
+
+ lck_mtx_unlock(&freezer_mutex);
+ return error;
+ }
+
+ lck_mtx_unlock(&freezer_mutex);
+ return EINVAL;
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_freeze, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorystatus_freeze, "I", "");
+
+static int
+sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+
+ int error, pid = 0;
+ proc_t p;
+
+ if (memorystatus_freeze_enabled == FALSE) {
+ return ENOTSUP;
+ }
+
+ error = sysctl_handle_int(oidp, &pid, 0, req);
+ if (error || !req->newptr)
+ return (error);
+
+ if (pid == VM_PAGES_FOR_ALL_PROCS) {
+ do_fastwake_warmup_all();
+ return 0;
+ } else {
+ p = proc_find(pid);
+ if (p != NULL) {
+ error = task_thaw(p->task);
+ proc_rele(p);
+
+ if (error)
+ error = EIO;
+ return error;
+ }
+ }
+
+ return EINVAL;
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_thaw, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorystatus_available_pages_thaw, "I", "");
+
+#endif /* CONFIG_FREEZE */
+
+#endif /* DEVELOPMENT || DEBUG */
+
+extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation,
+ void *parameter,
+ integer_t priority,
+ thread_t *new_thread);
+
+#if DEVELOPMENT || DEBUG
+
+static int
+sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+ int error = 0, pid = 0;
+ proc_t p;
+
+ error = sysctl_handle_int(oidp, &pid, 0, req);
+ if (error || !req->newptr)
+ return (error);
+
+ lck_mtx_lock(&disconnect_page_mappings_mutex);
+
+ if (pid == -1) {
+ vm_pageout_disconnect_all_pages();
+ } else {
+ p = proc_find(pid);
+
+ if (p != NULL) {
+ error = task_disconnect_page_mappings(p->task);
+
+ proc_rele(p);
+
+ if (error)
+ error = EIO;
+ } else
+ error = EINVAL;
+ }
+ lck_mtx_unlock(&disconnect_page_mappings_mutex);
+
+ return error;
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I", "");
+
+#endif /* DEVELOPMENT || DEBUG */
+
+
+/*
+ * Picks the sorting routine for a given jetsam priority band.
+ *
+ * Input:
+ * bucket_index - jetsam priority band to be sorted.
+ * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
+ * Currently sort_order is only meaningful when handling
+ * coalitions.
+ *
+ * Return:
+ * 0 on success
+ * non-0 on failure
+ */
+static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order)
+{
+ int coal_sort_order;
+
+ /*
+ * Verify the jetsam priority
+ */
+ if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
+ return(EINVAL);
+ }
+
+#if DEVELOPMENT || DEBUG
+ if (sort_order == JETSAM_SORT_DEFAULT) {
+ coal_sort_order = COALITION_SORT_DEFAULT;
+ } else {
+ coal_sort_order = sort_order; /* only used for testing scenarios */
+ }
+#else
+ /* Verify default */
+ if (sort_order == JETSAM_SORT_DEFAULT) {
+ coal_sort_order = COALITION_SORT_DEFAULT;
+ } else {
+ return(EINVAL);
+ }
+#endif
+
+ proc_list_lock();
+
+ if (memstat_bucket[bucket_index].count == 0) {
+ proc_list_unlock();
+ return (0);
+ }
+
+ switch (bucket_index) {
+ case JETSAM_PRIORITY_FOREGROUND:
+ if (memorystatus_sort_by_largest_coalition_locked(bucket_index, coal_sort_order) == 0) {
+ /*
+ * Fall back to per process sorting when zero coalitions are found.
+ */
+ memorystatus_sort_by_largest_process_locked(bucket_index);
+ }
+ break;
+ default:
+ memorystatus_sort_by_largest_process_locked(bucket_index);
+ break;
+ }
+ proc_list_unlock();
+
+ return(0);
+}
+
+/*
+ * Sort processes by size for a single jetsam bucket.
+ */
+
+static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index)
+{
+ proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL;
+ proc_t next_p = NULL, prev_max_proc = NULL;
+ uint32_t pages = 0, max_pages = 0;
+ memstat_bucket_t *current_bucket;
+
+ if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
+ return;
+ }
+
+ current_bucket = &memstat_bucket[bucket_index];
+
+ p = TAILQ_FIRST(¤t_bucket->list);
+
+ while (p) {
+ memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
+ max_pages = pages;
+ max_proc = p;
+ prev_max_proc = p;
+
+ while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) {
+ /* traversing list until we find next largest process */
+ p=next_p;
+ memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
+ if (pages > max_pages) {
+ max_pages = pages;
+ max_proc = p;
+ }
+ }
+
+ if (prev_max_proc != max_proc) {
+ /* found a larger process, place it in the list */
+ TAILQ_REMOVE(¤t_bucket->list, max_proc, p_memstat_list);
+ if (insert_after_proc == NULL) {
+ TAILQ_INSERT_HEAD(¤t_bucket->list, max_proc, p_memstat_list);
+ } else {
+ TAILQ_INSERT_AFTER(¤t_bucket->list, insert_after_proc, max_proc, p_memstat_list);
+ }
+ prev_max_proc = max_proc;
+ }
+
+ insert_after_proc = max_proc;
+
+ p = TAILQ_NEXT(max_proc, p_memstat_list);
+ }
+}
+
+static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search) {
+ memstat_bucket_t *current_bucket;
+ proc_t next_p;
+
+ if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) {
+ return NULL;
+ }
+
+ current_bucket = &memstat_bucket[*bucket_index];
+ next_p = TAILQ_FIRST(¤t_bucket->list);
+ if (!next_p && search) {
+ while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
+ current_bucket = &memstat_bucket[*bucket_index];
+ next_p = TAILQ_FIRST(¤t_bucket->list);
+ }
+ }
+
+ return next_p;
+}
+
+static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search) {
+ memstat_bucket_t *current_bucket;
+ proc_t next_p;
+
+ if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) {
+ return NULL;
+ }
+
+ next_p = TAILQ_NEXT(p, p_memstat_list);
+ while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
+ current_bucket = &memstat_bucket[*bucket_index];
+ next_p = TAILQ_FIRST(¤t_bucket->list);
+ }
+
+ return next_p;
+}
+
+__private_extern__ void
+memorystatus_init(void)
+{
+ thread_t thread = THREAD_NULL;
+ kern_return_t result;
+ int i;
+
+#if CONFIG_FREEZE
+ memorystatus_freeze_pages_min = FREEZE_PAGES_MIN;
+ memorystatus_freeze_pages_max = FREEZE_PAGES_MAX;
+#endif
+
+#if DEVELOPMENT || DEBUG
+ disconnect_page_mappings_lck_grp_attr = lck_grp_attr_alloc_init();
+ disconnect_page_mappings_lck_grp = lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr);
+
+ lck_mtx_init(&disconnect_page_mappings_mutex, disconnect_page_mappings_lck_grp, NULL);
+
+ if (kill_on_no_paging_space == TRUE) {
+ max_kill_priority = JETSAM_PRIORITY_MAX;
+ }
+#endif
+
+
+ /* Init buckets */
+ for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) {
+ TAILQ_INIT(&memstat_bucket[i].list);
+ memstat_bucket[i].count = 0;
+ }
+ memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL);
+
+#if CONFIG_JETSAM
+ nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
+ nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
+
+ /* Apply overrides */
+ PE_get_default("kern.jetsam_delta", &delta_percentage, sizeof(delta_percentage));
+ if (delta_percentage == 0) {
+ delta_percentage = 5;
+ }
+ assert(delta_percentage < 100);
+ PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage, sizeof(critical_threshold_percentage));
+ assert(critical_threshold_percentage < 100);
+ PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage, sizeof(idle_offset_percentage));
+ assert(idle_offset_percentage < 100);
+ PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage, sizeof(pressure_threshold_percentage));
+ assert(pressure_threshold_percentage < 100);
+ PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage, sizeof(freeze_threshold_percentage));
+ assert(freeze_threshold_percentage < 100);
+
+ if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy,
+ sizeof (jetsam_aging_policy))) {
+
+ if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy,
+ sizeof(jetsam_aging_policy))) {
+
+ jetsam_aging_policy = kJetsamAgingPolicyLegacy;
+ }
+ }
+
+ if (jetsam_aging_policy > kJetsamAgingPolicyMax) {
+ jetsam_aging_policy = kJetsamAgingPolicyLegacy;
+ }
+
+ switch (jetsam_aging_policy) {
+
+ case kJetsamAgingPolicyNone:
+ system_procs_aging_band = JETSAM_PRIORITY_IDLE;
+ applications_aging_band = JETSAM_PRIORITY_IDLE;
+ break;
+
+ case kJetsamAgingPolicyLegacy:
+ /*
+ * Legacy behavior where some daemons get a 10s protection once
+ * AND only before the first clean->dirty->clean transition before
+ * going into IDLE band.
+ */
+ system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
+ applications_aging_band = JETSAM_PRIORITY_IDLE;
+ break;
+
+ case kJetsamAgingPolicySysProcsReclaimedFirst:
+ system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
+ applications_aging_band = JETSAM_PRIORITY_AGING_BAND2;
+ break;
+
+ case kJetsamAgingPolicyAppsReclaimedFirst:
+ system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2;
+ applications_aging_band = JETSAM_PRIORITY_AGING_BAND1;
+ break;
+
+ default:
+ break;
+ }
+
+ /*
+ * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
+ * band and must be below it in priority. This is so that we don't have to make
+ * our 'aging' code worry about a mix of processes, some of which need to age
+ * and some others that need to stay elevated in the jetsam bands.
+ */
+ assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band);
+ assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band);
+
+ /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
+ if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof (memorystatus_idle_snapshot))) {
+ /* ...no boot-arg, so check the device tree */
+ PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot));
+ }
+
+ memorystatus_delta = delta_percentage * atop_64(max_mem) / 100;
+ memorystatus_available_pages_critical_idle_offset = idle_offset_percentage * atop_64(max_mem) / 100;
+ memorystatus_available_pages_critical_base = (critical_threshold_percentage / delta_percentage) * memorystatus_delta;
+ memorystatus_policy_more_free_offset_pages = (policy_more_free_offset_percentage / delta_percentage) * memorystatus_delta;
+
+ /* Jetsam Loop Detection */
+ if (max_mem <= (512 * 1024 * 1024)) {
+ /* 512 MB devices */
+ memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */
+ } else {
+ /* 1GB and larger devices */
+ memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */
+ }
+
+ memorystatus_jld_enabled = TRUE;
+
+ /* No contention at this point */
+ memorystatus_update_levels_locked(FALSE);
+
+#endif /* CONFIG_JETSAM */
+
+ memorystatus_jetsam_snapshot_max = maxproc;
+ memorystatus_jetsam_snapshot =
+ (memorystatus_jetsam_snapshot_t*)kalloc(sizeof(memorystatus_jetsam_snapshot_t) +
+ sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max);
+ if (!memorystatus_jetsam_snapshot) {
+ panic("Could not allocate memorystatus_jetsam_snapshot");
+ }
+
+ nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout);
+
+ memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t));
+
+#if CONFIG_FREEZE
+ memorystatus_freeze_threshold = (freeze_threshold_percentage / delta_percentage) * memorystatus_delta;
+#endif
+
+ result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &thread);
+ if (result == KERN_SUCCESS) {
+ thread_deallocate(thread);
+ } else {
+ panic("Could not create memorystatus_thread");
+ }
+}
+
+/* Centralised for the purposes of allowing panic-on-jetsam */
+extern void
+vm_run_compactor(void);
+
+/*
+ * The jetsam no frills kill call
+ * Return: 0 on success
+ * error code on failure (EINVAL...)
+ */
+static int
+jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason) {
+ int error = 0;
+ error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason);
+ return(error);
+}
+
+/*
+ * Wrapper for processes exiting with memorystatus details
+ */
+static boolean_t
+memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason) {
+
+ int error = 0;
+ __unused pid_t victim_pid = p->p_pid;
+
+ KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START,
+ victim_pid, cause, vm_page_free_count, 0, 0);
+
+ DTRACE_MEMORYSTATUS3(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause);
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ if (memorystatus_jetsam_panic_debug & (1 << cause)) {
+ panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause);
+ }
+#else
+#pragma unused(cause)
+#endif
+
+ if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
+ printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p->p_pid,
+ (*p->p_name ? p->p_name : "unknown"),
+ memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority,
+ (uint64_t)memorystatus_available_pages);
+ }
+
+ int jetsam_flags = P_LTERM_JETSAM;
+ switch (cause) {
+ case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break;
+ case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break;
+ case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break;
+ case kMemorystatusKilledVMThrashing: jetsam_flags |= P_JETSAM_VMTHRASHING; break;
+ case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break;
+ case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break;
+ case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break;
+ }
+ error = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
+
+ KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END,
+ victim_pid, cause, vm_page_free_count, error, 0);
+
+ vm_run_compactor();
+
+ return (error == 0);
+}
+
+/*
+ * Node manipulation
+ */
+
+static void
+memorystatus_check_levels_locked(void) {
+#if CONFIG_JETSAM
+ /* Update levels */
+ memorystatus_update_levels_locked(TRUE);
+#else /* CONFIG_JETSAM */
+ /*
+ * Nothing to do here currently since we update
+ * memorystatus_available_pages in vm_pressure_response.
+ */
+#endif /* CONFIG_JETSAM */
+}
+
+/*
+ * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
+ * For an application: that means no longer in the FG band
+ * For a daemon: that means no longer in its 'requested' jetsam priority band
+ */
+
+int
+memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, boolean_t effective_now)
+{
+ int error = 0;
+ boolean_t enable = FALSE;
+ proc_t p = NULL;
+
+ if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) {
+ enable = TRUE;
+ } else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) {
+ enable = FALSE;
+ } else {
+ return EINVAL;
+ }
+
+ p = proc_find(pid);
+ if (p != NULL) {
+
+ if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) ||
+ (!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) {
+ /*
+ * No change in state.
+ */
+
+ } else {
+
+ proc_list_lock();
+
+ if (enable) {
+ p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+
+ if (effective_now) {
+ if (p->p_memstat_effectivepriority < JETSAM_PRIORITY_ELEVATED_INACTIVE) {
+ if(memorystatus_highwater_enabled) {
+ /*
+ * Process is about to transition from
+ * inactive --> active
+ * assign active state
+ */
+ boolean_t is_fatal;
+ boolean_t use_active = TRUE;
+ CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
+ task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
+ }
+ memorystatus_update_priority_locked(p, JETSAM_PRIORITY_ELEVATED_INACTIVE, FALSE, FALSE);
+ }
+ } else {
+ if (isProcessInAgingBands(p)) {
+ memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
+ }
+ }
+ } else {
+
+ p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+
+ if (effective_now) {
+ if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE) {
+ memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
+ }
+ } else {
+ if (isProcessInAgingBands(p)) {
+ memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
+ }
+ }
+ }
+
+ proc_list_unlock();
+ }
+ proc_rele(p);
+ error = 0;
+
+ } else {
+ error = ESRCH;
+ }
+
+ return error;
+}
+
+static void
+memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2)
+{
+ proc_t p;
+ uint64_t current_time = 0, idle_delay_time = 0;
+ int demote_prio_band = 0;
+ memstat_bucket_t *demotion_bucket;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ current_time = mach_absolute_time();
+
+ proc_list_lock();
+
+ demote_prio_band = JETSAM_PRIORITY_IDLE + 1;
+
+ for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) {
+
+ if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band)
+ continue;
+
+ demotion_bucket = &memstat_bucket[demote_prio_band];
+ p = TAILQ_FIRST(&demotion_bucket->list);
+
+ while (p) {
+ MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p->p_pid);
+
+ assert(p->p_memstat_idledeadline);
+
+ assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
+
+ if (current_time >= p->p_memstat_idledeadline) {
+
+ if ((isSysProc(p) &&
+ ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/
+ task_has_assertions((struct task *)(p->task))) { /* has outstanding assertions which might indicate outstanding work too */
+ idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time;
+
+ p->p_memstat_idledeadline += idle_delay_time;
+ p = TAILQ_NEXT(p, p_memstat_list);
+
+ } else {
+
+ proc_t next_proc = NULL;
+
+ next_proc = TAILQ_NEXT(p, p_memstat_list);
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+
+ memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true);
+
+ p = next_proc;
+ continue;
+
+ }
+ } else {
+ // No further candidates
+ break;
+ }
+ }
+
+ }
+
+ memorystatus_reschedule_idle_demotion_locked();
+
+ proc_list_unlock();
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0);
+}
+
+static void
+memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state)
+{
+ boolean_t present_in_sysprocs_aging_bucket = FALSE;
+ boolean_t present_in_apps_aging_bucket = FALSE;
+ uint64_t idle_delay_time = 0;
+
+ if (jetsam_aging_policy == kJetsamAgingPolicyNone) {
+ return;
+ }
+
+ if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
+ /*
+ * This process isn't going to be making the trip to the lower bands.
+ */
+ return;
+ }
+
+ if (isProcessInAgingBands(p)){
+
+ if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) {
+ assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS);
+ }
+
+ if (isSysProc(p) && system_procs_aging_band) {
+ present_in_sysprocs_aging_bucket = TRUE;
+
+ } else if (isApp(p) && applications_aging_band) {
+ present_in_apps_aging_bucket = TRUE;
+ }
+ }
+
+ assert(!present_in_sysprocs_aging_bucket);
+ assert(!present_in_apps_aging_bucket);
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
+ p->p_pid, p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
+
+ if(isSysProc(p)) {
+ assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED);
+ }
+
+ idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time;
+
+ if (set_state) {
+ p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS;
+ p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time;
+ }
+
+ assert(p->p_memstat_idledeadline);
+
+ if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) {
+ memorystatus_scheduled_idle_demotions_sysprocs++;
+
+ } else if (isApp(p) && present_in_apps_aging_bucket == FALSE) {
+ memorystatus_scheduled_idle_demotions_apps++;
+ }
+}
+
+static void
+memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state)
+{
+ boolean_t present_in_sysprocs_aging_bucket = FALSE;
+ boolean_t present_in_apps_aging_bucket = FALSE;
+
+ if (!system_procs_aging_band && !applications_aging_band) {
+ return;
+ }
+
+ if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) {
+ return;
+ }
+
+ if (isProcessInAgingBands(p)) {
+
+ if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) {
+ assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS);
+ }
+
+ if (isSysProc(p) && system_procs_aging_band) {
+ assert(p->p_memstat_effectivepriority == system_procs_aging_band);
+ assert(p->p_memstat_idledeadline);
+ present_in_sysprocs_aging_bucket = TRUE;
+
+ } else if (isApp(p) && applications_aging_band) {
+ assert(p->p_memstat_effectivepriority == applications_aging_band);
+ assert(p->p_memstat_idledeadline);
+ present_in_apps_aging_bucket = TRUE;
+ }
+ }
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
+ p->p_pid, clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
+
+
+ if (clear_state) {
+ p->p_memstat_idledeadline = 0;
+ p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS;
+ }
+
+ if (isSysProc(p) &&present_in_sysprocs_aging_bucket == TRUE) {
+ memorystatus_scheduled_idle_demotions_sysprocs--;
+ assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0);
+
+ } else if (isApp(p) && present_in_apps_aging_bucket == TRUE) {
+ memorystatus_scheduled_idle_demotions_apps--;
+ assert(memorystatus_scheduled_idle_demotions_apps >= 0);
+ }
+
+ assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0);
+}
+
+static void
+memorystatus_reschedule_idle_demotion_locked(void) {
+ if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) {
+ if (memstat_idle_demotion_deadline) {
+ /* Transitioned 1->0, so cancel next call */
+ thread_call_cancel(memorystatus_idle_demotion_call);
+ memstat_idle_demotion_deadline = 0;
+ }
+ } else {
+ memstat_bucket_t *demotion_bucket;
+ proc_t p = NULL, p1 = NULL, p2 = NULL;
+
+ if (system_procs_aging_band) {
+
+ demotion_bucket = &memstat_bucket[system_procs_aging_band];
+ p1 = TAILQ_FIRST(&demotion_bucket->list);
+
+ p = p1;
+ }
+
+ if (applications_aging_band) {
+
+ demotion_bucket = &memstat_bucket[applications_aging_band];
+ p2 = TAILQ_FIRST(&demotion_bucket->list);
+
+ if (p1 && p2) {
+ p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1;
+ } else {
+ p = (p1 == NULL) ? p2 : p1;
+ }
+
+ }
+
+ assert(p);
+
+ if (p != NULL) {
+ assert(p && p->p_memstat_idledeadline);
+ if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline){
+ thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline);
+ memstat_idle_demotion_deadline = p->p_memstat_idledeadline;
+ }
+ }
+ }
+}
+
+/*
+ * List manipulation
+ */
+
+int
+memorystatus_add(proc_t p, boolean_t locked)
+{
+ memstat_bucket_t *bucket;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p->p_pid, p->p_memstat_effectivepriority);
+
+ if (!locked) {
+ proc_list_lock();
+ }
+
+ DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority);
+
+ /* Processes marked internal do not have priority tracked */
+ if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
+ goto exit;
+ }
+
+ bucket = &memstat_bucket[p->p_memstat_effectivepriority];
+
+ if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
+ assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1);
+
+ } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
+ assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1);
+
+ } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
+ /*
+ * Entering the idle band.
+ * Record idle start time.
+ */
+ p->p_memstat_idle_start = mach_absolute_time();
+ }
+
+ TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list);
+ bucket->count++;
+
+ memorystatus_list_count++;
+
+ memorystatus_check_levels_locked();
+
+exit:
+ if (!locked) {
+ proc_list_unlock();
+ }
+
+ return 0;
+}
+
+/*
+ * Description:
+ * Moves a process from one jetsam bucket to another.
+ * which changes the LRU position of the process.
+ *
+ * Monitors transition between buckets and if necessary
+ * will update cached memory limits accordingly.
+ *
+ * skip_demotion_check:
+ * - if the 'jetsam aging policy' is NOT 'legacy':
+ * When this flag is TRUE, it means we are going
+ * to age the ripe processes out of the aging bands and into the
+ * IDLE band and apply their inactive memory limits.
+ *
+ * - if the 'jetsam aging policy' is 'legacy':
+ * When this flag is TRUE, it might mean the above aging mechanism
+ * OR
+ * It might be that we have a process that has used up its 'idle deferral'
+ * stay that is given to it once per lifetime. And in this case, the process
+ * won't be going through any aging codepaths. But we still need to apply
+ * the right inactive limits and so we explicitly set this to TRUE if the
+ * new priority for the process is the IDLE band.
