/*
- * Copyright (c) 1999-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 1999-2012 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1991, 1993, 1994
#include <sys/kauth.h>
#include <sys/ubc.h>
+#include <sys/ubc_internal.h>
#include <sys/vnode_internal.h>
#include <sys/mount_internal.h>
#include <sys/sysctl.h>
#include <sys/paths.h>
#include <sys/utfconv.h>
#include <sys/kdebug.h>
+#include <sys/fslog.h>
+#include <sys/ubc.h>
#include <kern/locks.h>
#include <miscfs/specfs/specdev.h>
#include <hfs/hfs_mount.h>
+#include <libkern/crypto/md5.h>
+#include <uuid/uuid.h>
+
#include "hfs.h"
#include "hfs_catalog.h"
#include "hfs_cnode.h"
#include "hfs_endian.h"
#include "hfs_hotfiles.h"
#include "hfs_quota.h"
+#include "hfs_btreeio.h"
#include "hfscommon/headers/FileMgrInternal.h"
#include "hfscommon/headers/BTreesInternal.h"
+#if CONFIG_PROTECT
+#include <sys/cprotect.h>
+#endif
+
+#if CONFIG_HFS_ALLOC_RBTREE
+#include "hfscommon/headers/HybridAllocator.h"
+#endif
+
+#define HFS_MOUNT_DEBUG 1
#if HFS_DIAGNOSTIC
int hfs_dbg_all = 0;
int hfs_dbg_err = 0;
#endif
+/* Enable/disable debugging code for live volume resizing */
+int hfs_resize_debug = 0;
lck_grp_attr_t * hfs_group_attr;
lck_attr_t * hfs_lock_attr;
lck_grp_t * hfs_mutex_group;
lck_grp_t * hfs_rwlock_group;
-
+lck_grp_t * hfs_spinlock_group;
extern struct vnodeopv_desc hfs_vnodeop_opv_desc;
+extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc;
-extern void hfs_converterinit(void);
-
-extern void inittodr(time_t base);
-
-extern int hfs_write_access(struct vnode *, kauth_cred_t, struct proc *, Boolean);
-
+/* not static so we can re-use in hfs_readwrite.c for build_path calls */
+int hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context);
static int hfs_changefs(struct mount *mp, struct hfs_mount_args *args);
static int hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, vfs_context_t context);
static int hfs_flushMDB(struct hfsmount *hfsmp, int waitfor, int altflush);
static int hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp);
static int hfs_init(struct vfsconf *vfsp);
-static int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context);
-static int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, vfs_context_t context);
-static int hfs_reload(struct mount *mp, kauth_cred_t cred, struct proc *p);
static int hfs_vfs_root(struct mount *mp, struct vnode **vpp, vfs_context_t context);
static int hfs_quotactl(struct mount *, int, uid_t, caddr_t, vfs_context_t context);
static int hfs_start(struct mount *mp, int flags, vfs_context_t context);
-static int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, vfs_context_t context);
-static int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context);
-static int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp,
- user_addr_t newp, size_t newlen, vfs_context_t context);
-static int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context);
-static int hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context);
static int hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, vfs_context_t context);
-
-static int hfs_reclaimspace(struct hfsmount *hfsmp, u_long startblk);
-
+static int hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec);
+static int hfs_journal_replay(vnode_t devvp, vfs_context_t context);
+static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context);
+
+void hfs_initialize_allocator (struct hfsmount *hfsmp);
+int hfs_teardown_allocator (struct hfsmount *hfsmp);
+
+int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context);
+int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context);
+int hfs_reload(struct mount *mp);
+int hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, vfs_context_t context);
+int hfs_sync(struct mount *mp, int waitfor, vfs_context_t context);
+int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp,
+ user_addr_t newp, size_t newlen, vfs_context_t context);
+int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context);
/*
* Called by vfs_mountroot when mounting HFS Plus as root.
*/
-__private_extern__
int
hfs_mountroot(mount_t mp, vnode_t rvp, vfs_context_t context)
{
ExtendedVCB *vcb;
struct vfsstatfs *vfsp;
int error;
-
- if ((error = hfs_mountfs(rvp, mp, NULL, context)))
+
+ if ((error = hfs_mountfs(rvp, mp, NULL, 0, context))) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountroot: hfs_mountfs returned %d, rvp (%p) name (%s) \n",
+ error, rvp, (rvp->v_name ? rvp->v_name : "unknown device"));
+ }
return (error);
+ }
/* Init hfsmp */
hfsmp = VFSTOHFS(mp);
* mount system call
*/
-static int
+int
hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
struct hfsmount *hfsmp = NULL;
struct hfs_mount_args args;
int retval = E_NONE;
- uint32_t cmdflags;
+ u_int32_t cmdflags;
if ((retval = copyin(data, (caddr_t)&args, sizeof(args)))) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: copyin returned %d for fs\n", retval);
+ }
return (retval);
}
- cmdflags = (uint32_t)vfs_flags(mp) & MNT_CMDFLAGS;
+ cmdflags = (u_int32_t)vfs_flags(mp) & MNT_CMDFLAGS;
if (cmdflags & MNT_UPDATE) {
hfsmp = VFSTOHFS(mp);
/* Reload incore data after an fsck. */
if (cmdflags & MNT_RELOAD) {
- if (vfs_isrdonly(mp))
- return hfs_reload(mp, vfs_context_ucred(context), p);
- else
+ if (vfs_isrdonly(mp)) {
+ int error = hfs_reload(mp);
+ if (error && HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_reload returned %d on %s \n", error, hfsmp->vcbVN);
+ }
+ return error;
+ }
+ else {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp->vcbVN);
+ }
return (EINVAL);
+ }
}
/* Change to a read-only file system. */
vfs_isrdonly(mp)) {
int flags;
+ /* Set flag to indicate that a downgrade to read-only
+ * is in progress and therefore block any further
+ * modifications to the file system.
+ */
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
+ hfsmp->hfs_flags |= HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = current_thread();
+ hfs_unlock_global (hfsmp);
+
/* use VFS_SYNC to push out System (btree) files */
retval = VFS_SYNC(mp, MNT_WAIT, context);
- if (retval && ((cmdflags & MNT_FORCE) == 0))
+ if (retval && ((cmdflags & MNT_FORCE) == 0)) {
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval, hfsmp->vcbVN);
+ }
goto out;
+ }
flags = WRITECLOSE;
if (cmdflags & MNT_FORCE)
flags |= FORCECLOSE;
- if ((retval = hfs_flushfiles(mp, flags, p)))
+ if ((retval = hfs_flushfiles(mp, flags, p))) {
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval, hfsmp->vcbVN);
+ }
goto out;
- hfsmp->hfs_flags |= HFS_READ_ONLY;
+ }
+
+ /* mark the volume cleanly unmounted */
+ hfsmp->vcbAtrb |= kHFSVolumeUnmountedMask;
retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
+ hfsmp->hfs_flags |= HFS_READ_ONLY;
/* also get the volume bitmap blocks */
if (!retval) {
}
}
if (retval) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval, hfsmp->vcbVN);
+ }
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
hfsmp->hfs_flags &= ~HFS_READ_ONLY;
goto out;
}
if (hfsmp->jnl) {
- hfs_global_exclusive_lock_acquire(hfsmp);
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
journal_close(hfsmp->jnl);
hfsmp->jnl = NULL;
// access to the jvp because we may need
// it later if we go back to being read-write.
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
}
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ (void) hfs_teardown_allocator(hfsmp);
+#endif
+ hfsmp->hfs_downgrading_proc = NULL;
}
/* Change to a writable file system. */
if (vfs_iswriteupgrade(mp)) {
- retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
- if (retval != E_NONE)
+#if CONFIG_HFS_ALLOC_RBTREE
+ thread_t allocator_thread;
+#endif
+
+ /*
+ * On inconsistent disks, do not allow read-write mount
+ * unless it is the boot volume being mounted.
+ */
+ if (!(vfs_flags(mp) & MNT_ROOTFS) &&
+ (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp->vcbVN));
+ }
+ retval = EINVAL;
goto out;
+ }
// If the journal was shut-down previously because we were
// asked to be read-only, let's start it back up again now
if (hfsmp->hfs_flags & HFS_NEED_JNL_RESET) {
jflags = JOURNAL_RESET;
- } else {
+ } else {
jflags = 0;
- }
-
- hfs_global_exclusive_lock_acquire(hfsmp);
-
- hfsmp->jnl = journal_open(hfsmp->jvp,
- (hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
- hfsmp->jnl_size,
- hfsmp->hfs_devvp,
- hfsmp->hfs_phys_block_size,
- jflags,
- 0,
- hfs_sync_metadata, hfsmp->hfs_mp);
-
- hfs_global_exclusive_lock_release(hfsmp);
-
- if (hfsmp->jnl == NULL) {
- retval = EINVAL;
- goto out;
- } else {
- hfsmp->hfs_flags &= ~HFS_NEED_JNL_RESET;
- }
+ }
+
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
+
+ hfsmp->jnl = journal_open(hfsmp->jvp,
+ (hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
+ hfsmp->jnl_size,
+ hfsmp->hfs_devvp,
+ hfsmp->hfs_logical_block_size,
+ jflags,
+ 0,
+ hfs_sync_metadata, hfsmp->hfs_mp);
+
+ /*
+ * Set up the trim callback function so that we can add
+ * recently freed extents to the free extent cache once
+ * the transaction that freed them is written to the
+ * journal on disk.
+ */
+ if (hfsmp->jnl)
+ journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp);
+
+ hfs_unlock_global (hfsmp);
+
+ if (hfsmp->jnl == NULL) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp->vcbVN));
+ }
+ retval = EINVAL;
+ goto out;
+ } else {
+ hfsmp->hfs_flags &= ~HFS_NEED_JNL_RESET;
+ }
+
+ }
+ /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
+ retval = hfs_erase_unused_nodes(hfsmp);
+ if (retval != E_NONE) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval, hfsmp->vcbVN);
+ }
+ goto out;
}
- /* Only clear HFS_READ_ONLY after a successfull write */
+ /* If this mount point was downgraded from read-write
+ * to read-only, clear that information as we are now
+ * moving back to read-write.
+ */
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
+
+ /* mark the volume dirty (clear clean unmount bit) */
+ hfsmp->vcbAtrb &= ~kHFSVolumeUnmountedMask;
+
+ retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
+ if (retval != E_NONE) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval, hfsmp->vcbVN);
+ }
+ goto out;
+ }
+
+ /* Only clear HFS_READ_ONLY after a successful write */
hfsmp->hfs_flags &= ~HFS_READ_ONLY;
- if (!(hfsmp->hfs_flags & (HFS_READ_ONLY & HFS_STANDARD))) {
- /* setup private/hidden directory for unlinked files */
- FindMetaDataDirectory(HFSTOVCB(hfsmp));
+
+ if (!(hfsmp->hfs_flags & (HFS_READ_ONLY | HFS_STANDARD))) {
+ /* Setup private/hidden directories for hardlinks. */
+ hfs_privatedir_init(hfsmp, FILE_HARDLINKS);
+ hfs_privatedir_init(hfsmp, DIR_HARDLINKS);
+
hfs_remove_orphans(hfsmp);
/*
* Allow hot file clustering if conditions allow.
*/
- if (hfsmp->hfs_flags & HFS_METADATA_ZONE) {
+ if ((hfsmp->hfs_flags & HFS_METADATA_ZONE) &&
+ ((hfsmp->hfs_flags & HFS_SSD) == 0)) {
(void) hfs_recording_init(hfsmp);
}
+ /* Force ACLs on HFS+ file systems. */
+ if (vfs_extendedsecurity(HFSTOVFS(hfsmp)) == 0) {
+ vfs_setextendedsecurity(HFSTOVFS(hfsmp));
+ }
+ }
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ /*
+ * Like the normal mount case, we need to handle creation of the allocation red-black tree
+ * if we're upgrading from read-only to read-write.
+ *
+ * We spawn a thread to create the pair of red-black trees for this volume.
+ * However, in so doing, we must be careful to ensure that if this thread is still
+ * running after mount has finished, it doesn't interfere with an unmount. Specifically,
+ * we'll need to set a bit that indicates we're in progress building the trees here.
+ * Unmount will check for this bit, and then if it's set, mark a corresponding bit that
+ * notifies the tree generation code that an unmount is waiting. Also, mark the extent
+ * tree flags that the allocator is enabled for use before we spawn the thread that will start
+ * scanning the RB tree.
+ *
+ * Only do this if we're operating on a read-write mount (we wouldn't care for read-only),
+ * which has not previously encountered a bad error on the red-black tree code. Also, don't
+ * try to re-build a tree that already exists.
+ */
+
+ if (hfsmp->extent_tree_flags == 0) {
+ hfsmp->extent_tree_flags |= (HFS_ALLOC_TREEBUILD_INFLIGHT | HFS_ALLOC_RB_ENABLED);
+ /* Initialize EOF counter so that the thread can assume it started at initial values */
+ hfsmp->offset_block_end = 0;
+
+ InitTree(hfsmp);
+
+ kernel_thread_start ((thread_continue_t) hfs_initialize_allocator , hfsmp, &allocator_thread);
+ thread_deallocate(allocator_thread);
}
+
+#endif
}
/* Update file system parameters. */
retval = hfs_changefs(mp, &args);
+ if (retval && HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_changefs returned %d for %s\n", retval, hfsmp->vcbVN);
+ }
} else /* not an update request */ {
/* Set the mount flag to indicate that we support volfs */
- vfs_setflags(mp, (uint64_t)((unsigned int)MNT_DOVOLFS));
+ vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_DOVOLFS));
- retval = hfs_mountfs(devvp, mp, &args, context);
+ retval = hfs_mountfs(devvp, mp, &args, 0, context);
+ if (retval && HFS_MOUNT_DEBUG) {
+ printf("hfs_mount: hfs_mountfs returned %d\n", retval);
+ }
+#if CONFIG_PROTECT
+ /*
+ * If above mount call was successful, and this mount is content protection
+ * enabled, then verify the on-disk EA on the root to ensure that the filesystem
+ * is of a suitable vintage to allow the mount to proceed.
