/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
#include <mach_rt.h>
-#include <mach_kdb.h>
#include <mach_kdp.h>
#include <mach_ldebug.h>
#include <gprof.h>
#include <kern/kern_types.h>
#include <kern/startup.h>
+#include <kern/timer_queue.h>
#include <kern/processor.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/assert.h>
#include <kern/machine.h>
+#include <kern/pms.h>
+#include <kern/misc_protos.h>
+#include <kern/etimer.h>
+#include <kern/kalloc.h>
+#include <kern/queue.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <profiling/profile-mk.h>
+#include <i386/proc_reg.h>
+#include <i386/cpu_threads.h>
+#include <i386/mp_desc.h>
+#include <i386/misc_protos.h>
+#include <i386/trap.h>
+#include <i386/postcode.h>
+#include <i386/machine_routines.h>
#include <i386/mp.h>
#include <i386/mp_events.h>
-#include <i386/mp_slave_boot.h>
-#include <i386/apic.h>
-#include <i386/ipl.h>
-#include <i386/fpu.h>
-#include <i386/pio.h>
+#include <i386/lapic.h>
#include <i386/cpuid.h>
-#include <i386/proc_reg.h>
+#include <i386/fpu.h>
#include <i386/machine_cpu.h>
-#include <i386/misc_protos.h>
-#include <i386/mtrr.h>
-#include <i386/postcode.h>
-#include <i386/perfmon.h>
-#include <i386/cpu_threads.h>
-#include <i386/mp_desc.h>
+#include <i386/pmCPU.h>
+#if CONFIG_MCA
+#include <i386/machine_check.h>
+#endif
+#include <i386/acpi.h>
+
+#include <chud/chud_xnu.h>
+#include <chud/chud_xnu_private.h>
+
+#include <sys/kdebug.h>
#if MP_DEBUG
#define PAUSE delay(1000000)
#define PAUSE
#endif /* MP_DEBUG */
-/*
- * By default, use high vectors to leave vector space for systems
- * with multiple I/O APIC's. However some systems that boot with
- * local APIC disabled will hang in SMM when vectors greater than
- * 0x5F are used. Those systems are not expected to have I/O APIC
- * so 16 (0x50 - 0x40) vectors for legacy PIC support is perfect.
- */
-#define LAPIC_DEFAULT_INTERRUPT_BASE 0xD0
-#define LAPIC_REDUCED_INTERRUPT_BASE 0x50
-/*
- * Specific lapic interrupts are relative to this base:
- */
-#define LAPIC_PERFCNT_INTERRUPT 0xB
-#define LAPIC_TIMER_INTERRUPT 0xC
-#define LAPIC_SPURIOUS_INTERRUPT 0xD
-#define LAPIC_INTERPROCESSOR_INTERRUPT 0xE
-#define LAPIC_ERROR_INTERRUPT 0xF
-
-/* Initialize lapic_id so cpu_number() works on non SMP systems */
-unsigned long lapic_id_initdata = 0;
-unsigned long lapic_id = (unsigned long)&lapic_id_initdata;
-vm_offset_t lapic_start;
+/* Debugging/test trace events: */
+#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
+#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
+#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
+#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
+#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
-static i386_intr_func_t lapic_timer_func;
-static i386_intr_func_t lapic_pmi_func;
-
-/* TRUE if local APIC was enabled by the OS not by the BIOS */
-static boolean_t lapic_os_enabled = FALSE;
-
-/* Base vector for local APIC interrupt sources */
-int lapic_interrupt_base = LAPIC_DEFAULT_INTERRUPT_BASE;
+#define ABS(v) (((v) > 0)?(v):-(v))
void slave_boot_init(void);
+void i386_cpu_IPI(int cpu);
-static void mp_kdp_wait(void);
+static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
static void mp_rendezvous_action(void);
+static void mp_broadcast_action(void);
-boolean_t smp_initialized = FALSE;
+static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
+static int NMIInterruptHandler(x86_saved_state_t *regs);
+boolean_t smp_initialized = FALSE;
+uint32_t TSC_sync_margin = 0xFFF;
+volatile boolean_t force_immediate_debugger_NMI = FALSE;
+volatile boolean_t pmap_tlb_flush_timeout = FALSE;
decl_simple_lock_data(,mp_kdp_lock);
-decl_mutex_data(static, mp_cpu_boot_lock);
+decl_lck_mtx_data(static, mp_cpu_boot_lock);
+lck_mtx_ext_t mp_cpu_boot_lock_ext;
/* Variables needed for MP rendezvous. */
-static void (*mp_rv_setup_func)(void *arg);
-static void (*mp_rv_action_func)(void *arg);
-static void (*mp_rv_teardown_func)(void *arg);
-static void *mp_rv_func_arg;
-static int mp_rv_ncpus;
-static long mp_rv_waiters[2];
decl_simple_lock_data(,mp_rv_lock);
+static void (*mp_rv_setup_func)(void *arg);
+static void (*mp_rv_action_func)(void *arg);
+static void (*mp_rv_teardown_func)(void *arg);
+static void *mp_rv_func_arg;
+static volatile int mp_rv_ncpus;
+ /* Cache-aligned barriers: */
+static volatile long mp_rv_entry __attribute__((aligned(64)));
+static volatile long mp_rv_exit __attribute__((aligned(64)));
+static volatile long mp_rv_complete __attribute__((aligned(64)));
+
+volatile uint64_t debugger_entry_time;
+volatile uint64_t debugger_exit_time;
+#if MACH_KDP
+#include <kdp/kdp.h>
+extern int kdp_snapshot;
+static struct _kdp_xcpu_call_func {
+ kdp_x86_xcpu_func_t func;
+ void *arg0, *arg1;
+ volatile long ret;
+ volatile uint16_t cpu;
+} kdp_xcpu_call_func = {
+ .cpu = KDP_XCPU_NONE
+};
-int lapic_to_cpu[MAX_CPUS];
-int cpu_to_lapic[MAX_CPUS];
-
-static void
-lapic_cpu_map_init(void)
-{
- int i;
-
- for (i = 0; i < MAX_CPUS; i++) {
- lapic_to_cpu[i] = -1;
- cpu_to_lapic[i] = -1;
- }
-}
-
-void
-lapic_cpu_map(int apic_id, int cpu)
-{
- cpu_to_lapic[cpu] = apic_id;
- lapic_to_cpu[apic_id] = cpu;
-}
-
-#ifdef MP_DEBUG
-static void
-lapic_cpu_map_dump(void)
-{
- int i;
-
- for (i = 0; i < MAX_CPUS; i++) {
- if (cpu_to_lapic[i] == -1)
- continue;
- kprintf("cpu_to_lapic[%d]: %d\n",
- i, cpu_to_lapic[i]);
- }
- for (i = 0; i < MAX_CPUS; i++) {
- if (lapic_to_cpu[i] == -1)
- continue;
- kprintf("lapic_to_cpu[%d]: %d\n",
- i, lapic_to_cpu[i]);
- }
-}
-#define LAPIC_CPU_MAP_DUMP() lapic_cpu_map_dump()
-#define LAPIC_DUMP() lapic_dump()
-#else
-#define LAPIC_CPU_MAP_DUMP()
-#define LAPIC_DUMP()
-#endif /* MP_DEBUG */
-
-#define LAPIC_REG(reg) \
- (*((volatile int *)(lapic_start + LAPIC_##reg)))
-#define LAPIC_REG_OFFSET(reg,off) \
- (*((volatile int *)(lapic_start + LAPIC_##reg + (off))))
-
-#define LAPIC_VECTOR(src) \
- (lapic_interrupt_base + LAPIC_##src##_INTERRUPT)
+#endif
-#define LAPIC_ISR_IS_SET(base,src) \
- (LAPIC_REG_OFFSET(ISR_BASE,((base+LAPIC_##src##_INTERRUPT)/32)*0x10) & \
- (1 <<((base + LAPIC_##src##_INTERRUPT)%32)))
+/* Variables needed for MP broadcast. */
+static void (*mp_bc_action_func)(void *arg);
+static void *mp_bc_func_arg;
+static int mp_bc_ncpus;
+static volatile long mp_bc_count;
+decl_lck_mtx_data(static, mp_bc_lock);
+lck_mtx_ext_t mp_bc_lock_ext;
+static volatile int debugger_cpu = -1;
+volatile long NMIPI_acks = 0;
+
+static void mp_cpus_call_init(void);
+static void mp_cpus_call_cpu_init(void);
+static void mp_cpus_call_action(void);
+static void mp_call_PM(void);
+
+char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
+
+/* PAL-related routines */
+boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
+ int ipi_vector, i386_intr_func_t ipi_handler);
+void i386_start_cpu(int lapic_id, int cpu_num);
+void i386_send_NMI(int cpu);
#if GPROF
/*
#define GPROF_INIT()
#endif /* GPROF */
-extern void master_up(void);
+static lck_grp_t smp_lck_grp;
+static lck_grp_attr_t smp_lck_grp_attr;
+
+#define NUM_CPU_WARM_CALLS 20
+struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
+queue_head_t cpu_warm_call_list;
+decl_simple_lock_data(static, cpu_warm_lock);