+ */
+void
+memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check)
+{
+ memstat_bucket_t *old_bucket, *new_bucket;
+
+ assert(priority < MEMSTAT_BUCKET_COUNT);
+
+ /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
+ if ((p->p_listflag & P_LIST_EXITED) != 0) {
+ return;
+ }
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
+ (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, head_insert ? "head" : "tail");
+
+ DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority);
+
+#if DEVELOPMENT || DEBUG
+ if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */
+ skip_demotion_check == FALSE && /* and it isn't via the path that will set the INACTIVE memlimits */
+ (p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */
+ ((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */
+ ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? ( ! (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) /* OR type (fatal vs non-fatal) */
+ panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */
+#endif /* DEVELOPMENT || DEBUG */
+
+ old_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
+
+ if (skip_demotion_check == FALSE) {
+
+ if (isSysProc(p)) {
+ /*
+ * For system processes, the memorystatus_dirty_* routines take care of adding/removing
+ * the processes from the aging bands and balancing the demotion counts.
+ * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
+ */
+
+ if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE && (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
+ priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
+
+ assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
+ }
+ } else if (isApp(p)) {
+
+ /*
+ * Check to see if the application is being lowered in jetsam priority. If so, and:
+ * - it has an 'elevated inactive jetsam band' attribute, then put it in the JETSAM_PRIORITY_ELEVATED_INACTIVE band.
+ * - it is a normal application, then let it age in the aging band if that policy is in effect.
+ */
+
+ if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE && (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
+ priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
+ } else {
+
+ if (applications_aging_band) {
+ if (p->p_memstat_effectivepriority == applications_aging_band) {
+ assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1));
+ }
+
+ if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && (priority <= applications_aging_band)) {
+ assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
+ priority = applications_aging_band;
+ memorystatus_schedule_idle_demotion_locked(p, TRUE);
+ }
+ }
+ }
+ }
+ }
+
+ if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) {
+ assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
+ }
+
+ TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list);
+ old_bucket->count--;
+
+ new_bucket = &memstat_bucket[priority];
+ if (head_insert)
+ TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list);
+ else
+ TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
+ new_bucket->count++;
+
+ if (memorystatus_highwater_enabled) {
+ boolean_t is_fatal;
+ boolean_t use_active;
+
+ /*
+ * If cached limit data is updated, then the limits
+ * will be enforced by writing to the ledgers.
+ */
+ boolean_t ledger_update_needed = TRUE;
+
+ /*
+ * Here, we must update the cached memory limit if the task
+ * is transitioning between:
+ * active <--> inactive
+ * FG <--> BG
+ * but:
+ * dirty <--> clean is ignored
+ *
+ * We bypass non-idle processes that have opted into dirty tracking because
+ * a move between buckets does not imply a transition between the
+ * dirty <--> clean state.
+ */
+
+ if (p->p_memstat_dirty & P_DIRTY_TRACK) {
+
+ if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) {
+ CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = FALSE;
+ } else {
+ ledger_update_needed = FALSE;
+ }
+
+ } else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) {
+ /*
+ * inactive --> active
+ * BG --> FG
+ * assign active state
+ */
+ CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = TRUE;
+
+ } else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) {
+ /*
+ * active --> inactive
+ * FG --> BG
+ * assign inactive state
+ */
+ CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = FALSE;
+ } else {
+ /*
+ * The transition between jetsam priority buckets apparently did
+ * not affect active/inactive state.
+ * This is not unusual... especially during startup when
+ * processes are getting established in their respective bands.
+ */
+ ledger_update_needed = FALSE;
+ }
+
+ /*
+ * Enforce the new limits by writing to the ledger
+ */
+ if (ledger_update_needed) {
+ task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
+
+ MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
+ p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
+ (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty,
+ (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
+ }
+ }
+
+ /*
+ * Record idle start or idle delta.
+ */
+ if (p->p_memstat_effectivepriority == priority) {
+ /*
+ * This process is not transitioning between
+ * jetsam priority buckets. Do nothing.
+ */
+ } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
+ uint64_t now;
+ /*
+ * Transitioning out of the idle priority bucket.
+ * Record idle delta.
+ */
+ assert(p->p_memstat_idle_start != 0);
+ now = mach_absolute_time();
+ if (now > p->p_memstat_idle_start) {
+ p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
+ }
+ } else if (priority == JETSAM_PRIORITY_IDLE) {
+ /*
+ * Transitioning into the idle priority bucket.
+ * Record idle start.
+ */
+ p->p_memstat_idle_start = mach_absolute_time();
+ }
+
+ p->p_memstat_effectivepriority = priority;
+
+#if CONFIG_SECLUDED_MEMORY
+ if (secluded_for_apps &&
+ task_could_use_secluded_mem(p->task)) {
+ task_set_can_use_secluded_mem(
+ p->task,
+ (priority >= JETSAM_PRIORITY_FOREGROUND));
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
+ memorystatus_check_levels_locked();
+}
+
+/*
+ *
+ * Description: Update the jetsam priority and memory limit attributes for a given process.
+ *
+ * Parameters:
+ * p init this process's jetsam information.
+ * priority The jetsam priority band
+ * user_data user specific data, unused by the kernel
+ * effective guards against race if process's update already occurred
+ * update_memlimit When true we know this is the init step via the posix_spawn path.
+ *
+ * memlimit_active Value in megabytes; The monitored footprint level while the
+ * process is active. Exceeding it may result in termination
+ * based on it's associated fatal flag.
+ *
+ * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
+ * this describes whether or not it should be immediately fatal.
+ *
+ * memlimit_inactive Value in megabytes; The monitored footprint level while the
+ * process is inactive. Exceeding it may result in termination
+ * based on it's associated fatal flag.
+ *
+ * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
+ * this describes whether or not it should be immediatly fatal.
+ *
+ * Returns: 0 Success
+ * non-0 Failure
+ */
+
+int
+memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t effective, boolean_t update_memlimit,
+ int32_t memlimit_active, boolean_t memlimit_active_is_fatal,
+ int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal)
+{
+ int ret;
+ boolean_t head_insert = false;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, user_data);
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0);
+
+ if (priority == -1) {
+ /* Use as shorthand for default priority */
+ priority = JETSAM_PRIORITY_DEFAULT;
+ } else if ((priority == system_procs_aging_band) || (priority == applications_aging_band)) {
+ /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
+ priority = JETSAM_PRIORITY_IDLE;
+ } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) {
+ /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
+ priority = JETSAM_PRIORITY_IDLE;
+ head_insert = TRUE;
+ } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) {
+ /* Sanity check */
+ ret = EINVAL;
+ goto out;
+ }
+
+ proc_list_lock();
+
+ assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
+
+ if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) {
+ ret = EALREADY;
+ proc_list_unlock();
+ MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p->p_pid);
+ goto out;
+ }
+
+ if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) {
+ /*
+ * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
+ */
+ ret = EBUSY;
+ proc_list_unlock();
+ goto out;
+ }
+
+ p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED;
+ p->p_memstat_userdata = user_data;
+ p->p_memstat_requestedpriority = priority;
+
+ if (update_memlimit) {
+ boolean_t is_fatal;
+ boolean_t use_active;
+
+ /*
+ * Posix_spawn'd processes come through this path to instantiate ledger limits.
+ * Forked processes do not come through this path, so no ledger limits exist.
+ * (That's why forked processes can consume unlimited memory.)
+ */
+
+ MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
+ p->p_pid, priority, p->p_memstat_dirty,
+ memlimit_active, (memlimit_active_is_fatal ? "F " : "NF"),
+ memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF"));
+
+ if (memlimit_active <= 0) {
+ /*
+ * This process will have a system_wide task limit when active.
+ * System_wide task limit is always fatal.
+ * It's quite common to see non-fatal flag passed in here.
+ * It's not an error, we just ignore it.
+ */
+
+ /*
+ * For backward compatibility with some unexplained launchd behavior,
+ * we allow a zero sized limit. But we still enforce system_wide limit
+ * when written to the ledgers.
+ */
+
+ if (memlimit_active < 0) {
+ memlimit_active = -1; /* enforces system_wide task limit */
+ }
+ memlimit_active_is_fatal = TRUE;
+ }
+
+ if (memlimit_inactive <= 0) {
+ /*
+ * This process will have a system_wide task limit when inactive.
+ * System_wide task limit is always fatal.
+ */
+
+ memlimit_inactive = -1;
+ memlimit_inactive_is_fatal = TRUE;
+ }
+
+ /*
+ * Initialize the active limit variants for this process.
+ */
+ SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal);
+
+ /*
+ * Initialize the inactive limit variants for this process.
+ */
+ SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal);
+
+ /*
+ * Initialize the cached limits for target process.
+ * When the target process is dirty tracked, it's typically
+ * in a clean state. Non dirty tracked processes are
+ * typically active (Foreground or above).
+ * But just in case, we don't make assumptions...
+ */
+
+ if (proc_jetsam_state_is_active_locked(p) == TRUE) {
+ CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = TRUE;
+ } else {
+ CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = FALSE;
+ }
+
+ /*
+ * Enforce the cached limit by writing to the ledger.
+ */
+ if (memorystatus_highwater_enabled) {
+ /* apply now */
+ task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal);
+
+ MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
+ p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
+ (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), priority, p->p_memstat_dirty,
+ (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
+ }
+ }
+
+ /*
+ * We can't add to the aging bands buckets here.
+ * But, we could be removing it from those buckets.
+ * Check and take appropriate steps if so.
+ */
+
+ if (isProcessInAgingBands(p)) {
+
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+ memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
+ } else {
+ if (jetsam_aging_policy == kJetsamAgingPolicyLegacy && priority == JETSAM_PRIORITY_IDLE) {
+ /*
+ * Daemons with 'inactive' limits will go through the dirty tracking codepath.
+ * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
+ * If this is the legacy aging policy we explicitly need to apply those limits. If it
+ * is any other aging policy, then we don't need to worry because all processes
+ * will go through the aging bands and then the demotion thread will take care to
+ * move them into the IDLE band and apply the required limits.
+ */
+ memorystatus_update_priority_locked(p, priority, head_insert, TRUE);
+ }
+ }
+
+ memorystatus_update_priority_locked(p, priority, head_insert, FALSE);
+
+ proc_list_unlock();
+ ret = 0;
+
+out:
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0);
+
+ return ret;
+}
+
+int
+memorystatus_remove(proc_t p, boolean_t locked)
+{
+ int ret;
+ memstat_bucket_t *bucket;
+ boolean_t reschedule = FALSE;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p->p_pid);
+
+ if (!locked) {
+ proc_list_lock();
+ }
+
+ assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
+
+ bucket = &memstat_bucket[p->p_memstat_effectivepriority];
+
+ if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
+
+ assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs);
+ reschedule = TRUE;
+
+ } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
+
+ assert(bucket->count == memorystatus_scheduled_idle_demotions_apps);
+ reschedule = TRUE;
+ }
+
+ /*
+ * Record idle delta
+ */
+
+ if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
+ uint64_t now = mach_absolute_time();
+ if (now > p->p_memstat_idle_start) {
+ p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
+ }
+ }
+
+ TAILQ_REMOVE(&bucket->list, p, p_memstat_list);
+ bucket->count--;
+
+ memorystatus_list_count--;
+
+ /* If awaiting demotion to the idle band, clean up */
+ if (reschedule) {
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+ memorystatus_reschedule_idle_demotion_locked();
+ }
+
+ memorystatus_check_levels_locked();
+
+#if CONFIG_FREEZE
+ if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) {
+ memorystatus_frozen_count--;
+ }
+
+ if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
+ memorystatus_suspended_footprint_total -= p->p_memstat_suspendedfootprint;
+ memorystatus_suspended_count--;
+ }
+#endif
+
+ if (!locked) {
+ proc_list_unlock();
+ }
+
+ if (p) {
+ ret = 0;
+ } else {
+ ret = ESRCH;
+ }
+
+ return ret;
+}
+
+/*
+ * Validate dirty tracking flags with process state.
+ *
+ * Return:
+ * 0 on success
+ * non-0 on failure
+ *
+ * The proc_list_lock is held by the caller.
+ */
+
+static int
+memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol) {
+ /* See that the process isn't marked for termination */
+ if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) {
+ return EBUSY;
+ }
+
+ /* Idle exit requires that process be tracked */
+ if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) &&
+ !(pcontrol & PROC_DIRTY_TRACK)) {
+ return EINVAL;
+ }
+
+ /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
+ if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) &&
+ !(pcontrol & PROC_DIRTY_TRACK)) {
+ return EINVAL;
+ }
+
+ /* Deferral is only relevant if idle exit is specified */
+ if ((pcontrol & PROC_DIRTY_DEFER) &&
+ !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) {
+ return EINVAL;
+ }
+
+ return(0);
+}
+
+static void
+memorystatus_update_idle_priority_locked(proc_t p) {
+ int32_t priority;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p->p_pid, p->p_memstat_dirty);
+
+ assert(isSysProc(p));
+
+ if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) {
+
+ priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE;
+ } else {
+ priority = p->p_memstat_requestedpriority;
+ }
+
+ if (priority != p->p_memstat_effectivepriority) {
+
+ if ((jetsam_aging_policy == kJetsamAgingPolicyLegacy) &&
+ (priority == JETSAM_PRIORITY_IDLE)) {
+
+ /*
+ * This process is on its way into the IDLE band. The system is
+ * using 'legacy' jetsam aging policy. That means, this process
+ * has already used up its idle-deferral aging time that is given
+ * once per its lifetime. So we need to set the INACTIVE limits
+ * explicitly because it won't be going through the demotion paths
+ * that take care to apply the limits appropriately.
+ */
+
+ if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
+
+ /*
+ * This process has the 'elevated inactive jetsam band' attribute.
+ * So, there will be no trip to IDLE after all.
+ * Instead, we pin the process in the elevated band,
+ * where its ACTIVE limits will apply.
+ */
+
+ priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
+ }
+
+ memorystatus_update_priority_locked(p, priority, false, true);
+
+ } else {
+ memorystatus_update_priority_locked(p, priority, false, false);
+ }
+ }
+}
+
+/*
+ * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
+ * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
+ * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
+ * priority idle band when clean (and killed earlier, protecting higher priority procesess).
+ *
+ * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
+ * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
+ * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
+ * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
+ * band. The deferral can be cleared early by clearing the appropriate flag.
+ *
+ * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
+ * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
+ * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
+ */
+
+int
+memorystatus_dirty_track(proc_t p, uint32_t pcontrol) {
+ unsigned int old_dirty;
+ boolean_t reschedule = FALSE;
+ boolean_t already_deferred = FALSE;
+ boolean_t defer_now = FALSE;
+ int ret = 0;
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK),
+ p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0);
+
+ proc_list_lock();
+
+ if ((p->p_listflag & P_LIST_EXITED) != 0) {
+ /*
+ * Process is on its way out.
+ */
+ ret = EBUSY;
+ goto exit;
+ }
+
+ if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
+ ret = EPERM;
+ goto exit;
+ }
+
+ if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) {
+ /* error */
+ goto exit;
+ }
+
+ old_dirty = p->p_memstat_dirty;
+
+ /* These bits are cumulative, as per <rdar://problem/11159924> */
+ if (pcontrol & PROC_DIRTY_TRACK) {
+ p->p_memstat_dirty |= P_DIRTY_TRACK;
+ }
+
+ if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) {
+ p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT;
+ }
+
+ if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
+ p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS;
+ }
+
+ if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) {
+ already_deferred = TRUE;
+ }
+
+
+ /* This can be set and cleared exactly once. */
+ if (pcontrol & PROC_DIRTY_DEFER) {
+
+ if ( !(old_dirty & P_DIRTY_DEFER)) {
+ p->p_memstat_dirty |= P_DIRTY_DEFER;
+ }
+
+ defer_now = TRUE;
+ }
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
+ ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N",
+ defer_now ? "Y" : "N",
+ p->p_memstat_dirty & P_DIRTY ? "Y" : "N",
+ p->p_pid);
+
+ /* Kick off or invalidate the idle exit deferment if there's a state transition. */
+ if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) {
+ if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
+
+ if (defer_now && !already_deferred) {
+
+ /*
+ * Request to defer a clean process that's idle-exit enabled
+ * and not already in the jetsam deferred band. Most likely a
+ * new launch.
+ */
+ memorystatus_schedule_idle_demotion_locked(p, TRUE);
+ reschedule = TRUE;
+
+ } else if (!defer_now) {
+
+ /*
+ * The process isn't asking for the 'aging' facility.
+ * Could be that it is:
+ */
+
+ if (already_deferred) {
+ /*
+ * already in the aging bands. Traditionally,
+ * some processes have tried to use this to
+ * opt out of the 'aging' facility.
+ */
+
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+ } else {
+ /*
+ * agnostic to the 'aging' facility. In that case,
+ * we'll go ahead and opt it in because this is likely
+ * a new launch (clean process, dirty tracking enabled)
+ */
+
+ memorystatus_schedule_idle_demotion_locked(p, TRUE);
+ }
+
+ reschedule = TRUE;
+ }
+ }
+ } else {
+
+ /*
+ * We are trying to operate on a dirty process. Dirty processes have to
+ * be removed from the deferred band. The question is do we reset the
+ * deferred state or not?
+ *
+ * This could be a legal request like:
+ * - this process had opted into the 'aging' band
+ * - but it's now dirty and requests to opt out.
+ * In this case, we remove the process from the band and reset its
+ * state too. It'll opt back in properly when needed.
+ *
+ * OR, this request could be a user-space bug. E.g.:
+ * - this process had opted into the 'aging' band when clean
+ * - and, then issues another request to again put it into the band except
+ * this time the process is dirty.
+ * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
+ * the deferred band with its state intact. So our request below is no-op.
+ * But we do it here anyways for coverage.
+ *
+ * memorystatus_update_idle_priority_locked()
+ * single-mindedly treats a dirty process as "cannot be in the aging band".
+ */
+
+ if (!defer_now && already_deferred) {
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+ reschedule = TRUE;
+ } else {
+
+ boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE;
+
+ memorystatus_invalidate_idle_demotion_locked(p, reset_state);
+ reschedule = TRUE;
+ }
+ }
+
+ memorystatus_update_idle_priority_locked(p);
+
+ if (reschedule) {
+ memorystatus_reschedule_idle_demotion_locked();
+ }
+
+ ret = 0;
+
+exit:
+ proc_list_unlock();
+
+ return ret;
+}
+
+int
+memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol) {
+ int ret;
+ boolean_t kill = false;
+ boolean_t reschedule = FALSE;
+ boolean_t was_dirty = FALSE;
+ boolean_t now_dirty = FALSE;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self, p->p_pid, pcontrol, p->p_memstat_dirty);
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0);
+
+ proc_list_lock();
+
+ if ((p->p_listflag & P_LIST_EXITED) != 0) {
+ /*
+ * Process is on its way out.
+ */
+ ret = EBUSY;
+ goto exit;
+ }
+
+ if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
+ ret = EPERM;
+ goto exit;
+ }
+
+ if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY)
+ was_dirty = TRUE;
+
+ if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
+ /* Dirty tracking not enabled */
+ ret = EINVAL;
+ } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
+ /*
+ * Process is set to be terminated and we're attempting to mark it dirty.
+ * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
+ */
+ ret = EBUSY;
+ } else {
+ int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN;
+ if (pcontrol && !(p->p_memstat_dirty & flag)) {
+ /* Mark the process as having been dirtied at some point */
+ p->p_memstat_dirty |= (flag | P_DIRTY_MARKED);
+ memorystatus_dirty_count++;
+ ret = 0;
+ } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) {
+ if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) {
+ /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
+ p->p_memstat_dirty |= P_DIRTY_TERMINATED;
+ kill = true;
+ } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
+ /* Kill previously terminated processes if set clean */
+ kill = true;
+ }
+ p->p_memstat_dirty &= ~flag;
+ memorystatus_dirty_count--;
+ ret = 0;
+ } else {
+ /* Already set */
+ ret = EALREADY;
+ }
+ }
+
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY)
+ now_dirty = TRUE;
+
+ if ((was_dirty == TRUE && now_dirty == FALSE) ||
+ (was_dirty == FALSE && now_dirty == TRUE)) {
+
+ /* Manage idle exit deferral, if applied */
+ if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
+
+ /*
+ * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
+ * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
+ *
+ * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
+ * in that band on it's way to IDLE.
+ */
+
+ if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
+ /*
+ * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
+ *
+ * The process will move from its aging band to its higher requested
+ * jetsam band.
+ */
+ boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE;
+
+ memorystatus_invalidate_idle_demotion_locked(p, reset_state);
+ reschedule = TRUE;
+ } else {
+
+ /*
+ * Process is back from "dirty" to "clean".
+ */
+
+ if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) {
+ if (mach_absolute_time() >= p->p_memstat_idledeadline) {
+ /*
+ * The process' deadline has expired. It currently
+ * does not reside in any of the aging buckets.
+ *
+ * It's on its way to the JETSAM_PRIORITY_IDLE
+ * bucket via memorystatus_update_idle_priority_locked()
+ * below.
+
+ * So all we need to do is reset all the state on the
+ * process that's related to the aging bucket i.e.
+ * the AGING_IN_PROGRESS flag and the timer deadline.
+ */
+
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+ reschedule = TRUE;
+ } else {
+ /*
+ * It still has some protection window left and so
+ * we just re-arm the timer without modifying any
+ * state on the process iff it still wants into that band.
+ */
+
+ if (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) {
+ memorystatus_schedule_idle_demotion_locked(p, FALSE);
+ reschedule = TRUE;
+ }
+ }
+ } else {
+
+ memorystatus_schedule_idle_demotion_locked(p, TRUE);
+ reschedule = TRUE;
+ }
+ }
+ }
+
+ memorystatus_update_idle_priority_locked(p);
+
+ if (memorystatus_highwater_enabled) {
+ boolean_t ledger_update_needed = TRUE;
+ boolean_t use_active;
+ boolean_t is_fatal;
+ /*
+ * We are in this path because this process transitioned between
+ * dirty <--> clean state. Update the cached memory limits.
+ */
+
+ if (proc_jetsam_state_is_active_locked(p) == TRUE) {
+ /*
+ * process is pinned in elevated band
+ * or
+ * process is dirty
+ */
+ CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = TRUE;
+ ledger_update_needed = TRUE;
+ } else {
+ /*
+ * process is clean...but if it has opted into pressured-exit
+ * we don't apply the INACTIVE limit till the process has aged
+ * out and is entering the IDLE band.