+ */
+ if ((retval == 0) && (cp_fs_protected (mp))) {
+ int err = 0;
+ struct cp_root_xattr xattr;
+ bzero (&xattr, sizeof(struct cp_root_xattr));
+ hfsmp = vfs_fsprivate(mp);
+
+ /* go get the EA to get the version information */
+ err = cp_getrootxattr (hfsmp, &xattr);
+ /* If there was no EA there, then write one out. */
+ if (err == ENOATTR) {
+ bzero(&xattr, sizeof(struct cp_root_xattr));
+ xattr.major_version = CP_CURRENT_MAJOR_VERS;
+ xattr.minor_version = CP_CURRENT_MINOR_VERS;
+ xattr.flags = 0;
+
+ err = cp_setrootxattr (hfsmp, &xattr);
+ }
+ /*
+ * For any other error, including having an out of date CP version in the
+ * EA, or for an error out of cp_setrootxattr, deny the mount
+ * and do not proceed further.
+ */
+ if (err || xattr.major_version != CP_CURRENT_MAJOR_VERS) {
+ /* Deny the mount and tear down. */
+ retval = EPERM;
+ (void) hfs_unmount (mp, MNT_FORCE, context);
+ }
+ }
+#endif
}
out:
if (retval == 0) {
struct cat_desc cndesc;
struct cat_attr cnattr;
struct hfs_changefs_cargs *args;
+ int lockflags;
+ int error;
args = (struct hfs_changefs_cargs *)cargs;
cp = VTOC(vp);
vcb = HFSTOVCB(args->hfsmp);
- if (cat_lookup(args->hfsmp, &cp->c_desc, 0, &cndesc, &cnattr, NULL, NULL)) {
+ lockflags = hfs_systemfile_lock(args->hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = cat_lookup(args->hfsmp, &cp->c_desc, 0, &cndesc, &cnattr, NULL, NULL);
+ hfs_systemfile_unlock(args->hfsmp, lockflags);
+ if (error) {
/*
* If we couldn't find this guy skip to the next one
*/
replace_desc(cp, &cndesc);
if (cndesc.cd_cnid == kHFSRootFolderID) {
- strncpy(vcb->vcbVN, cp->c_desc.cd_nameptr, NAME_MAX);
+ strlcpy((char *)vcb->vcbVN, (const char *)cp->c_desc.cd_nameptr, NAME_MAX+1);
cp->c_desc.cd_encoding = args->hfsmp->hfs_encoding;
}
} else {
ExtendedVCB *vcb;
hfs_to_unicode_func_t get_unicode_func;
unicode_to_hfs_func_t get_hfsname_func;
- u_long old_encoding = 0;
+ u_int32_t old_encoding = 0;
struct hfs_changefs_cargs cargs;
- uint32_t mount_flags;
+ u_int32_t mount_flags;
hfsmp = VFSTOHFS(mp);
vcb = HFSTOVCB(hfsmp);
mount_flags = (unsigned int)vfs_flags(mp);
+ hfsmp->hfs_flags |= HFS_IN_CHANGEFS;
+
permswitch = (((hfsmp->hfs_flags & HFS_UNKNOWN_PERMS) &&
((mount_flags & MNT_UNKNOWNPERMISSIONS) == 0)) ||
(((hfsmp->hfs_flags & HFS_UNKNOWN_PERMS) == 0) &&
/* The root filesystem must operate with actual permissions: */
if (permswitch && (mount_flags & MNT_ROOTFS) && (mount_flags & MNT_UNKNOWNPERMISSIONS)) {
- vfs_clearflags(mp, (uint64_t)((unsigned int)MNT_UNKNOWNPERMISSIONS)); /* Just say "No". */
- return EINVAL;
+ vfs_clearflags(mp, (u_int64_t)((unsigned int)MNT_UNKNOWNPERMISSIONS)); /* Just say "No". */
+ retval = EINVAL;
+ goto exit;
}
if (mount_flags & MNT_UNKNOWNPERMISSIONS)
hfsmp->hfs_flags |= HFS_UNKNOWN_PERMS;
namefix = permfix = 0;
+ /*
+ * Tracking of hot files requires up-to-date access times. So if
+ * access time updates are disabled, we must also disable hot files.
+ */
+ if (mount_flags & MNT_NOATIME) {
+ (void) hfs_recording_suspend(hfsmp);
+ }
+
/* Change the timezone (Note: this affects all hfs volumes and hfs+ volume create dates) */
if (args->hfs_timezone.tz_minuteswest != VNOVAL) {
gTimeZone = args->hfs_timezone;
/* Change the hfs encoding value (hfs only) */
if ((vcb->vcbSigWord == kHFSSigWord) &&
- (args->hfs_encoding != (u_long)VNOVAL) &&
+ (args->hfs_encoding != (u_int32_t)VNOVAL) &&
(hfsmp->hfs_encoding != args->hfs_encoding)) {
retval = hfs_getconverter(args->hfs_encoding, &get_unicode_func, &get_hfsname_func);
*
* hfs_changefs_callback will be called for each vnode
* hung off of this mount point
- * the vnode will be
- * properly referenced and unreferenced around the callback
+ *
+ * The vnode will be properly referenced and unreferenced
+ * around the callback
*/
cargs.hfsmp = hfsmp;
cargs.namefix = namefix;
(void) hfs_relconverter(old_encoding);
}
exit:
+ hfsmp->hfs_flags &= ~HFS_IN_CHANGEFS;
return (retval);
}
struct hfs_reload_cargs {
struct hfsmount *hfsmp;
- kauth_cred_t cred;
- struct proc *p;
int error;
};
{
struct cnode *cp;
struct hfs_reload_cargs *args;
+ int lockflags;
args = (struct hfs_reload_cargs *)cargs;
/*
/*
* Re-read cnode data for all active vnodes (non-metadata files).
*/
- if (!vnode_issystem(vp) && !VNODE_IS_RSRC(vp)) {
+ if (!vnode_issystem(vp) && !VNODE_IS_RSRC(vp) && (cp->c_fileid >= kHFSFirstUserCatalogNodeID)) {
struct cat_fork *datafork;
struct cat_desc desc;
datafork = cp->c_datafork ? &cp->c_datafork->ff_data : NULL;
/* lookup by fileID since name could have changed */
- if ((args->error = cat_idlookup(args->hfsmp, cp->c_fileid, &desc, &cp->c_attr, datafork)))
+ lockflags = hfs_systemfile_lock(args->hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ args->error = cat_idlookup(args->hfsmp, cp->c_fileid, 0, &desc, &cp->c_attr, datafork);
+ hfs_systemfile_unlock(args->hfsmp, lockflags);
+ if (args->error) {
return (VNODE_RETURNED_DONE);
+ }
/* update cnode's catalog descriptor */
(void) replace_desc(cp, &desc);
* re-load B-tree header data.
* re-read cnode data for all active vnodes.
*/
-static int
-hfs_reload(struct mount *mountp, kauth_cred_t cred, struct proc *p)
+int
+hfs_reload(struct mount *mountp)
{
register struct vnode *devvp;
struct buf *bp;
- int sectorsize;
int error, i;
struct hfsmount *hfsmp;
struct HFSPlusVolumeHeader *vhp;
struct filefork *forkp;
struct cat_desc cndesc;
struct hfs_reload_cargs args;
+ daddr64_t priIDSector;
hfsmp = VFSTOHFS(mountp);
vcb = HFSTOVCB(hfsmp);
panic("hfs_reload: dirty1");
args.hfsmp = hfsmp;
- args.cred = cred;
- args.p = p;
args.error = 0;
/*
* hfs_reload_callback will be called for each vnode
/*
* Re-read VolumeHeader from disk.
*/
- sectorsize = hfsmp->hfs_phys_block_size;
+ priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+ HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size));
error = (int)buf_meta_bread(hfsmp->hfs_devvp,
- (daddr64_t)((vcb->hfsPlusIOPosOffset / sectorsize) + HFS_PRI_SECTOR(sectorsize)),
- sectorsize, NOCRED, &bp);
+ HFS_PHYSBLK_ROUNDDOWN(priIDSector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
if (error) {
if (bp != NULL)
buf_brelse(bp);
return (error);
}
- vhp = (HFSPlusVolumeHeader *) (buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize));
+ vhp = (HFSPlusVolumeHeader *) (buf_dataptr(bp) + HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
/* Do a quick sanity check */
if ((SWAP_BE16(vhp->signature) != kHFSPlusSigWord &&
vcb->vcbWrCnt = SWAP_BE32 (vhp->writeCount);
vcb->vcbFilCnt = SWAP_BE32 (vhp->fileCount);
vcb->vcbDirCnt = SWAP_BE32 (vhp->folderCount);
- vcb->nextAllocation = SWAP_BE32 (vhp->nextAllocation);
+ HFS_UPDATE_NEXT_ALLOCATION(vcb, SWAP_BE32 (vhp->nextAllocation));
vcb->totalBlocks = SWAP_BE32 (vhp->totalBlocks);
vcb->freeBlocks = SWAP_BE32 (vhp->freeBlocks);
vcb->encodingsBitmap = SWAP_BE64 (vhp->encodingsBitmap);
}
/* Reload the volume name */
- if ((error = cat_idlookup(hfsmp, kHFSRootFolderID, &cndesc, NULL, NULL)))
+ if ((error = cat_idlookup(hfsmp, kHFSRootFolderID, 0, &cndesc, NULL, NULL)))
return (error);
vcb->volumeNameEncodingHint = cndesc.cd_encoding;
bcopy(cndesc.cd_nameptr, vcb->vcbVN, min(255, cndesc.cd_namelen));
cat_releasedesc(&cndesc);
- /* Re-establish private/hidden directory for unlinked files */
- FindMetaDataDirectory(vcb);
+ /* Re-establish private/hidden directories. */
+ hfs_privatedir_init(hfsmp, FILE_HARDLINKS);
+ hfs_privatedir_init(hfsmp, DIR_HARDLINKS);
/* In case any volume information changed to trigger a notification */
hfs_generate_volume_notifications(hfsmp);
}
+
+static void
+hfs_syncer(void *arg0, void *unused)
+{
+#pragma unused(unused)
+
+ struct hfsmount *hfsmp = arg0;
+ clock_sec_t secs;
+ clock_usec_t usecs;
+ uint32_t delay = HFS_META_DELAY;
+ uint64_t now;
+ static int no_max=1;
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+
+ //
+ // If the amount of pending writes is more than our limit, wait
+ // for 2/3 of it to drain and then flush the journal.
+ //
+ if (hfsmp->hfs_mp->mnt_pending_write_size > hfsmp->hfs_max_pending_io) {
+ int counter=0;
+ uint64_t pending_io, start, rate = 0;
+
+ no_max = 0;
+
+ hfs_start_transaction(hfsmp); // so we hold off any new i/o's
+
+ pending_io = hfsmp->hfs_mp->mnt_pending_write_size;
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ start = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+
+ while(hfsmp->hfs_mp->mnt_pending_write_size > (pending_io/3) && counter++ < 500) {
+ tsleep((caddr_t)hfsmp, PRIBIO, "hfs-wait-for-io-to-drain", 10);
+ }
+
+ if (counter >= 500) {
+ printf("hfs: timed out waiting for io to drain (%lld)\n", (int64_t)hfsmp->hfs_mp->mnt_pending_write_size);
+ }
+
+ if (hfsmp->jnl) {
+ journal_flush(hfsmp->jnl, FALSE);
+ } else {
+ hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel());
+ }
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+ hfsmp->hfs_last_sync_time = now;
+ if (now != start) {
+ rate = ((pending_io * 1000000ULL) / (now - start)); // yields bytes per second
+ }
+
+ hfs_end_transaction(hfsmp);
+
+ //
+ // If a reasonable amount of time elapsed then check the
+ // i/o rate. If it's taking less than 1 second or more
+ // than 2 seconds, adjust hfs_max_pending_io so that we
+ // will allow about 1.5 seconds of i/o to queue up.
+ //
+ if (((now - start) >= 300000) && (rate != 0)) {
+ uint64_t scale = (pending_io * 100) / rate;
+
+ if (scale < 100 || scale > 200) {
+ // set it so that it should take about 1.5 seconds to drain
+ hfsmp->hfs_max_pending_io = (rate * 150ULL) / 100ULL;
+ }
+ }
+
+ } else if ( ((now - hfsmp->hfs_last_sync_time) >= 5000000ULL)
+ || (((now - hfsmp->hfs_last_sync_time) >= 100000LL)
+ && ((now - hfsmp->hfs_last_sync_request_time) >= 100000LL)
+ && (hfsmp->hfs_active_threads == 0)
+ && (hfsmp->hfs_global_lock_nesting == 0))) {
+
+ //
+ // Flush the journal if more than 5 seconds elapsed since
+ // the last sync OR we have not sync'ed recently and the
+ // last sync request time was more than 100 milliseconds
+ // ago and no one is in the middle of a transaction right
+ // now. Else we defer the sync and reschedule it.