+
+typedef struct cpu_warm_data {
+ timer_call_t cwd_call;
+ uint64_t cwd_deadline;
+ int cwd_result;
+} *cpu_warm_data_t;
+
+static void cpu_prewarm_init(void);
+static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
+static void _cpu_warm_setup(void *arg);
+static timer_call_t grab_warm_timer_call(void);
+static void free_warm_timer_call(timer_call_t call);
void
smp_init(void)
{
- int result;
- vm_map_entry_t entry;
- uint32_t lo;
- uint32_t hi;
- boolean_t is_boot_processor;
- boolean_t is_lapic_enabled;
- vm_offset_t lapic_base;
-
simple_lock_init(&mp_kdp_lock, 0);
simple_lock_init(&mp_rv_lock, 0);
- mutex_init(&mp_cpu_boot_lock, 0);
+ lck_grp_attr_setdefault(&smp_lck_grp_attr);
+ lck_grp_init(&smp_lck_grp, "i386_smp", &smp_lck_grp_attr);
+ lck_mtx_init_ext(&mp_cpu_boot_lock, &mp_cpu_boot_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
+ lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
console_init();
- /* Local APIC? */
- if (!lapic_probe())
+ if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
+ LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler))
return;
- /* Examine the local APIC state */
- rdmsr(MSR_IA32_APIC_BASE, lo, hi);
- is_boot_processor = (lo & MSR_IA32_APIC_BASE_BSP) != 0;
- is_lapic_enabled = (lo & MSR_IA32_APIC_BASE_ENABLE) != 0;
- lapic_base = (lo & MSR_IA32_APIC_BASE_BASE);
- kprintf("MSR_IA32_APIC_BASE 0x%x %s %s\n", lapic_base,
- is_lapic_enabled ? "enabled" : "disabled",
- is_boot_processor ? "BSP" : "AP");
- if (!is_boot_processor || !is_lapic_enabled)
- panic("Unexpected local APIC state\n");
-
- /* Establish a map to the local apic */
- lapic_start = vm_map_min(kernel_map);
- result = vm_map_find_space(kernel_map, &lapic_start,
- round_page(LAPIC_SIZE), 0, &entry);
- if (result != KERN_SUCCESS) {
- panic("smp_init: vm_map_find_entry FAILED (err=%d)", result);
- }
- vm_map_unlock(kernel_map);
- pmap_enter(pmap_kernel(),
- lapic_start,
- (ppnum_t) i386_btop(lapic_base),
- VM_PROT_READ|VM_PROT_WRITE,
- VM_WIMG_USE_DEFAULT,
- TRUE);
- lapic_id = (unsigned long)(lapic_start + LAPIC_ID);
-
- if ((LAPIC_REG(VERSION)&LAPIC_VERSION_MASK) != 0x14) {
- printf("Local APIC version not 0x14 as expected\n");
- }
-
- /* Set up the lapic_id <-> cpu_number map and add this boot processor */
- lapic_cpu_map_init();
- lapic_cpu_map((LAPIC_REG(ID)>>LAPIC_ID_SHIFT)&LAPIC_ID_MASK, 0);
-
- lapic_init();
-
cpu_thread_init();
- if (pmc_init() != KERN_SUCCESS)
- printf("Performance counters not available\n");
-
GPROF_INIT();
DBGLOG_CPU_INIT(master_cpu);
- slave_boot_init();
- master_up();
+ mp_cpus_call_init();
+ mp_cpus_call_cpu_init();
+ if (PE_parse_boot_argn("TSC_sync_margin",
+ &TSC_sync_margin, sizeof(TSC_sync_margin))) {
+ kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin);
+ } else if (cpuid_vmm_present()) {
+ kprintf("TSC sync margin disabled\n");
+ TSC_sync_margin = 0;
+ }
smp_initialized = TRUE;
- return;
-}
+ cpu_prewarm_init();
-
-static int
-lapic_esr_read(void)
-{
- /* write-read register */
- LAPIC_REG(ERROR_STATUS) = 0;
- return LAPIC_REG(ERROR_STATUS);
+ return;
}
-static void
-lapic_esr_clear(void)
-{
- LAPIC_REG(ERROR_STATUS) = 0;
- LAPIC_REG(ERROR_STATUS) = 0;
-}
+typedef struct {
+ int target_cpu;
+ int target_lapic;
+ int starter_cpu;
+} processor_start_info_t;
+static processor_start_info_t start_info __attribute__((aligned(64)));
-static const char *DM[8] = {
- "Fixed",
- "Lowest Priority",
- "Invalid",
- "Invalid",
- "NMI",
- "Reset",
- "Invalid",
- "ExtINT"};
+/*
+ * Cache-alignment is to avoid cross-cpu false-sharing interference.
+ */
+static volatile long tsc_entry_barrier __attribute__((aligned(64)));
+static volatile long tsc_exit_barrier __attribute__((aligned(64)));
+static volatile uint64_t tsc_target __attribute__((aligned(64)));
-void
-lapic_dump(void)
+/*
+ * Poll a CPU to see when it has marked itself as running.
+ */
+static void
+mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay)
{
- int i;
-
-#define BOOL(a) ((a)?' ':'!')
-
- kprintf("LAPIC %d at 0x%x version 0x%x\n",
- (LAPIC_REG(ID)>>LAPIC_ID_SHIFT)&LAPIC_ID_MASK,
- lapic_start,
- LAPIC_REG(VERSION)&LAPIC_VERSION_MASK);
- kprintf("Priorities: Task 0x%x Arbitration 0x%x Processor 0x%x\n",
- LAPIC_REG(TPR)&LAPIC_TPR_MASK,
- LAPIC_REG(APR)&LAPIC_APR_MASK,
- LAPIC_REG(PPR)&LAPIC_PPR_MASK);
- kprintf("Destination Format 0x%x Logical Destination 0x%x\n",
- LAPIC_REG(DFR)>>LAPIC_DFR_SHIFT,
- LAPIC_REG(LDR)>>LAPIC_LDR_SHIFT);
- kprintf("%cEnabled %cFocusChecking SV 0x%x\n",
- BOOL(LAPIC_REG(SVR)&LAPIC_SVR_ENABLE),
- BOOL(!(LAPIC_REG(SVR)&LAPIC_SVR_FOCUS_OFF)),
- LAPIC_REG(SVR) & LAPIC_SVR_MASK);
- kprintf("LVT_TIMER: Vector 0x%02x %s %cmasked %s\n",
- LAPIC_REG(LVT_TIMER)&LAPIC_LVT_VECTOR_MASK,
- (LAPIC_REG(LVT_TIMER)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
- BOOL(LAPIC_REG(LVT_TIMER)&LAPIC_LVT_MASKED),
- (LAPIC_REG(LVT_TIMER)&LAPIC_LVT_PERIODIC)?"Periodic":"OneShot");
- kprintf(" Initial Count: 0x%08x \n", LAPIC_REG(TIMER_INITIAL_COUNT));
- kprintf(" Current Count: 0x%08x \n", LAPIC_REG(TIMER_CURRENT_COUNT));
- kprintf(" Divide Config: 0x%08x \n", LAPIC_REG(TIMER_DIVIDE_CONFIG));
- kprintf("LVT_PERFCNT: Vector 0x%02x [%s] %s %cmasked\n",
- LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_VECTOR_MASK,
- DM[(LAPIC_REG(LVT_PERFCNT)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
- (LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
- BOOL(LAPIC_REG(LVT_PERFCNT)&LAPIC_LVT_MASKED));
- kprintf("LVT_LINT0: Vector 0x%02x [%s][%s][%s] %s %cmasked\n",
- LAPIC_REG(LVT_LINT0)&LAPIC_LVT_VECTOR_MASK,
- DM[(LAPIC_REG(LVT_LINT0)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
- (LAPIC_REG(LVT_LINT0)&LAPIC_LVT_TM_LEVEL)?"Level":"Edge ",
- (LAPIC_REG(LVT_LINT0)&LAPIC_LVT_IP_PLRITY_LOW)?"Low ":"High",
- (LAPIC_REG(LVT_LINT0)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
- BOOL(LAPIC_REG(LVT_LINT0)&LAPIC_LVT_MASKED));
- kprintf("LVT_LINT1: Vector 0x%02x [%s][%s][%s] %s %cmasked\n",
- LAPIC_REG(LVT_LINT1)&LAPIC_LVT_VECTOR_MASK,
- DM[(LAPIC_REG(LVT_LINT1)>>LAPIC_LVT_DM_SHIFT)&LAPIC_LVT_DM_MASK],
- (LAPIC_REG(LVT_LINT1)&LAPIC_LVT_TM_LEVEL)?"Level":"Edge ",
- (LAPIC_REG(LVT_LINT1)&LAPIC_LVT_IP_PLRITY_LOW)?"Low ":"High",
- (LAPIC_REG(LVT_LINT1)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
- BOOL(LAPIC_REG(LVT_LINT1)&LAPIC_LVT_MASKED));
- kprintf("LVT_ERROR: Vector 0x%02x %s %cmasked\n",
- LAPIC_REG(LVT_ERROR)&LAPIC_LVT_VECTOR_MASK,
- (LAPIC_REG(LVT_ERROR)&LAPIC_LVT_DS_PENDING)?"SendPending":"Idle",
- BOOL(LAPIC_REG(LVT_ERROR)&LAPIC_LVT_MASKED));
- kprintf("ESR: %08x \n", lapic_esr_read());
- kprintf(" ");
- for(i=0xf; i>=0; i--)
- kprintf("%x%x%x%x",i,i,i,i);
- kprintf("\n");
- kprintf("TMR: 0x");
- for(i=7; i>=0; i--)
- kprintf("%08x",LAPIC_REG_OFFSET(TMR_BASE, i*0x10));
- kprintf("\n");
- kprintf("IRR: 0x");
- for(i=7; i>=0; i--)
- kprintf("%08x",LAPIC_REG_OFFSET(IRR_BASE, i*0x10));
- kprintf("\n");
- kprintf("ISR: 0x");
- for(i=7; i >= 0; i--)
- kprintf("%08x",LAPIC_REG_OFFSET(ISR_BASE, i*0x10));
- kprintf("\n");
+ while (iters-- > 0) {
+ if (cpu_datap(slot_num)->cpu_running)
+ break;
+ delay(usecdelay);
+ }
}
-boolean_t
-lapic_probe(void)
+/*
+ * Quickly bring a CPU back online which has been halted.