+ * See memorystatus_update_priority_locked() for that.
+ */
+
+ if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
+ ledger_update_needed = FALSE;
+ } else {
+ CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
+ use_active = FALSE;
+ ledger_update_needed = TRUE;
+ }
+ }
+
+ /*
+ * Enforce the new limits by writing to the ledger.
+ *
+ * This is a hot path and holding the proc_list_lock while writing to the ledgers,
+ * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
+ * We aren't traversing the jetsam bucket list here, so we should be safe.
+ * See rdar://21394491.
+ */
+
+ if (ledger_update_needed && proc_ref_locked(p) == p) {
+ int ledger_limit;
+ if (p->p_memstat_memlimit > 0) {
+ ledger_limit = p->p_memstat_memlimit;
+ } else {
+ ledger_limit = -1;
+ }
+ proc_list_unlock();
+ task_set_phys_footprint_limit_internal(p->task, ledger_limit, NULL, use_active, is_fatal);
+ proc_list_lock();
+ proc_rele_locked(p);
+
+ MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
+ p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
+ (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
+ (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
+ }
+
+ }
+
+ /* If the deferral state changed, reschedule the demotion timer */
+ if (reschedule) {
+ memorystatus_reschedule_idle_demotion_locked();
+ }
+ }
+
+ if (kill) {
+ if (proc_ref_locked(p) == p) {
+ proc_list_unlock();
+ psignal(p, SIGKILL);
+ proc_list_lock();
+ proc_rele_locked(p);
+ }
+ }
+
+exit:
+ proc_list_unlock();
+
+ return ret;
+}
+
+int
+memorystatus_dirty_clear(proc_t p, uint32_t pcontrol) {
+
+ int ret = 0;
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p->p_pid, pcontrol, p->p_memstat_dirty);
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0);
+
+ proc_list_lock();
+
+ if ((p->p_listflag & P_LIST_EXITED) != 0) {
+ /*
+ * Process is on its way out.
+ */
+ ret = EBUSY;
+ goto exit;
+ }
+
+ if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
+ ret = EPERM;
+ goto exit;
+ }
+
+ if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
+ /* Dirty tracking not enabled */
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER)) == 0) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
+ p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS;
+ }
+
+ /* This can be set and cleared exactly once. */
+ if (pcontrol & PROC_DIRTY_DEFER) {
+
+ if (p->p_memstat_dirty & P_DIRTY_DEFER) {
+
+ p->p_memstat_dirty &= ~P_DIRTY_DEFER;
+
+ memorystatus_invalidate_idle_demotion_locked(p, TRUE);
+ memorystatus_update_idle_priority_locked(p);
+ memorystatus_reschedule_idle_demotion_locked();
+ }
+ }
+
+ ret = 0;
+exit:
+ proc_list_unlock();
+
+ return ret;
+}
+
+int
+memorystatus_dirty_get(proc_t p) {
+ int ret = 0;
+
+ proc_list_lock();
+
+ if (p->p_memstat_dirty & P_DIRTY_TRACK) {
+ ret |= PROC_DIRTY_TRACKED;
+ if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
+ ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT;
+ }
+ if (p->p_memstat_dirty & P_DIRTY) {
+ ret |= PROC_DIRTY_IS_DIRTY;
+ }
+ if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) {
+ ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS;
+ }
+ }
+
+ proc_list_unlock();
+
+ return ret;
+}
+
+int
+memorystatus_on_terminate(proc_t p) {
+ int sig;
+
+ proc_list_lock();
+
+ p->p_memstat_dirty |= P_DIRTY_TERMINATED;
+
+ if ((p->p_memstat_dirty & (P_DIRTY_TRACK|P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) {
+ /* Clean; mark as terminated and issue SIGKILL */
+ sig = SIGKILL;
+ } else {
+ /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
+ sig = SIGTERM;
+ }
+
+ proc_list_unlock();
+
+ return sig;
+}
+
+void
+memorystatus_on_suspend(proc_t p)
+{
+#if CONFIG_FREEZE
+ uint32_t pages;
+ memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
+#endif
+ proc_list_lock();
+#if CONFIG_FREEZE
+ p->p_memstat_suspendedfootprint = pages;
+ memorystatus_suspended_footprint_total += pages;
+ memorystatus_suspended_count++;
+#endif
+ p->p_memstat_state |= P_MEMSTAT_SUSPENDED;
+ proc_list_unlock();
+}
+
+void
+memorystatus_on_resume(proc_t p)
+{
+#if CONFIG_FREEZE
+ boolean_t frozen;
+ pid_t pid;
+#endif
+
+ proc_list_lock();
+
+#if CONFIG_FREEZE
+ frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN);
+ if (frozen) {
+ memorystatus_frozen_count--;
+ p->p_memstat_state |= P_MEMSTAT_PRIOR_THAW;
+ }
+
+ memorystatus_suspended_footprint_total -= p->p_memstat_suspendedfootprint;
+ memorystatus_suspended_count--;
+
+ pid = p->p_pid;
+#endif
+
+ p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
+
+ proc_list_unlock();
+
+#if CONFIG_FREEZE
+ if (frozen) {
+ memorystatus_freeze_entry_t data = { pid, FALSE, 0 };
+ memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
+ }
+#endif
+}
+
+void
+memorystatus_on_inactivity(proc_t p)
+{
+#pragma unused(p)
+#if CONFIG_FREEZE
+ /* Wake the freeze thread */
+ thread_wakeup((event_t)&memorystatus_freeze_wakeup);
+#endif
+}
+
+/*
+ * The proc_list_lock is held by the caller.
+*/
+static uint32_t
+memorystatus_build_state(proc_t p) {
+ uint32_t snapshot_state = 0;
+
+ /* General */
+ if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
+ snapshot_state |= kMemorystatusSuspended;
+ }
+ if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
+ snapshot_state |= kMemorystatusFrozen;
+ }
+ if (p->p_memstat_state & P_MEMSTAT_PRIOR_THAW) {
+ snapshot_state |= kMemorystatusWasThawed;
+ }
+
+ /* Tracking */
+ if (p->p_memstat_dirty & P_DIRTY_TRACK) {
+ snapshot_state |= kMemorystatusTracked;
+ }
+ if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
+ snapshot_state |= kMemorystatusSupportsIdleExit;
+ }
+ if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
+ snapshot_state |= kMemorystatusDirty;
+ }
+
+ return snapshot_state;
+}
+
+static boolean_t
+kill_idle_exit_proc(void)
+{
+ proc_t p, victim_p = PROC_NULL;
+ uint64_t current_time;
+ boolean_t killed = FALSE;
+ unsigned int i = 0;
+ os_reason_t jetsam_reason = OS_REASON_NULL;
+
+ /* Pick next idle exit victim. */
+ current_time = mach_absolute_time();
+
+ jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
+ }
+
+ proc_list_lock();
+
+ p = memorystatus_get_first_proc_locked(&i, FALSE);
+ while (p) {
+ /* No need to look beyond the idle band */
+ if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
+ break;
+ }
+
+ if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT|P_DIRTY_IS_DIRTY|P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) {
+ if (current_time >= p->p_memstat_idledeadline) {
+ p->p_memstat_dirty |= P_DIRTY_TERMINATED;
+ victim_p = proc_ref_locked(p);
+ break;
+ }
+ }
+
+ p = memorystatus_get_next_proc_locked(&i, p, FALSE);
+ }
+
+ proc_list_unlock();
+
+ if (victim_p) {
+ printf("memorystatus: killing_idle_process pid %d [%s]\n", victim_p->p_pid, (*victim_p->p_name ? victim_p->p_name : "unknown"));
+ killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason);
+ proc_rele(victim_p);
+ } else {
+ os_reason_free(jetsam_reason);
+ }
+
+ return killed;
+}
+
+static void
+memorystatus_thread_wake(void) {
+ thread_wakeup((event_t)&memorystatus_wakeup);
+}
+
+extern void vm_pressure_response(void);
+
+static int
+memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation)
+{
+ if (interval_ms) {
+ assert_wait_timeout(&memorystatus_wakeup, THREAD_UNINT, interval_ms, 1000 * NSEC_PER_USEC);
+ } else {
+ assert_wait(&memorystatus_wakeup, THREAD_UNINT);
+ }
+
+ return thread_block(continuation);
+}
+
+static boolean_t
+memorystatus_avail_pages_below_pressure(void)
+{
+#if CONFIG_EMBEDDED
+/*
+ * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should
+ * key off of the system having dynamic swap support. With full swap support,
+ * the system shouldn't really need to worry about various page thresholds.
+ */
+ return (memorystatus_available_pages <= memorystatus_available_pages_pressure);
+#else /* CONFIG_EMBEDDED */
+ return FALSE;
+#endif /* CONFIG_EMBEDDED */
+}
+
+static boolean_t
+memorystatus_avail_pages_below_critical(void)
+{
+#if CONFIG_EMBEDDED
+ return (memorystatus_available_pages <= memorystatus_available_pages_critical);
+#else /* CONFIG_EMBEDDED */
+ return FALSE;
+#endif /* CONFIG_EMBEDDED */
+}
+
+static boolean_t
+memorystatus_post_snapshot(int32_t priority, uint32_t cause)
+{
+#if CONFIG_EMBEDDED
+#pragma unused(cause)
+ /*
+ * Don't generate logs for steady-state idle-exit kills,
+ * unless it is overridden for debug or by the device
+ * tree.
+ */
+
+ return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot);
+
+#else /* CONFIG_EMBEDDED */
+ /*
+ * Don't generate logs for steady-state idle-exit kills,
+ * unless
+ * - it is overridden for debug or by the device
+ * tree.
+ * OR
+ * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
+ */
+
+ boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause));
+ return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot || snapshot_eligible_kill_cause);
+#endif /* CONFIG_EMBEDDED */
+}
+
+static boolean_t
+memorystatus_action_needed(void)
+{
+#if CONFIG_EMBEDDED
+ return (is_reason_thrashing(kill_under_pressure_cause) ||
+ is_reason_zone_map_exhaustion(kill_under_pressure_cause) ||
+ memorystatus_available_pages <= memorystatus_available_pages_pressure);
+#else /* CONFIG_EMBEDDED */
+ return (is_reason_thrashing(kill_under_pressure_cause) ||
+ is_reason_zone_map_exhaustion(kill_under_pressure_cause));
+#endif /* CONFIG_EMBEDDED */
+}
+
+static boolean_t
+memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, boolean_t *post_snapshot, __unused boolean_t *is_critical)
+{
+ boolean_t killed = memorystatus_kill_hiwat_proc(errors);
+
+ if (killed) {
+ *hwm_kill = *hwm_kill + 1;
+ *post_snapshot = TRUE;
+ return TRUE;
+ } else {
+ memorystatus_hwm_candidates = FALSE;
+ }
+
+#if CONFIG_JETSAM
+ /* No highwater processes to kill. Continue or stop for now? */
+ if (!is_reason_thrashing(kill_under_pressure_cause) &&
+ !is_reason_zone_map_exhaustion(kill_under_pressure_cause) &&
+ (memorystatus_available_pages > memorystatus_available_pages_critical)) {
+ /*
+ * We are _not_ out of pressure but we are above the critical threshold and there's:
+ * - no compressor thrashing
+ * - enough zone memory
+ * - no more HWM processes left.
+ * For now, don't kill any other processes.
+ */
+
+ if (*hwm_kill == 0) {
+ memorystatus_thread_wasted_wakeup++;
+ }
+
+ *is_critical = FALSE;
+
+ return TRUE;
+ }
+#endif /* CONFIG_JETSAM */
+
+ return FALSE;
+}
+
+static boolean_t
+memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, boolean_t *corpse_list_purged, boolean_t *post_snapshot)
+{
+ if (memorystatus_jld_enabled == TRUE) {
+
+ boolean_t killed;
+ uint32_t errors = 0;
+
+ /* Jetsam Loop Detection - locals */
+ memstat_bucket_t *bucket;
+ int jld_bucket_count = 0;
+ struct timeval jld_now_tstamp = {0,0};
+ uint64_t jld_now_msecs = 0;
+ int elevated_bucket_count = 0;
+
+ /* Jetsam Loop Detection - statics */
+ static uint64_t jld_timestamp_msecs = 0;
+ static int jld_idle_kill_candidates = 0; /* Number of available processes in band 0,1 at start */
+ static int jld_eval_aggressive_count = 0; /* Bumps the max priority in aggressive loop */
+ static int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
+ /*
+ * Jetsam Loop Detection: attempt to detect
+ * rapid daemon relaunches in the lower bands.
+ */
+
+ microuptime(&jld_now_tstamp);
+
+ /*
+ * Ignore usecs in this calculation.
+ * msecs granularity is close enough.
+ */
+ jld_now_msecs = (jld_now_tstamp.tv_sec * 1000);
+
+ proc_list_lock();
+ switch (jetsam_aging_policy) {
+ case kJetsamAgingPolicyLegacy:
+ bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
+ jld_bucket_count = bucket->count;
+ bucket = &memstat_bucket[JETSAM_PRIORITY_AGING_BAND1];
+ jld_bucket_count += bucket->count;
+ break;
+ case kJetsamAgingPolicySysProcsReclaimedFirst:
+ case kJetsamAgingPolicyAppsReclaimedFirst:
+ bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
+ jld_bucket_count = bucket->count;
+ bucket = &memstat_bucket[system_procs_aging_band];
+ jld_bucket_count += bucket->count;
+ bucket = &memstat_bucket[applications_aging_band];
+ jld_bucket_count += bucket->count;
+ break;
+ case kJetsamAgingPolicyNone:
+ default:
+ bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
+ jld_bucket_count = bucket->count;
+ break;
+ }
+
+ bucket = &memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE];
+ elevated_bucket_count = bucket->count;
+
+ proc_list_unlock();
+
+ /*
+ * memorystatus_jld_eval_period_msecs is a tunable
+ * memorystatus_jld_eval_aggressive_count is a tunable
+ * memorystatus_jld_eval_aggressive_priority_band_max is a tunable
+ */
+ if ( (jld_bucket_count == 0) ||
+ (jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) {
+
+ /*
+ * Refresh evaluation parameters
+ */
+ jld_timestamp_msecs = jld_now_msecs;
+ jld_idle_kill_candidates = jld_bucket_count;
+ *jld_idle_kills = 0;
+ jld_eval_aggressive_count = 0;
+ jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
+ }
+
+ if (*jld_idle_kills > jld_idle_kill_candidates) {
+ jld_eval_aggressive_count++;
+
+#if DEVELOPMENT || DEBUG
+ printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n",
+ jld_eval_aggressive_count,
+ jld_timestamp_msecs,
+ jld_now_msecs);
+ printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
+ jld_eval_aggressive_count,
+ jld_idle_kill_candidates,
+ *jld_idle_kills);
+#endif /* DEVELOPMENT || DEBUG */
+
+ if ((jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) &&
+ (total_corpses_count() > 0) && (*corpse_list_purged == FALSE)) {
+ /*
+ * If we reach this aggressive cycle, corpses might be causing memory pressure.
+ * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
+ * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
+ */
+ task_purge_all_corpses();
+ *corpse_list_purged = TRUE;
+ }
+ else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) {
+ /*
+ * Bump up the jetsam priority limit (eg: the bucket index)
+ * Enforce bucket index sanity.
+ */
+ if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) ||
+ (memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) {
+ /*
+ * Do nothing. Stick with the default level.
+ */
+ } else {
+ jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max;
+ }
+ }
+
+ /* Visit elevated processes first */
+ while (elevated_bucket_count) {
+
+ elevated_bucket_count--;
+
+ /*
+ * memorystatus_kill_elevated_process() drops a reference,
+ * so take another one so we can continue to use this exit reason
+ * even after it returns.
+ */
+
+ os_reason_ref(jetsam_reason);
+ killed = memorystatus_kill_elevated_process(
+ cause,
+ jetsam_reason,
+ jld_eval_aggressive_count,
+ &errors);
+
+ if (killed) {
+ *post_snapshot = TRUE;
+ if (memorystatus_avail_pages_below_pressure()) {
+ /*
+ * Still under pressure.
+ * Find another pinned processes.
+ */
+ continue;
+ } else {
+ return TRUE;
+ }
+ } else {
+ /*
+ * No pinned processes left to kill.
+ * Abandon elevated band.
+ */
+ break;
+ }
+ }
+
+ /*
+ * memorystatus_kill_top_process_aggressive() allocates its own
+ * jetsam_reason so the kMemorystatusKilledVMThrashing cause
+ * is consistent throughout the aggressive march.
+ */
+ killed = memorystatus_kill_top_process_aggressive(
+ kMemorystatusKilledVMThrashing,
+ jld_eval_aggressive_count,
+ jld_priority_band_max,
+ &errors);
+
+ if (killed) {
+ /* Always generate logs after aggressive kill */
+ *post_snapshot = TRUE;
+ *jld_idle_kills = 0;
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+ }
+
+ return FALSE;
+}
+
+
+static void
+memorystatus_thread(void *param __unused, wait_result_t wr __unused)
+{
+ static boolean_t is_vm_privileged = FALSE;
+
+ boolean_t post_snapshot = FALSE;
+ uint32_t errors = 0;
+ uint32_t hwm_kill = 0;
+ boolean_t sort_flag = TRUE;
+ boolean_t corpse_list_purged = FALSE;
+ int jld_idle_kills = 0;
+
+ if (is_vm_privileged == FALSE) {
+ /*
+ * It's the first time the thread has run, so just mark the thread as privileged and block.
+ * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
+ */
+ thread_wire(host_priv_self(), current_thread(), TRUE);
+ is_vm_privileged = TRUE;
+
+ if (vm_restricted_to_single_processor == TRUE)
+ thread_vm_bind_group_add();
+ thread_set_thread_name(current_thread(), "VM_memorystatus");
+ memorystatus_thread_block(0, memorystatus_thread);
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START,
+ memorystatus_available_pages, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count,0);
+
+ /*
+ * Jetsam aware version.
+ *
+ * The VM pressure notification thread is working it's way through clients in parallel.
+ *
+ * So, while the pressure notification thread is targeting processes in order of
+ * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
+ * any processes that have exceeded their highwater mark.
+ *
+ * If we run out of HWM processes and our available pages drops below the critical threshold, then,
+ * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
+ */
+ while (memorystatus_action_needed()) {
+ boolean_t killed;
+ int32_t priority;
+ uint32_t cause;
+ uint64_t jetsam_reason_code = JETSAM_REASON_INVALID;
+ os_reason_t jetsam_reason = OS_REASON_NULL;
+
+ cause = kill_under_pressure_cause;
+ switch (cause) {
+ case kMemorystatusKilledFCThrashing:
+ jetsam_reason_code = JETSAM_REASON_MEMORY_FCTHRASHING;
+ break;
+ case kMemorystatusKilledVMThrashing:
+ jetsam_reason_code = JETSAM_REASON_MEMORY_VMTHRASHING;
+ break;
+ case kMemorystatusKilledZoneMapExhaustion:
+ jetsam_reason_code = JETSAM_REASON_ZONE_MAP_EXHAUSTION;
+ break;
+ case kMemorystatusKilledVMPageShortage:
+ /* falls through */
+ default:
+ jetsam_reason_code = JETSAM_REASON_MEMORY_VMPAGESHORTAGE;
+ cause = kMemorystatusKilledVMPageShortage;
+ break;
+ }
+
+ /* Highwater */
+ boolean_t is_critical = TRUE;
+ if (memorystatus_act_on_hiwat_processes(&errors, &hwm_kill, &post_snapshot, &is_critical)) {
+ if (is_critical == FALSE) {
+ /*
+ * For now, don't kill any other processes.
+ */
+ break;
+ } else {
+ goto done;
+ }
+ }
+
+ jetsam_reason = os_reason_create(OS_REASON_JETSAM, jetsam_reason_code);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_thread: failed to allocate jetsam reason\n");
+ }
+
+ if (memorystatus_act_aggressive(cause, jetsam_reason, &jld_idle_kills, &corpse_list_purged, &post_snapshot)) {
+ goto done;
+ }
+
+ /*
+ * memorystatus_kill_top_process() drops a reference,
+ * so take another one so we can continue to use this exit reason
+ * even after it returns
+ */
+ os_reason_ref(jetsam_reason);
+
+ /* LRU */
+ killed = memorystatus_kill_top_process(TRUE, sort_flag, cause, jetsam_reason, &priority, &errors);
+ sort_flag = FALSE;
+
+ if (killed) {
+ if (memorystatus_post_snapshot(priority, cause) == TRUE) {
+
+ post_snapshot = TRUE;
+ }
+
+ /* Jetsam Loop Detection */
+ if (memorystatus_jld_enabled == TRUE) {
+ if ((priority == JETSAM_PRIORITY_IDLE) || (priority == system_procs_aging_band) || (priority == applications_aging_band)) {
+ jld_idle_kills++;
+ } else {
+ /*
+ * We've reached into bands beyond idle deferred.
+ * We make no attempt to monitor them
+ */
+ }
+ }
+
+ if ((priority >= JETSAM_PRIORITY_UI_SUPPORT) && (total_corpses_count() > 0) && (corpse_list_purged == FALSE)) {
+ /*
+ * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
+ * then we attempt to relieve pressure by purging corpse memory.
+ */
+ task_purge_all_corpses();
+ corpse_list_purged = TRUE;
+ }
+ goto done;
+ }
+
+ if (memorystatus_avail_pages_below_critical()) {
+ /*
+ * Still under pressure and unable to kill a process - purge corpse memory
+ */
+ if (total_corpses_count() > 0) {
+ task_purge_all_corpses();
+ corpse_list_purged = TRUE;
+ }
+
+ if (memorystatus_avail_pages_below_critical()) {
+ /*
+ * Still under pressure and unable to kill a process - panic
+ */
+ panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages);
+ }
+ }
+
+done:
+
+ /*
+ * We do not want to over-kill when thrashing has been detected.
+ * To avoid that, we reset the flag here and notify the
+ * compressor.