+ //
+ if (hfsmp->jnl) {
+ hfs_lock_global (hfsmp, HFS_SHARED_LOCK);
+
+ journal_flush(hfsmp->jnl, FALSE);
+
+ hfs_unlock_global (hfsmp);
+ } else {
+ hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel());
+ }
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+ hfsmp->hfs_last_sync_time = now;
+
+ } else if (hfsmp->hfs_active_threads == 0) {
+ uint64_t deadline;
+
+ clock_interval_to_deadline(delay, HFS_MILLISEC_SCALE, &deadline);
+ thread_call_enter_delayed(hfsmp->hfs_syncer, deadline);
+
+ // note: we intentionally return early here and do not
+ // decrement the sync_scheduled and sync_incomplete
+ // variables because we rescheduled the timer.
+
+ return;
+ }
+
+ //
+ // NOTE: we decrement these *after* we're done the journal_flush() since
+ // it can take a significant amount of time and so we don't want more
+ // callbacks scheduled until we're done this one.
+ //
+ OSDecrementAtomic((volatile SInt32 *)&hfsmp->hfs_sync_scheduled);
+ OSDecrementAtomic((volatile SInt32 *)&hfsmp->hfs_sync_incomplete);
+ wakeup((caddr_t)&hfsmp->hfs_sync_incomplete);
+}
+
+
+extern int IOBSDIsMediaEjectable( const char *cdev_name );
+
+/*
+ * Initialization code for Red-Black Tree Allocator
+ *
+ * This function will build the two red-black trees necessary for allocating space
+ * from the metadata zone as well as normal allocations. Currently, we use
+ * an advisory read to get most of the data into the buffer cache.
+ * This function is intended to be run in a separate thread so as not to slow down mount.
+ *
+ */
+
+void
+hfs_initialize_allocator (struct hfsmount *hfsmp) {
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ u_int32_t err;
+
+ /*
+ * Take the allocation file lock. Journal transactions will block until
+ * we're done here.
+ */
+ int flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * GenerateTree assumes that the bitmap lock is held when you call the function.
+ * It will drop and re-acquire the lock periodically as needed to let other allocations
+ * through. It returns with the bitmap lock held. Since we only maintain one tree,
+ * we don't need to specify a start block (always starts at 0).
+ */
+ err = GenerateTree(hfsmp, hfsmp->totalBlocks, &flags, 1);
+ if (err) {
+ goto bailout;
+ }
+ /* Mark offset tree as built */
+ hfsmp->extent_tree_flags |= HFS_ALLOC_RB_ACTIVE;
+
+bailout:
+ /*
+ * GenerateTree may drop the bitmap lock during operation in order to give other
+ * threads a chance to allocate blocks, but it will always return with the lock held, so
+ * we don't need to re-grab the lock in order to update the TREEBUILD_INFLIGHT bit.
+ */
+ hfsmp->extent_tree_flags &= ~HFS_ALLOC_TREEBUILD_INFLIGHT;
+ if (err != 0) {
+ /* Wakeup any waiters on the allocation bitmap lock */
+ wakeup((caddr_t)&hfsmp->extent_tree_flags);
+ }
+
+ hfs_systemfile_unlock(hfsmp, flags);
+#else
+#pragma unused (hfsmp)
+#endif
+}
+
+
+/*
+ * Teardown code for the Red-Black Tree allocator.
+ * This function consolidates the code which serializes with respect
+ * to a thread that may be potentially still building the tree when we need to begin
+ * tearing it down. Since the red-black tree may not be live when we enter this function
+ * we return:
+ * 1 -> Tree was live.
+ * 0 -> Tree was not active at time of call.
+ */
+
+int
+hfs_teardown_allocator (struct hfsmount *hfsmp) {
+ int rb_used = 0;
+
+#if CONFIG_HFS_ALLOC_RBTREE
+
+ int flags = 0;
+
+ /*
+ * Check to see if the tree-generation is still on-going.
+ * If it is, then block until it's done.
+ */
+
+ flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+
+ while (hfsmp->extent_tree_flags & HFS_ALLOC_TREEBUILD_INFLIGHT) {
+ hfsmp->extent_tree_flags |= HFS_ALLOC_TEARDOWN_INFLIGHT;
+
+ lck_rw_sleep(&(VTOC(hfsmp->hfs_allocation_vp))->c_rwlock, LCK_SLEEP_EXCLUSIVE,
+ &hfsmp->extent_tree_flags, THREAD_UNINT);
+ }
+
+ if (hfs_isrbtree_active (hfsmp)) {
+ rb_used = 1;
+
+ /* Tear down the RB Trees while we have the bitmap locked */
+ DestroyTrees(hfsmp);
+
+ }
+
+ hfs_systemfile_unlock(hfsmp, flags);
+#else
+ #pragma unused (hfsmp)
+#endif
+ return rb_used;
+
+}
+
+
+static int hfs_root_unmounted_cleanly = 0;
+
+SYSCTL_DECL(_vfs_generic);
+SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &hfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly");
+
/*
* Common code for mount and mountroot
*/
-static int
+int
hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args,
- vfs_context_t context)
+ int journal_replay_only, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int retval = E_NONE;
- struct hfsmount *hfsmp;
+ struct hfsmount *hfsmp = NULL;
struct buf *bp;
dev_t dev;
- HFSMasterDirectoryBlock *mdbp;
+ HFSMasterDirectoryBlock *mdbp = NULL;
int ronly;
+#if QUOTA
int i;
+#endif
int mntwrapper;
kauth_cred_t cred;
u_int64_t disksize;
- daddr64_t blkcnt;
- u_int32_t blksize;
+ daddr64_t log_blkcnt;
+ u_int32_t log_blksize;
+ u_int32_t phys_blksize;
u_int32_t minblksize;
u_int32_t iswritable;
daddr64_t mdb_offset;
+ int isvirtual = 0;
+ int isroot = 0;
+ int isssd;
+#if CONFIG_HFS_ALLOC_RBTREE
+ thread_t allocator_thread;
+#endif
+
+ if (args == NULL) {
+ /* only hfs_mountroot passes us NULL as the 'args' argument */
+ isroot = 1;
+ }
ronly = vfs_isrdonly(mp);
dev = vnode_specrdev(devvp);
/* Advisory locking should be handled at the VFS layer */
vfs_setlocklocal(mp);
- /* Get the real physical block size. */
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, context)) {
+ /* Get the logical block size (treated as physical block size everywhere) */
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&log_blksize, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n");
+ }
+ retval = ENXIO;
+ goto error_exit;
+ }
+ if (log_blksize == 0 || log_blksize > 1024*1024*1024) {
+ printf("hfs: logical block size 0x%x looks bad. Not mounting.\n", log_blksize);
+ retval = ENXIO;
+ goto error_exit;
+ }
+
+ /* Get the physical block size. */
+ retval = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_blksize, 0, context);
+ if (retval) {
+ if ((retval != ENOTSUP) && (retval != ENOTTY)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n");
+ }
+ retval = ENXIO;
+ goto error_exit;
+ }
+ /* If device does not support this ioctl, assume that physical
+ * block size is same as logical block size
+ */
+ phys_blksize = log_blksize;
+ }
+ if (phys_blksize == 0 || phys_blksize > 1024*1024*1024) {
+ printf("hfs: physical block size 0x%x looks bad. Not mounting.\n", phys_blksize);
retval = ENXIO;
goto error_exit;
}
+
/* Switch to 512 byte sectors (temporarily) */
- if (blksize > 512) {
+ if (log_blksize > 512) {
u_int32_t size512 = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n");
+ }
retval = ENXIO;
goto error_exit;
}
}
/* Get the number of 512 byte physical blocks. */
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
+ /* resetting block size may fail if getting block count did */
+ (void)VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context);
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
/* Compute an accurate disk size (i.e. within 512 bytes) */
- disksize = (u_int64_t)blkcnt * (u_int64_t)512;
+ disksize = (u_int64_t)log_blkcnt * (u_int64_t)512;
/*
* On Tiger it is not necessary to switch the device
* block size to be 4k if there are more than 31-bits
* worth of blocks but to insure compatibility with
* pre-Tiger systems we have to do it.
+ *
+ * If the device size is not a multiple of 4K (8 * 512), then
+ * switching the logical block size isn't going to help because
+ * we will be unable to write the alternate volume header.
+ * In this case, just leave the logical block size unchanged.
*/
- if (blkcnt > (u_int64_t)0x000000007fffffff) {
- minblksize = blksize = 4096;
+ if (log_blkcnt > 0x000000007fffffff && (log_blkcnt & 7) == 0) {
+ minblksize = log_blksize = 4096;
+ if (phys_blksize < log_blksize)
+ phys_blksize = log_blksize;
}
- /* Now switch to our prefered physical block size. */
- if (blksize > 512) {
- if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, context)) {
+ /*
+ * The cluster layer is not currently prepared to deal with a logical
+ * block size larger than the system's page size. (It can handle
+ * blocks per page, but not multiple pages per block.) So limit the
+ * logical block size to the page size.
+ */
+ if (log_blksize > PAGE_SIZE)
+ log_blksize = PAGE_SIZE;
+
+ /* Now switch to our preferred physical block size. */
+ if (log_blksize > 512) {
+ if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
/* Get the count of physical blocks. */
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
/*
* At this point:
* minblksize is the minimum physical block size
- * blksize has our prefered physical block size
- * blkcnt has the total number of physical blocks
+ * log_blksize has our preferred physical block size
+ * log_blkcnt has the total number of physical blocks
*/
- mdb_offset = (daddr64_t)HFS_PRI_SECTOR(blksize);
- if ((retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp))) {
+ mdb_offset = (daddr64_t)HFS_PRI_SECTOR(log_blksize);
+ if ((retval = (int)buf_meta_bread(devvp,
+ HFS_PHYSBLK_ROUNDDOWN(mdb_offset, (phys_blksize/log_blksize)),
+ phys_blksize, cred, &bp))) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval);
+ }
goto error_exit;
}
MALLOC(mdbp, HFSMasterDirectoryBlock *, kMDBSize, M_TEMP, M_WAITOK);
- bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(blksize), mdbp, kMDBSize);
+ if (mdbp == NULL) {
+ retval = ENOMEM;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: MALLOC failed\n");
+ }
+ goto error_exit;
+ }
+ bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, kMDBSize);
buf_brelse(bp);
bp = NULL;
MALLOC(hfsmp, struct hfsmount *, sizeof(struct hfsmount), M_HFSMNT, M_WAITOK);
+ if (hfsmp == NULL) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: MALLOC (2) failed\n");
+ }
+ retval = ENOMEM;
+ goto error_exit;
+ }
bzero(hfsmp, sizeof(struct hfsmount));
+ hfs_chashinit_finish(hfsmp);
+
+ /*
+ * See if the disk is a solid state device. We need this to decide what to do about
+ * hotfiles.
+ */
+ if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, context) == 0) {
+ if (isssd) {
+ hfsmp->hfs_flags |= HFS_SSD;
+ }
+ }
+
+
/*
* Init the volume information structure
*/
lck_mtx_init(&hfsmp->hfc_mutex, hfs_mutex_group, hfs_lock_attr);
lck_rw_init(&hfsmp->hfs_global_lock, hfs_rwlock_group, hfs_lock_attr);
lck_rw_init(&hfsmp->hfs_insync, hfs_rwlock_group, hfs_lock_attr);
-
+ lck_spin_init(&hfsmp->vcbFreeExtLock, hfs_spinlock_group, hfs_lock_attr);
+
vfs_setfsprivate(mp, hfsmp);
hfsmp->hfs_mp = mp; /* Make VFSTOHFS work */
hfsmp->hfs_raw_dev = vnode_specrdev(devvp);
hfsmp->hfs_devvp = devvp;
- hfsmp->hfs_phys_block_size = blksize;
- hfsmp->hfs_phys_block_count = blkcnt;
+ vnode_ref(devvp); /* Hold a ref on the device, dropped when hfsmp is freed. */
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_logical_block_count = log_blkcnt;
+ hfsmp->hfs_physical_block_size = phys_blksize;
+ hfsmp->hfs_log_per_phys = (phys_blksize / log_blksize);
hfsmp->hfs_flags |= HFS_WRITEABLE_MEDIA;
if (ronly)
hfsmp->hfs_flags |= HFS_READ_ONLY;
if (((unsigned int)vfs_flags(mp)) & MNT_UNKNOWNPERMISSIONS)
hfsmp->hfs_flags |= HFS_UNKNOWN_PERMS;
+
+#if QUOTA
for (i = 0; i < MAXQUOTAS; i++)
dqfileinit(&hfsmp->hfs_qfiles[i]);
+#endif
if (args) {
hfsmp->hfs_uid = (args->hfs_uid == (uid_t)VNOVAL) ? UNKNOWNUID : args->hfs_uid;
}
// record the current time at which we're mounting this volume
- {
- struct timeval tv;
- microtime(&tv);
- hfsmp->hfs_mount_time = tv.tv_sec;
- }
+ struct timeval tv;
+ microtime(&tv);
+ hfsmp->hfs_mount_time = tv.tv_sec;
/* Mount a standard HFS disk */
if ((SWAP_BE16(mdbp->drSigWord) == kHFSSigWord) &&
(mntwrapper || (SWAP_BE16(mdbp->drEmbedSigWord) != kHFSPlusSigWord))) {
+
+ /* On 10.6 and beyond, non read-only mounts for HFS standard vols get rejected */
+ if (vfs_isrdwr(mp)) {
+ retval = EROFS;
+ goto error_exit;
+ }
+
+ printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n");
+
+ /* Treat it as if it's read-only and not writeable */
+ hfsmp->hfs_flags |= HFS_READ_ONLY;
+ hfsmp->hfs_flags &= ~HFS_WRITEABLE_MEDIA;
+
+ /* If only journal replay is requested, exit immediately */
+ if (journal_replay_only) {
+ retval = 0;
+ goto error_exit;
+ }
+
if ((vfs_flags(mp) & MNT_ROOTFS)) {
retval = EINVAL; /* Cannot root from HFS standard disks */
goto error_exit;
}
/* HFS disks can only use 512 byte physical blocks */
- if (blksize > kHFSBlockSize) {
- blksize = kHFSBlockSize;
- if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, context)) {
+ if (log_blksize > kHFSBlockSize) {
+ log_blksize = kHFSBlockSize;
+ if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
retval = ENXIO;
goto error_exit;
}
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
retval = ENXIO;
goto error_exit;
}
- hfsmp->hfs_phys_block_size = blksize;
- hfsmp->hfs_phys_block_count = blkcnt;
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_logical_block_count = log_blkcnt;
+ hfsmp->hfs_physical_block_size = log_blksize;
+ hfsmp->hfs_log_per_phys = 1;
}
if (args) {
hfsmp->hfs_encoding = args->hfs_encoding;
* block size so everything will line up on a block
* boundary.