+ */
+kern_return_t
+intel_startCPU_fast(int slot_num)
{
- uint32_t lo;
- uint32_t hi;
-
- if (cpuid_features() & CPUID_FEATURE_APIC)
- return TRUE;
-
- if (cpuid_family() == 6 || cpuid_family() == 15) {
- /*
- * Mobile Pentiums:
- * There may be a local APIC which wasn't enabled by BIOS.
- * So we try to enable it explicitly.
- */
- rdmsr(MSR_IA32_APIC_BASE, lo, hi);
- lo &= ~MSR_IA32_APIC_BASE_BASE;
- lo |= MSR_IA32_APIC_BASE_ENABLE | LAPIC_START;
- lo |= MSR_IA32_APIC_BASE_ENABLE;
- wrmsr(MSR_IA32_APIC_BASE, lo, hi);
+ kern_return_t rc;
+ /*
+ * Try to perform a fast restart
+ */
+ rc = pmCPUExitHalt(slot_num);
+ if (rc != KERN_SUCCESS)
/*
- * Re-initialize cpu features info and re-check.
+ * The CPU was not eligible for a fast restart.
*/
- set_cpu_model();
- if (cpuid_features() & CPUID_FEATURE_APIC) {
- printf("Local APIC discovered and enabled\n");
- lapic_os_enabled = TRUE;
- lapic_interrupt_base = LAPIC_REDUCED_INTERRUPT_BASE;
- return TRUE;
- }
- }
-
- return FALSE;
-}
-
-void
-lapic_shutdown(void)
-{
- uint32_t lo;
- uint32_t hi;
- uint32_t value;
-
- /* Shutdown if local APIC was enabled by OS */
- if (lapic_os_enabled == FALSE)
- return;
+ return(rc);
+ /*
+ * Wait until the CPU is back online.
+ */
mp_disable_preemption();
+
+ /*
+ * We use short pauses (1us) for low latency. 30,000 iterations is
+ * longer than a full restart would require so it should be more
+ * than long enough.
+ */
- /* ExtINT: masked */
- if (get_cpu_number() == master_cpu) {
- value = LAPIC_REG(LVT_LINT0);
- value |= LAPIC_LVT_MASKED;
- LAPIC_REG(LVT_LINT0) = value;
- }
-
- /* Timer: masked */
- LAPIC_REG(LVT_TIMER) |= LAPIC_LVT_MASKED;
-
- /* Perfmon: masked */
- LAPIC_REG(LVT_PERFCNT) |= LAPIC_LVT_MASKED;
-
- /* Error: masked */
- LAPIC_REG(LVT_ERROR) |= LAPIC_LVT_MASKED;
-
- /* APIC software disabled */
- LAPIC_REG(SVR) &= ~LAPIC_SVR_ENABLE;
-
- /* Bypass the APIC completely and update cpu features */
- rdmsr(MSR_IA32_APIC_BASE, lo, hi);
- lo &= ~MSR_IA32_APIC_BASE_ENABLE;
- wrmsr(MSR_IA32_APIC_BASE, lo, hi);
- set_cpu_model();
-
+ mp_wait_for_cpu_up(slot_num, 30000, 1);
mp_enable_preemption();
-}
-
-void
-lapic_init(void)
-{
- int value;
-
- /* Set flat delivery model, logical processor id */
- LAPIC_REG(DFR) = LAPIC_DFR_FLAT;
- LAPIC_REG(LDR) = (get_cpu_number()) << LAPIC_LDR_SHIFT;
-
- /* Accept all */
- LAPIC_REG(TPR) = 0;
-
- LAPIC_REG(SVR) = LAPIC_VECTOR(SPURIOUS) | LAPIC_SVR_ENABLE;
-
- /* ExtINT */
- if (get_cpu_number() == master_cpu) {
- value = LAPIC_REG(LVT_LINT0);
- value &= ~LAPIC_LVT_MASKED;
- value |= LAPIC_LVT_DM_EXTINT;
- LAPIC_REG(LVT_LINT0) = value;
- }
-
- /* Timer: unmasked, one-shot */
- LAPIC_REG(LVT_TIMER) = LAPIC_VECTOR(TIMER);
-
- /* Perfmon: unmasked */
- LAPIC_REG(LVT_PERFCNT) = LAPIC_VECTOR(PERFCNT);
-
- lapic_esr_clear();
-
- LAPIC_REG(LVT_ERROR) = LAPIC_VECTOR(ERROR);
-
-}
-
-void
-lapic_set_timer_func(i386_intr_func_t func)
-{
- lapic_timer_func = func;
-}
-
-void
-lapic_set_timer(
- boolean_t interrupt,
- lapic_timer_mode_t mode,
- lapic_timer_divide_t divisor,
- lapic_timer_count_t initial_count)
-{
- boolean_t state;
- uint32_t timer_vector;
-
- state = ml_set_interrupts_enabled(FALSE);
- timer_vector = LAPIC_REG(LVT_TIMER);
- timer_vector &= ~(LAPIC_LVT_MASKED|LAPIC_LVT_PERIODIC);;
- timer_vector |= interrupt ? 0 : LAPIC_LVT_MASKED;
- timer_vector |= (mode == periodic) ? LAPIC_LVT_PERIODIC : 0;
- LAPIC_REG(LVT_TIMER) = timer_vector;
- LAPIC_REG(TIMER_DIVIDE_CONFIG) = divisor;
- LAPIC_REG(TIMER_INITIAL_COUNT) = initial_count;
- ml_set_interrupts_enabled(state);
-}
-
-void
-lapic_get_timer(
- lapic_timer_mode_t *mode,
- lapic_timer_divide_t *divisor,
- lapic_timer_count_t *initial_count,
- lapic_timer_count_t *current_count)
-{
- boolean_t state;
-
- state = ml_set_interrupts_enabled(FALSE);
- if (mode)
- *mode = (LAPIC_REG(LVT_TIMER) & LAPIC_LVT_PERIODIC) ?
- periodic : one_shot;
- if (divisor)
- *divisor = LAPIC_REG(TIMER_DIVIDE_CONFIG) & LAPIC_TIMER_DIVIDE_MASK;
- if (initial_count)
- *initial_count = LAPIC_REG(TIMER_INITIAL_COUNT);
- if (current_count)
- *current_count = LAPIC_REG(TIMER_CURRENT_COUNT);
- ml_set_interrupts_enabled(state);
-}
-void
-lapic_set_pmi_func(i386_intr_func_t func)
-{
- lapic_pmi_func = func;
-}
-
-static inline void
-_lapic_end_of_interrupt(void)
-{
- LAPIC_REG(EOI) = 0;
+ /*
+ * Check to make sure that the CPU is really running. If not,
+ * go through the slow path.
+ */
+ if (cpu_datap(slot_num)->cpu_running)
+ return(KERN_SUCCESS);
+ else
+ return(KERN_FAILURE);
}
-void
-lapic_end_of_interrupt(void)
+static void
+started_cpu(void)
{
- _lapic_end_of_interrupt();
-}
+ /* Here on the started cpu with cpu_running set TRUE */
-int
-lapic_interrupt(int interrupt, void *state)
-{
- interrupt -= lapic_interrupt_base;
- if (interrupt < 0)
- return 0;
-
- switch(interrupt) {
- case LAPIC_PERFCNT_INTERRUPT:
- if (lapic_pmi_func != NULL)
- (*lapic_pmi_func)(
- (struct i386_interrupt_state *) state);
- /* Clear interrupt masked */
- LAPIC_REG(LVT_PERFCNT) = LAPIC_VECTOR(PERFCNT);
- _lapic_end_of_interrupt();
- return 1;
- case LAPIC_TIMER_INTERRUPT:
- _lapic_end_of_interrupt();
- if (lapic_timer_func != NULL)
- (*lapic_timer_func)(
- (struct i386_interrupt_state *) state);
- return 1;
- case LAPIC_ERROR_INTERRUPT:
- lapic_dump();
- panic("Local APIC error\n");
- _lapic_end_of_interrupt();
- return 1;
- case LAPIC_SPURIOUS_INTERRUPT:
- kprintf("SPIV\n");
- /* No EOI required here */
- return 1;
- case LAPIC_INTERPROCESSOR_INTERRUPT:
- cpu_signal_handler((struct i386_interrupt_state *) state);
- _lapic_end_of_interrupt();
- return 1;
+ if (TSC_sync_margin &&
+ start_info.target_cpu == cpu_number()) {
+ /*
+ * I've just started-up, synchronize again with the starter cpu
+ * and then snap my TSC.