+ */
+ if (is_reason_thrashing(kill_under_pressure_cause)) {
+ kill_under_pressure_cause = 0;
+#if CONFIG_JETSAM
+ vm_thrashing_jetsam_done();
+#endif /* CONFIG_JETSAM */
+ } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause)) {
+ kill_under_pressure_cause = 0;
+ }
+
+ os_reason_free(jetsam_reason);
+ }
+
+ kill_under_pressure_cause = 0;
+
+ if (errors) {
+ memorystatus_clear_errors();
+ }
+
+ if (post_snapshot) {
+ proc_list_lock();
+ size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
+ sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count);
+ uint64_t timestamp_now = mach_absolute_time();
+ memorystatus_jetsam_snapshot->notification_time = timestamp_now;
+ memorystatus_jetsam_snapshot->js_gencount++;
+ if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
+ timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
+ proc_list_unlock();
+ int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
+ if (!ret) {
+ proc_list_lock();
+ memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
+ proc_list_unlock();
+ }
+ } else {
+ proc_list_unlock();
+ }
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END,
+ memorystatus_available_pages, 0, 0, 0, 0);
+
+ memorystatus_thread_block(0, memorystatus_thread);
+}
+
+/*
+ * Returns TRUE:
+ * when an idle-exitable proc was killed
+ * Returns FALSE:
+ * when there are no more idle-exitable procs found
+ * when the attempt to kill an idle-exitable proc failed
+ */
+boolean_t memorystatus_idle_exit_from_VM(void) {
+
+ /*
+ * This routine should no longer be needed since we are
+ * now using jetsam bands on all platforms and so will deal
+ * with IDLE processes within the memorystatus thread itself.
+ *
+ * But we still use it because we observed that macos systems
+ * started heavy compression/swapping with a bunch of
+ * idle-exitable processes alive and doing nothing. We decided
+ * to rather kill those processes than start swapping earlier.
+ */
+
+ return(kill_idle_exit_proc());
+}
+
+/*
+ * Callback invoked when allowable physical memory footprint exceeded
+ * (dirty pages + IOKit mappings)
+ *
+ * This is invoked for both advisory, non-fatal per-task high watermarks,
+ * as well as the fatal task memory limits.
+ */
+void
+memorystatus_on_ledger_footprint_exceeded(boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
+{
+ os_reason_t jetsam_reason = OS_REASON_NULL;
+
+ proc_t p = current_proc();
+
+#if VM_PRESSURE_EVENTS
+ if (warning == TRUE) {
+ /*
+ * This is a warning path which implies that the current process is close, but has
+ * not yet exceeded its per-process memory limit.
+ */
+ if (memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) {
+ /* Print warning, since it's possible that task has not registered for pressure notifications */
+ os_log(OS_LOG_DEFAULT, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p->p_pid);
+ }
+ return;
+ }
+#endif /* VM_PRESSURE_EVENTS */
+
+ if (memlimit_is_fatal) {
+ /*
+ * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
+ * has violated either the system-wide per-task memory limit OR its own task limit.
+ */
+ jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT);
+ if (jetsam_reason == NULL) {
+ printf("task_exceeded footprint: failed to allocate jetsam reason\n");
+ } else if (corpse_for_fatal_memkill != 0) {
+ /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
+ jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
+ }
+
+ if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) {
+ printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
+ }
+ } else {
+ /*
+ * HWM offender exists. Done without locks or synchronization.
+ * See comment near its declaration for more details.
+ */
+ memorystatus_hwm_candidates = TRUE;
+
+#if VM_PRESSURE_EVENTS
+ /*
+ * The current process is not in the warning path.
+ * This path implies the current process has exceeded a non-fatal (soft) memory limit.
+ * Failure to send note is ignored here.
+ */
+ (void)memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */);
+
+#endif /* VM_PRESSURE_EVENTS */
+ }
+}
+
+void
+memorystatus_log_exception(const int max_footprint_mb, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
+{
+ proc_t p = current_proc();
+
+ /*
+ * The limit violation is logged here, but only once per process per limit.
+ * Soft memory limit is a non-fatal high-water-mark
+ * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
+ */
+
+ os_log_with_startup_serial(OS_LOG_DEFAULT, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
+ (*p->p_name ? p->p_name : "unknown"), p->p_pid, (memlimit_is_active ? "Active" : "Inactive"),
+ (memlimit_is_fatal ? "Hard" : "Soft"), max_footprint_mb,
+ (memlimit_is_fatal ? "fatal" : "non-fatal"));
+
+ return;
+}
+
+
+/*
+ * Description:
+ * Evaluates process state to determine which limit
+ * should be applied (active vs. inactive limit).
+ *
+ * Processes that have the 'elevated inactive jetsam band' attribute
+ * are first evaluated based on their current priority band.
+ * presently elevated ==> active
+ *
+ * Processes that opt into dirty tracking are evaluated
+ * based on clean vs dirty state.
+ * dirty ==> active
+ * clean ==> inactive
+ *
+ * Process that do not opt into dirty tracking are
+ * evalulated based on priority level.
+ * Foreground or above ==> active
+ * Below Foreground ==> inactive
+ *
+ * Return: TRUE if active
+ * False if inactive
+ */
+
+static boolean_t
+proc_jetsam_state_is_active_locked(proc_t p) {
+
+ if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) &&
+ (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) {
+ /*
+ * process has the 'elevated inactive jetsam band' attribute
+ * and process is present in the elevated band
+ * implies active state
+ */
+ return TRUE;
+ } else if (p->p_memstat_dirty & P_DIRTY_TRACK) {
+ /*
+ * process has opted into dirty tracking
+ * active state is based on dirty vs. clean
+ */
+ if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
+ /*
+ * process is dirty
+ * implies active state
+ */
+ return TRUE;
+ } else {
+ /*
+ * process is clean
+ * implies inactive state
+ */
+ return FALSE;
+ }
+ } else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
+ /*
+ * process is Foreground or higher
+ * implies active state
+ */
+ return TRUE;
+ } else {
+ /*
+ * process found below Foreground
+ * implies inactive state
+ */
+ return FALSE;
+ }
+}
+
+static boolean_t
+memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) {
+ boolean_t res;
+
+ uint32_t errors = 0;
+
+ if (victim_pid == -1) {
+ /* No pid, so kill first process */
+ res = memorystatus_kill_top_process(TRUE, TRUE, cause, jetsam_reason, NULL, &errors);
+ } else {
+ res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason);
+ }
+
+ if (errors) {
+ memorystatus_clear_errors();
+ }
+
+ if (res == TRUE) {
+ /* Fire off snapshot notification */
+ proc_list_lock();
+ size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
+ sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count;
+ uint64_t timestamp_now = mach_absolute_time();
+ memorystatus_jetsam_snapshot->notification_time = timestamp_now;
+ if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
+ timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
+ proc_list_unlock();
+ int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
+ if (!ret) {
+ proc_list_lock();
+ memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
+ proc_list_unlock();
+ }
+ } else {
+ proc_list_unlock();
+ }
+ }
+
+ return res;
+}
+
+/*
+ * Jetsam a specific process.
+ */
+static boolean_t
+memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) {
+ boolean_t killed;
+ proc_t p;
+ uint64_t killtime = 0;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+ uint32_t tv_msec;
+
+ /* TODO - add a victim queue and push this into the main jetsam thread */
+
+ p = proc_find(victim_pid);
+ if (!p) {
+ os_reason_free(jetsam_reason);
+ return FALSE;
+ }
+
+ proc_list_lock();
+
+ if (memorystatus_jetsam_snapshot_count == 0) {
+ memorystatus_init_jetsam_snapshot_locked(NULL,0);
+ }
+
+ killtime = mach_absolute_time();
+ absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
+ tv_msec = tv_usec / 1000;
+
+ memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
+
+ proc_list_unlock();
+
+ os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
+ (unsigned long)tv_sec, tv_msec, victim_pid, (*p->p_name ? p->p_name : "unknown"),
+ memorystatus_kill_cause_name[cause], p->p_memstat_effectivepriority, (uint64_t)memorystatus_available_pages);
+
+ killed = memorystatus_do_kill(p, cause, jetsam_reason);
+ proc_rele(p);
+
+ return killed;
+}
+
+
+/*
+ * Toggle the P_MEMSTAT_TERMINATED state.
+ * Takes the proc_list_lock.
+ */
+void
+proc_memstat_terminated(proc_t p, boolean_t set)
+{
+#if DEVELOPMENT || DEBUG
+ if (p) {
+ proc_list_lock();
+ if (set == TRUE) {
+ p->p_memstat_state |= P_MEMSTAT_TERMINATED;
+ } else {
+ p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
+ }
+ proc_list_unlock();
+ }
+#else
+#pragma unused(p, set)
+ /*
+ * do nothing
+ */
+#endif /* DEVELOPMENT || DEBUG */
+ return;
+}
+
+
+#if CONFIG_JETSAM
+/*
+ * This is invoked when cpulimits have been exceeded while in fatal mode.
+ * The jetsam_flags do not apply as those are for memory related kills.
+ * We call this routine so that the offending process is killed with
+ * a non-zero exit status.
+ */
+void
+jetsam_on_ledger_cpulimit_exceeded(void)
+{
+ int retval = 0;
+ int jetsam_flags = 0; /* make it obvious */
+ proc_t p = current_proc();
+ os_reason_t jetsam_reason = OS_REASON_NULL;
+
+ printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
+ p->p_pid, (*p->p_name ? p->p_name : "(unknown)"));
+
+ jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
+ }
+
+ retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
+
+ if (retval) {
+ printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
+ }
+}
+
+#endif /* CONFIG_JETSAM */
+
+static void
+memorystatus_get_task_memory_region_count(task_t task, uint64_t *count)
+{
+ assert(task);
+ assert(count);
+
+ *count = get_task_memory_region_count(task);
+}
+
+#if DEVELOPMENT || DEBUG
+
+/*
+ * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
+ * set a new pidwatch value
+ * or
+ * get the current pidwatch value
+ */
+
+uint64_t memorystatus_vm_map_fork_pidwatch_val = 0;
+#define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
+#define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
+
+static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS {
+#pragma unused(oidp, arg1, arg2)
+
+ uint64_t new_value = 0;
+ uint64_t old_value = 0;
+ int error = 0;
+
+ /*
+ * The pid is held in the low 32 bits.
+ * The 'allowed' flags are in the upper 32 bits.
+ */
+ old_value = memorystatus_vm_map_fork_pidwatch_val;
+
+ error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL);
+
+ if (error || !req->newptr) {
+ /*
+ * No new value passed in.
+ */
+ return(error);
+ }
+
+ /*
+ * A new pid was passed in via req->newptr.
+ * Ignore any attempt to set the higher order bits.
+ */
+ memorystatus_vm_map_fork_pidwatch_val = new_value & 0xFFFFFFFF;
+ printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value, new_value);
+
+ return(error);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_map_fork_pidwatch, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED| CTLFLAG_MASKED,
+ 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch, "Q", "get/set pid watched for in vm_map_fork");
+
+
+#define SET_VM_MAP_FORK_PIDWATCH_ALLOWED(task) \
+MACRO_BEGIN \
+if (memorystatus_vm_map_fork_pidwatch_val != 0) { \
+ proc_t p = get_bsdtask_info(task); \
+ if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid)) { \
+ memorystatus_vm_map_fork_pidwatch_val |= MEMORYSTATUS_VM_MAP_FORK_ALLOWED; \
+ } \
+} \
+MACRO_END
+
+#define SET_VM_MAP_FORK_PIDWATCH_NOT_ALLOWED(task) \
+MACRO_BEGIN \
+if (memorystatus_vm_map_fork_pidwatch_val != 0) { \
+ proc_t p = get_bsdtask_info(task); \
+ if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid)) { \
+ memorystatus_vm_map_fork_pidwatch_val |= MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED; \
+ } \
+} \
+MACRO_END
+
+#else /* DEVELOPMENT || DEBUG */
+
+#define SET_VM_MAP_FORK_PIDWATCH_ALLOWED(task)
+#define SET_VM_MAP_FORK_PIDWATCH_NOT_ALLOWED(task)
+
+#endif /* DEVELOPMENT || DEBUG */
+
+/*
+ * Called during EXC_RESOURCE handling when a process exceeds a soft
+ * memory limit. This is the corpse fork path and here we decide if
+ * vm_map_fork will be allowed when creating the corpse.
+ * The task being considered is suspended.
+ *
+ * By default, a vm_map_fork is allowed to proceed.
+ *
+ * A few simple policy assumptions:
+ * Desktop platform is not considered in this path.
+ * The vm_map_fork is always allowed.
+ *
+ * If the device has a zero system-wide task limit,
+ * then the vm_map_fork is allowed.
+ *
+ * And if a process's memory footprint calculates less
+ * than or equal to half of the system-wide task limit,
+ * then the vm_map_fork is allowed. This calculation
+ * is based on the assumption that a process can
+ * munch memory up to the system-wide task limit.
+ */
+boolean_t
+memorystatus_allowed_vm_map_fork(__unused task_t task)
+{
+ boolean_t is_allowed = TRUE; /* default */
+
+#if CONFIG_EMBEDDED
+
+ uint64_t footprint_in_bytes = 0;
+ uint64_t purgeable_in_bytes = 0;
+ uint64_t max_allowed_bytes = 0;
+
+ if (max_task_footprint_mb == 0) {
+ SET_VM_MAP_FORK_PIDWATCH_ALLOWED(task);
+ return (is_allowed);
+ }
+
+ purgeable_in_bytes = get_task_purgeable_size(task);
+ footprint_in_bytes = get_task_phys_footprint(task);
+
+ /*
+ * Maximum is half the system-wide task limit.
+ */
+ max_allowed_bytes = ((((uint64_t)max_task_footprint_mb) * 1024ULL * 1024ULL) >> 1);
+
+ if (footprint_in_bytes > purgeable_in_bytes) {
+ footprint_in_bytes -= purgeable_in_bytes;
+ }
+
+ if (footprint_in_bytes <= max_allowed_bytes) {
+ SET_VM_MAP_FORK_PIDWATCH_ALLOWED(task);
+ return (is_allowed);
+ } else {
+ printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes, max_allowed_bytes);
+ SET_VM_MAP_FORK_PIDWATCH_NOT_ALLOWED(task);
+ return (!is_allowed);
+ }
+
+#else /* CONFIG_EMBEDDED */
+
+ SET_VM_MAP_FORK_PIDWATCH_ALLOWED(task);
+ return (is_allowed);
+
+#endif /* CONFIG_EMBEDDED */
+
+}
+
+static void
+memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages)
+{
+ assert(task);
+ assert(footprint);
+
+ uint64_t pages;
+
+ pages = (get_task_phys_footprint(task) / PAGE_SIZE_64);
+ assert(((uint32_t)pages) == pages);
+ *footprint = (uint32_t)pages;
+
+ if (max_footprint) {
+ pages = (get_task_phys_footprint_recent_max(task) / PAGE_SIZE_64);
+ assert(((uint32_t)pages) == pages);
+ *max_footprint = (uint32_t)pages;
+ }
+ if (max_footprint_lifetime) {
+ pages = (get_task_resident_max(task) / PAGE_SIZE_64);
+ assert(((uint32_t)pages) == pages);
+ *max_footprint_lifetime = (uint32_t)pages;
+ }
+ if (purgeable_pages) {
+ pages = (get_task_purgeable_size(task) / PAGE_SIZE_64);
+ assert(((uint32_t)pages) == pages);
+ *purgeable_pages = (uint32_t)pages;
+ }
+}
+
+static void
+memorystatus_get_task_phys_footprint_page_counts(task_t task,
+ uint64_t *internal_pages, uint64_t *internal_compressed_pages,
+ uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
+ uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
+ uint64_t *iokit_mapped_pages, uint64_t *page_table_pages)
+{
+ assert(task);
+
+ if (internal_pages) {
+ *internal_pages = (get_task_internal(task) / PAGE_SIZE_64);
+ }
+
+ if (internal_compressed_pages) {
+ *internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64);
+ }
+
+ if (purgeable_nonvolatile_pages) {
+ *purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64);
+ }
+
+ if (purgeable_nonvolatile_compressed_pages) {
+ *purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64);
+ }
+
+ if (alternate_accounting_pages) {
+ *alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64);
+ }
+
+ if (alternate_accounting_compressed_pages) {
+ *alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64);
+ }
+
+ if (iokit_mapped_pages) {
+ *iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64);
+ }
+
+ if (page_table_pages) {
+ *page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64);
+ }
+}
+
+/*
+ * This routine only acts on the global jetsam event snapshot.
+ * Updating the process's entry can race when the memorystatus_thread
+ * has chosen to kill a process that is racing to exit on another core.
+ */
+static void
+memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime)
+{
+ memorystatus_jetsam_snapshot_entry_t *entry = NULL;
+ memorystatus_jetsam_snapshot_t *snapshot = NULL;
+ memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
+
+ unsigned int i;
+
+ if (memorystatus_jetsam_snapshot_count == 0) {
+ /*
+ * No active snapshot.
+ * Nothing to do.
+ */
+ return;
+ }
+
+ /*
+ * Sanity check as this routine should only be called
+ * from a jetsam kill path.
+ */
+ assert(kill_cause != 0 && killtime != 0);
+
+ snapshot = memorystatus_jetsam_snapshot;
+ snapshot_list = memorystatus_jetsam_snapshot->entries;
+
+ for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) {
+ if (snapshot_list[i].pid == p->p_pid) {
+
+ entry = &snapshot_list[i];
+
+ if (entry->killed || entry->jse_killtime) {
+ /*
+ * We apparently raced on the exit path
+ * for this process, as it's snapshot entry
+ * has already recorded a kill.
+ */
+ assert(entry->killed && entry->jse_killtime);
+ break;
+ }
+
+ /*
+ * Update the entry we just found in the snapshot.
+ */
+
+ entry->killed = kill_cause;
+ entry->jse_killtime = killtime;
+ entry->jse_gencount = snapshot->js_gencount;
+ entry->jse_idle_delta = p->p_memstat_idle_delta;
+
+ /*
+ * If a process has moved between bands since snapshot was
+ * initialized, then likely these fields changed too.
+ */
+ if (entry->priority != p->p_memstat_effectivepriority) {
+
+ strlcpy(entry->name, p->p_name, sizeof(entry->name));
+ entry->priority = p->p_memstat_effectivepriority;
+ entry->state = memorystatus_build_state(p);
+ entry->user_data = p->p_memstat_userdata;
+ entry->fds = p->p_fd->fd_nfiles;
+ }
+
+ /*
+ * Always update the page counts on a kill.
+ */
+
+ uint32_t pages = 0;
+ uint32_t max_pages = 0;
+ uint32_t max_pages_lifetime = 0;
+ uint32_t purgeable_pages = 0;
+
+ memorystatus_get_task_page_counts(p->task, &pages, &max_pages, &max_pages_lifetime, &purgeable_pages);
+ entry->pages = (uint64_t)pages;
+ entry->max_pages = (uint64_t)max_pages;
+ entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
+ entry->purgeable_pages = (uint64_t)purgeable_pages;
+
+ uint64_t internal_pages = 0;
+ uint64_t internal_compressed_pages = 0;
+ uint64_t purgeable_nonvolatile_pages = 0;
+ uint64_t purgeable_nonvolatile_compressed_pages = 0;
+ uint64_t alternate_accounting_pages = 0;
+ uint64_t alternate_accounting_compressed_pages = 0;
+ uint64_t iokit_mapped_pages = 0;
+ uint64_t page_table_pages = 0;
+
+ memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages,
+ &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
+ &alternate_accounting_pages, &alternate_accounting_compressed_pages,
+ &iokit_mapped_pages, &page_table_pages);
+
+ entry->jse_internal_pages = internal_pages;
+ entry->jse_internal_compressed_pages = internal_compressed_pages;
+ entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
+ entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
+ entry->jse_alternate_accounting_pages = alternate_accounting_pages;
+ entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
+ entry->jse_iokit_mapped_pages = iokit_mapped_pages;
+ entry->jse_page_table_pages = page_table_pages;
+
+ uint64_t region_count = 0;
+ memorystatus_get_task_memory_region_count(p->task, ®ion_count);
+ entry->jse_memory_region_count = region_count;
+
+ goto exit;
+ }
+ }
+
+ if (entry == NULL) {
+ /*
+ * The entry was not found in the snapshot, so the process must have
+ * launched after the snapshot was initialized.
+ * Let's try to append the new entry.
+ */
+ if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) {
+ /*
+ * A populated snapshot buffer exists
+ * and there is room to init a new entry.
+ */
+ assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count);
+
+ unsigned int next = memorystatus_jetsam_snapshot_count;
+
+ if(memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[next], (snapshot->js_gencount)) == TRUE) {
+
+ entry = &snapshot_list[next];
+ entry->killed = kill_cause;
+ entry->jse_killtime = killtime;
+
+ snapshot->entry_count = ++next;
+ memorystatus_jetsam_snapshot_count = next;
+
+ if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) {
+ /*
+ * We just used the last slot in the snapshot buffer.
+ * We only want to log it once... so we do it here
+ * when we notice we've hit the max.
+ */
+ printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
+ memorystatus_jetsam_snapshot_count);
+ }
+ }
+ }
+ }
+
+exit:
+ if (entry == NULL) {
+ /*
+ * If we reach here, the snapshot buffer could not be updated.
+ * Most likely, the buffer is full, in which case we would have
+ * logged a warning in the previous call.
+ *
+ * For now, we will stop appending snapshot entries.
+ * When the buffer is consumed, the snapshot state will reset.
+ */
+
+ MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
+ p->p_pid, p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count);
+ }
+
+ return;
+}
+
+#if CONFIG_JETSAM
+void memorystatus_pages_update(unsigned int pages_avail)
+{
+ memorystatus_available_pages = pages_avail;
+
+#if VM_PRESSURE_EVENTS
+ /*
+ * Since memorystatus_available_pages changes, we should
+ * re-evaluate the pressure levels on the system and
+ * check if we need to wake the pressure thread.
+ * We also update memorystatus_level in that routine.