*/
- if ((embeddedOffset % blksize) != 0) {
- printf("HFS Mount: embedded volume offset not"
+ if ((embeddedOffset % log_blksize) != 0) {
+ printf("hfs_mountfs: embedded volume offset not"
" a multiple of physical block size (%d);"
- " switching to 512\n", blksize);
- blksize = 512;
+ " switching to 512\n", log_blksize);
+ log_blksize = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE,
- (caddr_t)&blksize, FWRITE, context)) {
+ (caddr_t)&log_blksize, FWRITE, context)) {
+
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT,
- (caddr_t)&blkcnt, 0, context)) {
+ (caddr_t)&log_blkcnt, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n");
+ }
retval = ENXIO;
goto error_exit;
}
/* Note: relative block count adjustment */
- hfsmp->hfs_phys_block_count *=
- hfsmp->hfs_phys_block_size / blksize;
- hfsmp->hfs_phys_block_size = blksize;
+ hfsmp->hfs_logical_block_count *=
+ hfsmp->hfs_logical_block_size / log_blksize;
+
+ /* Update logical /physical block size */
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_physical_block_size = log_blksize;
+ phys_blksize = log_blksize;
+ hfsmp->hfs_log_per_phys = 1;
}
disksize = (u_int64_t)SWAP_BE16(mdbp->drEmbedExtent.blockCount) *
(u_int64_t)SWAP_BE32(mdbp->drAlBlkSiz);
- hfsmp->hfs_phys_block_count = disksize / blksize;
+ hfsmp->hfs_logical_block_count = disksize / log_blksize;
- mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
- retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp);
- if (retval)
+ mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
+ retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+ phys_blksize, cred, &bp);
+ if (retval) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval);
+ }
goto error_exit;
- bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(blksize), mdbp, 512);
+ }
+ bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, 512);
buf_brelse(bp);
bp = NULL;
vhp = (HFSPlusVolumeHeader*) mdbp;
vhp = (HFSPlusVolumeHeader*) mdbp;
}
+ if (isroot) {
+ hfs_root_unmounted_cleanly = (SWAP_BE32(vhp->attributes) & kHFSVolumeUnmountedMask) != 0;
+ }
+
+ /*
+ * On inconsistent disks, do not allow read-write mount
+ * unless it is the boot volume being mounted. We also
+ * always want to replay the journal if the journal_replay_only
+ * flag is set because that will (most likely) get the
+ * disk into a consistent state before fsck_hfs starts
+ * looking at it.
+ */
+ if ( !(vfs_flags(mp) & MNT_ROOTFS)
+ && (SWAP_BE32(vhp->attributes) & kHFSVolumeInconsistentMask)
+ && !journal_replay_only
+ && !(hfsmp->hfs_flags & HFS_READ_ONLY)) {
+
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: failed to mount non-root inconsistent disk\n");
+ }
+ retval = EINVAL;
+ goto error_exit;
+ }
+
+
// XXXdbg
//
hfsmp->jnl = NULL;
hfsmp->jvp = NULL;
- if (args != NULL && (args->flags & HFSFSMNT_EXTENDED_ARGS) && args->journal_disable) {
+ if (args != NULL && (args->flags & HFSFSMNT_EXTENDED_ARGS) &&
+ args->journal_disable) {
jnl_disable = 1;
}
// if we're able to init the journal, mark the mount
// point as journaled.
//
- if (hfs_early_journal_init(hfsmp, vhp, args, embeddedOffset, mdb_offset, mdbp, cred) == 0) {
- vfs_setflags(mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ if ((retval = hfs_early_journal_init(hfsmp, vhp, args, embeddedOffset, mdb_offset, mdbp, cred)) == 0) {
+ vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
} else {
+ if (retval == EROFS) {
+ // EROFS is a special error code that means the volume has an external
+ // journal which we couldn't find. in that case we do not want to
+ // rewrite the volume header - we'll just refuse to mount the volume.
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n");
+ }
+ retval = EINVAL;
+ goto error_exit;
+ }
+
// if the journal failed to open, then set the lastMountedVersion
// to be "FSK!" which fsck_hfs will see and force the fsck instead
// of just bailing out because the volume is journaled.
if (!ronly) {
- HFSPlusVolumeHeader *jvhp;
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n");
+ }
+
+ HFSPlusVolumeHeader *jvhp;
hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
if (mdb_offset == 0) {
- mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
+ mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
}
bp = NULL;
- retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp);
+ retval = (int)buf_meta_bread(devvp,
+ HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+ phys_blksize, cred, &bp);
if (retval == 0) {
- jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(blksize));
+ jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize));
if (SWAP_BE16(jvhp->signature) == kHFSPlusSigWord || SWAP_BE16(jvhp->signature) == kHFSXSigWord) {
printf ("hfs(1): Journal replay fail. Writing lastMountVersion as FSK!\n");
// in the hopes that fsck_hfs will be able to
// fix any damage that exists on the volume.
if ( !(vfs_flags(mp) & MNT_ROOTFS)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n");
+ }
retval = EINVAL;
goto error_exit;
}
}
// XXXdbg
+ /* Either the journal is replayed successfully, or there
+ * was nothing to replay, or no journal exists. In any case,
+ * return success.
+ */
+ if (journal_replay_only) {
+ retval = 0;
+ goto error_exit;
+ }
+
(void) hfs_getconverter(0, &hfsmp->hfs_get_unicode, &hfsmp->hfs_get_hfsname);
retval = hfs_MountHFSPlusVolume(hfsmp, vhp, embeddedOffset, disksize, p, args, cred);
* If the backend didn't like our physical blocksize
* then retry with physical blocksize of 512.
*/
- if ((retval == ENXIO) && (blksize > 512) && (blksize != minblksize)) {
- printf("HFS Mount: could not use physical block size "
- "(%d) switching to 512\n", blksize);
- blksize = 512;
- if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, context)) {
+ if ((retval == ENXIO) && (log_blksize > 512) && (log_blksize != minblksize)) {
+ printf("hfs_mountfs: could not use physical block size "
+ "(%d) switching to 512\n", log_blksize);
+ log_blksize = 512;
+ if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n");
+ }
retval = ENXIO;
goto error_exit;
}
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n");
+ }
retval = ENXIO;
goto error_exit;
}
- devvp->v_specsize = blksize;
+ devvp->v_specsize = log_blksize;
/* Note: relative block count adjustment (in case this is an embedded volume). */
- hfsmp->hfs_phys_block_count *= hfsmp->hfs_phys_block_size / blksize;
- hfsmp->hfs_phys_block_size = blksize;
+ hfsmp->hfs_logical_block_count *= hfsmp->hfs_logical_block_size / log_blksize;
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_log_per_phys = hfsmp->hfs_physical_block_size / log_blksize;
- if (hfsmp->jnl) {
+ if (hfsmp->jnl && hfsmp->jvp == devvp) {
// close and re-open this with the new block size
journal_close(hfsmp->jnl);
hfsmp->jnl = NULL;
if (hfs_early_journal_init(hfsmp, vhp, args, embeddedOffset, mdb_offset, mdbp, cred) == 0) {
- vfs_setflags(mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
} else {
// if the journal failed to open, then set the lastMountedVersion
// to be "FSK!" which fsck_hfs will see and force the fsck instead
// of just bailing out because the volume is journaled.
if (!ronly) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n");
+ }
HFSPlusVolumeHeader *jvhp;
hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
if (mdb_offset == 0) {
- mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
+ mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
}
bp = NULL;
- retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp);
+ retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+ phys_blksize, cred, &bp);
if (retval == 0) {
- jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(blksize));
+ jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize));
if (SWAP_BE16(jvhp->signature) == kHFSPlusSigWord || SWAP_BE16(jvhp->signature) == kHFSXSigWord) {
printf ("hfs(2): Journal replay fail. Writing lastMountVersion as FSK!\n");
// in the hopes that fsck_hfs will be able to
// fix any damage that exists on the volume.
if ( !(vfs_flags(mp) & MNT_ROOTFS)) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: hfs_early_journal_init (2) failed \n");
+ }
retval = EINVAL;
goto error_exit;
}
/* Try again with a smaller block size... */
retval = hfs_MountHFSPlusVolume(hfsmp, vhp, embeddedOffset, disksize, p, args, cred);
+ if (retval && HFS_MOUNT_DEBUG) {
+ printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval);
+ }
}
if (retval)
(void) hfs_relconverter(0);
hfsmp->hfs_last_mounted_mtime = hfsmp->hfs_mtime;
if ( retval ) {
+ if (HFS_MOUNT_DEBUG) {
+ printf("hfs_mountfs: encountered failure %d \n", retval);
+ }
goto error_exit;
}
mp->mnt_vfsstat.f_fsid.val[0] = (long)dev;
mp->mnt_vfsstat.f_fsid.val[1] = vfs_typenum(mp);
vfs_setmaxsymlen(mp, 0);
- mp->mnt_vtable->vfc_threadsafe = TRUE;
+
mp->mnt_vtable->vfc_vfsflags |= VFC_VFSNATIVEXATTR;
+#if NAMEDSTREAMS
+ mp->mnt_kern_flag |= MNTK_NAMED_STREAMS;
+#endif
+ if (!(hfsmp->hfs_flags & HFS_STANDARD)) {
+ /* Tell VFS that we support directory hard links. */
+ mp->mnt_vtable->vfc_vfsflags |= VFC_VFSDIRLINKS;
+ } else {
+ /* HFS standard doesn't support extended readdir! */
+ mount_set_noreaddirext (mp);
+ }
if (args) {
/*
* Set the free space warning levels for a non-root volume:
*
- * Set the lower freespace limit (the level that will trigger a warning)
- * to 5% of the volume size or 250MB, whichever is less, and the desired
- * level (which will cancel the alert request) to 1/2 above that limit.
- * Start looking for free space to drop below this level and generate a
- * warning immediately if needed:
+ * Set the "danger" limit to 1% of the volume size or 100MB, whichever
+ * is less. Set the "warning" limit to 2% of the volume size or 150MB,
+ * whichever is less. And last, set the "desired" freespace level to
+ * to 3% of the volume size or 200MB, whichever is less.
*/
+ hfsmp->hfs_freespace_notify_dangerlimit =
+ MIN(HFS_VERYLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
+ (HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_VERYLOWDISKTRIGGERFRACTION);
hfsmp->hfs_freespace_notify_warninglimit =
MIN(HFS_LOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
(HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_LOWDISKTRIGGERFRACTION);
/*
* Set the free space warning levels for the root volume:
*
- * Set the lower freespace limit (the level that will trigger a warning)
- * to 1% of the volume size or 50MB, whichever is less, and the desired
- * level (which will cancel the alert request) to 2% or 75MB, whichever is less.
+ * Set the "danger" limit to 5% of the volume size or 512MB, whichever
+ * is less. Set the "warning" limit to 10% of the volume size or 1GB,
+ * whichever is less. And last, set the "desired" freespace level to
+ * to 11% of the volume size or 1.25GB, whichever is less.
*/
+ hfsmp->hfs_freespace_notify_dangerlimit =
+ MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
+ (HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_ROOTVERYLOWDISKTRIGGERFRACTION);
hfsmp->hfs_freespace_notify_warninglimit =
MIN(HFS_ROOTLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
(HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_ROOTLOWDISKTRIGGERFRACTION);
(HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_ROOTLOWDISKSHUTOFFFRACTION);
};
+ /* Check if the file system exists on virtual device, like disk image */
+ if (VNOP_IOCTL(devvp, DKIOCISVIRTUAL, (caddr_t)&isvirtual, 0, context) == 0) {
+ if (isvirtual) {
+ hfsmp->hfs_flags |= HFS_VIRTUAL_DEVICE;
+ }
+ }
+
+ /* do not allow ejectability checks on the root device */
+ if (isroot == 0) {
+ if ((hfsmp->hfs_flags & HFS_VIRTUAL_DEVICE) == 0 &&
+ IOBSDIsMediaEjectable(mp->mnt_vfsstat.f_mntfromname)) {
+ hfsmp->hfs_max_pending_io = 4096*1024; // a reasonable value to start with.
+ hfsmp->hfs_syncer = thread_call_allocate(hfs_syncer, hfsmp);
+ if (hfsmp->hfs_syncer == NULL) {
+ printf("hfs: failed to allocate syncer thread callback for %s (%s)\n",
+ mp->mnt_vfsstat.f_mntfromname, mp->mnt_vfsstat.f_mntonname);
+ }
+ }
+ }
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ /*
+ * We spawn a thread to create the pair of red-black trees for this volume.