+ */
+ tsc_target = 0;
+ atomic_decl(&tsc_entry_barrier, 1);
+ while (tsc_entry_barrier != 0)
+ ; /* spin for starter and target at barrier */
+ tsc_target = rdtsc64();
+ atomic_decl(&tsc_exit_barrier, 1);
}
- return 0;
}
-void
-lapic_smm_restore(void)
+static void
+start_cpu(void *arg)
{
- boolean_t state;
+ int i = 1000;
+ processor_start_info_t *psip = (processor_start_info_t *) arg;
- if (lapic_os_enabled == FALSE)
+ /* Ignore this if the current processor is not the starter */
+ if (cpu_number() != psip->starter_cpu)
return;
- state = ml_set_interrupts_enabled(FALSE);
-
- if (LAPIC_ISR_IS_SET(LAPIC_REDUCED_INTERRUPT_BASE, TIMER)) {
- /*
- * Bogus SMI handler enables interrupts but does not know about
- * local APIC interrupt sources. When APIC timer counts down to
- * zero while in SMM, local APIC will end up waiting for an EOI
- * but no interrupt was delivered to the OS.
- */
- _lapic_end_of_interrupt();
+ i386_start_cpu(psip->target_lapic, psip->target_cpu);
+#ifdef POSTCODE_DELAY
+ /* Wait much longer if postcodes are displayed for a delay period. */
+ i *= 10000;
+#endif
+ mp_wait_for_cpu_up(psip->target_cpu, i*100, 100);
+ if (TSC_sync_margin &&
+ cpu_datap(psip->target_cpu)->cpu_running) {
/*
- * timer is one-shot, trigger another quick countdown to trigger
- * another timer interrupt.
+ * Compare the TSC from the started processor with ours.
+ * Report and log/panic if it diverges by more than
+ * TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin
+ * can be overriden by boot-arg (with 0 meaning no checking).
*/
- if (LAPIC_REG(TIMER_CURRENT_COUNT) == 0) {
- LAPIC_REG(TIMER_INITIAL_COUNT) = 1;
+ uint64_t tsc_starter;
+ int64_t tsc_delta;
+ atomic_decl(&tsc_entry_barrier, 1);
+ while (tsc_entry_barrier != 0)
+ ; /* spin for both processors at barrier */
+ tsc_starter = rdtsc64();
+ atomic_decl(&tsc_exit_barrier, 1);
+ while (tsc_exit_barrier != 0)
+ ; /* spin for target to store its TSC */
+ tsc_delta = tsc_target - tsc_starter;
+ kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n",
+ psip->target_cpu, tsc_target, tsc_delta, tsc_delta);
+ if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) {
+#if DEBUG
+ panic(
+#else
+ printf(
+#endif
+ "Unsynchronized TSC for cpu %d: "
+ "0x%016llx, delta 0x%llx\n",
+ psip->target_cpu, tsc_target, tsc_delta);
}
-
- kprintf("lapic_smm_restore\n");
}
-
- ml_set_interrupts_enabled(state);
}
kern_return_t
intel_startCPU(
int slot_num)
{
-
- int i = 1000;
- int lapic = cpu_to_lapic[slot_num];
+ int lapic = cpu_to_lapic[slot_num];
+ boolean_t istate;
assert(lapic != -1);
DBGLOG_CPU_INIT(slot_num);
DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
- DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) IdlePTD);
+ DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) (uintptr_t)IdlePTD);
- /* Initialize (or re-initialize) the descriptor tables for this cpu. */
- mp_desc_init(cpu_datap(slot_num), FALSE);
+ /*
+ * Initialize (or re-initialize) the descriptor tables for this cpu.
+ * Propagate processor mode to slave.
+ */
+ if (cpu_mode_is64bit())
+ cpu_desc_init64(cpu_datap(slot_num));
+ else
+ cpu_desc_init(cpu_datap(slot_num));
- /* Serialize use of the slave boot stack. */
- mutex_lock(&mp_cpu_boot_lock);
+ /* Serialize use of the slave boot stack, etc. */
+ lck_mtx_lock(&mp_cpu_boot_lock);
- mp_disable_preemption();
+ istate = ml_set_interrupts_enabled(FALSE);
if (slot_num == get_cpu_number()) {
- mp_enable_preemption();
- mutex_unlock(&mp_cpu_boot_lock);
+ ml_set_interrupts_enabled(istate);
+ lck_mtx_unlock(&mp_cpu_boot_lock);
return KERN_SUCCESS;
}
- LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
- LAPIC_REG(ICR) = LAPIC_ICR_DM_INIT;
- delay(10000);
+ start_info.starter_cpu = cpu_number();
+ start_info.target_cpu = slot_num;
+ start_info.target_lapic = lapic;
+ tsc_entry_barrier = 2;
+ tsc_exit_barrier = 2;
- LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
- LAPIC_REG(ICR) = LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12);
- delay(200);
-
- LAPIC_REG(ICRD) = lapic << LAPIC_ICRD_DEST_SHIFT;
- LAPIC_REG(ICR) = LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12);
- delay(200);
+ /*
+ * Perform the processor startup sequence with all running
+ * processors rendezvous'ed. This is required during periods when
+ * the cache-disable bit is set for MTRR/PAT initialization.
+ */
+ mp_rendezvous_no_intrs(start_cpu, (void *) &start_info);
-#ifdef POSTCODE_DELAY
- /* Wait much longer if postcodes are displayed for a delay period. */
- i *= 10000;
-#endif
- while(i-- > 0) {
- if (cpu_datap(slot_num)->cpu_running)
- break;
- delay(10000);
- }
+ start_info.target_cpu = 0;
- mp_enable_preemption();
- mutex_unlock(&mp_cpu_boot_lock);
+ ml_set_interrupts_enabled(istate);
+ lck_mtx_unlock(&mp_cpu_boot_lock);
if (!cpu_datap(slot_num)->cpu_running) {
- DBG("Failed to start CPU %02d\n", slot_num);
+ kprintf("Failed to start CPU %02d\n", slot_num);
printf("Failed to start CPU %02d, rebooting...\n", slot_num);
delay(1000000);
- cpu_shutdown();
+ halt_cpu();
return KERN_SUCCESS;
} else {
- DBG("Started CPU %02d\n", slot_num);
- printf("Started CPU %02d\n", slot_num);
+ kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
return KERN_SUCCESS;
}
}
-extern char slave_boot_base[];
-extern char slave_boot_end[];
-extern void pstart(void);
-
-void
-slave_boot_init(void)
-{
- DBG("V(slave_boot_base)=%p P(slave_boot_base)=%p MP_BOOT=%p sz=0x%x\n",
- slave_boot_base,
- kvtophys((vm_offset_t) slave_boot_base),
- MP_BOOT,
- slave_boot_end-slave_boot_base);
-
- /*
- * Copy the boot entry code to the real-mode vector area MP_BOOT.
- * This is in page 1 which has been reserved for this purpose by
- * machine_startup() from the boot processor.
- * The slave boot code is responsible for switching to protected
- * mode and then jumping to the common startup, _start().
- */
- bcopy_phys((addr64_t) kvtophys((vm_offset_t) slave_boot_base),
- (addr64_t) MP_BOOT,
- slave_boot_end-slave_boot_base);
-
- /*
- * Zero a stack area above the boot code.
- */
- DBG("bzero_phys 0x%x sz 0x%x\n",MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
- bzero_phys((addr64_t)MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
-
- /*
- * Set the location at the base of the stack to point to the
- * common startup entry.
- */
- DBG("writing 0x%x at phys 0x%x\n",
- kvtophys((vm_offset_t) &pstart), MP_MACH_START+MP_BOOT);
- ml_phys_write_word(MP_MACH_START+MP_BOOT,
- kvtophys((vm_offset_t) &pstart));
-
- /* Flush caches */
- __asm__("wbinvd");
-}
-
#if MP_DEBUG
cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
#endif /* MP_DEBUG */
-void
-cpu_signal_handler(__unused struct i386_interrupt_state *regs)
+int
+cpu_signal_handler(x86_saved_state_t *regs)
{
int my_cpu;
volatile int *my_word;
-#if MACH_KDB && MACH_ASSERT
- int i=100;
-#endif /* MACH_KDB && MACH_ASSERT */
- mp_disable_preemption();
+ SCHED_STATS_IPI(current_processor());
my_cpu = cpu_number();
- my_word = ¤t_cpu_datap()->cpu_signals;
+ my_word = &cpu_data_ptr[my_cpu]->cpu_signals;
+ /* Store the initial set of signals for diagnostics. New
+ * signals could arrive while these are being processed
+ * so it's no more than a hint.