+ */
+ vm_pressure_response();
+
+ if (memorystatus_available_pages <= memorystatus_available_pages_pressure) {
+
+ if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) {
+ memorystatus_thread_wake();
+ }
+ }
+#else /* VM_PRESSURE_EVENTS */
+
+ boolean_t critical, delta;
+
+ if (!memorystatus_delta) {
+ return;
+ }
+
+ critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE;
+ delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta))
+ || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE;
+
+ if (critical || delta) {
+ unsigned int total_pages;
+
+ total_pages = (unsigned int) atop_64(max_mem);
+#if CONFIG_SECLUDED_MEMORY
+ total_pages -= vm_page_secluded_count;
+#endif /* CONFIG_SECLUDED_MEMORY */
+ memorystatus_level = memorystatus_available_pages * 100 / total_pages;
+ memorystatus_thread_wake();
+ }
+#endif /* VM_PRESSURE_EVENTS */
+}
+#endif /* CONFIG_JETSAM */
+
+static boolean_t
+memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount)
+{
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+ uint32_t pages = 0;
+ uint32_t max_pages = 0;
+ uint32_t max_pages_lifetime = 0;
+ uint32_t purgeable_pages = 0;
+ uint64_t internal_pages = 0;
+ uint64_t internal_compressed_pages = 0;
+ uint64_t purgeable_nonvolatile_pages = 0;
+ uint64_t purgeable_nonvolatile_compressed_pages = 0;
+ uint64_t alternate_accounting_pages = 0;
+ uint64_t alternate_accounting_compressed_pages = 0;
+ uint64_t iokit_mapped_pages = 0;
+ uint64_t page_table_pages =0;
+ uint64_t region_count = 0;
+ uint64_t cids[COALITION_NUM_TYPES];
+
+ memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t));
+
+ entry->pid = p->p_pid;
+ strlcpy(&entry->name[0], p->p_name, sizeof(entry->name));
+ entry->priority = p->p_memstat_effectivepriority;
+
+ memorystatus_get_task_page_counts(p->task, &pages, &max_pages, &max_pages_lifetime, &purgeable_pages);
+ entry->pages = (uint64_t)pages;
+ entry->max_pages = (uint64_t)max_pages;
+ entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
+ entry->purgeable_pages = (uint64_t)purgeable_pages;
+
+ memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages,
+ &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
+ &alternate_accounting_pages, &alternate_accounting_compressed_pages,
+ &iokit_mapped_pages, &page_table_pages);
+
+ entry->jse_internal_pages = internal_pages;
+ entry->jse_internal_compressed_pages = internal_compressed_pages;
+ entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
+ entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
+ entry->jse_alternate_accounting_pages = alternate_accounting_pages;
+ entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
+ entry->jse_iokit_mapped_pages = iokit_mapped_pages;
+ entry->jse_page_table_pages = page_table_pages;
+
+ memorystatus_get_task_memory_region_count(p->task, ®ion_count);
+ entry->jse_memory_region_count = region_count;
+
+ entry->state = memorystatus_build_state(p);
+ entry->user_data = p->p_memstat_userdata;
+ memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid));
+ entry->fds = p->p_fd->fd_nfiles;
+
+ absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec);
+ entry->cpu_time.tv_sec = tv_sec;
+ entry->cpu_time.tv_usec = tv_usec;
+
+ assert(p->p_stats != NULL);
+ entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */
+ entry->jse_killtime = 0; /* abstime jetsam chose to kill process */
+ entry->killed = 0; /* the jetsam kill cause */
+ entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */
+
+ entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */
+
+ proc_coalitionids(p, cids);
+ entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM];
+
+ return TRUE;
+}
+
+static void
+memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot)
+{
+ kern_return_t kr = KERN_SUCCESS;
+ mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
+ vm_statistics64_data_t vm_stat;
+
+ if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count) != KERN_SUCCESS)) {
+ printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr);
+ memset(&snapshot->stats, 0, sizeof(snapshot->stats));
+ } else {
+ snapshot->stats.free_pages = vm_stat.free_count;
+ snapshot->stats.active_pages = vm_stat.active_count;
+ snapshot->stats.inactive_pages = vm_stat.inactive_count;
+ snapshot->stats.throttled_pages = vm_stat.throttled_count;
+ snapshot->stats.purgeable_pages = vm_stat.purgeable_count;
+ snapshot->stats.wired_pages = vm_stat.wire_count;
+
+ snapshot->stats.speculative_pages = vm_stat.speculative_count;
+ snapshot->stats.filebacked_pages = vm_stat.external_page_count;
+ snapshot->stats.anonymous_pages = vm_stat.internal_page_count;
+ snapshot->stats.compressions = vm_stat.compressions;
+ snapshot->stats.decompressions = vm_stat.decompressions;
+ snapshot->stats.compressor_pages = vm_stat.compressor_page_count;
+ snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor;
+ }
+
+ get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity);
+ get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name),
+ &snapshot->stats.largest_zone_size);
+}
+
+/*
+ * Collect vm statistics at boot.
+ * Called only once (see kern_exec.c)
+ * Data can be consumed at any time.
+ */
+void
+memorystatus_init_at_boot_snapshot() {
+ memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot);
+ memorystatus_at_boot_snapshot.entry_count = 0;
+ memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */
+ memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time();
+}
+
+static void
+memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count )
+{
+ proc_t p, next_p;
+ unsigned int b = 0, i = 0;
+
+ memorystatus_jetsam_snapshot_t *snapshot = NULL;
+ memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
+ unsigned int snapshot_max = 0;
+
+ if (od_snapshot) {
+ /*
+ * This is an on_demand snapshot
+ */
+ snapshot = od_snapshot;
+ snapshot_list = od_snapshot->entries;
+ snapshot_max = ods_list_count;
+ } else {
+ /*
+ * This is a jetsam event snapshot
+ */
+ snapshot = memorystatus_jetsam_snapshot;
+ snapshot_list = memorystatus_jetsam_snapshot->entries;
+ snapshot_max = memorystatus_jetsam_snapshot_max;
+ }
+
+ /*
+ * Init the snapshot header information
+ */
+ memorystatus_init_snapshot_vmstats(snapshot);
+ snapshot->snapshot_time = mach_absolute_time();
+ snapshot->notification_time = 0;
+ snapshot->js_gencount = 0;
+
+ next_p = memorystatus_get_first_proc_locked(&b, TRUE);
+ while (next_p) {
+ p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&b, p, TRUE);
+
+ if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) {
+ continue;
+ }
+
+ MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
+ p->p_pid,
+ p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7],
+ p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]);
+
+ if (++i == snapshot_max) {
+ break;
+ }
+ }
+
+ snapshot->entry_count = i;
+
+ if (!od_snapshot) {
+ /* update the system buffer count */
+ memorystatus_jetsam_snapshot_count = i;
+ }
+}
+
+#if DEVELOPMENT || DEBUG
+
+#if CONFIG_JETSAM
+static int
+memorystatus_cmd_set_panic_bits(user_addr_t buffer, uint32_t buffer_size) {
+ int ret;
+ memorystatus_jetsam_panic_options_t debug;
+
+ if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) {
+ return EINVAL;
+ }
+
+ ret = copyin(buffer, &debug, buffer_size);
+ if (ret) {
+ return ret;
+ }
+
+ /* Panic bits match kMemorystatusKilled* enum */
+ memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask);
+
+ /* Copyout new value */
+ debug.data = memorystatus_jetsam_panic_debug;
+ ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t));
+
+ return ret;
+}
+#endif /* CONFIG_JETSAM */
+
+/*
+ * Triggers a sort_order on a specified jetsam priority band.
+ * This is for testing only, used to force a path through the sort
+ * function.
+ */
+static int
+memorystatus_cmd_test_jetsam_sort(int priority, int sort_order) {
+
+ int error = 0;
+
+ unsigned int bucket_index = 0;
+
+ if (priority == -1) {
+ /* Use as shorthand for default priority */
+ bucket_index = JETSAM_PRIORITY_DEFAULT;
+ } else {
+ bucket_index = (unsigned int)priority;
+ }
+
+ error = memorystatus_sort_bucket(bucket_index, sort_order);
+
+ return (error);
+}
+
+#endif /* DEVELOPMENT || DEBUG */
+
+/*
+ * Jetsam the first process in the queue.
+ */
+static boolean_t
+memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason,
+ int32_t *priority, uint32_t *errors)
+{
+ pid_t aPid;
+ proc_t p = PROC_NULL, next_p = PROC_NULL;
+ boolean_t new_snapshot = FALSE, force_new_snapshot = FALSE, killed = FALSE;
+ int kill_count = 0;
+ unsigned int i = 0;
+ uint32_t aPid_ep;
+ uint64_t killtime = 0;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+ uint32_t tv_msec;
+ int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE;
+
+#ifndef CONFIG_FREEZE
+#pragma unused(any)
+#endif
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
+ memorystatus_available_pages, 0, 0, 0, 0);
+
+
+#if CONFIG_JETSAM
+ if (sort_flag == TRUE) {
+ (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
+ }
+
+ local_max_kill_prio = max_kill_priority;
+
+ force_new_snapshot = FALSE;
+
+#else /* CONFIG_JETSAM */
+
+ if (sort_flag == TRUE) {
+ (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT);
+ }
+
+ /*
+ * On macos, we currently only have 2 reasons to be here:
+ *
+ * kMemorystatusKilledZoneMapExhaustion
+ * AND
+ * kMemorystatusKilledVMThrashing
+ *
+ * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
+ * any and all processes as eligible kill candidates since we need to avoid a panic.
+ *
+ * Since this function can be called async. it is harder to toggle the max_kill_priority
+ * value before and after a call. And so we use this local variable to set the upper band
+ * on the eligible kill bands.
+ */
+ if (cause == kMemorystatusKilledZoneMapExhaustion) {
+ local_max_kill_prio = JETSAM_PRIORITY_MAX;
+ } else {
+ local_max_kill_prio = max_kill_priority;
+ }
+
+ /*
+ * And, because we are here under extreme circumstances, we force a snapshot even for
+ * IDLE kills.
+ */
+ force_new_snapshot = TRUE;
+
+#endif /* CONFIG_JETSAM */
+
+ proc_list_lock();
+
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) {
+#if DEVELOPMENT || DEBUG
+ int activeProcess;
+ int procSuspendedForDiagnosis;
+#endif /* DEVELOPMENT || DEBUG */
+
+ p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
+
+#if DEVELOPMENT || DEBUG
+ activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND;
+ procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED;
+#endif /* DEVELOPMENT || DEBUG */
+
+ aPid = p->p_pid;
+ aPid_ep = p->p_memstat_effectivepriority;
+
+ if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
+ continue; /* with lock held */
+ }
+
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) {
+ printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid);
+ continue;
+ }
+#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
+
+ if (cause == kMemorystatusKilledVnodes)
+ {
+ /*
+ * If the system runs out of vnodes, we systematically jetsam
+ * processes in hopes of stumbling onto a vnode gain that helps
+ * the system recover. The process that happens to trigger
+ * this path has no known relationship to the vnode shortage.
+ * Deadlock avoidance: attempt to safeguard the caller.
+ */
+
+ if (p == current_proc()) {
+ /* do not jetsam the current process */
+ continue;
+ }
+ }
+
+#if CONFIG_FREEZE
+ boolean_t skip;
+ boolean_t reclaim_proc = !(p->p_memstat_state & (P_MEMSTAT_LOCKED | P_MEMSTAT_NORECLAIM));
+ if (any || reclaim_proc) {
+ skip = FALSE;
+ } else {
+ skip = TRUE;
+ }
+
+ if (skip) {
+ continue;
+ } else
+#endif
+ {
+ /*
+ * Capture a snapshot if none exists and:
+ * - we are forcing a new snapshot creation, either because:
+ * - on a particular platform we need these snapshots every time, OR
+ * - a boot-arg/embedded device tree property has been set.
+ * - priority was not requested (this is something other than an ambient kill)
+ * - the priority was requested *and* the targeted process is not at idle priority
+ */
+ if ((memorystatus_jetsam_snapshot_count == 0) &&
+ (force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) {
+ memorystatus_init_jetsam_snapshot_locked(NULL,0);
+ new_snapshot = TRUE;
+ }
+
+ /*
+ * Mark as terminated so that if exit1() indicates success, but the process (for example)
+ * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
+ * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
+ * acquisition of the proc lock.
+ */
+ p->p_memstat_state |= P_MEMSTAT_TERMINATED;
+
+ killtime = mach_absolute_time();
+ absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
+ tv_msec = tv_usec / 1000;
+
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && activeProcess) {
+ MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memory_status_level: %d\n",
+ aPid, (*p->p_name ? p->p_name: "(unknown)"), memorystatus_level);
+ memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusKilledDiagnostic, killtime);
+ p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED;
+ if (memorystatus_jetsam_policy & kPolicyDiagnoseFirst) {
+ jetsam_diagnostic_suspended_one_active_proc = 1;
+ printf("jetsam: returning after suspending first active proc - %d\n", aPid);
+ }
+
+ p = proc_ref_locked(p);
+ proc_list_unlock();
+ if (p) {
+ task_suspend(p->task);
+ if (priority) {
+ *priority = aPid_ep;
+ }
+ proc_rele(p);
+ killed = TRUE;
+ }
+
+ goto exit;
+ } else
+#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
+ {
+ /* Shift queue, update stats */
+ memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
+
+ if (proc_ref_locked(p) == p) {
+ proc_list_unlock();
+ os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
+ (unsigned long)tv_sec, tv_msec,
+ ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process" : "killing_top_process"),
+ aPid, (*p->p_name ? p->p_name : "unknown"),
+ memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages);
+
+ /*
+ * memorystatus_do_kill() drops a reference, so take another one so we can
+ * continue to use this exit reason even after memorystatus_do_kill()
+ * returns.
+ */
+ os_reason_ref(jetsam_reason);
+
+ killed = memorystatus_do_kill(p, cause, jetsam_reason);
+
+ /* Success? */
+ if (killed) {
+ if (priority) {
+ *priority = aPid_ep;
+ }
+ proc_rele(p);
+ kill_count++;
+ goto exit;
+ }
+
+ /*
+ * Failure - first unwind the state,
+ * then fall through to restart the search.
+ */
+ proc_list_lock();
+ proc_rele_locked(p);
+ p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
+ p->p_memstat_state |= P_MEMSTAT_ERROR;
+ *errors += 1;
+ }
+
+ /*
+ * Failure - restart the search.
+ *
+ * We might have raced with "p" exiting on another core, resulting in no
+ * ref on "p". Or, we may have failed to kill "p".
+ *
+ * Either way, we fall thru to here, leaving the proc in the
+ * P_MEMSTAT_TERMINATED state.
+ *
+ * And, we hold the the proc_list_lock at this point.
+ */
+
+ i = 0;
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ }
+ }
+ }
+
+ proc_list_unlock();
+
+exit:
+ os_reason_free(jetsam_reason);
+
+ /* Clear snapshot if freshly captured and no target was found */
+ if (new_snapshot && !killed) {
+ proc_list_lock();
+ memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
+ proc_list_unlock();
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
+ memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
+
+ return killed;
+}
+
+/*
+ * Jetsam aggressively
+ */
+static boolean_t
+memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count,
+ int32_t priority_max, uint32_t *errors)
+{
+ pid_t aPid;
+ proc_t p = PROC_NULL, next_p = PROC_NULL;
+ boolean_t new_snapshot = FALSE, killed = FALSE;
+ int kill_count = 0;
+ unsigned int i = 0;
+ int32_t aPid_ep = 0;
+ unsigned int memorystatus_level_snapshot = 0;
+ uint64_t killtime = 0;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+ uint32_t tv_msec;
+ os_reason_t jetsam_reason = OS_REASON_NULL;
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
+ memorystatus_available_pages, priority_max, 0, 0, 0);
+
+ memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
+
+ jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_top_process_aggressive: failed to allocate exit reason\n");
+ }
+
+ proc_list_lock();
+
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ while (next_p) {
+#if DEVELOPMENT || DEBUG
+ int activeProcess;
+ int procSuspendedForDiagnosis;
+#endif /* DEVELOPMENT || DEBUG */
+
+ if (((next_p->p_listflag & P_LIST_EXITED) != 0) ||
+ ((unsigned int)(next_p->p_memstat_effectivepriority) != i)) {
+
+ /*
+ * We have raced with next_p running on another core.
+ * It may be exiting or it may have moved to a different
+ * jetsam priority band. This means we have lost our
+ * place in line while traversing the jetsam list. We
+ * attempt to recover by rewinding to the beginning of the band
+ * we were already traversing. By doing this, we do not guarantee
+ * that no process escapes this aggressive march, but we can make
+ * skipping an entire range of processes less likely. (PR-21069019)
+ */
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
+ aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown"), next_p->p_pid);
+
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ continue;
+ }
+
+ p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
+
+ if (p->p_memstat_effectivepriority > priority_max) {
+ /*
+ * Bail out of this killing spree if we have
+ * reached beyond the priority_max jetsam band.
+ * That is, we kill up to and through the
+ * priority_max jetsam band.
+ */
+ proc_list_unlock();
+ goto exit;
+ }
+
+#if DEVELOPMENT || DEBUG
+ activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND;
+ procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED;
+#endif /* DEVELOPMENT || DEBUG */
+
+ aPid = p->p_pid;
+ aPid_ep = p->p_memstat_effectivepriority;
+
+ if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
+ continue;
+ }
+
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) {
+ printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid);
+ continue;
+ }
+#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
+
+ /*
+ * Capture a snapshot if none exists.
+ */
+ if (memorystatus_jetsam_snapshot_count == 0) {
+ memorystatus_init_jetsam_snapshot_locked(NULL,0);
+ new_snapshot = TRUE;
+ }
+
+ /*
+ * Mark as terminated so that if exit1() indicates success, but the process (for example)
+ * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
+ * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
+ * acquisition of the proc lock.
+ */
+ p->p_memstat_state |= P_MEMSTAT_TERMINATED;
+
+ killtime = mach_absolute_time();
+ absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
+ tv_msec = tv_usec / 1000;
+
+ /* Shift queue, update stats */
+ memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
+
+ /*
+ * In order to kill the target process, we will drop the proc_list_lock.
+ * To guaranteee that p and next_p don't disappear out from under the lock,
+ * we must take a ref on both.
+ * If we cannot get a reference, then it's likely we've raced with
+ * that process exiting on another core.
+ */
+ if (proc_ref_locked(p) == p) {
+ if (next_p) {
+ while (next_p && (proc_ref_locked(next_p) != next_p)) {
+ proc_t temp_p;
+
+ /*
+ * We must have raced with next_p exiting on another core.
+ * Recover by getting the next eligible process in the band.
+ */
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
+ aggr_count, next_p->p_pid, (*next_p->p_name ? next_p->p_name : "(unknown)"));
+
+ temp_p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE);
+ }
+ }
+ proc_list_unlock();
+
+ printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
+ (unsigned long)tv_sec, tv_msec,
+ ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
+ aggr_count, aPid, (*p->p_name ? p->p_name : "unknown"),
+ memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages);
+
+ memorystatus_level_snapshot = memorystatus_level;
+
+ /*
+ * memorystatus_do_kill() drops a reference, so take another one so we can
+ * continue to use this exit reason even after memorystatus_do_kill()
+ * returns.
+ */
+ os_reason_ref(jetsam_reason);
+ killed = memorystatus_do_kill(p, cause, jetsam_reason);
+
+ /* Success? */
+ if (killed) {
+ proc_rele(p);
+ kill_count++;
+ p = NULL;
+ killed = FALSE;
+
+ /*
+ * Continue the killing spree.
+ */
+ proc_list_lock();
+ if (next_p) {
+ proc_rele_locked(next_p);
+ }
+
+ if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) {
+ if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) {
+#if DEVELOPMENT || DEBUG
+ printf("Disabling Lenient mode after one-time deployment.\n");
+#endif /* DEVELOPMENT || DEBUG */
+ memorystatus_aggressive_jetsam_lenient = FALSE;
+ break;
+ }
+ }
+
+ continue;
+ }
+
+ /*
+ * Failure - first unwind the state,
+ * then fall through to restart the search.
+ */
+ proc_list_lock();
+ proc_rele_locked(p);
+ if (next_p) {
+ proc_rele_locked(next_p);
+ }
+ p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
+ p->p_memstat_state |= P_MEMSTAT_ERROR;
+ *errors += 1;
+ p = NULL;
+ }
+
+ /*
+ * Failure - restart the search at the beginning of
+ * the band we were already traversing.
+ *
+ * We might have raced with "p" exiting on another core, resulting in no
+ * ref on "p". Or, we may have failed to kill "p".
+ *
+ * Either way, we fall thru to here, leaving the proc in the
+ * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
+ *
+ * And, we hold the the proc_list_lock at this point.
+ */
+
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ }
+
+ proc_list_unlock();
+
+exit:
+ os_reason_free(jetsam_reason);
+
+ /* Clear snapshot if freshly captured and no target was found */
+ if (new_snapshot && (kill_count == 0)) {
+ memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
+ memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
+
+ if (kill_count > 0) {
+ return(TRUE);
+ }
+ else {
+ return(FALSE);
+ }
+}
+
+static boolean_t
+memorystatus_kill_hiwat_proc(uint32_t *errors)
+{
+ pid_t aPid = 0;
+ proc_t p = PROC_NULL, next_p = PROC_NULL;
+ boolean_t new_snapshot = FALSE, killed = FALSE;
+ int kill_count = 0;
+ unsigned int i = 0;
+ uint32_t aPid_ep;
+ uint64_t killtime = 0;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+ uint32_t tv_msec;
+ os_reason_t jetsam_reason = OS_REASON_NULL;
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START,
+ memorystatus_available_pages, 0, 0, 0, 0);
+
+ jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
+ }
+
+ proc_list_lock();
+
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ while (next_p) {
+ uint64_t footprint_in_bytes = 0;
+ uint64_t memlimit_in_bytes = 0;
+ boolean_t skip = 0;
+
+ p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
+
+ aPid = p->p_pid;
+ aPid_ep = p->p_memstat_effectivepriority;
+
+ if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
+ continue;
+ }
+
+ /* skip if no limit set */
+ if (p->p_memstat_memlimit <= 0) {
+ continue;
+ }
+
+ footprint_in_bytes = get_task_phys_footprint(p->task);
+ memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */
+ skip = (footprint_in_bytes <= memlimit_in_bytes);
+
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ if (!skip && (memorystatus_jetsam_policy & kPolicyDiagnoseActive)) {
+ if (p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED) {
+ continue;
+ }
+ }
+#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
+
+#if CONFIG_FREEZE
+ if (!skip) {
+ if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
+ skip = TRUE;
+ } else {
+ skip = FALSE;
+ }
+ }
+#endif
+
+ if (skip) {
+ continue;
+ } else {
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
+ (memorystatus_jetsam_policy & kPolicyDiagnoseActive) ? "suspending": "killing",
+ aPid, (*p->p_name ? p->p_name : "unknown"),
+ (footprint_in_bytes / (1024ULL * 1024ULL)), /* converted bytes to MB */
+ p->p_memstat_memlimit);
+#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
+
+ if (memorystatus_jetsam_snapshot_count == 0) {
+ memorystatus_init_jetsam_snapshot_locked(NULL,0);
+ new_snapshot = TRUE;
+ }
+
+ p->p_memstat_state |= P_MEMSTAT_TERMINATED;
+
+ killtime = mach_absolute_time();
+ absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
+ tv_msec = tv_usec / 1000;
+
+#if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
+ if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) {
+ MEMORYSTATUS_DEBUG(1, "jetsam: pid %d suspended for diagnosis - memorystatus_available_pages: %d\n", aPid, memorystatus_available_pages);
+ memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusKilledDiagnostic, killtime);
+ p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED;
+
+ p = proc_ref_locked(p);
+ proc_list_unlock();
+ if (p) {
+ task_suspend(p->task);
+ proc_rele(p);
+ killed = TRUE;
+ }
+
+ goto exit;
+ } else
+#endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
+ {
+ memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusKilledHiwat, killtime);
+
+ if (proc_ref_locked(p) == p) {
+ proc_list_unlock();
+
+ os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_highwater_process pid %d [%s] (highwater %d) - memorystatus_available_pages: %llu\n",
+ (unsigned long)tv_sec, tv_msec, aPid, (*p->p_name ? p->p_name : "unknown"), aPid_ep, (uint64_t)memorystatus_available_pages);
+
+ /*
+ * memorystatus_do_kill drops a reference, so take another one so we can
+ * continue to use this exit reason even after memorystatus_do_kill()
+ * returns
+ */
+ os_reason_ref(jetsam_reason);
+
+ killed = memorystatus_do_kill(p, kMemorystatusKilledHiwat, jetsam_reason);
+
+ /* Success? */
+ if (killed) {
+ proc_rele(p);
+ kill_count++;
+ goto exit;
+ }
+
+ /*
+ * Failure - first unwind the state,
+ * then fall through to restart the search.