+ * However, in so doing, we must be careful to ensure that if this thread is still
+ * running after mount has finished, it doesn't interfere with an unmount. Specifically,
+ * we'll need to set a bit that indicates we're in progress building the trees here.
+ * Unmount will check for this bit, and then if it's set, mark a corresponding bit that
+ * notifies the tree generation code that an unmount is waiting. Also mark the bit that
+ * indicates the tree is live and operating.
+ *
+ * Only do this if we're operating on a read-write mount (we wouldn't care for read-only).
+ */
+
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) {
+ hfsmp->extent_tree_flags |= (HFS_ALLOC_TREEBUILD_INFLIGHT | HFS_ALLOC_RB_ENABLED);
+
+ /* Initialize EOF counter so that the thread can assume it started at initial values */
+ hfsmp->offset_block_end = 0;
+ InitTree(hfsmp);
+
+ kernel_thread_start ((thread_continue_t) hfs_initialize_allocator , hfsmp, &allocator_thread);
+ thread_deallocate(allocator_thread);
+ }
+
+#endif
+
/*
* Start looking for free space to drop below this level and generate a
* warning immediately if needed:
*/
hfsmp->hfs_notification_conditions = 0;
hfs_generate_volume_notifications(hfsmp);
-
+
if (ronly == 0) {
(void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
}
FREE(mdbp, M_TEMP);
if (hfsmp && hfsmp->jvp && hfsmp->jvp != hfsmp->hfs_devvp) {
- (void)VNOP_CLOSE(hfsmp->jvp, ronly ? FREAD : FREAD|FWRITE, context);
+ vnode_clearmountedon(hfsmp->jvp);
+ (void)VNOP_CLOSE(hfsmp->jvp, ronly ? FREAD : FREAD|FWRITE, vfs_context_kernel());
hfsmp->jvp = NULL;
}
if (hfsmp) {
+ if (hfsmp->hfs_devvp) {
+ vnode_rele(hfsmp->hfs_devvp);
+ }
+ hfs_delete_chash(hfsmp);
+
FREE(hfsmp, M_HFSMNT);
vfs_setfsprivate(mp, NULL);
}
/*
* unmount system call
*/
-static int
+int
hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int flags;
int force;
int started_tr = 0;
+ int rb_used = 0;
flags = 0;
force = 0;
if (hfsmp->hfs_flags & HFS_METADATA_ZONE)
(void) hfs_recording_suspend(hfsmp);
+ /*
+ * Cancel any pending timers for this volume. Then wait for any timers
+ * which have fired, but whose callbacks have not yet completed.
+ */
+ if (hfsmp->hfs_syncer)
+ {
+ struct timespec ts = {0, 100000000}; /* 0.1 seconds */
+
+ /*
+ * Cancel any timers that have been scheduled, but have not
+ * fired yet. NOTE: The kernel considers a timer complete as
+ * soon as it starts your callback, so the kernel does not
+ * keep track of the number of callbacks in progress.
+ */
+ if (thread_call_cancel(hfsmp->hfs_syncer))
+ OSDecrementAtomic((volatile SInt32 *)&hfsmp->hfs_sync_incomplete);
+ thread_call_free(hfsmp->hfs_syncer);
+ hfsmp->hfs_syncer = NULL;
+
+ /*
+ * This waits for all of the callbacks that were entered before
+ * we did thread_call_cancel above, but have not completed yet.
+ */
+ while(hfsmp->hfs_sync_incomplete > 0)
+ {
+ msleep((caddr_t)&hfsmp->hfs_sync_incomplete, NULL, PWAIT, "hfs_unmount", &ts);
+ }
+
+ if (hfsmp->hfs_sync_incomplete < 0)
+ panic("hfs_unmount: pm_sync_incomplete underflow!\n");
+ }
+
+#if CONFIG_HFS_ALLOC_RBTREE
+ rb_used = hfs_teardown_allocator(hfsmp);
+#endif
+
/*
* Flush out the b-trees, volume bitmap and Volume Header
*/
if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) {
- hfs_start_transaction(hfsmp);
- started_tr = 1;
+ retval = hfs_start_transaction(hfsmp);
+ if (retval == 0) {
+ started_tr = 1;
+ } else if (!force) {
+ goto err_exit;
+ }
+
+ if (hfsmp->hfs_startup_vp) {
+ (void) hfs_lock(VTOC(hfsmp->hfs_startup_vp), HFS_EXCLUSIVE_LOCK);
+ retval = hfs_fsync(hfsmp->hfs_startup_vp, MNT_WAIT, 0, p);
+ hfs_unlock(VTOC(hfsmp->hfs_startup_vp));
+ if (retval && !force)
+ goto err_exit;
+ }
if (hfsmp->hfs_attribute_vp) {
(void) hfs_lock(VTOC(hfsmp->hfs_attribute_vp), HFS_EXCLUSIVE_LOCK);
if (retval && !force)
goto err_exit;
}
-#if 0
- /* See if this volume is damaged, is so do not unmount cleanly */
- if (HFSTOVCB(hfsmp)->vcbFlags & kHFS_DamagedVolume) {
+
+ /* If runtime corruption was detected, indicate that the volume
+ * was not unmounted cleanly.
+ */
+ if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) {
HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeUnmountedMask;
} else {
HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeUnmountedMask;
}
-#else
- HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeUnmountedMask;
-#endif
+
+
+ if (rb_used) {
+ /* If the rb-tree was live, just set min_start to 0 */
+ hfsmp->nextAllocation = 0;
+ }
+ else {
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ int i;
+ u_int32_t min_start = hfsmp->totalBlocks;
+
+ // set the nextAllocation pointer to the smallest free block number
+ // we've seen so on the next mount we won't rescan unnecessarily
+ lck_spin_lock(&hfsmp->vcbFreeExtLock);
+ for(i=0; i < (int)hfsmp->vcbFreeExtCnt; i++) {
+ if (hfsmp->vcbFreeExt[i].startBlock < min_start) {
+ min_start = hfsmp->vcbFreeExt[i].startBlock;
+ }
+ }
+ lck_spin_unlock(&hfsmp->vcbFreeExtLock);
+ if (min_start < hfsmp->nextAllocation) {
+ hfsmp->nextAllocation = min_start;
+ }
+ }
+ }
+
+
retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
if (retval) {
HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeUnmountedMask;
goto err_exit; /* could not flush everything */
}
- hfs_end_transaction(hfsmp);
- started_tr = 0;
+ if (started_tr) {
+ hfs_end_transaction(hfsmp);
+ started_tr = 0;
+ }
}
if (hfsmp->jnl) {
- journal_flush(hfsmp->jnl);
+ hfs_journal_flush(hfsmp, FALSE);
}
/*
*/
(void) hfsUnmount(hfsmp, p);
- /*
- * Last chance to dump unreferenced system files.
- */
- (void) vflush(mp, NULLVP, FORCECLOSE);
-
if (HFSTOVCB(hfsmp)->vcbSigWord == kHFSSigWord)
(void) hfs_relconverter(hfsmp->hfs_encoding);
VNOP_FSYNC(hfsmp->hfs_devvp, MNT_WAIT, context);
if (hfsmp->jvp && hfsmp->jvp != hfsmp->hfs_devvp) {
+ vnode_clearmountedon(hfsmp->jvp);
retval = VNOP_CLOSE(hfsmp->jvp,
hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE,
- context);
+ vfs_context_kernel());
vnode_put(hfsmp->jvp);
hfsmp->jvp = NULL;
}
// XXXdbg
-#ifdef HFS_SPARSE_DEV
+ /*
+ * Last chance to dump unreferenced system files.
+ */
+ (void) vflush(mp, NULLVP, FORCECLOSE);
+
+#if HFS_SPARSE_DEV
/* Drop our reference on the backing fs (if any). */
if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && hfsmp->hfs_backingfs_rootvp) {
struct vnode * tmpvp;
}
#endif /* HFS_SPARSE_DEV */
lck_mtx_destroy(&hfsmp->hfc_mutex, hfs_mutex_group);
+ lck_spin_destroy(&hfsmp->vcbFreeExtLock, hfs_spinlock_group);
+ vnode_rele(hfsmp->hfs_devvp);
+
+ hfs_delete_chash(hfsmp);
FREE(hfsmp, M_HFSMNT);
return (0);
static int
hfs_vfs_root(struct mount *mp, struct vnode **vpp, __unused vfs_context_t context)
{
- return hfs_vget(VFSTOHFS(mp), (cnid_t)kHFSRootFolderID, vpp, 1);
+ return hfs_vget(VFSTOHFS(mp), (cnid_t)kHFSRootFolderID, vpp, 1, 0);
}
/*
* Do operations associated with quotas
*/
+#if !QUOTA
+static int
+hfs_quotactl(__unused struct mount *mp, __unused int cmds, __unused uid_t uid, __unused caddr_t datap, __unused vfs_context_t context)
+{
+ return (ENOTSUP);
+}
+#else
static int
hfs_quotactl(struct mount *mp, int cmds, uid_t uid, caddr_t datap, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int cmd, type, error;
-#if !QUOTA
- return (ENOTSUP);
-#else
- if (uid == -1)
- uid = vfs_context_ucred(context)->cr_ruid;
+ if (uid == ~0U)
+ uid = kauth_cred_getuid(vfs_context_ucred(context));
cmd = cmds >> SUBCMDSHIFT;
switch (cmd) {
case Q_QUOTASTAT:
break;
case Q_GETQUOTA:
- if (uid == vfs_context_ucred(context)->cr_ruid)
+ if (uid == kauth_cred_getuid(vfs_context_ucred(context)))
break;
/* fall through */
default:
vfs_unbusy(mp);
return (error);
-#endif /* QUOTA */
}
+#endif /* QUOTA */
/* Subtype is composite of bits */
#define HFS_SUBTYPE_JOURNALED 0x01
/*
* Get file system statistics.
*/
-static int
+int
hfs_statfs(struct mount *mp, register struct vfsstatfs *sbp, __unused vfs_context_t context)
{
ExtendedVCB *vcb = VFSTOVCB(mp);
struct hfsmount *hfsmp = VFSTOHFS(mp);
- u_long freeCNIDs;
- uint16_t subtype = 0;
+ u_int32_t freeCNIDs;
+ u_int16_t subtype = 0;
- freeCNIDs = (u_long)0xFFFFFFFF - (u_long)vcb->vcbNxtCNID;
+ freeCNIDs = (u_int32_t)0xFFFFFFFF - (u_int32_t)vcb->vcbNxtCNID;
- sbp->f_bsize = (uint32_t)vcb->blockSize;
- sbp->f_iosize = (size_t)(MAX_UPL_TRANSFER * PAGE_SIZE);
- sbp->f_blocks = (uint64_t)((unsigned long)vcb->totalBlocks);
- sbp->f_bfree = (uint64_t)((unsigned long )hfs_freeblks(hfsmp, 0));
- sbp->f_bavail = (uint64_t)((unsigned long )hfs_freeblks(hfsmp, 1));
- sbp->f_files = (uint64_t)((unsigned long )(vcb->totalBlocks - 2)); /* max files is constrained by total blocks */
- sbp->f_ffree = (uint64_t)((unsigned long )(MIN(freeCNIDs, sbp->f_bavail)));
+ sbp->f_bsize = (u_int32_t)vcb->blockSize;
+ sbp->f_iosize = (size_t)cluster_max_io_size(mp, 0);
+ sbp->f_blocks = (u_int64_t)((u_int32_t)vcb->totalBlocks);
+ sbp->f_bfree = (u_int64_t)((u_int32_t )hfs_freeblks(hfsmp, 0));
+ sbp->f_bavail = (u_int64_t)((u_int32_t )hfs_freeblks(hfsmp, 1));
+ sbp->f_files = (u_int64_t)((u_int32_t )(vcb->totalBlocks - 2)); /* max files is constrained by total blocks */
+ sbp->f_ffree = (u_int64_t)((u_int32_t )(MIN(freeCNIDs, sbp->f_bavail)));
/*
* Subtypes (flavors) for HFS
struct hfsmount *hfsmp;
ExtendedVCB *vcb;
buf_t bp;
- int sectorsize, retval;
+ int retval;
daddr64_t priIDSector;
hfsmp = VFSTOHFS(mp);
vcb = HFSTOVCB(hfsmp);
// now make sure the super block is flushed
- sectorsize = hfsmp->hfs_phys_block_size;
- priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / sectorsize) +
- HFS_PRI_SECTOR(sectorsize));
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, priIDSector, sectorsize, NOCRED, &bp);
- if (retval != 0) {
- panic("hfs: sync_metadata: can't read super-block?! (retval 0x%x, priIDSector)\n",
- retval, priIDSector);
+ priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+ HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size));
+
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(priIDSector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
+ if ((retval != 0 ) && (retval != ENXIO)) {
+ printf("hfs_sync_metadata: can't read volume header at %d! (retval 0x%x)\n",
+ (int)priIDSector, retval);
}
if (retval == 0 && ((buf_flags(bp) & (B_DELWRI | B_LOCKED)) == B_DELWRI)) {
// hfs_btreeio.c:FlushAlternate() should flag when it was
// written...
if (hfsmp->hfs_alt_id_sector) {
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, hfsmp->hfs_alt_id_sector, sectorsize, NOCRED, &bp);
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
if (retval == 0 && ((buf_flags(bp) & (B_DELWRI | B_LOCKED)) == B_DELWRI)) {
buf_bwrite(bp);
} else if (bp) {
*
* Note: we are always called with the filesystem marked `MPBUSY'.