+ */
+
+ cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word;
do {
-#if MACH_KDB && MACH_ASSERT
- if (i-- <= 0)
- Debugger("cpu_signal_handler");
-#endif /* MACH_KDB && MACH_ASSERT */
#if MACH_KDP
if (i_bit(MP_KDP, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_KDP);
i_bit_clear(MP_KDP, my_word);
- mp_kdp_wait();
+/* Ensure that the i386_kernel_state at the base of the
+ * current thread's stack (if any) is synchronized with the
+ * context at the moment of the interrupt, to facilitate
+ * access through the debugger.
+ */
+ sync_iss_to_iks(regs);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ mp_kdp_wait(TRUE, FALSE);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
} else
#endif /* MACH_KDP */
if (i_bit(MP_TLB_FLUSH, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_AST);
i_bit_clear(MP_AST, my_word);
ast_check(cpu_to_processor(my_cpu));
-#if MACH_KDB
- } else if (i_bit(MP_KDB, my_word)) {
- extern kdb_is_slave[];
-
- i_bit_clear(MP_KDB, my_word);
- kdb_is_slave[my_cpu]++;
- kdb_kintr();
-#endif /* MACH_KDB */
} else if (i_bit(MP_RENDEZVOUS, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
i_bit_clear(MP_RENDEZVOUS, my_word);
mp_rendezvous_action();
+ } else if (i_bit(MP_BROADCAST, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_BROADCAST);
+ i_bit_clear(MP_BROADCAST, my_word);
+ mp_broadcast_action();
+ } else if (i_bit(MP_CHUD, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CHUD);
+ i_bit_clear(MP_CHUD, my_word);
+ chudxnu_cpu_signal_handler();
+ } else if (i_bit(MP_CALL, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CALL);
+ i_bit_clear(MP_CALL, my_word);
+ mp_cpus_call_action();
+ } else if (i_bit(MP_CALL_PM, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CALL_PM);
+ i_bit_clear(MP_CALL_PM, my_word);
+ mp_call_PM();
}
} while (*my_word);
- mp_enable_preemption();
+ return 0;
+}
+
+static int
+NMIInterruptHandler(x86_saved_state_t *regs)
+{
+ void *stackptr;
+
+ if (panic_active() && !panicDebugging) {
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ for(;;)
+ cpu_pause();
+ }
+
+ atomic_incl(&NMIPI_acks, 1);
+ sync_iss_to_iks_unconditionally(regs);
+#if defined (__i386__)
+ __asm__ volatile("movl %%ebp, %0" : "=m" (stackptr));
+#elif defined (__x86_64__)
+ __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr));
+#endif
+
+ if (cpu_number() == debugger_cpu)
+ goto NMExit;
+
+ if (spinlock_timed_out) {
+ char pstr[192];
+ snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n", cpu_number(), spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
+ panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
+ } else if (pmap_tlb_flush_timeout == TRUE) {
+ char pstr[128];
+ snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor (this CPU did not acknowledge interrupts) TLB state:0x%x\n", cpu_number(), current_cpu_datap()->cpu_tlb_invalid);
+ panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs);
+ }
+#if MACH_KDP
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ current_cpu_datap()->cpu_NMI_acknowledged = TRUE;
+ mp_kdp_wait(FALSE, pmap_tlb_flush_timeout || spinlock_timed_out || panic_active());
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+#endif
+NMExit:
+ return 1;
}
-#ifdef MP_DEBUG
-extern int max_lock_loops;
-#endif /* MP_DEBUG */
+
+/*
+ * cpu_interrupt is really just to be used by the scheduler to
+ * get a CPU's attention it may not always issue an IPI. If an
+ * IPI is always needed then use i386_cpu_IPI.
+ */
void
cpu_interrupt(int cpu)
{
- boolean_t state;
+ boolean_t did_IPI = FALSE;
+
+ if (smp_initialized
+ && pmCPUExitIdle(cpu_datap(cpu))) {
+ i386_cpu_IPI(cpu);
+ did_IPI = TRUE;
+ }
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0);
+}
+
+/*
+ * Send a true NMI via the local APIC to the specified CPU.
+ */
+void
+cpu_NMI_interrupt(int cpu)
+{
if (smp_initialized) {
+ i386_send_NMI(cpu);
+ }
+}
- /* Wait for previous interrupt to be delivered... */
-#ifdef MP_DEBUG
- int pending_busy_count = 0;
- while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
- if (++pending_busy_count > max_lock_loops)
- panic("cpus_interrupt() deadlock\n");
-#else
- while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
-#endif /* MP_DEBUG */
- cpu_pause();
- }
+static void (* volatile mp_PM_func)(void) = NULL;
- state = ml_set_interrupts_enabled(FALSE);
- LAPIC_REG(ICRD) =
- cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
- LAPIC_REG(ICR) =
- LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED;
- (void) ml_set_interrupts_enabled(state);
+static void
+mp_call_PM(void)
+{
+ assert(!ml_get_interrupts_enabled());
+
+ if (mp_PM_func != NULL)
+ mp_PM_func();
+}
+
+void
+cpu_PM_interrupt(int cpu)
+{
+ assert(!ml_get_interrupts_enabled());
+
+ if (mp_PM_func != NULL) {
+ if (cpu == cpu_number())
+ mp_PM_func();
+ else
+ i386_signal_cpu(cpu, MP_CALL_PM, ASYNC);
}
+}
+void
+PM_interrupt_register(void (*fn)(void))
+{
+ mp_PM_func = fn;
}
void
{
volatile int *signals = &cpu_datap(cpu)->cpu_signals;
uint64_t tsc_timeout;
-
+
if (!cpu_datap(cpu)->cpu_running)
return;
- DBGLOG(cpu_signal, cpu, event);
+ if (event == MP_TLB_FLUSH)
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ DBGLOG(cpu_signal, cpu, event);
+
i_bit_set(event, signals);
- cpu_interrupt(cpu);
+ i386_cpu_IPI(cpu);
if (mode == SYNC) {
again:
tsc_timeout = rdtsc64() + (1000*1000*1000);
goto again;
}
}
+ if (event == MP_TLB_FLUSH)
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
}
+/*
+ * Send event to all running cpus.
+ * Called with the topology locked.
+ */
void
i386_signal_cpus(mp_event_t event, mp_sync_t mode)
{
unsigned int cpu;
unsigned int my_cpu = cpu_number();
+ assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
+
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
}
}
+/*
+ * Return the number of running cpus.
+ * Called with the topology locked.
+ */
int
i386_active_cpus(void)
{
unsigned int cpu;
unsigned int ncpus = 0;
+ assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
+
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu_datap(cpu)->cpu_running)
ncpus++;
static void
mp_rendezvous_action(void)
{
+ boolean_t intrs_enabled;
/* setup function */
if (mp_rv_setup_func != NULL)
mp_rv_setup_func(mp_rv_func_arg);
+
+ intrs_enabled = ml_get_interrupts_enabled();
+
/* spin on entry rendezvous */
- atomic_incl(&mp_rv_waiters[0], 1);
- while (*((volatile long *) &mp_rv_waiters[0]) < mp_rv_ncpus)
+ atomic_incl(&mp_rv_entry, 1);
+ while (mp_rv_entry < mp_rv_ncpus) {
+ /* poll for pesky tlb flushes if interrupts disabled */
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
cpu_pause();
+ }
+
/* action function */
if (mp_rv_action_func != NULL)
mp_rv_action_func(mp_rv_func_arg);
+
/* spin on exit rendezvous */
- atomic_incl(&mp_rv_waiters[1], 1);
- while (*((volatile long *) &mp_rv_waiters[1]) < mp_rv_ncpus)
+ atomic_incl(&mp_rv_exit, 1);
+ while (mp_rv_exit < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
cpu_pause();
+ }
+
/* teardown function */
if (mp_rv_teardown_func != NULL)
mp_rv_teardown_func(mp_rv_func_arg);
+
+ /* Bump completion count */
+ atomic_incl(&mp_rv_complete, 1);
}
void
mp_rv_teardown_func = teardown_func;
mp_rv_func_arg = arg;
- mp_rv_waiters[0] = 0; /* entry rendezvous count */
- mp_rv_waiters[1] = 0; /* exit rendezvous count */
- mp_rv_ncpus = i386_active_cpus();
+ mp_rv_entry = 0;
+ mp_rv_exit = 0;
+ mp_rv_complete = 0;
/*
* signal other processors, which will call mp_rendezvous_action()
* with interrupts disabled
*/
+ simple_lock(&x86_topo_lock);
+ mp_rv_ncpus = i386_active_cpus();
i386_signal_cpus(MP_RENDEZVOUS, ASYNC);
+ simple_unlock(&x86_topo_lock);
/* call executor function on this cpu */
mp_rendezvous_action();
+ /*
+ * Spin for everyone to complete.
+ * This is necessary to ensure that all processors have proceeded
+ * from the exit barrier before we release the rendezvous structure.
+ */
+ while (mp_rv_complete < mp_rv_ncpus) {
+ cpu_pause();
+ }
+
+ /* Tidy up */
+ mp_rv_setup_func = NULL;
+ mp_rv_action_func = NULL;
+ mp_rv_teardown_func = NULL;
+ mp_rv_func_arg = NULL;
+
/* release lock */
simple_unlock(&mp_rv_lock);
}
+void
+mp_rendezvous_break_lock(void)
+{
+ simple_lock_init(&mp_rv_lock, 0);
+}
+
+static void
+setup_disable_intrs(__unused void * param_not_used)
+{
+ /* disable interrupts before the first barrier */
+ boolean_t intr = ml_set_interrupts_enabled(FALSE);
+
+ current_cpu_datap()->cpu_iflag = intr;
+ DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
+}
+
+static void
+teardown_restore_intrs(__unused void * param_not_used)
+{
+ /* restore interrupt flag following MTRR changes */
+ ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag);
+ DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
+}
+
+/*
+ * A wrapper to mp_rendezvous() to call action_func() with interrupts disabled.