+ */
+ proc_list_lock();
+ proc_rele_locked(p);
+ p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
+ p->p_memstat_state |= P_MEMSTAT_ERROR;
+ *errors += 1;
+ }
+
+ /*
+ * Failure - restart the search.
+ *
+ * We might have raced with "p" exiting on another core, resulting in no
+ * ref on "p". Or, we may have failed to kill "p".
+ *
+ * Either way, we fall thru to here, leaving the proc in the
+ * P_MEMSTAT_TERMINATED state.
+ *
+ * And, we hold the the proc_list_lock at this point.
+ */
+
+ i = 0;
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ }
+ }
+ }
+
+ proc_list_unlock();
+
+exit:
+ os_reason_free(jetsam_reason);
+
+ /* Clear snapshot if freshly captured and no target was found */
+ if (new_snapshot && !killed) {
+ proc_list_lock();
+ memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
+ proc_list_unlock();
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END,
+ memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
+
+ return killed;
+}
+
+/*
+ * Jetsam a process pinned in the elevated band.
+ *
+ * Return: true -- at least one pinned process was jetsammed
+ * false -- no pinned process was jetsammed
+ */
+static boolean_t
+memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, int aggr_count, uint32_t *errors)
+{
+ pid_t aPid = 0;
+ proc_t p = PROC_NULL, next_p = PROC_NULL;
+ boolean_t new_snapshot = FALSE, killed = FALSE;
+ int kill_count = 0;
+ unsigned int i = JETSAM_PRIORITY_ELEVATED_INACTIVE;
+ uint32_t aPid_ep;
+ uint64_t killtime = 0;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+ uint32_t tv_msec;
+
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
+ memorystatus_available_pages, 0, 0, 0, 0);
+
+ proc_list_lock();
+
+ next_p = memorystatus_get_first_proc_locked(&i, FALSE);
+ while (next_p) {
+
+ p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&i, p, FALSE);
+
+ aPid = p->p_pid;
+ aPid_ep = p->p_memstat_effectivepriority;
+
+ /*
+ * Only pick a process pinned in this elevated band
+ */
+ if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
+ continue;
+ }
+
+ if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
+ continue;
+ }
+
+#if CONFIG_FREEZE
+ if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
+ continue;
+ }
+#endif
+
+#if DEVELOPMENT || DEBUG
+ MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
+ aggr_count,
+ aPid, (*p->p_name ? p->p_name : "unknown"),
+ memorystatus_available_pages);
+#endif /* DEVELOPMENT || DEBUG */
+
+ if (memorystatus_jetsam_snapshot_count == 0) {
+ memorystatus_init_jetsam_snapshot_locked(NULL,0);
+ new_snapshot = TRUE;
+ }
+
+ p->p_memstat_state |= P_MEMSTAT_TERMINATED;
+
+ killtime = mach_absolute_time();
+ absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
+ tv_msec = tv_usec / 1000;
+
+ memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
+
+ if (proc_ref_locked(p) == p) {
+
+ proc_list_unlock();
+
+ os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
+ (unsigned long)tv_sec, tv_msec,
+ aggr_count,
+ aPid, (*p->p_name ? p->p_name : "unknown"),
+ memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages);
+
+ /*
+ * memorystatus_do_kill drops a reference, so take another one so we can
+ * continue to use this exit reason even after memorystatus_do_kill()
+ * returns
+ */
+ os_reason_ref(jetsam_reason);
+ killed = memorystatus_do_kill(p, cause, jetsam_reason);
+
+ /* Success? */
+ if (killed) {
+ proc_rele(p);
+ kill_count++;
+ goto exit;
+ }
+
+ /*
+ * Failure - first unwind the state,
+ * then fall through to restart the search.
+ */
+ proc_list_lock();
+ proc_rele_locked(p);
+ p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
+ p->p_memstat_state |= P_MEMSTAT_ERROR;
+ *errors += 1;
+ }
+
+ /*
+ * Failure - restart the search.
+ *
+ * We might have raced with "p" exiting on another core, resulting in no
+ * ref on "p". Or, we may have failed to kill "p".
+ *
+ * Either way, we fall thru to here, leaving the proc in the
+ * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
+ *
+ * And, we hold the the proc_list_lock at this point.
+ */
+
+ next_p = memorystatus_get_first_proc_locked(&i, FALSE);
+ }
+
+ proc_list_unlock();
+
+exit:
+ os_reason_free(jetsam_reason);
+
+ /* Clear snapshot if freshly captured and no target was found */
+ if (new_snapshot && (kill_count == 0)) {
+ proc_list_lock();
+ memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
+ proc_list_unlock();
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
+ memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
+
+ return (killed);
+}
+
+static boolean_t
+memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause) {
+ /*
+ * TODO: allow a general async path
+ *
+ * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
+ * add the appropriate exit reason code mapping.
+ */
+ if ((victim_pid != -1) || (cause != kMemorystatusKilledVMPageShortage && cause != kMemorystatusKilledVMThrashing &&
+ cause != kMemorystatusKilledFCThrashing && cause != kMemorystatusKilledZoneMapExhaustion)) {
+ return FALSE;
+ }
+
+ kill_under_pressure_cause = cause;
+ memorystatus_thread_wake();
+ return TRUE;
+}
+
+boolean_t
+memorystatus_kill_on_VM_thrashing(boolean_t async) {
+ if (async) {
+ return memorystatus_kill_process_async(-1, kMemorystatusKilledVMThrashing);
+ } else {
+ os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMTHRASHING);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_on_VM_thrashing -- sync: failed to allocate jetsam reason\n");
+ }
+
+ return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMThrashing, jetsam_reason);
+ }
+}
+
+#if CONFIG_JETSAM
+boolean_t
+memorystatus_kill_on_VM_page_shortage(boolean_t async) {
+ if (async) {
+ return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage);
+ } else {
+ os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMPAGESHORTAGE);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
+ }
+
+ return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage, jetsam_reason);
+ }
+}
+
+boolean_t
+memorystatus_kill_on_FC_thrashing(boolean_t async) {
+
+
+ if (async) {
+ return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing);
+ } else {
+ os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_FCTHRASHING);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
+ }
+
+ return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing, jetsam_reason);
+ }
+}
+
+boolean_t
+memorystatus_kill_on_vnode_limit(void) {
+ os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
+ }
+
+ return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason);
+}
+
+#endif /* CONFIG_JETSAM */
+
+boolean_t
+memorystatus_kill_on_zone_map_exhaustion(pid_t pid) {
+ boolean_t res = FALSE;
+ if (pid == -1) {
+ res = memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion);
+ } else {
+ os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION);
+ if (jetsam_reason == OS_REASON_NULL) {
+ printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
+ }
+
+ res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason);
+ }
+ return res;
+}
+
+#if CONFIG_FREEZE
+
+__private_extern__ void
+memorystatus_freeze_init(void)
+{
+ kern_return_t result;
+ thread_t thread;
+
+ freezer_lck_grp_attr = lck_grp_attr_alloc_init();
+ freezer_lck_grp = lck_grp_alloc_init("freezer", freezer_lck_grp_attr);
+
+ lck_mtx_init(&freezer_mutex, freezer_lck_grp, NULL);
+
+ result = kernel_thread_start(memorystatus_freeze_thread, NULL, &thread);
+ if (result == KERN_SUCCESS) {
+ thread_deallocate(thread);
+ } else {
+ panic("Could not create memorystatus_freeze_thread");
+ }
+}
+
+/*
+ * Synchronously freeze the passed proc. Called with a reference to the proc held.
+ *
+ * Returns EINVAL or the value returned by task_freeze().
+ */
+int
+memorystatus_freeze_process_sync(proc_t p)
+{
+ int ret = EINVAL;
+ pid_t aPid = 0;
+ boolean_t memorystatus_freeze_swap_low = FALSE;
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START,
+ memorystatus_available_pages, 0, 0, 0, 0);
+
+ lck_mtx_lock(&freezer_mutex);
+
+ if (p == NULL) {
+ goto exit;
+ }
+
+ if (memorystatus_freeze_enabled == FALSE) {
+ goto exit;
+ }
+
+ if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low)) {
+ goto exit;
+ }
+
+ if (memorystatus_freeze_update_throttle()) {
+ printf("memorystatus_freeze_process_sync: in throttle, ignorning freeze\n");
+ memorystatus_freeze_throttle_count++;
+ goto exit;
+ }
+
+ proc_list_lock();
+
+ if (p != NULL) {
+ uint32_t purgeable, wired, clean, dirty, state;
+ uint32_t max_pages, pages, i;
+ boolean_t shared;
+
+ aPid = p->p_pid;
+ state = p->p_memstat_state;
+
+ /* Ensure the process is eligible for freezing */
+ if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FROZEN)) || !(state & P_MEMSTAT_SUSPENDED)) {
+ proc_list_unlock();
+ goto exit;
+ }
+
+ /* Only freeze processes meeting our minimum resident page criteria */
+ memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
+ if (pages < memorystatus_freeze_pages_min) {
+ proc_list_unlock();
+ goto exit;
+ }
+
+ if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
+
+ unsigned int avail_swap_space = 0; /* in pages. */
+
+ /*
+ * Freezer backed by the compressor and swap file(s)
+ * while will hold compressed data.
+ */
+ avail_swap_space = vm_swap_get_free_space() / PAGE_SIZE_64;
+
+ max_pages = MIN(avail_swap_space, memorystatus_freeze_pages_max);
+
+ if (max_pages < memorystatus_freeze_pages_min) {
+ proc_list_unlock();
+ goto exit;
+ }
+ } else {
+ /*
+ * We only have the compressor without any swap.
+ */
+ max_pages = UINT32_MAX - 1;
+ }
+
+ /* Mark as locked temporarily to avoid kill */
+ p->p_memstat_state |= P_MEMSTAT_LOCKED;
+ proc_list_unlock();
+
+ ret = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE);
+
+ DTRACE_MEMORYSTATUS6(memorystatus_freeze, proc_t, p, unsigned int, memorystatus_available_pages, boolean_t, purgeable, unsigned int, wired, uint32_t, clean, uint32_t, dirty);
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - "
+ "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
+ (ret == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (*p->p_name ? p->p_name : "(unknown)"),
+ memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared);
+
+ proc_list_lock();
+ p->p_memstat_state &= ~P_MEMSTAT_LOCKED;
+
+ if (ret == KERN_SUCCESS) {
+ memorystatus_freeze_entry_t data = { aPid, TRUE, dirty };
+
+ memorystatus_frozen_count++;
+
+ p->p_memstat_state |= (P_MEMSTAT_FROZEN | (shared ? 0: P_MEMSTAT_NORECLAIM));
+
+ if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
+ /* Update stats */
+ for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) {
+ throttle_intervals[i].pageouts += dirty;
+ }
+ }
+
+ memorystatus_freeze_pageouts += dirty;
+ memorystatus_freeze_count++;
+
+ proc_list_unlock();
+
+ memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
+ } else {
+ proc_list_unlock();
+ }
+ }
+
+exit:
+ lck_mtx_unlock(&freezer_mutex);
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END,
+ memorystatus_available_pages, aPid, 0, 0, 0);
+
+ return ret;
+}
+
+static int
+memorystatus_freeze_top_process(boolean_t *memorystatus_freeze_swap_low)
+{
+ pid_t aPid = 0;
+ int ret = -1;
+ proc_t p = PROC_NULL, next_p = PROC_NULL;
+ unsigned int i = 0;
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START,
+ memorystatus_available_pages, 0, 0, 0, 0);
+
+ proc_list_lock();
+
+ next_p = memorystatus_get_first_proc_locked(&i, TRUE);
+ while (next_p) {
+ kern_return_t kr;
+ uint32_t purgeable, wired, clean, dirty;
+ boolean_t shared;
+ uint32_t pages;
+ uint32_t max_pages = 0;
+ uint32_t state;
+
+ p = next_p;
+ next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
+
+ aPid = p->p_pid;
+ state = p->p_memstat_state;
+
+ /* Ensure the process is eligible for freezing */
+ if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FROZEN)) || !(state & P_MEMSTAT_SUSPENDED)) {
+ continue; // with lock held
+ }
+
+ /* Only freeze processes meeting our minimum resident page criteria */
+ memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
+ if (pages < memorystatus_freeze_pages_min) {
+ continue; // with lock held
+ }
+
+ if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
+
+ /* Ensure there's enough free space to freeze this process. */
+
+ unsigned int avail_swap_space = 0; /* in pages. */
+
+ /*
+ * Freezer backed by the compressor and swap file(s)
+ * while will hold compressed data.
+ */
+ avail_swap_space = vm_swap_get_free_space() / PAGE_SIZE_64;
+
+ max_pages = MIN(avail_swap_space, memorystatus_freeze_pages_max);
+
+ if (max_pages < memorystatus_freeze_pages_min) {
+ *memorystatus_freeze_swap_low = TRUE;
+ proc_list_unlock();
+ goto exit;
+ }
+ } else {
+ /*
+ * We only have the compressor pool.
+ */
+ max_pages = UINT32_MAX - 1;
+ }
+
+ /* Mark as locked temporarily to avoid kill */
+ p->p_memstat_state |= P_MEMSTAT_LOCKED;
+
+ p = proc_ref_locked(p);
+ proc_list_unlock();
+ if (!p) {
+ goto exit;
+ }
+
+ kr = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE);
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - "
+ "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
+ (kr == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (*p->p_name ? p->p_name : "(unknown)"),
+ memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared);
+
+ proc_list_lock();
+ p->p_memstat_state &= ~P_MEMSTAT_LOCKED;
+
+ /* Success? */
+ if (KERN_SUCCESS == kr) {
+ memorystatus_freeze_entry_t data = { aPid, TRUE, dirty };
+
+ memorystatus_frozen_count++;
+
+ p->p_memstat_state |= (P_MEMSTAT_FROZEN | (shared ? 0: P_MEMSTAT_NORECLAIM));
+
+ if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
+ /* Update stats */
+ for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) {
+ throttle_intervals[i].pageouts += dirty;
+ }
+ }
+
+ memorystatus_freeze_pageouts += dirty;
+ memorystatus_freeze_count++;
+
+ proc_list_unlock();
+
+ memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
+
+ /* Return KERN_SUCESS */
+ ret = kr;
+
+ } else {
+ proc_list_unlock();
+ }
+
+ proc_rele(p);
+ goto exit;
+ }
+
+ proc_list_unlock();
+
+exit:
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END,
+ memorystatus_available_pages, aPid, 0, 0, 0);
+
+ return ret;
+}
+
+static inline boolean_t
+memorystatus_can_freeze_processes(void)
+{
+ boolean_t ret;
+
+ proc_list_lock();
+
+ if (memorystatus_suspended_count) {
+ uint32_t average_resident_pages, estimated_processes;
+
+ /* Estimate the number of suspended processes we can fit */
+ average_resident_pages = memorystatus_suspended_footprint_total / memorystatus_suspended_count;
+ estimated_processes = memorystatus_suspended_count +
+ ((memorystatus_available_pages - memorystatus_available_pages_critical) / average_resident_pages);
+
+ /* If it's predicted that no freeze will occur, lower the threshold temporarily */
+ if (estimated_processes <= FREEZE_SUSPENDED_THRESHOLD_DEFAULT) {
+ memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_LOW;
+ } else {
+ memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT;
+ }
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_can_freeze_processes: %d suspended processes, %d average resident pages / process, %d suspended processes estimated\n",
+ memorystatus_suspended_count, average_resident_pages, estimated_processes);
+
+ if ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold) {
+ ret = TRUE;
+ } else {
+ ret = FALSE;
+ }
+ } else {
+ ret = FALSE;
+ }
+
+ proc_list_unlock();
+
+ return ret;
+}
+
+static boolean_t
+memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low)
+{
+ boolean_t can_freeze = TRUE;
+
+ /* Only freeze if we're sufficiently low on memory; this holds off freeze right
+ after boot, and is generally is a no-op once we've reached steady state. */
+ if (memorystatus_available_pages > memorystatus_freeze_threshold) {
+ return FALSE;
+ }
+
+ /* Check minimum suspended process threshold. */
+ if (!memorystatus_can_freeze_processes()) {
+ return FALSE;
+ }
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
+ /*
+ * In-core compressor used for freezing WITHOUT on-disk swap support.
+ */
+ if (vm_compressor_low_on_space()) {
+ if (*memorystatus_freeze_swap_low) {
+ *memorystatus_freeze_swap_low = TRUE;
+ }
+
+ can_freeze = FALSE;
+
+ } else {
+ if (*memorystatus_freeze_swap_low) {
+ *memorystatus_freeze_swap_low = FALSE;
+ }
+
+ can_freeze = TRUE;
+ }
+ } else {
+ /*
+ * Freezing WITH on-disk swap support.
+ *
+ * In-core compressor fronts the swap.
+ */
+ if (vm_swap_low_on_space()) {
+ if (*memorystatus_freeze_swap_low) {
+ *memorystatus_freeze_swap_low = TRUE;
+ }
+
+ can_freeze = FALSE;
+ }
+
+ }
+
+ return can_freeze;
+}
+
+static void
+memorystatus_freeze_update_throttle_interval(mach_timespec_t *ts, struct throttle_interval_t *interval)
+{
+ unsigned int freeze_daily_pageouts_max = memorystatus_freeze_daily_mb_max * (1024 * 1024 / PAGE_SIZE);
+ if (CMP_MACH_TIMESPEC(ts, &interval->ts) >= 0) {
+ if (!interval->max_pageouts) {
+ interval->max_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / (24 * 60)));
+ } else {
+ printf("memorystatus_freeze_update_throttle_interval: %d minute throttle timeout, resetting\n", interval->mins);
+ }
+ interval->ts.tv_sec = interval->mins * 60;
+ interval->ts.tv_nsec = 0;
+ ADD_MACH_TIMESPEC(&interval->ts, ts);
+ /* Since we update the throttle stats pre-freeze, adjust for overshoot here */
+ if (interval->pageouts > interval->max_pageouts) {
+ interval->pageouts -= interval->max_pageouts;
+ } else {
+ interval->pageouts = 0;
+ }
+ interval->throttle = FALSE;
+ } else if (!interval->throttle && interval->pageouts >= interval->max_pageouts) {
+ printf("memorystatus_freeze_update_throttle_interval: %d minute pageout limit exceeded; enabling throttle\n", interval->mins);
+ interval->throttle = TRUE;
+ }
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n",
+ interval->pageouts, interval->max_pageouts, interval->mins, (interval->ts.tv_sec - ts->tv_sec) / 60,
+ interval->throttle ? "on" : "off");
+}
+
+static boolean_t
+memorystatus_freeze_update_throttle(void)
+{
+ clock_sec_t sec;
+ clock_nsec_t nsec;
+ mach_timespec_t ts;
+ uint32_t i;
+ boolean_t throttled = FALSE;
+
+#if DEVELOPMENT || DEBUG
+ if (!memorystatus_freeze_throttle_enabled)
+ return FALSE;
+#endif
+
+ clock_get_system_nanotime(&sec, &nsec);
+ ts.tv_sec = sec;
+ ts.tv_nsec = nsec;
+
+ /* Check freeze pageouts over multiple intervals and throttle if we've exceeded our budget.
+ *
+ * This ensures that periods of inactivity can't be used as 'credit' towards freeze if the device has
+ * remained dormant for a long period. We do, however, allow increased thresholds for shorter intervals in
+ * order to allow for bursts of activity.
+ */
+ for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) {
+ memorystatus_freeze_update_throttle_interval(&ts, &throttle_intervals[i]);
+ if (throttle_intervals[i].throttle == TRUE)
+ throttled = TRUE;
+ }
+
+ return throttled;
+}
+
+static void
+memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused)
+{
+ static boolean_t memorystatus_freeze_swap_low = FALSE;
+
+ lck_mtx_lock(&freezer_mutex);
+ if (memorystatus_freeze_enabled) {
+ if (memorystatus_can_freeze(&memorystatus_freeze_swap_low)) {
+ /* Only freeze if we've not exceeded our pageout budgets.*/
+ if (!memorystatus_freeze_update_throttle()) {
+ memorystatus_freeze_top_process(&memorystatus_freeze_swap_low);
+ } else {
+ printf("memorystatus_freeze_thread: in throttle, ignoring freeze\n");
+ memorystatus_freeze_throttle_count++; /* Throttled, update stats */
+ }
+ }
+ }
+ lck_mtx_unlock(&freezer_mutex);
+
+ assert_wait((event_t) &memorystatus_freeze_wakeup, THREAD_UNINT);
+ thread_block((thread_continue_t) memorystatus_freeze_thread);
+}
+
+static int
+sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, req, arg1, arg2)
+
+ /* Need to be root or have entitlement */
+ if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT)) {
+ return EPERM;
+ }
+
+ if (memorystatus_freeze_enabled == FALSE) {
+ return ENOTSUP;
+ }
+
+ do_fastwake_warmup_all();
+
+ return 0;
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_do_fastwake_warmup_all, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all, "I", "");
+
+#endif /* CONFIG_FREEZE */
+
+#if VM_PRESSURE_EVENTS
+
+#if CONFIG_MEMORYSTATUS
+
+static int
+memorystatus_send_note(int event_code, void *data, size_t data_length) {
+ int ret;
+ struct kev_msg ev_msg;
+
+ ev_msg.vendor_code = KEV_VENDOR_APPLE;
+ ev_msg.kev_class = KEV_SYSTEM_CLASS;
+ ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS;
+
+ ev_msg.event_code = event_code;
+
+ ev_msg.dv[0].data_length = data_length;
+ ev_msg.dv[0].data_ptr = data;
+ ev_msg.dv[1].data_length = 0;
+
+ ret = kev_post_msg(&ev_msg);
+ if (ret) {
+ printf("%s: kev_post_msg() failed, err %d\n", __func__, ret);
+ }
+
+ return ret;
+}
+
+boolean_t
+memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t limit_exceeded) {
+
+ boolean_t ret = FALSE;
+ boolean_t found_knote = FALSE;
+ struct knote *kn = NULL;
+ int send_knote_count = 0;
+
+ /*
+ * See comment in sysctl_memorystatus_vm_pressure_send.