*/
-static int
+int
hfs_sync(struct mount *mp, int waitfor, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int error, allerror = 0;
struct hfs_sync_cargs args;
+ hfsmp = VFSTOHFS(mp);
+
/*
- * During MNT_UPDATE hfs_changefs might be manipulating
- * vnodes so back off
+ * hfs_changefs might be manipulating vnodes so back off
*/
- if (((uint32_t)vfs_flags(mp)) & MNT_UPDATE) /* XXX MNT_UPDATE may not be visible here */
+ if (hfsmp->hfs_flags & HFS_IN_CHANGEFS)
return (0);
- hfsmp = VFSTOHFS(mp);
if (hfsmp->hfs_flags & HFS_READ_ONLY)
return (EROFS);
if (!lck_rw_try_lock_shared(&hfsmp->hfs_insync))
return 0;
- args.cred = vfs_context_proc(context);
+ args.cred = kauth_cred_get();
args.waitfor = waitfor;
args.p = p;
args.error = 0;
hfs_qsync(mp);
#endif /* QUOTA */
- hfs_hotfilesync(hfsmp, p);
+ hfs_hotfilesync(hfsmp, vfs_context_kernel());
+
/*
* Write back modified superblock.
*/
-
if (IsVCBDirty(vcb)) {
error = hfs_flushvolumeheader(hfsmp, waitfor, 0);
if (error)
}
if (hfsmp->jnl) {
- journal_flush(hfsmp->jnl);
+ hfs_journal_flush(hfsmp, FALSE);
+ }
+
+ {
+ clock_sec_t secs;
+ clock_usec_t usecs;
+ uint64_t now;
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+ hfsmp->hfs_last_sync_time = now;
}
lck_rw_unlock_shared(&hfsmp->hfs_insync);
* those rights via. exflagsp and credanonp
*/
static int
-hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, vfs_context_t context)
+hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, __unused vfs_context_t context)
{
struct hfsfid *hfsfhp;
struct vnode *nvp;
*vpp = NULL;
hfsfhp = (struct hfsfid *)fhp;
- if (fhlen < sizeof(struct hfsfid))
+ if (fhlen < (int)sizeof(struct hfsfid))
return (EINVAL);
- result = hfs_vget(VFSTOHFS(mp), hfsfhp->hfsfid_cnid, &nvp, 0);
+ result = hfs_vget(VFSTOHFS(mp), ntohl(hfsfhp->hfsfid_cnid), &nvp, 0, 0);
if (result) {
if (result == ENOENT)
result = ESTALE;
return result;
}
-
- /* The createtime can be changed by hfs_setattr or hfs_setattrlist.
- * For NFS, we are assuming that only if the createtime was moved
- * forward would it mean the fileID got reused in that session by
- * wrapping. We don't have a volume ID or other unique identifier to
- * to use here for a generation ID across reboots, crashes where
- * metadata noting lastFileID didn't make it to disk but client has
- * it, or volume erasures where fileIDs start over again. Lastly,
- * with HFS allowing "wraps" of fileIDs now, this becomes more
- * error prone. Future, would be change the "wrap bit" to a unique
- * wrap number and use that for generation number. For now do this.
- */
- if ((hfsfhp->hfsfid_gen < VTOC(nvp)->c_itime)) {
- hfs_unlock(VTOC(nvp));
- vnode_put(nvp);
- return (ESTALE);
- }
+
+ /*
+ * We used to use the create time as the gen id of the file handle,
+ * but it is not static enough because it can change at any point
+ * via system calls. We still don't have another volume ID or other
+ * unique identifier to use for a generation ID across reboots that
+ * persists until the file is removed. Using only the CNID exposes
+ * us to the potential wrap-around case, but as of 2/2008, it would take
+ * over 2 months to wrap around if the machine did nothing but allocate
+ * CNIDs. Using some kind of wrap counter would only be effective if
+ * each file had the wrap counter associated with it. For now,
+ * we use only the CNID to identify the file as it's good enough.
+ */
+
*vpp = nvp;
hfs_unlock(VTOC(nvp));
*/
/* ARGSUSED */
static int
-hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, vfs_context_t context)
+hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, __unused vfs_context_t context)
{
struct cnode *cp;
struct hfsfid *hfsfhp;
cp = VTOC(vp);
hfsfhp = (struct hfsfid *)fhp;
- hfsfhp->hfsfid_cnid = cp->c_fileid;
- hfsfhp->hfsfid_gen = cp->c_itime;
+ /* only the CNID is used to identify the file now */
+ hfsfhp->hfsfid_cnid = htonl(cp->c_fileid);
+ hfsfhp->hfsfid_gen = htonl(cp->c_fileid);
*fhlenp = sizeof(struct hfsfid);
return (0);
done = 1;
hfs_chashinit();
hfs_converterinit();
-#if QUOTA
- dqinit();
-#endif /* QUOTA */
BTReserveSetup();
hfs_group_attr = lck_grp_attr_alloc_init();
hfs_mutex_group = lck_grp_alloc_init("hfs-mutex", hfs_group_attr);
hfs_rwlock_group = lck_grp_alloc_init("hfs-rwlock", hfs_group_attr);
-
- /* Turn on lock debugging */
- //lck_attr_setdebug(hfs_lock_attr);
-
+ hfs_spinlock_group = lck_grp_alloc_init("hfs-spinlock", hfs_group_attr);
+
+#if HFS_COMPRESSION
+ decmpfs_init();
+#endif
return (0);
}
static int
-hfs_getmountpoint(vp, hfsmpp)
- struct vnode *vp;
- struct hfsmount **hfsmpp;
+hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp)
{
struct hfsmount * hfsmp;
char fstypename[MFSNAMELEN];
return (EINVAL);
vnode_vfsname(vp, fstypename);
- if (strcmp(fstypename, "hfs") != 0)
+ if (strncmp(fstypename, "hfs", sizeof(fstypename)) != 0)
return (EINVAL);
hfsmp = VTOHFS(vp);
/*
* HFS filesystem related variables.
*/
-static int
+int
hfs_sysctl(int *name, __unused u_int namelen, user_addr_t oldp, size_t *oldlenp,
user_addr_t newp, size_t newlen, vfs_context_t context)
{
/* all sysctl names at this level are terminal */
if (name[0] == HFS_ENCODINGBIAS) {
- u_int32_t bias;
+ int bias;
bias = hfs_getencodingbias();
error = sysctl_int(oldp, oldlenp, newp, newlen, &bias);
} else if (name[0] == HFS_EXTEND_FS) {
u_int64_t newsize;
- vnode_t vp = p->p_fd->fd_cdir;
+ vnode_t vp = vfs_context_cwd(context);
- if (newp == USER_ADDR_NULL || vp == NULL)
+ if (newp == USER_ADDR_NULL || vp == NULLVP)
return (EINVAL);
if ((error = hfs_getmountpoint(vp, &hfsmp)))
return (error);
- error = sysctl_quad(oldp, oldlenp, newp, newlen, &newsize);
+ error = sysctl_quad(oldp, oldlenp, newp, newlen, (quad_t *)&newsize);
if (error)
return (error);
size_t bufsize;
size_t bytes;
u_int32_t hint;
- u_int16_t *unicode_name;
- char *filename;
+ u_int16_t *unicode_name = NULL;
+ char *filename = NULL;
+
+ if ((newlen <= 0) || (newlen > MAXPATHLEN))
+ return (EINVAL);
bufsize = MAX(newlen * 3, MAXPATHLEN);
MALLOC(filename, char *, newlen, M_TEMP, M_WAITOK);
+ if (filename == NULL) {
+ error = ENOMEM;
+ goto encodinghint_exit;
+ }
MALLOC(unicode_name, u_int16_t *, bufsize, M_TEMP, M_WAITOK);
+ if (filename == NULL) {
+ error = ENOMEM;
+ goto encodinghint_exit;
+ }
error = copyin(newp, (caddr_t)filename, newlen);
if (error == 0) {
- error = utf8_decodestr(filename, newlen - 1, unicode_name,
+ error = utf8_decodestr((u_int8_t *)filename, newlen - 1, unicode_name,
&bytes, bufsize, 0, UTF_DECOMPOSED);
if (error == 0) {
hint = hfs_pickencoding(unicode_name, bytes / 2);
- error = sysctl_int(oldp, oldlenp, USER_ADDR_NULL, 0, &hint);
+ error = sysctl_int(oldp, oldlenp, USER_ADDR_NULL, 0, (int32_t *)&hint);
}
}
- FREE(unicode_name, M_TEMP);
- FREE(filename, M_TEMP);
+
+encodinghint_exit:
+ if (unicode_name)
+ FREE(unicode_name, M_TEMP);
+ if (filename)
+ FREE(filename, M_TEMP);
return (error);
} else if (name[0] == HFS_ENABLE_JOURNALING) {
// make the file system journaled...
- struct vnode *vp = p->p_fd->fd_cdir, *jvp;
+ vnode_t vp = vfs_context_cwd(context);
+ vnode_t jvp;
ExtendedVCB *vcb;
struct cat_attr jnl_attr, jinfo_attr;
struct cat_fork jnl_fork, jinfo_fork;
if (!is_suser()) {
return (EPERM);
}
- if (vp == NULL)
+ if (vp == NULLVP)
return EINVAL;
hfsmp = VTOHFS(vp);
}
if (hfsmp->jnl) {
- printf("hfs: volume @ mp 0x%x is already journaled!\n", vnode_mount(vp));
+ printf("hfs: volume @ mp %p is already journaled!\n", vnode_mount(vp));
return EAGAIN;
}
printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
(off_t)name[2], (off_t)name[3]);
+ //
+ // XXXdbg - note that currently (Sept, 08) hfs_util does not support
+ // enabling the journal on a separate device so it is safe
+ // to just copy hfs_devvp here. If hfs_util gets the ability
+ // to dynamically enable the journal on a separate device then
+ // we will have to do the same thing as hfs_early_journal_init()
+ // to locate and open the journal device.
+ //
jvp = hfsmp->hfs_devvp;
jnl = journal_create(jvp,
(off_t)name[2] * (off_t)HFSTOVCB(hfsmp)->blockSize
+ HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
(off_t)((unsigned)name[3]),
hfsmp->hfs_devvp,
- hfsmp->hfs_phys_block_size,
+ hfsmp->hfs_logical_block_size,
0,
0,
hfs_sync_metadata, hfsmp->hfs_mp);
+ /*
+ * Set up the trim callback function so that we can add
+ * recently freed extents to the free extent cache once
+ * the transaction that freed them is written to the
+ * journal on disk.
+ */
+ if (jnl)
+ journal_trim_set_callback(jnl, hfs_trim_callback, hfsmp);
+
if (jnl == NULL) {
printf("hfs: FAILED to create the journal!\n");
if (jvp && jvp != hfsmp->hfs_devvp) {
- VNOP_CLOSE(jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, context);
+ vnode_clearmountedon(jvp);
+ VNOP_CLOSE(jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, vfs_context_kernel());
}
jvp = NULL;
return EINVAL;
}
- hfs_global_exclusive_lock_acquire(hfsmp);
-
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
+
/*
* Flush all dirty metadata buffers.
*/
- buf_flushdirtyblks(hfsmp->hfs_devvp, MNT_WAIT, 0, "hfs_sysctl");
- buf_flushdirtyblks(hfsmp->hfs_extents_vp, MNT_WAIT, 0, "hfs_sysctl");
- buf_flushdirtyblks(hfsmp->hfs_catalog_vp, MNT_WAIT, 0, "hfs_sysctl");
- buf_flushdirtyblks(hfsmp->hfs_allocation_vp, MNT_WAIT, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_devvp, TRUE, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_extents_vp, TRUE, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_catalog_vp, TRUE, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_allocation_vp, TRUE, 0, "hfs_sysctl");
if (hfsmp->hfs_attribute_vp)
- buf_flushdirtyblks(hfsmp->hfs_attribute_vp, MNT_WAIT, 0, "hfs_sysctl");
+ buf_flushdirtyblks(hfsmp->hfs_attribute_vp, TRUE, 0, "hfs_sysctl");
HFSTOVCB(hfsmp)->vcbJinfoBlock = name[1];
HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeJournaledMask;
hfsmp->hfs_jnlinfoblkid = jinfo_attr.ca_fileid;
hfsmp->hfs_jnlfileid = jnl_attr.ca_fileid;
- vfs_setflags(hfsmp->hfs_mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ vfs_setflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1);
+ {
+ fsid_t fsid;
+
+ fsid.val[0] = (int32_t)hfsmp->hfs_raw_dev;
+ fsid.val[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp));
+ vfs_event_signal(&fsid, VQ_UPDATE, (intptr_t)NULL);
+ }
return 0;
} else if (name[0] == HFS_DISABLE_JOURNALING) {
// clear the journaling bit
- struct vnode *vp = p->p_fd->fd_cdir;
+ vnode_t vp = vfs_context_cwd(context);
/* Only root can disable journaling */
if (!is_suser()) {
return (EPERM);
}
- if (vp == NULL)
+ if (vp == NULLVP)
return EINVAL;
hfsmp = VTOHFS(vp);
- printf("hfs: disabling journaling for mount @ 0x%x\n", vnode_mount(vp));
+ /*
+ * Disabling journaling is disallowed on volumes with directory hard links
+ * because we have not tested the relevant code path.