+ * This is exported for use by kexts.
+ */
+void
+mp_rendezvous_no_intrs(
+ void (*action_func)(void *),
+ void *arg)
+{
+ mp_rendezvous(setup_disable_intrs,
+ action_func,
+ teardown_restore_intrs,
+ arg);
+}
+
+
+typedef struct {
+ queue_chain_t link; /* queue linkage */
+ void (*func)(void *,void *); /* routine to call */
+ void *arg0; /* routine's 1st arg */
+ void *arg1; /* routine's 2nd arg */
+ volatile long *countp; /* completion counter */
+} mp_call_t;
+
+
+typedef struct {
+ queue_head_t queue;
+ decl_simple_lock_data(, lock);
+} mp_call_queue_t;
+#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
+static mp_call_queue_t mp_cpus_call_freelist;
+static mp_call_queue_t mp_cpus_call_head[MAX_CPUS];
+
+static inline boolean_t
+mp_call_head_lock(mp_call_queue_t *cqp)
+{
+ boolean_t intrs_enabled;
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ simple_lock(&cqp->lock);
+
+ return intrs_enabled;
+}
+
+static inline boolean_t
+mp_call_head_is_locked(mp_call_queue_t *cqp)
+{
+ return !ml_get_interrupts_enabled() &&
+ hw_lock_held((hw_lock_t)&cqp->lock);
+}
+
+static inline void
+mp_call_head_unlock(mp_call_queue_t *cqp, boolean_t intrs_enabled)
+{
+ simple_unlock(&cqp->lock);
+ ml_set_interrupts_enabled(intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_alloc(void)
+{
+ mp_call_t *callp = NULL;
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ intrs_enabled = mp_call_head_lock(cqp);
+ if (!queue_empty(&cqp->queue))
+ queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ mp_call_head_unlock(cqp, intrs_enabled);
+
+ return callp;
+}
+
+static inline void
+mp_call_free(mp_call_t *callp)
+{
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ intrs_enabled = mp_call_head_lock(cqp);
+ queue_enter_first(&cqp->queue, callp, typeof(callp), link);
+ mp_call_head_unlock(cqp, intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_dequeue_locked(mp_call_queue_t *cqp)
+{
+ mp_call_t *callp = NULL;
+
+ assert(mp_call_head_is_locked(cqp));
+ if (!queue_empty(&cqp->queue))
+ queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ return callp;
+}
+
+static inline void
+mp_call_enqueue_locked(
+ mp_call_queue_t *cqp,
+ mp_call_t *callp)
+{
+ queue_enter(&cqp->queue, callp, typeof(callp), link);
+}
+
+/* Called on the boot processor to initialize global structures */
+static void
+mp_cpus_call_init(void)
+{
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ DBG("mp_cpus_call_init()\n");
+ simple_lock_init(&cqp->lock, 0);
+ queue_init(&cqp->queue);
+}
+
+/*
+ * Called by each processor to add call buffers to the free list
+ * and to initialize the per-cpu call queue.
+ * Also called but ignored on slave processors on re-start/wake.
+ */
+static void
+mp_cpus_call_cpu_init(void)
+{
+ int i;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu_number()];
+ mp_call_t *callp;
+
+ if (cqp->queue.next != NULL)
+ return; /* restart/wake case: called already */
+
+ simple_lock_init(&cqp->lock, 0);
+ queue_init(&cqp->queue);
+ for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) {
+ callp = (mp_call_t *) kalloc(sizeof(mp_call_t));
+ mp_call_free(callp);
+ }
+
+ DBG("mp_cpus_call_init() done on cpu %d\n", cpu_number());
+}
+
+/*
+ * This is called from cpu_signal_handler() to process an MP_CALL signal.
+ * And also from i386_deactivate_cpu() when a cpu is being taken offline.
+ */
+static void
+mp_cpus_call_action(void)
+{
+ mp_call_queue_t *cqp;
+ boolean_t intrs_enabled;
+ mp_call_t *callp;
+ mp_call_t call;
+
+ assert(!ml_get_interrupts_enabled());
+ cqp = &mp_cpus_call_head[cpu_number()];
+ intrs_enabled = mp_call_head_lock(cqp);
+ while ((callp = mp_call_dequeue_locked(cqp)) != NULL) {
+ /* Copy call request to the stack to free buffer */
+ call = *callp;
+ mp_call_free(callp);
+ if (call.func != NULL) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_ACTION,
+ call.func, call.arg0, call.arg1, call.countp, 0);
+ call.func(call.arg0, call.arg1);
+ (void) mp_call_head_lock(cqp);
+ }
+ if (call.countp != NULL)
+ atomic_incl(call.countp, 1);
+ }
+ mp_call_head_unlock(cqp, intrs_enabled);
+}
+
+/*
+ * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
+ * Possible modes are:
+ * SYNC: function is called serially on target cpus in logical cpu order
+ * waiting for each call to be acknowledged before proceeding
+ * ASYNC: function call is queued to the specified cpus
+ * waiting for all calls to complete in parallel before returning
+ * NOSYNC: function calls are queued
+ * but we return before confirmation of calls completing.
+ * The action function may be NULL.
+ * The cpu mask may include the local cpu. Offline cpus are ignored.
+ * The return value is the number of cpus on which the call was made or queued.
+ */
+cpu_t
+mp_cpus_call(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *),
+ void *arg)
+{
+ return mp_cpus_call1(
+ cpus,
+ mode,
+ (void (*)(void *,void *))action_func,
+ arg,
+ NULL,
+ NULL,
+ NULL);
+}
+
+static void
+mp_cpus_call_wait(boolean_t intrs_enabled,
+ long mp_cpus_signals,
+ volatile long *mp_cpus_calls)
+{
+ mp_call_queue_t *cqp;
+
+ cqp = &mp_cpus_call_head[cpu_number()];
+
+ while (*mp_cpus_calls < mp_cpus_signals) {
+ if (!intrs_enabled) {
+ /* Sniffing w/o locking */
+ if (!queue_empty(&cqp->queue))
+ mp_cpus_call_action();
+ handle_pending_TLB_flushes();
+ }
+ cpu_pause();
+ }
+}
+
+cpu_t
+mp_cpus_call1(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *, void *),
+ void *arg0,
+ void *arg1,
+ cpumask_t *cpus_calledp,
+ cpumask_t *cpus_notcalledp)
+{
+ cpu_t cpu;
+ boolean_t intrs_enabled = FALSE;
+ boolean_t call_self = FALSE;
+ cpumask_t cpus_called = 0;
+ cpumask_t cpus_notcalled = 0;
+ long mp_cpus_signals = 0;
+ volatile long mp_cpus_calls = 0;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_START,
+ cpus, mode, VM_KERNEL_UNSLIDE(action_func), arg0, arg1);
+
+ if (!smp_initialized) {
+ if ((cpus & CPUMASK_SELF) == 0)
+ goto out;
+ if (action_func != NULL) {
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ call_self = TRUE;
+ goto out;
+ }
+
+ /*
+ * Queue the call for each non-local requested cpu.
+ * The topo lock is not taken. Instead we sniff the cpu_running state
+ * and then re-check it after taking the call lock. A cpu being taken
+ * offline runs the action function after clearing the cpu_running.
+ */
+ for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
+ if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
+ !cpu_datap(cpu)->cpu_running)
+ continue;
+ if (cpu == (cpu_t) cpu_number()) {
+ /*
+ * We don't IPI ourself and if calling asynchronously,
+ * we defer our call until we have signalled all others.
+ */
+ call_self = TRUE;
+ cpus_called |= cpu_to_cpumask(cpu);
+ if (mode == SYNC && action_func != NULL) {
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ VM_KERNEL_UNSLIDE(action_func),
+ arg0, arg1, 0, 0);
+ action_func(arg0, arg1);
+ }
+ } else {
+ /*
+ * Here to queue a call to cpu and IPI.
+ * Spinning for request buffer unless NOSYNC.