+ */
+
+ memorystatus_klist_lock();
+
+ SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
+ proc_t knote_proc = knote_get_kq(kn)->kq_p;
+ pid_t knote_pid = knote_proc->p_pid;
+
+ if (knote_pid == pid) {
+ /*
+ * By setting the "fflags" here, we are forcing
+ * a process to deal with the case where it's
+ * bumping up into its memory limits. If we don't
+ * do this here, we will end up depending on the
+ * system pressure snapshot evaluation in
+ * filt_memorystatus().
+ */
+
+#if CONFIG_EMBEDDED
+ if (!limit_exceeded) {
+ /*
+ * Intentionally set either the unambiguous limit warning,
+ * the system-wide critical or the system-wide warning
+ * notification bit.
+ */
+
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
+ found_knote = TRUE;
+ send_knote_count++;
+ } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) {
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL;
+ found_knote = TRUE;
+ send_knote_count++;
+ } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) {
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN;
+ found_knote = TRUE;
+ send_knote_count++;
+ }
+ } else {
+ /*
+ * Send this notification when a process has exceeded a soft limit.
+ */
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
+ found_knote = TRUE;
+ send_knote_count++;
+ }
+ }
+#else /* CONFIG_EMBEDDED */
+ if (!limit_exceeded) {
+
+ /*
+ * Processes on desktop are not expecting to handle a system-wide
+ * critical or system-wide warning notification from this path.
+ * Intentionally set only the unambiguous limit warning here.
+ *
+ * If the limit is soft, however, limit this to one notification per
+ * active/inactive limit (per each registered listener).
+ */
+
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
+ found_knote=TRUE;
+ if (!is_fatal) {
+ /*
+ * Restrict proc_limit_warn notifications when
+ * non-fatal (soft) limit is at play.
+ */
+ if (is_active) {
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) {
+ /*
+ * Mark this knote for delivery.
+ */
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
+ /*
+ * And suppress it from future notifications.
+ */
+ kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE;
+ send_knote_count++;
+ }
+ } else {
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) {
+ /*
+ * Mark this knote for delivery.
+ */
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
+ /*
+ * And suppress it from future notifications.
+ */
+ kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE;
+ send_knote_count++;
+ }
+ }
+ } else {
+ /*
+ * No restriction on proc_limit_warn notifications when
+ * fatal (hard) limit is at play.
+ */
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
+ send_knote_count++;
+ }
+ }
+ } else {
+ /*
+ * Send this notification when a process has exceeded a soft limit,
+ */
+
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
+ found_knote = TRUE;
+ if (!is_fatal) {
+ /*
+ * Restrict critical notifications for soft limits.
+ */
+
+ if (is_active) {
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) {
+ /*
+ * Suppress future proc_limit_critical notifications
+ * for the active soft limit.
+ */
+ kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE;
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
+ send_knote_count++;
+
+ }
+ } else {
+ if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) {
+ /*
+ * Suppress future proc_limit_critical_notifications
+ * for the inactive soft limit.
+ */
+ kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE;
+ kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
+ send_knote_count++;
+ }
+ }
+ } else {
+ /*
+ * We should never be trying to send a critical notification for
+ * a hard limit... the process would be killed before it could be
+ * received.
+ */
+ panic("Caught sending pid %d a critical warning for a fatal limit.\n", pid);
+ }
+ }
+ }
+#endif /* CONFIG_EMBEDDED */
+ }
+ }
+
+ if (found_knote) {
+ if (send_knote_count > 0) {
+ KNOTE(&memorystatus_klist, 0);
+ }
+ ret = TRUE;
+ }
+
+ memorystatus_klist_unlock();
+
+ return ret;
+}
+
+/*
+ * Can only be set by the current task on itself.
+ */
+int
+memorystatus_low_mem_privileged_listener(uint32_t op_flags)
+{
+ boolean_t set_privilege = FALSE;
+ /*
+ * Need an entitlement check here?
+ */
+ if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE) {
+ set_privilege = TRUE;
+ } else if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE) {
+ set_privilege = FALSE;
+ } else {
+ return EINVAL;
+ }
+
+ return (task_low_mem_privileged_listener(current_task(), set_privilege, NULL));
+}
+
+int
+memorystatus_send_pressure_note(pid_t pid) {
+ MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid);
+ return memorystatus_send_note(kMemorystatusPressureNote, &pid, sizeof(pid));
+}
+
+void
+memorystatus_send_low_swap_note(void) {
+
+ struct knote *kn = NULL;
+
+ memorystatus_klist_lock();
+ SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
+ /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the
+ * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist
+ * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with
+ * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */
+ if (is_knote_registered_modify_task_pressure_bits(kn, NOTE_MEMORYSTATUS_LOW_SWAP, NULL, 0, 0) == TRUE) {
+ KNOTE(&memorystatus_klist, kMemorystatusLowSwap);
+ break;
+ }
+ }
+
+ memorystatus_klist_unlock();
+}
+
+boolean_t
+memorystatus_bg_pressure_eligible(proc_t p) {
+ boolean_t eligible = FALSE;
+
+ proc_list_lock();
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p->p_pid, p->p_memstat_state);
+
+ /* Foreground processes have already been dealt with at this point, so just test for eligibility */
+ if (!(p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN))) {
+ eligible = TRUE;
+ }
+
+ proc_list_unlock();
+
+ return eligible;
+}
+
+boolean_t
+memorystatus_is_foreground_locked(proc_t p) {
+ return ((p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND) ||
+ (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND_SUPPORT));
+}
+
+/*
+ * This is meant for stackshot and kperf -- it does not take the proc_list_lock
+ * to access the p_memstat_dirty field.
+ */
+boolean_t
+memorystatus_proc_is_dirty_unsafe(void *v)
+{
+ if (!v) {
+ return FALSE;
+ }
+ proc_t p = (proc_t)v;
+ return (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) != 0;
+}
+
+#endif /* CONFIG_MEMORYSTATUS */
+
+/*
+ * Trigger levels to test the mechanism.
+ * Can be used via a sysctl.
+ */
+#define TEST_LOW_MEMORY_TRIGGER_ONE 1
+#define TEST_LOW_MEMORY_TRIGGER_ALL 2
+#define TEST_PURGEABLE_TRIGGER_ONE 3
+#define TEST_PURGEABLE_TRIGGER_ALL 4
+#define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5
+#define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6
+
+boolean_t memorystatus_manual_testing_on = FALSE;
+vm_pressure_level_t memorystatus_manual_testing_level = kVMPressureNormal;
+
+extern struct knote *
+vm_pressure_select_optimal_candidate_to_notify(struct klist *, int, boolean_t);
+
+/*
+ * This value is the threshold that a process must meet to be considered for scavenging.
+ */
+#if CONFIG_EMBEDDED
+#define VM_PRESSURE_MINIMUM_RSIZE 1 /* MB */
+#else /* CONFIG_EMBEDDED */
+#define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */
+#endif /* CONFIG_EMBEDDED */
+
+#define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */
+
+#if DEBUG
+#define VM_PRESSURE_DEBUG(cond, format, ...) \
+do { \
+ if (cond) { printf(format, ##__VA_ARGS__); } \
+} while(0)
+#else
+#define VM_PRESSURE_DEBUG(cond, format, ...)
+#endif
+
+#define INTER_NOTIFICATION_DELAY (250000) /* .25 second */
+
+void memorystatus_on_pageout_scan_end(void) {
+ /* No-op */
+}
+
+/*
+ * kn_max - knote
+ *
+ * knote_pressure_level - to check if the knote is registered for this notification level.
+ *
+ * task - task whose bits we'll be modifying
+ *
+ * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again.
+ *
+ * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately.
+ *
+ */
+
+boolean_t
+is_knote_registered_modify_task_pressure_bits(struct knote *kn_max, int knote_pressure_level, task_t task, vm_pressure_level_t pressure_level_to_clear, vm_pressure_level_t pressure_level_to_set)
+{
+ if (kn_max->kn_sfflags & knote_pressure_level) {
+
+ if (pressure_level_to_clear && task_has_been_notified(task, pressure_level_to_clear) == TRUE) {
+
+ task_clear_has_been_notified(task, pressure_level_to_clear);
+ }
+
+ task_mark_has_been_notified(task, pressure_level_to_set);
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+void
+memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear)
+{
+ struct knote *kn = NULL;
+
+ memorystatus_klist_lock();
+ SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
+
+ proc_t p = PROC_NULL;
+ struct task* t = TASK_NULL;
+
+ p = knote_get_kq(kn)->kq_p;
+ proc_list_lock();
+ if (p != proc_ref_locked(p)) {
+ p = PROC_NULL;
+ proc_list_unlock();
+ continue;
+ }
+ proc_list_unlock();
+
+ t = (struct task *)(p->task);
+
+ task_clear_has_been_notified(t, pressure_level_to_clear);
+
+ proc_rele(p);
+ }
+
+ memorystatus_klist_unlock();
+}
+
+extern kern_return_t vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process);
+
+struct knote *
+vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process);
+
+/*
+ * Used by the vm_pressure_thread which is
+ * signalled from within vm_pageout_scan().
+ */
+static void vm_dispatch_memory_pressure(void);
+void consider_vm_pressure_events(void);
+
+void consider_vm_pressure_events(void)
+{
+ vm_dispatch_memory_pressure();
+}
+static void vm_dispatch_memory_pressure(void)
+{
+ memorystatus_update_vm_pressure(FALSE);
+}
+
+extern vm_pressure_level_t
+convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t);
+
+struct knote *
+vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process)
+{
+ struct knote *kn = NULL, *kn_max = NULL;
+ uint64_t resident_max = 0; /* MB */
+ struct timeval curr_tstamp = {0, 0};
+ int elapsed_msecs = 0;
+ int selected_task_importance = 0;
+ static int pressure_snapshot = -1;
+ boolean_t pressure_increase = FALSE;
+
+ if (pressure_snapshot == -1) {
+ /*
+ * Initial snapshot.
+ */
+ pressure_snapshot = level;
+ pressure_increase = TRUE;
+ } else {
+
+ if (level && (level >= pressure_snapshot)) {
+ pressure_increase = TRUE;
+ } else {
+ pressure_increase = FALSE;
+ }
+
+ pressure_snapshot = level;
+ }
+
+ if (pressure_increase == TRUE) {
+ /*
+ * We'll start by considering the largest
+ * unimportant task in our list.
+ */
+ selected_task_importance = INT_MAX;
+ } else {
+ /*
+ * We'll start by considering the largest
+ * important task in our list.
+ */
+ selected_task_importance = 0;
+ }
+
+ microuptime(&curr_tstamp);
+
+ SLIST_FOREACH(kn, candidate_list, kn_selnext) {
+
+ uint64_t resident_size = 0; /* MB */
+ proc_t p = PROC_NULL;
+ struct task* t = TASK_NULL;
+ int curr_task_importance = 0;
+ boolean_t consider_knote = FALSE;
+ boolean_t privileged_listener = FALSE;
+
+ p = knote_get_kq(kn)->kq_p;
+ proc_list_lock();
+ if (p != proc_ref_locked(p)) {
+ p = PROC_NULL;
+ proc_list_unlock();
+ continue;
+ }
+ proc_list_unlock();
+
+#if CONFIG_MEMORYSTATUS
+ if (target_foreground_process == TRUE && !memorystatus_is_foreground_locked(p)) {
+ /*
+ * Skip process not marked foreground.
+ */
+ proc_rele(p);
+ continue;
+ }
+#endif /* CONFIG_MEMORYSTATUS */
+
+ t = (struct task *)(p->task);
+
+ timevalsub(&curr_tstamp, &p->vm_pressure_last_notify_tstamp);
+ elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000;
+
+ vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(level);
+
+ if ((kn->kn_sfflags & dispatch_level) == 0) {
+ proc_rele(p);
+ continue;
+ }
+
+#if CONFIG_MEMORYSTATUS
+ if (target_foreground_process == FALSE && !memorystatus_bg_pressure_eligible(p)) {
+ VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n", p->p_pid);
+ proc_rele(p);
+ continue;
+ }
+#endif /* CONFIG_MEMORYSTATUS */
+
+#if CONFIG_EMBEDDED
+ curr_task_importance = p->p_memstat_effectivepriority;
+#else /* CONFIG_EMBEDDED */
+ curr_task_importance = task_importance_estimate(t);
+#endif /* CONFIG_EMBEDDED */
+
+ /*
+ * Privileged listeners are only considered in the multi-level pressure scheme
+ * AND only if the pressure is increasing.
+ */
+ if (level > 0) {
+
+ if (task_has_been_notified(t, level) == FALSE) {
+
+ /*
+ * Is this a privileged listener?
+ */
+ if (task_low_mem_privileged_listener(t, FALSE, &privileged_listener) == 0) {
+
+ if (privileged_listener) {
+ kn_max = kn;
+ proc_rele(p);
+ goto done_scanning;
+ }
+ }
+ } else {
+ proc_rele(p);
+ continue;
+ }
+ } else if (level == 0) {
+
+ /*
+ * Task wasn't notified when the pressure was increasing and so
+ * no need to notify it that the pressure is decreasing.
+ */
+ if ((task_has_been_notified(t, kVMPressureWarning) == FALSE) && (task_has_been_notified(t, kVMPressureCritical) == FALSE)) {
+ proc_rele(p);
+ continue;
+ }
+ }
+
+ /*
+ * We don't want a small process to block large processes from
+ * being notified again. <rdar://problem/7955532>
+ */
+ resident_size = (get_task_phys_footprint(t))/(1024*1024ULL); /* MB */
+
+ if (resident_size >= VM_PRESSURE_MINIMUM_RSIZE) {
+
+ if (level > 0) {
+ /*
+ * Warning or Critical Pressure.
+ */
+ if (pressure_increase) {
+ if ((curr_task_importance < selected_task_importance) ||
+ ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) {
+
+ /*
+ * We have found a candidate process which is:
+ * a) at a lower importance than the current selected process
+ * OR
+ * b) has importance equal to that of the current selected process but is larger
+ */
+
+ consider_knote = TRUE;
+ }
+ } else {
+ if ((curr_task_importance > selected_task_importance) ||
+ ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) {
+
+ /*
+ * We have found a candidate process which is:
+ * a) at a higher importance than the current selected process
+ * OR
+ * b) has importance equal to that of the current selected process but is larger
+ */
+
+ consider_knote = TRUE;
+ }
+ }
+ } else if (level == 0) {
+ /*
+ * Pressure back to normal.
+ */
+ if ((curr_task_importance > selected_task_importance) ||
+ ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) {
+
+ consider_knote = TRUE;
+ }
+ }
+
+ if (consider_knote) {
+ resident_max = resident_size;
+ kn_max = kn;
+ selected_task_importance = curr_task_importance;
+ consider_knote = FALSE; /* reset for the next candidate */
+ }
+ } else {
+ /* There was no candidate with enough resident memory to scavenge */
+ VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n", p->p_pid, resident_size);
+ }
+ proc_rele(p);
+ }
+
+done_scanning:
+ if (kn_max) {
+ VM_DEBUG_CONSTANT_EVENT(vm_pressure_event, VM_PRESSURE_EVENT, DBG_FUNC_NONE, knote_get_kq(kn_max)->kq_p->p_pid, resident_max, 0, 0);
+ VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n", knote_get_kq(kn_max)->kq_p->p_pid, resident_max);
+ }
+
+ return kn_max;
+}
+
+#define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */
+#define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
+#define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
+
+uint64_t next_warning_notification_sent_at_ts = 0;
+uint64_t next_critical_notification_sent_at_ts = 0;
+
+kern_return_t
+memorystatus_update_vm_pressure(boolean_t target_foreground_process)
+{
+ struct knote *kn_max = NULL;
+ struct knote *kn_cur = NULL, *kn_temp = NULL; /* for safe list traversal */
+ pid_t target_pid = -1;
+ struct klist dispatch_klist = { NULL };
+ proc_t target_proc = PROC_NULL;
+ struct task *task = NULL;
+ boolean_t found_candidate = FALSE;
+
+ static vm_pressure_level_t level_snapshot = kVMPressureNormal;
+ static vm_pressure_level_t prev_level_snapshot = kVMPressureNormal;
+ boolean_t smoothing_window_started = FALSE;
+ struct timeval smoothing_window_start_tstamp = {0, 0};
+ struct timeval curr_tstamp = {0, 0};
+ int elapsed_msecs = 0;
+ uint64_t curr_ts = mach_absolute_time();
+
+#if !CONFIG_JETSAM
+#define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */
+
+ int idle_kill_counter = 0;
+
+ /*
+ * On desktop we take this opportunity to free up memory pressure
+ * by immediately killing idle exitable processes. We use a delay
+ * to avoid overkill. And we impose a max counter as a fail safe
+ * in case daemons re-launch too fast.
+ */
+ while ((memorystatus_vm_pressure_level != kVMPressureNormal) && (idle_kill_counter < MAX_IDLE_KILLS)) {
+ if (memorystatus_idle_exit_from_VM() == FALSE) {
+ /* No idle exitable processes left to kill */
+ break;
+ }
+ idle_kill_counter++;
+
+ if (memorystatus_manual_testing_on == TRUE) {
+ /*
+ * Skip the delay when testing
+ * the pressure notification scheme.
+ */
+ } else {
+ delay(1000000); /* 1 second */
+ }
+ }
+#endif /* !CONFIG_JETSAM */
+
+ if (level_snapshot != kVMPressureNormal) {
+
+ /*
+ * Check to see if we are still in the 'resting' period
+ * after having notified all clients interested in
+ * a particular pressure level.
+ */
+
+ level_snapshot = memorystatus_vm_pressure_level;
+
+ if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) {
+
+ if (next_warning_notification_sent_at_ts) {
+ if (curr_ts < next_warning_notification_sent_at_ts) {
+ delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */);
+ return KERN_SUCCESS;
+ }
+
+ next_warning_notification_sent_at_ts = 0;
+ memorystatus_klist_reset_all_for_level(kVMPressureWarning);
+ }
+ } else if (level_snapshot == kVMPressureCritical) {
+
+ if (next_critical_notification_sent_at_ts) {
+ if (curr_ts < next_critical_notification_sent_at_ts) {
+ delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */);
+ return KERN_SUCCESS;
+ }
+ next_critical_notification_sent_at_ts = 0;
+ memorystatus_klist_reset_all_for_level(kVMPressureCritical);
+ }
+ }
+ }
+
+ while (1) {
+
+ /*
+ * There is a race window here. But it's not clear
+ * how much we benefit from having extra synchronization.
+ */
+ level_snapshot = memorystatus_vm_pressure_level;
+
+ if (prev_level_snapshot > level_snapshot) {
+ /*
+ * Pressure decreased? Let's take a little breather
+ * and see if this condition stays.
+ */
+ if (smoothing_window_started == FALSE) {
+
+ smoothing_window_started = TRUE;
+ microuptime(&smoothing_window_start_tstamp);
+ }
+
+ microuptime(&curr_tstamp);
+ timevalsub(&curr_tstamp, &smoothing_window_start_tstamp);
+ elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000;
+
+ if (elapsed_msecs < VM_PRESSURE_DECREASED_SMOOTHING_PERIOD) {
+
+ delay(INTER_NOTIFICATION_DELAY);
+ continue;
+ }
+ }
+
+ prev_level_snapshot = level_snapshot;
+ smoothing_window_started = FALSE;
+
+ memorystatus_klist_lock();
+ kn_max = vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist, level_snapshot, target_foreground_process);
+
+ if (kn_max == NULL) {
+ memorystatus_klist_unlock();
+
+ /*
+ * No more level-based clients to notify.
+ *
+ * Start the 'resting' window within which clients will not be re-notified.