+ */
+ if (hfsmp->hfs_private_attr[DIR_HARDLINKS].ca_entries != 0){
+ printf("hfs: cannot disable journaling on volumes with directory hardlinks\n");
+ return EPERM;
+ }
+
+ printf("hfs: disabling journaling for mount @ %p\n", vnode_mount(vp));
- hfs_global_exclusive_lock_acquire(hfsmp);
+ hfs_lock_global (hfsmp, HFS_EXCLUSIVE_LOCK);
// Lights out for you buddy!
journal_close(hfsmp->jnl);
hfsmp->jnl = NULL;
if (hfsmp->jvp && hfsmp->jvp != hfsmp->hfs_devvp) {
- VNOP_CLOSE(hfsmp->jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, context);
+ vnode_clearmountedon(hfsmp->jvp);
+ VNOP_CLOSE(hfsmp->jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, vfs_context_kernel());
+ vnode_put(hfsmp->jvp);
}
hfsmp->jvp = NULL;
- vfs_clearflags(hfsmp->hfs_mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ vfs_clearflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
hfsmp->jnl_start = 0;
hfsmp->hfs_jnlinfoblkid = 0;
hfsmp->hfs_jnlfileid = 0;
HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeJournaledMask;
- hfs_global_exclusive_lock_release(hfsmp);
+ hfs_unlock_global (hfsmp);
+
hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1);
+ {
+ fsid_t fsid;
+
+ fsid.val[0] = (int32_t)hfsmp->hfs_raw_dev;
+ fsid.val[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp));
+ vfs_event_signal(&fsid, VQ_UPDATE, (intptr_t)NULL);
+ }
return 0;
} else if (name[0] == HFS_GET_JOURNAL_INFO) {
- struct vnode *vp = p->p_fd->fd_cdir;
+ vnode_t vp = vfs_context_cwd(context);
off_t jnl_start, jnl_size;
- if (vp == NULL)
+ if (vp == NULLVP)
return EINVAL;
+ /* 64-bit processes won't work with this sysctl -- can't fit a pointer into an int! */
+ if (proc_is64bit(current_proc()))
+ return EINVAL;
+
hfsmp = VTOHFS(vp);
if (hfsmp->jnl == NULL) {
jnl_start = 0;
return 0;
} else if (name[0] == HFS_SET_PKG_EXTENSIONS) {
- return set_package_extensions_table((void *)name[1], name[2], name[3]);
+ return set_package_extensions_table((user_addr_t)((unsigned)name[1]), name[2], name[3]);
} else if (name[0] == VFS_CTL_QUERY) {
struct sysctl_req *req;
- struct vfsidctl vc;
- struct user_vfsidctl user_vc;
+ union union_vfsidctl vc;
struct mount *mp;
struct vfsquery vq;
- boolean_t is_64_bit;
- is_64_bit = proc_is64bit(p);
req = CAST_DOWN(struct sysctl_req *, oldp); /* we're new style vfs sysctl. */
- if (is_64_bit) {
- error = SYSCTL_IN(req, &user_vc, sizeof(user_vc));
- if (error) return (error);
-
- mp = vfs_getvfs(&user_vc.vc_fsid);
- }
- else {
- error = SYSCTL_IN(req, &vc, sizeof(vc));
- if (error) return (error);
-
- mp = vfs_getvfs(&vc.vc_fsid);
- }
+ error = SYSCTL_IN(req, &vc, proc_is64bit(p)? sizeof(vc.vc64):sizeof(vc.vc32));
+ if (error) return (error);
+
+ mp = vfs_getvfs(&vc.vc32.vc_fsid); /* works for 32 and 64 */
if (mp == NULL) return (ENOENT);
hfsmp = VFSTOHFS(mp);
bzero(&vq, sizeof(vq));
vq.vq_flags = hfsmp->hfs_notification_conditions;
return SYSCTL_OUT(req, &vq, sizeof(vq));;
- };
+ } else if (name[0] == HFS_REPLAY_JOURNAL) {
+ vnode_t devvp = NULL;
+ int device_fd;
+ if (namelen != 2) {
+ return (EINVAL);
+ }
+ device_fd = name[1];
+ error = file_vnode(device_fd, &devvp);
+ if (error) {
+ return error;
+ }
+ error = vnode_getwithref(devvp);
+ if (error) {
+ file_drop(device_fd);
+ return error;
+ }
+ error = hfs_journal_replay(devvp, context);
+ file_drop(device_fd);
+ vnode_put(devvp);
+ return error;
+ } else if (name[0] == HFS_ENABLE_RESIZE_DEBUG) {
+ hfs_resize_debug = 1;
+ printf ("hfs_sysctl: Enabled volume resize debugging.\n");
+ return 0;
+ }
return (ENOTSUP);
}
+/*
+ * hfs_vfs_vget is not static since it is used in hfs_readwrite.c to support
+ * the build_path ioctl. We use it to leverage the code below that updates
+ * the origin list cache if necessary
+ */
-static int
+int
hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, __unused vfs_context_t context)
{
- return hfs_vget(VFSTOHFS(mp), (cnid_t)ino, vpp, 1);
+ int error;
+ int lockflags;
+ struct hfsmount *hfsmp;
+
+ hfsmp = VFSTOHFS(mp);
+
+ error = hfs_vget(hfsmp, (cnid_t)ino, vpp, 1, 0);
+ if (error)
+ return (error);
+
+ /*
+ * ADLs may need to have their origin state updated
+ * since build_path needs a valid parent. The same is true
+ * for hardlinked files as well. There isn't a race window here
+ * in re-acquiring the cnode lock since we aren't pulling any data
+ * out of the cnode; instead, we're going to the catalog.
+ */
+ if ((VTOC(*vpp)->c_flag & C_HARDLINK) &&
+ (hfs_lock(VTOC(*vpp), HFS_EXCLUSIVE_LOCK) == 0)) {
+ cnode_t *cp = VTOC(*vpp);
+ struct cat_desc cdesc;
+
+ if (!hfs_haslinkorigin(cp)) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = cat_findname(hfsmp, (cnid_t)ino, &cdesc);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error == 0) {
+ if ((cdesc.cd_parentcnid != hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid) &&
+ (cdesc.cd_parentcnid != hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid)) {
+ hfs_savelinkorigin(cp, cdesc.cd_parentcnid);
+ }
+ cat_releasedesc(&cdesc);
+ }
+ }
+ hfs_unlock(cp);
+ }
+ return (0);
}
*
* If the object is a file then it will represent the data fork.
*/
-__private_extern__
int
-hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock)
+hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock, int allow_deleted)
{
- struct vnode *vp = NULL;
+ struct vnode *vp = NULLVP;
struct cat_desc cndesc;
struct cat_attr cnattr;
struct cat_fork cnfork;
- struct componentname cn;
u_int32_t linkref = 0;
int error;
/* Check for cnids that should't be exported. */
- if ((cnid < kHFSFirstUserCatalogNodeID)
- && (cnid != kHFSRootFolderID && cnid != kHFSRootParentID))
+ if ((cnid < kHFSFirstUserCatalogNodeID) &&
+ (cnid != kHFSRootFolderID && cnid != kHFSRootParentID)) {
return (ENOENT);
-
- /* Don't export HFS Private Data dir. */
- if (cnid == hfsmp->hfs_privdir_desc.cd_cnid)
+ }
+ /* Don't export our private directories. */
+ if (cnid == hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid ||
+ cnid == hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid) {
return (ENOENT);
-
+ }
/*
* Check the hash first
*/
- vp = hfs_chash_getvnode(hfsmp->hfs_raw_dev, cnid, 0, skiplock);
+ vp = hfs_chash_getvnode(hfsmp, cnid, 0, skiplock, allow_deleted);
if (vp) {
*vpp = vp;
return(0);
if (cnid == kHFSRootParentID) {
static char hfs_rootname[] = "/";
- cndesc.cd_nameptr = &hfs_rootname[0];
+ cndesc.cd_nameptr = (const u_int8_t *)&hfs_rootname[0];
cndesc.cd_namelen = 1;
cndesc.cd_parentcnid = kHFSRootParentID;
cndesc.cd_cnid = kHFSRootFolderID;
cndesc.cd_flags = CD_ISDIR;
cnattr.ca_fileid = kHFSRootFolderID;
- cnattr.ca_nlink = 2;
+ cnattr.ca_linkcount = 1;
cnattr.ca_entries = 1;
+ cnattr.ca_dircount = 1;
cnattr.ca_mode = (S_IFDIR | S_IRWXU | S_IRWXG | S_IRWXO);
} else {
int lockflags;
+ cnid_t pid;
+ const char *nameptr;
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
- error = cat_idlookup(hfsmp, cnid, &cndesc, &cnattr, &cnfork);
+ error = cat_idlookup(hfsmp, cnid, 0, &cndesc, &cnattr, &cnfork);
hfs_systemfile_unlock(hfsmp, lockflags);
if (error) {
}
/*
- * If we just looked up a raw hardlink inode,
- * then finish initializing it.
+ * Check for a raw hardlink inode and save its linkref.
*/
- if ((cndesc.cd_parentcnid == hfsmp->hfs_privdir_desc.cd_cnid) &&
- (bcmp(cndesc.cd_nameptr, HFS_INODE_PREFIX, HFS_INODE_PREFIX_LEN) == 0)) {
- linkref = strtoul((const char*)&cndesc.cd_nameptr[HFS_INODE_PREFIX_LEN], NULL, 10);
- cnattr.ca_rdev = linkref;
+ pid = cndesc.cd_parentcnid;
+ nameptr = (const char *)cndesc.cd_nameptr;
- // patch up the parentcnid
- if (cnattr.ca_attrblks != 0) {
- cndesc.cd_parentcnid = cnattr.ca_attrblks;
- }
+ if ((pid == hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
+ (bcmp(nameptr, HFS_INODE_PREFIX, HFS_INODE_PREFIX_LEN) == 0)) {
+ linkref = strtoul(&nameptr[HFS_INODE_PREFIX_LEN], NULL, 10);
+
+ } else if ((pid == hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid) &&
+ (bcmp(nameptr, HFS_DIRINODE_PREFIX, HFS_DIRINODE_PREFIX_LEN) == 0)) {
+ linkref = strtoul(&nameptr[HFS_DIRINODE_PREFIX_LEN], NULL, 10);
+
+ } else if ((pid == hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
+ (bcmp(nameptr, HFS_DELETE_PREFIX, HFS_DELETE_PREFIX_LEN) == 0)) {
+ *vpp = NULL;
+ cat_releasedesc(&cndesc);
+ return (ENOENT); /* open unlinked file */
}
}
/*
- * Supply hfs_getnewvnode with a component name.
+ * Finish initializing cnode descriptor for hardlinks.
+ *
+ * We need a valid name and parent for reverse lookups.
*/
- MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
- cn.cn_nameiop = LOOKUP;
- cn.cn_flags = ISLASTCN | HASBUF;
- cn.cn_context = NULL;
- cn.cn_pnlen = MAXPATHLEN;
- cn.cn_nameptr = cn.cn_pnbuf;
- cn.cn_namelen = cndesc.cd_namelen;
- cn.cn_hash = 0;
- cn.cn_consume = 0;
- bcopy(cndesc.cd_nameptr, cn.cn_nameptr, cndesc.cd_namelen + 1);
+ if (linkref) {
+ cnid_t nextlinkid;
+ cnid_t prevlinkid;
+ struct cat_desc linkdesc;
+ int lockflags;
+
+ cnattr.ca_linkref = linkref;
- /* XXX should we supply the parent as well... ? */
- error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr, &cnfork, &vp);
- if (error == 0 && linkref != 0) {
- VTOC(vp)->c_flag |= C_HARDLINK;
+ /*
+ * Pick up the first link in the chain and get a descriptor for it.
+ * This allows blind volfs paths to work for hardlinks.
+ */
+ if ((hfs_lookup_siblinglinks(hfsmp, linkref, &prevlinkid, &nextlinkid) == 0) &&
+ (nextlinkid != 0)) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = cat_findname(hfsmp, nextlinkid, &linkdesc);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error == 0) {
+ cat_releasedesc(&cndesc);
+ bcopy(&linkdesc, &cndesc, sizeof(linkdesc));
+ }
+ }
}
- FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
+ if (linkref) {
+ int newvnode_flags = 0;
+
+ error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr,
+ &cnfork, &vp, &newvnode_flags);
+ if (error == 0) {
+ VTOC(vp)->c_flag |= C_HARDLINK;
+ vnode_setmultipath(vp);
+ }
+ } else {
+ struct componentname cn;
+ int newvnode_flags = 0;
+
+ /* Supply hfs_getnewvnode with a component name. */
+ MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
+ cn.cn_nameiop = LOOKUP;
+ cn.cn_flags = ISLASTCN | HASBUF;
+ cn.cn_context = NULL;
+ cn.cn_pnlen = MAXPATHLEN;
+ cn.cn_nameptr = cn.cn_pnbuf;
+ cn.cn_namelen = cndesc.cd_namelen;
+ cn.cn_hash = 0;
+ cn.cn_consume = 0;
+ bcopy(cndesc.cd_nameptr, cn.cn_nameptr, cndesc.cd_namelen + 1);
+
+ error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr,
+ &cnfork, &vp, &newvnode_flags);
+ if (error == 0 && (VTOC(vp)->c_flag & C_HARDLINK)) {
+ hfs_savelinkorigin(VTOC(vp), cndesc.cd_parentcnid);
+ }
+ FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
+ }
cat_releasedesc(&cndesc);
+
*vpp = vp;
- if (vp && skiplock)
+ if (vp && skiplock) {
hfs_unlock(VTOC(vp));
+ }
return (error);
}
* Flush out all the files in a filesystem.