+ */
+ mp_call_t *callp = NULL;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
+
+ queue_call:
+ if (callp == NULL)
+ callp = mp_call_alloc();
+ intrs_enabled = mp_call_head_lock(cqp);
+ if (!cpu_datap(cpu)->cpu_running) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ continue;
+ }
+ if (mode == NOSYNC) {
+ if (callp == NULL) {
+ cpus_notcalled |= cpu_to_cpumask(cpu);
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ continue;
+ }
+ callp->countp = NULL;
+ } else {
+ if (callp == NULL) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ if (!intrs_enabled) {
+ /* Sniffing w/o locking */
+ if (!queue_empty(&cqp->queue))
+ mp_cpus_call_action();
+ handle_pending_TLB_flushes();
+ }
+ cpu_pause();
+ goto queue_call;
+ }
+ callp->countp = &mp_cpus_calls;
+ }
+ callp->func = action_func;
+ callp->arg0 = arg0;
+ callp->arg1 = arg1;
+ mp_call_enqueue_locked(cqp, callp);
+ mp_cpus_signals++;
+ cpus_called |= cpu_to_cpumask(cpu);
+ i386_signal_cpu(cpu, MP_CALL, ASYNC);
+ mp_call_head_unlock(cqp, intrs_enabled);
+ if (mode == SYNC) {
+ mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
+ }
+ }
+ }
+
+ /* Call locally if mode not SYNC */
+ if (mode != SYNC && call_self ) {
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ VM_KERNEL_UNSLIDE(action_func), arg0, arg1, 0, 0);
+ if (action_func != NULL) {
+ ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ }
+
+ /* For ASYNC, now wait for all signaled cpus to complete their calls */
+ if (mode == ASYNC) {
+ mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
+ }
+
+out:
+ cpu = (cpu_t) mp_cpus_signals + (call_self ? 1 : 0);
+
+ if (cpus_calledp)
+ *cpus_calledp = cpus_called;
+ if (cpus_notcalledp)
+ *cpus_notcalledp = cpus_notcalled;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_END,
+ cpu, cpus_called, cpus_notcalled, 0, 0);
+
+ return cpu;
+}
+
+
+static void
+mp_broadcast_action(void)
+{
+ /* call action function */
+ if (mp_bc_action_func != NULL)
+ mp_bc_action_func(mp_bc_func_arg);
+
+ /* if we're the last one through, wake up the instigator */
+ if (atomic_decl_and_test(&mp_bc_count, 1))
+ thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
+}
+
+/*
+ * mp_broadcast() runs a given function on all active cpus.
+ * The caller blocks until the functions has run on all cpus.
+ * The caller will also block if there is another pending braodcast.
+ */
+void
+mp_broadcast(
+ void (*action_func)(void *),
+ void *arg)
+{
+ if (!smp_initialized) {
+ if (action_func != NULL)
+ action_func(arg);
+ return;
+ }
+
+ /* obtain broadcast lock */
+ lck_mtx_lock(&mp_bc_lock);
+
+ /* set static function pointers */
+ mp_bc_action_func = action_func;
+ mp_bc_func_arg = arg;
+
+ assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
+
+ /*
+ * signal other processors, which will call mp_broadcast_action()
+ */
+ simple_lock(&x86_topo_lock);
+ mp_bc_ncpus = i386_active_cpus(); /* total including this cpu */
+ mp_bc_count = mp_bc_ncpus;
+ i386_signal_cpus(MP_BROADCAST, ASYNC);
+
+ /* call executor function on this cpu */
+ mp_broadcast_action();
+ simple_unlock(&x86_topo_lock);
+
+ /* block for all cpus to have run action_func */
+ if (mp_bc_ncpus > 1)
+ thread_block(THREAD_CONTINUE_NULL);
+ else
+ clear_wait(current_thread(), THREAD_AWAKENED);
+
+ /* release lock */
+ lck_mtx_unlock(&mp_bc_lock);
+}
+
+void
+i386_activate_cpu(void)
+{
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(!ml_get_interrupts_enabled());
+
+ if (!smp_initialized) {
+ cdp->cpu_running = TRUE;
+ return;
+ }
+
+ simple_lock(&x86_topo_lock);
+ cdp->cpu_running = TRUE;
+ started_cpu();
+ simple_unlock(&x86_topo_lock);
+ flush_tlb_raw();
+}
+
+extern void etimer_timer_expire(void *arg);
+
+void
+i386_deactivate_cpu(void)
+{
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(!ml_get_interrupts_enabled());
+
+ simple_lock(&x86_topo_lock);
+ cdp->cpu_running = FALSE;
+ simple_unlock(&x86_topo_lock);
+
+ timer_queue_shutdown(&cdp->rtclock_timer.queue);
+ cdp->rtclock_timer.deadline = EndOfAllTime;
+ mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, etimer_timer_expire, NULL);
+
+ /*
+ * In case a rendezvous/braodcast/call was initiated to this cpu
+ * before we cleared cpu_running, we must perform any actions due.
+ */
+ if (i_bit(MP_RENDEZVOUS, &cdp->cpu_signals))
+ mp_rendezvous_action();
+ if (i_bit(MP_BROADCAST, &cdp->cpu_signals))
+ mp_broadcast_action();
+ if (i_bit(MP_CALL, &cdp->cpu_signals))
+ mp_cpus_call_action();
+ cdp->cpu_signals = 0; /* all clear */
+}
+
+int pmsafe_debug = 1;
+
#if MACH_KDP
volatile boolean_t mp_kdp_trap = FALSE;
-long mp_kdp_ncpus;
+volatile unsigned long mp_kdp_ncpus;
boolean_t mp_kdp_state;
mp_kdp_enter(void)
{
unsigned int cpu;
- unsigned int ncpus;
- unsigned int my_cpu = cpu_number();
+ unsigned int ncpus = 0;
+ unsigned int my_cpu;
uint64_t tsc_timeout;
DBG("mp_kdp_enter()\n");
* stopping others.
*/
mp_kdp_state = ml_set_interrupts_enabled(FALSE);
+ my_cpu = cpu_number();
+
+ if (my_cpu == (unsigned) debugger_cpu) {
+ kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n");
+ kdp_reset();
+ return;
+ }
+
+ cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time();
simple_lock(&mp_kdp_lock);
+
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+
while (mp_kdp_trap) {
simple_unlock(&mp_kdp_lock);
DBG("mp_kdp_enter() race lost\n");
- mp_kdp_wait();
+#if MACH_KDP
+ mp_kdp_wait(TRUE, FALSE);
+#endif
simple_lock(&mp_kdp_lock);
}
+ debugger_cpu = my_cpu;
+ ncpus = 1;
mp_kdp_ncpus = 1; /* self */
mp_kdp_trap = TRUE;
+ debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time;
simple_unlock(&mp_kdp_lock);
- /* Deliver a nudge to other cpus, counting how many */
+ /*
+ * Deliver a nudge to other cpus, counting how many
+ */
DBG("mp_kdp_enter() signaling other processors\n");
- for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
- continue;
- ncpus++;
- i386_signal_cpu(cpu, MP_KDP, ASYNC);
- }
+ if (force_immediate_debugger_NMI == FALSE) {
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ ncpus++;
+ i386_signal_cpu(cpu, MP_KDP, ASYNC);
+ }
+ /*
+ * Wait other processors to synchronize
+ */
+ DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
- /* Wait other processors to spin. */
- DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
- tsc_timeout = rdtsc64() + (1000*1000*1000);
- while (*((volatile unsigned int *) &mp_kdp_ncpus) != ncpus
- && rdtsc64() < tsc_timeout) {
- cpu_pause();
+ /*
+ * This timeout is rather arbitrary; we don't want to NMI
+ * processors that are executing at potentially
+ * "unsafe-to-interrupt" points such as the trampolines,
+ * but neither do we want to lose state by waiting too long.
+ */
+ tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000 * 10ULL);
+
+ if (virtualized)
+ tsc_timeout = ~0ULL;
+
+ while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
+ /*
+ * A TLB shootdown request may be pending--this would
+ * result in the requesting processor waiting in
+ * PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ /* If we've timed out, and some processor(s) are still unresponsive,
+ * interrupt them with an NMI via the local APIC.