+ */
+
+ if (level_snapshot != kVMPressureNormal) {
+ if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) {
+ nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts);
+
+ /* Next warning notification (if nothing changes) won't be sent before...*/
+ next_warning_notification_sent_at_ts = mach_absolute_time() + curr_ts;
+ }
+
+ if (level_snapshot == kVMPressureCritical) {
+ nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts);
+
+ /* Next critical notification (if nothing changes) won't be sent before...*/
+ next_critical_notification_sent_at_ts = mach_absolute_time() + curr_ts;
+ }
+ }
+ return KERN_FAILURE;
+ }
+
+ target_proc = knote_get_kq(kn_max)->kq_p;
+
+ proc_list_lock();
+ if (target_proc != proc_ref_locked(target_proc)) {
+ target_proc = PROC_NULL;
+ proc_list_unlock();
+ memorystatus_klist_unlock();
+ continue;
+ }
+ proc_list_unlock();
+
+ target_pid = target_proc->p_pid;
+
+ task = (struct task *)(target_proc->task);
+
+ if (level_snapshot != kVMPressureNormal) {
+
+ if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) {
+
+ if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_WARN, task, 0, kVMPressureWarning) == TRUE) {
+ found_candidate = TRUE;
+ }
+ } else {
+ if (level_snapshot == kVMPressureCritical) {
+
+ if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL, task, 0, kVMPressureCritical) == TRUE) {
+ found_candidate = TRUE;
+ }
+ }
+ }
+ } else {
+ if (kn_max->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
+
+ task_clear_has_been_notified(task, kVMPressureWarning);
+ task_clear_has_been_notified(task, kVMPressureCritical);
+
+ found_candidate = TRUE;
+ }
+ }
+
+ if (found_candidate == FALSE) {
+ proc_rele(target_proc);
+ memorystatus_klist_unlock();
+ continue;
+ }
+
+ SLIST_FOREACH_SAFE(kn_cur, &memorystatus_klist, kn_selnext, kn_temp) {
+
+ int knote_pressure_level = convert_internal_pressure_level_to_dispatch_level(level_snapshot);
+
+ if (is_knote_registered_modify_task_pressure_bits(kn_cur, knote_pressure_level, task, 0, level_snapshot) == TRUE) {
+ proc_t knote_proc = knote_get_kq(kn_cur)->kq_p;
+ pid_t knote_pid = knote_proc->p_pid;
+ if (knote_pid == target_pid) {
+ KNOTE_DETACH(&memorystatus_klist, kn_cur);
+ KNOTE_ATTACH(&dispatch_klist, kn_cur);
+ }
+ }
+ }
+
+ KNOTE(&dispatch_klist, (level_snapshot != kVMPressureNormal) ? kMemorystatusPressure : kMemorystatusNoPressure);
+
+ SLIST_FOREACH_SAFE(kn_cur, &dispatch_klist, kn_selnext, kn_temp) {
+ KNOTE_DETACH(&dispatch_klist, kn_cur);
+ KNOTE_ATTACH(&memorystatus_klist, kn_cur);
+ }
+
+ memorystatus_klist_unlock();
+
+ microuptime(&target_proc->vm_pressure_last_notify_tstamp);
+ proc_rele(target_proc);
+
+ if (memorystatus_manual_testing_on == TRUE && target_foreground_process == TRUE) {
+ break;
+ }
+
+ if (memorystatus_manual_testing_on == TRUE) {
+ /*
+ * Testing out the pressure notification scheme.
+ * No need for delays etc.
+ */
+ } else {
+
+ uint32_t sleep_interval = INTER_NOTIFICATION_DELAY;
+#if CONFIG_JETSAM
+ unsigned int page_delta = 0;
+ unsigned int skip_delay_page_threshold = 0;
+
+ assert(memorystatus_available_pages_pressure >= memorystatus_available_pages_critical_base);
+
+ page_delta = (memorystatus_available_pages_pressure - memorystatus_available_pages_critical_base) / 2;
+ skip_delay_page_threshold = memorystatus_available_pages_pressure - page_delta;
+
+ if (memorystatus_available_pages <= skip_delay_page_threshold) {
+ /*
+ * We are nearing the critcal mark fast and can't afford to wait between
+ * notifications.
+ */
+ sleep_interval = 0;
+ }
+#endif /* CONFIG_JETSAM */
+
+ if (sleep_interval) {
+ delay(sleep_interval);
+ }
+ }
+ }
+
+ return KERN_SUCCESS;
+}
+
+vm_pressure_level_t
+convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level)
+{
+ vm_pressure_level_t dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL;
+
+ switch (internal_pressure_level) {
+
+ case kVMPressureNormal:
+ {
+ dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL;
+ break;
+ }
+
+ case kVMPressureWarning:
+ case kVMPressureUrgent:
+ {
+ dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_WARN;
+ break;
+ }
+
+ case kVMPressureCritical:
+ {
+ dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return dispatch_level;
+}
+
+static int
+sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2, oidp)
+#if CONFIG_EMBEDDED
+ int error = 0;
+
+ error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0);
+ if (error)
+ return (error);
+
+#endif /* CONFIG_EMBEDDED */
+ vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level);
+
+ return SYSCTL_OUT(req, &dispatch_level, sizeof(dispatch_level));
+}
+
+#if DEBUG || DEVELOPMENT
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED,
+ 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", "");
+
+#else /* DEBUG || DEVELOPMENT */
+
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", "");
+
+#endif /* DEBUG || DEVELOPMENT */
+
+extern int memorystatus_purge_on_warning;
+extern int memorystatus_purge_on_critical;
+
+static int
+sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2)
+
+ int level = 0;
+ int error = 0;
+ int pressure_level = 0;
+ int trigger_request = 0;
+ int force_purge;
+
+ error = sysctl_handle_int(oidp, &level, 0, req);
+ if (error || !req->newptr) {
+ return (error);
+ }
+
+ memorystatus_manual_testing_on = TRUE;
+
+ trigger_request = (level >> 16) & 0xFFFF;
+ pressure_level = (level & 0xFFFF);
+
+ if (trigger_request < TEST_LOW_MEMORY_TRIGGER_ONE ||
+ trigger_request > TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL) {
+ return EINVAL;
+ }
+ switch (pressure_level) {
+ case NOTE_MEMORYSTATUS_PRESSURE_NORMAL:
+ case NOTE_MEMORYSTATUS_PRESSURE_WARN:
+ case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL:
+ break;
+ default:
+ return EINVAL;
+ }
+
+ /*
+ * The pressure level is being set from user-space.
+ * And user-space uses the constants in sys/event.h
+ * So we translate those events to our internal levels here.
+ */
+ if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
+
+ memorystatus_manual_testing_level = kVMPressureNormal;
+ force_purge = 0;
+
+ } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_WARN) {
+
+ memorystatus_manual_testing_level = kVMPressureWarning;
+ force_purge = memorystatus_purge_on_warning;
+
+ } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) {
+
+ memorystatus_manual_testing_level = kVMPressureCritical;
+ force_purge = memorystatus_purge_on_critical;
+ }
+
+ memorystatus_vm_pressure_level = memorystatus_manual_testing_level;
+
+ /* purge according to the new pressure level */
+ switch (trigger_request) {
+ case TEST_PURGEABLE_TRIGGER_ONE:
+ case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE:
+ if (force_purge == 0) {
+ /* no purging requested */
+ break;
+ }
+ vm_purgeable_object_purge_one_unlocked(force_purge);
+ break;
+ case TEST_PURGEABLE_TRIGGER_ALL:
+ case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL:
+ if (force_purge == 0) {
+ /* no purging requested */
+ break;
+ }
+ while (vm_purgeable_object_purge_one_unlocked(force_purge));
+ break;
+ }
+
+ if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ONE) ||
+ (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE)) {
+
+ memorystatus_update_vm_pressure(TRUE);
+ }
+
+ if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ALL) ||
+ (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL)) {
+
+ while (memorystatus_update_vm_pressure(FALSE) == KERN_SUCCESS) {
+ continue;
+ }
+ }
+
+ if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
+ memorystatus_manual_testing_on = FALSE;
+ }
+
+ return 0;
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, memorypressure_manual_trigger, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_memorypressure_manual_trigger, "I", "");
+
+
+extern int memorystatus_purge_on_warning;
+extern int memorystatus_purge_on_urgent;
+extern int memorystatus_purge_on_critical;
+
+SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_warning, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_warning, 0, "");
+SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_urgent, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_urgent, 0, "");
+SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_critical, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_critical, 0, "");
+
+
+#endif /* VM_PRESSURE_EVENTS */
+
+/* Return both allocated and actual size, since there's a race between allocation and list compilation */
+static int
+memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only)
+{
+ uint32_t list_count, i = 0;
+ memorystatus_priority_entry_t *list_entry;
+ proc_t p;
+
+ list_count = memorystatus_list_count;
+ *list_size = sizeof(memorystatus_priority_entry_t) * list_count;
+
+ /* Just a size check? */
+ if (size_only) {
+ return 0;
+ }
+
+ /* Otherwise, validate the size of the buffer */
+ if (*buffer_size < *list_size) {
+ return EINVAL;
+ }
+
+ *list_ptr = (memorystatus_priority_entry_t*)kalloc(*list_size);
+ if (!list_ptr) {
+ return ENOMEM;
+ }
+
+ memset(*list_ptr, 0, *list_size);
+
+ *buffer_size = *list_size;
+ *list_size = 0;
+
+ list_entry = *list_ptr;
+
+ proc_list_lock();
+
+ p = memorystatus_get_first_proc_locked(&i, TRUE);
+ while (p && (*list_size < *buffer_size)) {
+ list_entry->pid = p->p_pid;
+ list_entry->priority = p->p_memstat_effectivepriority;
+ list_entry->user_data = p->p_memstat_userdata;
+
+ if (p->p_memstat_memlimit <= 0) {
+ task_get_phys_footprint_limit(p->task, &list_entry->limit);
+ } else {
+ list_entry->limit = p->p_memstat_memlimit;
+ }
+
+ list_entry->state = memorystatus_build_state(p);
+ list_entry++;
+
+ *list_size += sizeof(memorystatus_priority_entry_t);
+
+ p = memorystatus_get_next_proc_locked(&i, p, TRUE);
+ }
+
+ proc_list_unlock();
+
+ MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size);
+
+ return 0;
+}
+
+static int
+memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size) {
+ int error = 0;
+ memorystatus_priority_entry_t mp_entry;
+
+ /* Validate inputs */
+ if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) {
+ return EINVAL;
+ }
+
+ proc_t p = proc_find(pid);
+ if (!p) {
+ return ESRCH;
+ }
+
+ memset (&mp_entry, 0, sizeof(memorystatus_priority_entry_t));
+
+ mp_entry.pid = p->p_pid;
+ mp_entry.priority = p->p_memstat_effectivepriority;
+ mp_entry.user_data = p->p_memstat_userdata;
+ if (p->p_memstat_memlimit <= 0) {
+ task_get_phys_footprint_limit(p->task, &mp_entry.limit);
+ } else {
+ mp_entry.limit = p->p_memstat_memlimit;
+ }
+ mp_entry.state = memorystatus_build_state(p);
+
+ proc_rele(p);
+
+ error = copyout(&mp_entry, buffer, buffer_size);
+
+ return (error);
+}
+
+static int
+memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval) {
+ int error = 0;
+ boolean_t size_only;
+ size_t list_size;
+
+ /*
+ * When a non-zero pid is provided, the 'list' has only one entry.
+ */
+
+ size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE);
+
+ if (pid != 0) {
+ list_size = sizeof(memorystatus_priority_entry_t) * 1;
+ if (!size_only) {
+ error = memorystatus_get_priority_pid(pid, buffer, buffer_size);
+ }
+ } else {
+ memorystatus_priority_entry_t *list = NULL;
+ error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only);
+
+ if (error == 0) {
+ if (!size_only) {
+ error = copyout(list, buffer, list_size);
+ }
+ }
+
+ if (list) {
+ kfree(list, buffer_size);
+ }
+ }
+
+ if (error == 0) {
+ *retval = list_size;
+ }
+
+ return (error);
+}
+
+static void
+memorystatus_clear_errors(void)
+{
+ proc_t p;
+ unsigned int i = 0;
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ proc_list_lock();
+
+ p = memorystatus_get_first_proc_locked(&i, TRUE);
+ while (p) {
+ if (p->p_memstat_state & P_MEMSTAT_ERROR) {
+ p->p_memstat_state &= ~P_MEMSTAT_ERROR;
+ }
+ p = memorystatus_get_next_proc_locked(&i, p, TRUE);
+ }
+
+ proc_list_unlock();
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0);
+}
+
+#if CONFIG_JETSAM
+static void
+memorystatus_update_levels_locked(boolean_t critical_only) {
+
+ memorystatus_available_pages_critical = memorystatus_available_pages_critical_base;
+
+ /*
+ * If there's an entry in the first bucket, we have idle processes.
+ */
+
+ memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
+ if (first_bucket->count) {
+ memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset;
+
+ if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) {
+ /*
+ * The critical threshold must never exceed the pressure threshold
+ */
+ memorystatus_available_pages_critical = memorystatus_available_pages_pressure;
+ }
+ }
+
+#if DEBUG || DEVELOPMENT
+ if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) {
+ memorystatus_available_pages_critical += memorystatus_jetsam_policy_offset_pages_diagnostic;
+
+ if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) {
+ /*
+ * The critical threshold must never exceed the pressure threshold
+ */
+ memorystatus_available_pages_critical = memorystatus_available_pages_pressure;
+ }
+ }
+#endif /* DEBUG || DEVELOPMENT */
+
+ if (memorystatus_jetsam_policy & kPolicyMoreFree) {
+ memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages;
+ }
+
+ if (critical_only) {
+ return;
+ }
+
+#if VM_PRESSURE_EVENTS
+ memorystatus_available_pages_pressure = (pressure_threshold_percentage / delta_percentage) * memorystatus_delta;
+#if DEBUG || DEVELOPMENT
+ if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) {
+ memorystatus_available_pages_pressure += memorystatus_jetsam_policy_offset_pages_diagnostic;
+ }
+#endif
+#endif
+}
+
+
+static int
+sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
+{
+#pragma unused(arg1, arg2, oidp)
+ int error = 0, more_free = 0;
+
+ /*
+ * TODO: Enable this privilege check?
+ *
+ * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
+ * if (error)
+ * return (error);
+ */
+
+ error = sysctl_handle_int(oidp, &more_free, 0, req);
+ if (error || !req->newptr)
+ return (error);
+
+ if ((more_free && ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree)) ||
+ (!more_free && ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0))) {
+
+ /*
+ * No change in state.
+ */
+ return 0;
+ }
+
+ proc_list_lock();
+
+ if (more_free) {
+ memorystatus_jetsam_policy |= kPolicyMoreFree;
+ } else {
+ memorystatus_jetsam_policy &= ~kPolicyMoreFree;
+ }
+
+ memorystatus_update_levels_locked(TRUE);
+
+ proc_list_unlock();
+
+ return 0;
+}
+SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
+ 0, 0, &sysctl_kern_memorystatus_policy_more_free, "I", "");
+
+#endif /* CONFIG_JETSAM */
+
+/*
+ * Get the at_boot snapshot
+ */
+static int
+memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) {
+ size_t input_size = *snapshot_size;
+
+ /*
+ * The at_boot snapshot has no entry list.
+ */
+ *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t);
+
+ if (size_only) {
+ return 0;
+ }
+
+ /*
+ * Validate the size of the snapshot buffer
+ */
+ if (input_size < *snapshot_size) {
+ return EINVAL;
+ }
+
+ /*
+ * Update the notification_time only
+ */
+ memorystatus_at_boot_snapshot.notification_time = mach_absolute_time();
+ *snapshot = &memorystatus_at_boot_snapshot;
+
+ MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
+ (long)input_size, (long)*snapshot_size, 0);
+ return 0;
+}
+
+static int
+memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) {
+ size_t input_size = *snapshot_size;
+ uint32_t ods_list_count = memorystatus_list_count;
+ memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */
+
+ *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count));
+
+ if (size_only) {
+ return 0;
+ }
+
+ /*
+ * Validate the size of the snapshot buffer.
+ * This is inherently racey. May want to revisit
+ * this error condition and trim the output when
+ * it doesn't fit.
+ */
+ if (input_size < *snapshot_size) {
+ return EINVAL;
+ }
+
+ /*
+ * Allocate and initialize a snapshot buffer.
+ */
+ ods = (memorystatus_jetsam_snapshot_t *)kalloc(*snapshot_size);
+ if (!ods) {
+ return (ENOMEM);
+ }
+
+ memset(ods, 0, *snapshot_size);
+
+ proc_list_lock();
+ memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count);
+ proc_list_unlock();
+
+ /*
+ * Return the kernel allocated, on_demand buffer.
+ * The caller of this routine will copy the data out
+ * to user space and then free the kernel allocated
+ * buffer.
+ */
+ *snapshot = ods;
+
+ MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
+ (long)input_size, (long)*snapshot_size, (long)ods_list_count);
+
+ return 0;
+}
+
+static int
+memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) {
+ size_t input_size = *snapshot_size;
+
+ if (memorystatus_jetsam_snapshot_count > 0) {
+ *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count));
+ } else {
+ *snapshot_size = 0;
+ }
+
+ if (size_only) {
+ return 0;
+ }
+
+ if (input_size < *snapshot_size) {
+ return EINVAL;
+ }
+
+ *snapshot = memorystatus_jetsam_snapshot;
+
+ MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
+ (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count);
+
+ return 0;
+}
+
+
+static int
+memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) {
+ int error = EINVAL;
+ boolean_t size_only;
+ boolean_t is_default_snapshot = FALSE;
+ boolean_t is_on_demand_snapshot = FALSE;
+ boolean_t is_at_boot_snapshot = FALSE;
+ memorystatus_jetsam_snapshot_t *snapshot;
+
+ size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE);
+
+ if (flags == 0) {
+ /* Default */
+ is_default_snapshot = TRUE;
+ error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only);
+ } else {
+ if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT)) {
+ /*
+ * Unsupported bit set in flag.
+ */
+ return EINVAL;
+ }
+
+ if ((flags & (MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT)) ==
+ (MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT)) {
+ /*
+ * Can't have both set at the same time.
+ */
+ return EINVAL;
+ }
+
+ if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) {
+ is_on_demand_snapshot = TRUE;
+ /*
+ * When not requesting the size only, the following call will allocate
+ * an on_demand snapshot buffer, which is freed below.
+ */
+ error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only);
+
+ } else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) {
+ is_at_boot_snapshot = TRUE;
+ error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only);
+ } else {
+ /*
+ * Invalid flag setting.
+ */
+ return EINVAL;
+ }
+ }
+
+ if (error) {
+ goto out;
+ }
+
+ /*
+ * Copy the data out to user space and clear the snapshot buffer.
+ * If working with the jetsam snapshot,
+ * clearing the buffer means, reset the count.
+ * If working with an on_demand snapshot
+ * clearing the buffer means, free it.
+ * If working with the at_boot snapshot
+ * there is nothing to clear or update.
+ */
+ if (!size_only) {
+ if ((error = copyout(snapshot, buffer, buffer_size)) == 0) {
+ if (is_default_snapshot) {
+ /*
+ * The jetsam snapshot is never freed, its count is simply reset.
+ */
+ proc_list_lock();
+ snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
+ memorystatus_jetsam_snapshot_last_timestamp = 0;
+ proc_list_unlock();
+ }
+ }
+
+ if (is_on_demand_snapshot) {
+ /*
+ * The on_demand snapshot is always freed,
+ * even if the copyout failed.
+ */
+ if(snapshot) {
+ kfree(snapshot, buffer_size);
+ }
+ }
+ }
+
+ if (error == 0) {
+ *retval = buffer_size;
+ }
+out:
+ return error;
+}
+
+/*
+ * Routine: memorystatus_cmd_grp_set_properties
+ * Purpose: Update properties for a group of processes.
+ *
+ * Supported Properties:
+ * [priority]
+ * Move each process out of its effective priority
+ * band and into a new priority band.
+ * Maintains relative order from lowest to highest priority.
+ * In single band, maintains relative order from head to tail.
+ *
+ * eg: before [effectivepriority | pid]
+ * [18 | p101 ]
+ * [17 | p55, p67, p19 ]
+ * [12 | p103 p10 ]
+ * [ 7 | p25 ]
+ * [ 0 | p71, p82, ]
+ *
+ * after [ new band | pid]
+ * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
+ *
+ * Returns: 0 on success, else non-zero.
+ *
+ * Caveat: We know there is a race window regarding recycled pids.
+ * A process could be killed before the kernel can act on it here.
+ * If a pid cannot be found in any of the jetsam priority bands,
+ * then we simply ignore it. No harm.
+ * But, if the pid has been recycled then it could be an issue.
+ * In that scenario, we might move an unsuspecting process to the new
+ * priority band. It's not clear how the kernel can safeguard
+ * against this, but it would be an extremely rare case anyway.
+ * The caller of this api might avoid such race conditions by
+ * ensuring that the processes passed in the pid list are suspended.
+ */
+
+
+/* This internal structure can expand when we add support for more properties */
+typedef struct memorystatus_internal_properties
+{
+ proc_t proc;
+ int32_t priority; /* see memorytstatus_priority_entry_t : priority */
+} memorystatus_internal_properties_t;
+
+
+static int
+memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) {
+
+#pragma unused (flags)
+
+ /*
+ * We only handle setting priority
+ * per process
+ */
+
+ int error = 0;
+ memorystatus_priority_entry_t *entries = NULL;
+ uint32_t entry_count = 0;
+
+ /* This will be the ordered proc list */
+ memorystatus_internal_properties_t *table = NULL;
+ size_t table_size = 0;
+ uint32_t table_count = 0;
+
+ uint32_t i = 0;
+ uint32_t bucket_index = 0;
+ boolean_t head_insert;
+ int32_t new_priority;
+
+ proc_t p;
+
+ /* Verify inputs */
+ if ((buffer == USER_ADDR_NULL) || (buffer_size == 0) || ((buffer_size % sizeof(memorystatus_priority_entry_t)) != 0)) {
+ error = EINVAL;
+ goto out;
+ }
+
+ entry_count = (buffer_size / sizeof(memorystatus_priority_entry_t));
+ if ((entries = (memorystatus_priority_entry_t *)kalloc(buffer_size)) == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, entry_count, 0, 0, 0, 0);
+
+ if ((error = copyin(buffer, entries, buffer_size)) != 0) {
+ goto out;
+ }
+
+ /* Verify sanity of input priorities */
+ for (i=0; i < entry_count; i++) {
+ if (entries[i].priority == -1) {
+ /* Use as shorthand for default priority */
+ entries[i].priority = JETSAM_PRIORITY_DEFAULT;
+ } else if ((entries[i].priority == system_procs_aging_band) || (entries[i].priority == applications_aging_band)) {
+ /* Both the aging bands are reserved for internal use;
+ * if requested, adjust to JETSAM_PRIORITY_IDLE. */
+ entries[i].priority = JETSAM_PRIORITY_IDLE;
+ } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
+ /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
+ * queue */
+ /* Deal with this later */
+ } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) {
+ /* Sanity check */
+ error = EINVAL;
+ goto out;
+ }
+ }
+
+ table_size = sizeof(memorystatus_internal_properties_t) * entry_count;
+ if ( (table = (memorystatus_internal_properties_t *)kalloc(table_size)) == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ memset(table, 0, table_size);
+
+
+ /*
+ * For each jetsam bucket entry, spin through the input property list.
+ * When a matching pid is found, populate an adjacent table with the
+ * appropriate proc pointer and new property values.
+ * This traversal automatically preserves order from lowest
+ * to highest priority.
+ */
+
+ bucket_index=0;
+
+ proc_list_lock();
+
+ /* Create the ordered table */
+ p = memorystatus_get_first_proc_locked(&bucket_index, TRUE);
+ while (p && (table_count < entry_count)) {
+ for (i=0; i < entry_count; i++ ) {
+ if (p->p_pid == entries[i].pid) {
+ /* Build the table data */
+ table[table_count].proc = p;
+ table[table_count].priority = entries[i].priority;
+ table_count++;
+ break;