+ */
+ if (mp_kdp_ncpus != ncpus) {
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ if (cpu_signal_pending(cpu, MP_KDP))
+ cpu_NMI_interrupt(cpu);
+ }
+ }
}
- DBG("mp_kdp_enter() %d processors done %s\n",
- mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+ else
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ cpu_NMI_interrupt(cpu);
+ }
+
+ DBG("mp_kdp_enter() %u processors done %s\n",
+ (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+
postcode(MP_KDP_ENTER);
}
+static boolean_t
+cpu_signal_pending(int cpu, mp_event_t event)
+{
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ boolean_t retval = FALSE;
+
+ if (i_bit(event, signals))
+ retval = TRUE;
+ return retval;
+}
+
+long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
+ void *arg0, void *arg1)
+{
+ if (lcpu > (real_ncpus - 1))
+ return -1;
+
+ if (func == NULL)
+ return -1;
+
+ kdp_xcpu_call_func.func = func;
+ kdp_xcpu_call_func.ret = -1;
+ kdp_xcpu_call_func.arg0 = arg0;
+ kdp_xcpu_call_func.arg1 = arg1;
+ kdp_xcpu_call_func.cpu = lcpu;
+ DBG("Invoking function %p on CPU %d\n", func, (int32_t)lcpu);
+ while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE)
+ cpu_pause();
+ return kdp_xcpu_call_func.ret;
+}
+
static void
-mp_kdp_wait(void)
+kdp_x86_xcpu_poll(void)
{
- boolean_t state;
+ if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) {
+ kdp_xcpu_call_func.ret =
+ kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0,
+ kdp_xcpu_call_func.arg1,
+ cpu_number());
+ kdp_xcpu_call_func.cpu = KDP_XCPU_NONE;
+ }
+}
- state = ml_set_interrupts_enabled(TRUE);
+static void
+mp_kdp_wait(boolean_t flush, boolean_t isNMI)
+{
DBG("mp_kdp_wait()\n");
- atomic_incl(&mp_kdp_ncpus, 1);
- while (mp_kdp_trap) {
+ /* If an I/O port has been specified as a debugging aid, issue a read */
+ panic_io_port_read();
+
+#if CONFIG_MCA
+ /* If we've trapped due to a machine-check, save MCA registers */
+ mca_check_save();
+#endif
+
+ atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
+ while (mp_kdp_trap || (isNMI == TRUE)) {
+ /*
+ * A TLB shootdown request may be pending--this would result
+ * in the requesting processor waiting in PMAP_UPDATE_TLBS()
+ * until this processor handles it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ if (flush)
+ handle_pending_TLB_flushes();
+
+ kdp_x86_xcpu_poll();
cpu_pause();
}
- atomic_decl(&mp_kdp_ncpus, 1);
+
+ atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
DBG("mp_kdp_wait() done\n");
- (void) ml_set_interrupts_enabled(state);
}
void
mp_kdp_exit(void)
{
DBG("mp_kdp_exit()\n");
- atomic_decl(&mp_kdp_ncpus, 1);
+ debugger_cpu = -1;
+ atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
+
+ debugger_exit_time = mach_absolute_time();
+
mp_kdp_trap = FALSE;
+ __asm__ volatile("mfence");
/* Wait other processors to stop spinning. XXX needs timeout */
DBG("mp_kdp_exit() waiting for processors to resume\n");
- while (*((volatile long *) &mp_kdp_ncpus) > 0) {
+ while (mp_kdp_ncpus > 0) {
+ /*
+ * a TLB shootdown request may be pending... this would result in the requesting
+ * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+
cpu_pause();
}
+
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+
+ debugger_exit_time = mach_absolute_time();
+
DBG("mp_kdp_exit() done\n");
(void) ml_set_interrupts_enabled(mp_kdp_state);
postcode(0);
}
#endif /* MACH_KDP */
+boolean_t
+mp_recent_debugger_activity() {
+ uint64_t abstime = mach_absolute_time();
+ return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
+ ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance));
+}
+
/*ARGSUSED*/
void
init_ast_check(
cause_ast_check(
processor_t processor)
{
- int cpu = PROCESSOR_DATA(processor, slot_num);
+ int cpu = processor->cpu_id;
if (cpu != cpu_number()) {
i386_signal_cpu(cpu, MP_AST, ASYNC);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0);
}
}
-/*
- * invoke kdb on slave processors
- */
-
void
-remote_kdb(void)
+slave_machine_init(void *param)
{
- unsigned int my_cpu = cpu_number();
- unsigned int cpu;
-
- mp_disable_preemption();
- for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
- continue;
- i386_signal_cpu(cpu, MP_KDB, SYNC);
+ /*
+ * Here in process context, but with interrupts disabled.
+ */
+ DBG("slave_machine_init() CPU%d\n", get_cpu_number());
+
+ if (param == FULL_SLAVE_INIT) {
+ /*
+ * Cold start
+ */
+ clock_init();
+ cpu_machine_init(); /* Interrupts enabled hereafter */
+ mp_cpus_call_cpu_init();
}
- mp_enable_preemption();
}
-/*
- * Clear kdb interrupt
- */
-
-void
-clear_kdb_intr(void)
+#undef cpu_number
+int cpu_number(void)
{
- mp_disable_preemption();
- i_bit_clear(MP_KDB, ¤t_cpu_datap()->cpu_signals);
- mp_enable_preemption();
+ return get_cpu_number();
}
-/*
- * i386_init_slave() is called from pstart.
- * We're in the cpu's interrupt stack with interrupts disabled.
- */
-void
-i386_init_slave(void)
+static void
+cpu_prewarm_init()
{
- postcode(I386_INIT_SLAVE);
-
- /* Ensure that caching and write-through are enabled */
- set_cr0(get_cr0() & ~(CR0_NW|CR0_CD));
-
- DBG("i386_init_slave() CPU%d: phys (%d) active.\n",
- get_cpu_number(), get_cpu_phys_number());
-
- lapic_init();
-
- LAPIC_DUMP();
- LAPIC_CPU_MAP_DUMP();
-
- mtrr_update_cpu();
-
- pat_init();
-
- cpu_init();
+ int i;
- slave_main();
-
- panic("i386_init_slave() returned from slave_main()");
+ simple_lock_init(&cpu_warm_lock, 0);
+ queue_init(&cpu_warm_call_list);
+ for (i = 0; i < NUM_CPU_WARM_CALLS; i++) {
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]);
+ }
}
-void
-slave_machine_init(void)
+static timer_call_t
+grab_warm_timer_call()
{
- /*
- * Here in process context.
- */
- DBG("slave_machine_init() CPU%d\n", get_cpu_number());
-
- init_fpu();
-
- cpu_thread_init();
-
- pmc_init();
+ spl_t x;
+ timer_call_t call = NULL;
- cpu_machine_init();
+ x = splsched();
+ simple_lock(&cpu_warm_lock);
+ if (!queue_empty(&cpu_warm_call_list)) {
+ call = (timer_call_t) dequeue_head(&cpu_warm_call_list);
+ }
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
- clock_init();
+ return call;
}
-#undef cpu_number()
-int cpu_number(void)
+static void
+free_warm_timer_call(timer_call_t call)
{
- return get_cpu_number();
-}
-
-#if MACH_KDB
-#include <ddb/db_output.h>
-
-#define TRAP_DEBUG 0 /* Must match interrupt.s and spl.s */
-
-
-#if TRAP_DEBUG
-#define MTRAPS 100
-struct mp_trap_hist_struct {
- unsigned char type;
- unsigned char data[5];
-} trap_hist[MTRAPS], *cur_trap_hist = trap_hist,
- *max_trap_hist = &trap_hist[MTRAPS];
+ spl_t x;
-void db_trap_hist(void);
+ x = splsched();
+ simple_lock(&cpu_warm_lock);
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)call);
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
+}
/*
- * SPL:
- * 1: new spl
- * 2: old spl
- * 3: new tpr
- * 4: old tpr
- * INT:
- * 1: int vec
- * 2: old spl
- * 3: new spl
- * 4: post eoi tpr
- * 5: exit tpr
+ * Runs in timer call context (interrupts disabled).
*/
-
-void
-db_trap_hist(void)
+static void
+cpu_warm_timer_call_func(
+ call_entry_param_t p0,
+ __unused call_entry_param_t p1)
{
- int i,j;
- for(i=0;i<MTRAPS;i++)
- if (trap_hist[i].type == 1 || trap_hist[i].type == 2) {
- db_printf("%s%s",
- (&trap_hist[i]>=cur_trap_hist)?"*":" ",
- (trap_hist[i].type == 1)?"SPL":"INT");
- for(j=0;j<5;j++)
- db_printf(" %02x", trap_hist[i].data[j]);
- db_printf("\n");
- }
-
+ free_warm_timer_call((timer_call_t)p0);
+ return;
}
-#endif /* TRAP_DEBUG */
-
-void db_lapic(int cpu);
-unsigned int db_remote_read(int cpu, int reg);
-void db_ioapic(unsigned int);
-void kdb_console(void);
-void
-kdb_console(void)
+/*
+ * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0).
+ */
+static void
+_cpu_warm_setup(
+ void *arg)
{
-}
-
-#define BOOLP(a) ((a)?' ':'!')
+ cpu_warm_data_t cwdp = (cpu_warm_data_t)arg;
-static char *DM[8] = {
- "Fixed",
- "Lowest Priority",
- "Invalid",
- "Invalid",
- "NMI",
- "Reset",
- "Invalid",
- "ExtINT"};
+ timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_CRITICAL | TIMER_CALL_LOCAL);
+ cwdp->cwd_result = 0;
-unsigned int
-db_remote_read(int cpu, int reg)
-{
- return -1;
+ return;
}
-void
-db_lapic(int cpu)
+/*
+ * Not safe to call with interrupts disabled.
+ */
+kern_return_t
+ml_interrupt_prewarm(
+ uint64_t deadline)
{
-}
+ struct cpu_warm_data cwd;
+ timer_call_t call;
+ cpu_t ct;
-void
-db_ioapic(unsigned int ind)
-{
-}
+ if (ml_get_interrupts_enabled() == FALSE) {
+ panic("%s: Interrupts disabled?\n", __FUNCTION__);
+ }
+
+ /*
+ * If the platform doesn't need our help, say that we succeeded.
+ */
+ if (!ml_get_interrupt_prewake_applicable()) {
+ return KERN_SUCCESS;
+ }
-#endif /* MACH_KDB */
+ /*
+ * Grab a timer call to use.
+ */
+ call = grab_warm_timer_call();
+ if (call == NULL) {
+ return KERN_RESOURCE_SHORTAGE;
+ }
+ timer_call_setup(call, cpu_warm_timer_call_func, call);
+ cwd.cwd_call = call;
+ cwd.cwd_deadline = deadline;
+ cwd.cwd_result = 0;
+
+ /*
+ * For now, non-local interrupts happen on the master processor.
+ */
+ ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd);
+ if (ct == 0) {
+ free_warm_timer_call(call);
+ return KERN_FAILURE;
+ } else {
+ return cwd.cwd_result;
+ }
+}