*/
static int
+#if QUOTA
hfs_flushfiles(struct mount *mp, int flags, struct proc *p)
+#else
+hfs_flushfiles(struct mount *mp, int flags, __unused struct proc *p)
+#endif /* QUOTA */
{
struct hfsmount *hfsmp;
struct vnode *skipvp = NULLVP;
+ int error;
+#if QUOTA
int quotafilecnt;
int i;
- int error;
+#endif
hfsmp = VFSTOHFS(mp);
}
/* Obtain the root vnode so we can skip over it. */
- skipvp = hfs_chash_getvnode(hfsmp->hfs_raw_dev, kHFSRootFolderID, 0, 0);
+ skipvp = hfs_chash_getvnode(hfsmp, kHFSRootFolderID, 0, 0, 0);
}
#endif /* QUOTA */
#define kIndexMacUkrainian 48 /* MacUkrainian encoding is 152 */
#define kIndexMacFarsi 49 /* MacFarsi encoding is 140 */
- UInt32 index;
+ u_int32_t index;
switch (encoding) {
case kTextEncodingMacUkrainian:
break;
}
- if (index < 64) {
+ if (index < 64 && (hfsmp->encodingsBitmap & (u_int64_t)(1ULL << index)) == 0) {
HFS_MOUNT_LOCK(hfsmp, TRUE)
hfsmp->encodingsBitmap |= (u_int64_t)(1ULL << index);
- hfsmp->vcbFlags |= 0xFF00;
+ MarkVCBDirty(hfsmp);
HFS_MOUNT_UNLOCK(hfsmp, TRUE);
}
}
*
* On journal volumes this will cause a volume header flush
*/
-__private_extern__
int
hfs_volupdate(struct hfsmount *hfsmp, enum volop op, int inroot)
{
lck_mtx_lock(&hfsmp->hfs_mutex);
- hfsmp->vcbFlags |= 0xFF00;
+ MarkVCBDirty(hfsmp);
hfsmp->hfs_mtime = tv.tv_sec;
switch (op) {
int sectorsize;
ByteCount namelen;
- sectorsize = hfsmp->hfs_phys_block_size;
+ sectorsize = hfsmp->hfs_logical_block_size;
retval = (int)buf_bread(hfsmp->hfs_devvp, (daddr64_t)HFS_PRI_SECTOR(sectorsize), sectorsize, NOCRED, &bp);
if (retval) {
if (bp)
mdb = (HFSMasterDirectoryBlock *)(buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize));
- mdb->drCrDate = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->vcbCrDate)));
+ mdb->drCrDate = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->hfs_itime)));
mdb->drLsMod = SWAP_BE32 (UTCToLocal(to_hfs_time(vcb->vcbLsMod)));
mdb->drAtrb = SWAP_BE16 (vcb->vcbAtrb);
mdb->drNmFls = SWAP_BE16 (vcb->vcbNmFls);
mdb->drNxtCNID = SWAP_BE32 (vcb->vcbNxtCNID);
mdb->drFreeBks = SWAP_BE16 (vcb->freeBlocks);
- namelen = strlen(vcb->vcbVN);
+ namelen = strlen((char *)vcb->vcbVN);
retval = utf8_to_hfs(vcb, namelen, vcb->vcbVN, mdb->drVN);
/* Retry with MacRoman in case that's how it was exported. */
if (retval)
* not flushed since the on-disk "H+" and "HX" signatures
* are always stored in-memory as "H+".
*/
-__private_extern__
int
hfs_flushvolumeheader(struct hfsmount *hfsmp, int waitfor, int altflush)
{
ExtendedVCB *vcb = HFSTOVCB(hfsmp);
struct filefork *fp;
- HFSPlusVolumeHeader *volumeHeader;
+ HFSPlusVolumeHeader *volumeHeader, *altVH;
int retval;
- struct buf *bp;
+ struct buf *bp, *alt_bp;
int i;
- int sectorsize;
daddr64_t priIDSector;
- int critical = 0;
+ int critical;
u_int16_t signature;
u_int16_t hfsversion;
if (hfsmp->hfs_flags & HFS_READ_ONLY) {
return(0);
}
- if (vcb->vcbSigWord == kHFSSigWord)
+ if (hfsmp->hfs_flags & HFS_STANDARD) {
return hfs_flushMDB(hfsmp, waitfor, altflush);
-
- if (altflush)
- critical = 1;
- sectorsize = hfsmp->hfs_phys_block_size;
- priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / sectorsize) +
- HFS_PRI_SECTOR(sectorsize));
+ }
+ critical = altflush;
+ priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+ HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size));
if (hfs_start_transaction(hfsmp) != 0) {
return EINVAL;
}
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, priIDSector, sectorsize, NOCRED, &bp);
+ bp = NULL;
+ alt_bp = NULL;
+
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(priIDSector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
if (retval) {
- if (bp)
- buf_brelse(bp);
+ printf("hfs: err %d reading VH blk (%s)\n", retval, vcb->vcbVN);
+ goto err_exit;
+ }
- hfs_end_transaction(hfsmp);
-
- printf("HFS: err %d reading VH blk (%s)\n", retval, vcb->vcbVN);
- return (retval);
- }
-
- if (hfsmp->jnl) {
- journal_modify_block_start(hfsmp->jnl, bp);
- }
-
- volumeHeader = (HFSPlusVolumeHeader *)((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize));
+ volumeHeader = (HFSPlusVolumeHeader *)((char *)buf_dataptr(bp) +
+ HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
/*
- * Sanity check what we just read.
+ * Sanity check what we just read. If it's bad, try the alternate
+ * instead.
*/
signature = SWAP_BE16 (volumeHeader->signature);
hfsversion = SWAP_BE16 (volumeHeader->version);
if ((signature != kHFSPlusSigWord && signature != kHFSXSigWord) ||
(hfsversion < kHFSPlusVersion) || (hfsversion > 100) ||
(SWAP_BE32 (volumeHeader->blockSize) != vcb->blockSize)) {
-#if 1
- panic("HFS: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d",
+ printf("hfs: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d%s\n",
vcb->vcbVN, signature, hfsversion,
- SWAP_BE32 (volumeHeader->blockSize));
-#endif
- printf("HFS: corrupt VH blk (%s)\n", vcb->vcbVN);
- buf_brelse(bp);
- return (EIO);
+ SWAP_BE32 (volumeHeader->blockSize),
+ hfsmp->hfs_alt_id_sector ? "; trying alternate" : "");
+ hfs_mark_volume_inconsistent(hfsmp);
+
+ if (hfsmp->hfs_alt_id_sector) {
+ retval = buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &alt_bp);
+ if (retval) {
+ printf("hfs: err %d reading alternate VH (%s)\n", retval, vcb->vcbVN);
+ goto err_exit;
+ }
+
+ altVH = (HFSPlusVolumeHeader *)((char *)buf_dataptr(alt_bp) +
+ HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size));
+ signature = SWAP_BE16(altVH->signature);
+ hfsversion = SWAP_BE16(altVH->version);
+
+ if ((signature != kHFSPlusSigWord && signature != kHFSXSigWord) ||
+ (hfsversion < kHFSPlusVersion) || (kHFSPlusVersion > 100) ||
+ (SWAP_BE32(altVH->blockSize) != vcb->blockSize)) {
+ printf("hfs: corrupt alternate VH on %s, sig 0x%04x, ver %d, blksize %d\n",
+ vcb->vcbVN, signature, hfsversion,
+ SWAP_BE32(altVH->blockSize));
+ retval = EIO;
+ goto err_exit;
+ }
+
+ /* The alternate is plausible, so use it. */
+ bcopy(altVH, volumeHeader, kMDBSize);
+ buf_brelse(alt_bp);
+ alt_bp = NULL;
+ } else {
+ /* No alternate VH, nothing more we can do. */
+ retval = EIO;
+ goto err_exit;
+ }
+ }
+
+ if (hfsmp->jnl) {
+ journal_modify_block_start(hfsmp->jnl, bp);
}
/*
struct buf *bp2;
HFSMasterDirectoryBlock *mdb;
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, (daddr64_t)HFS_PRI_SECTOR(sectorsize),
- sectorsize, NOCRED, &bp2);
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size), hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp2);
if (retval) {
if (bp2)
buf_brelse(bp2);
retval = 0;
} else {
mdb = (HFSMasterDirectoryBlock *)(buf_dataptr(bp2) +
- HFS_PRI_OFFSET(sectorsize));
+ HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
if ( SWAP_BE32 (mdb->drCrDate) != vcb->localCreateDate )
{
mdb->drCrDate = SWAP_BE32 (vcb->localCreateDate); /* pick up the new create date */
if (hfsmp->jnl) {
- journal_modify_block_end(hfsmp->jnl, bp2);
+ journal_modify_block_end(hfsmp->jnl, bp2, NULL, NULL);
} else {
(void) VNOP_BWRITE(bp2); /* write out the changes */
}
}
}
- if (1 /* hfsmp->jnl == 0 */) {
- lck_mtx_lock(&hfsmp->hfs_mutex);
- }
+ lck_mtx_lock(&hfsmp->hfs_mutex);
/* Note: only update the lower 16 bits worth of attributes */
volumeHeader->attributes = SWAP_BE32 (vcb->vcbAtrb);
critical = 1;
}
+ /*
+ * System files are only dirty when altflush is set.
+ */
+ if (altflush == 0) {
+ goto done;
+ }
+
/* Sync Extents over-flow file meta data */
fp = VTOF(vcb->extentsRefNum);
if (FTOC(fp)->c_flag & C_MODIFIED) {
volumeHeader->attributesFile.clumpSize = SWAP_BE32 (fp->ff_clumpsize);
}
- vcb->vcbFlags &= 0x00FF;
-
- if (1 /* hfsmp->jnl == 0 */) {
- lck_mtx_unlock(&hfsmp->hfs_mutex);
+ /* Sync Startup file meta data */
+ if (hfsmp->hfs_startup_vp) {
+ fp = VTOF(hfsmp->hfs_startup_vp);
+ if (FTOC(fp)->c_flag & C_MODIFIED) {
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ volumeHeader->startupFile.extents[i].startBlock =
+ SWAP_BE32 (fp->ff_extents[i].startBlock);
+ volumeHeader->startupFile.extents[i].blockCount =
+ SWAP_BE32 (fp->ff_extents[i].blockCount);
+ }
+ volumeHeader->startupFile.logicalSize = SWAP_BE64 (fp->ff_size);
+ volumeHeader->startupFile.totalBlocks = SWAP_BE32 (fp->ff_blocks);
+ volumeHeader->startupFile.clumpSize = SWAP_BE32 (fp->ff_clumpsize);
+ FTOC(fp)->c_flag &= ~C_MODIFIED;
+ }
}
+done:
+ MarkVCBClean(hfsmp);
+ lck_mtx_unlock(&hfsmp->hfs_mutex);
+
/* If requested, flush out the alternate volume header */
if (altflush && hfsmp->hfs_alt_id_sector) {
- struct buf *alt_bp = NULL;
-
- if (buf_meta_bread(hfsmp->hfs_devvp, hfsmp->hfs_alt_id_sector, sectorsize, NOCRED, &alt_bp) == 0) {
+ if (buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &alt_bp) == 0) {
if (hfsmp->jnl) {
journal_modify_block_start(hfsmp->jnl, alt_bp);
}
- bcopy(volumeHeader, (char *)buf_dataptr(alt_bp) + HFS_ALT_OFFSET(sectorsize), kMDBSize);
+ bcopy(volumeHeader, (char *)buf_dataptr(alt_bp) +
+ HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size),
+ kMDBSize);
if (hfsmp->jnl) {
- journal_modify_block_end(hfsmp->jnl, alt_bp);
+ journal_modify_block_end(hfsmp->jnl, alt_bp, NULL, NULL);
} else {
(void) VNOP_BWRITE(alt_bp);
}
}
if (hfsmp->jnl) {
- journal_modify_block_end(hfsmp->jnl, bp);
+ journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
} else {
if (waitfor != MNT_WAIT)
buf_bawrite(bp);
hfs_end_transaction(hfsmp);
return (retval);
+
+err_exit:
+ if (alt_bp)
+ buf_brelse(alt_bp);
+ if (bp)
+ buf_brelse(bp);
+ hfs_end_transaction(hfsmp);
+ return retval;
}
/*
* Extend a file system.
*/
-__private_extern__
int
hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
{
u_int32_t addblks;
u_int64_t sectorcnt;
u_int32_t sectorsize;
+ u_int32_t phys_sectorsize;
daddr64_t prev_alt_sector;
daddr_t bitmapblks;
- int lockflags;
+ int lockflags = 0;
int error;
-
+ int64_t oldBitmapSize;
+ Boolean usedExtendFileC = false;
+ int transaction_begun = 0;
+
devvp = hfsmp->hfs_devvp;
vcb = HFSTOVCB(hfsmp);
* ownership and check permissions.
*/
if (suser(cred, NULL)) {
- error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0);
+ error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0, 0);
if (error)
return (error);
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)§orsize, 0, context)) {
return (ENXIO);
}
- if (sectorsize != hfsmp->hfs_phys_block_size) {
+ if (sectorsize != hfsmp->hfs_logical_block_size) {
return (ENXIO);
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)§orcnt, 0, context)) {
printf("hfs_extendfs: not enough space on device\n");
return (ENOSPC);
}
+ error = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_sectorsize, 0, context);
+ if (error) {
+ if ((error != ENOTSUP) && (error != ENOTTY)) {
+ return (ENXIO);
+ }
+ /* If ioctl is not supported, force physical and logical sector size to be same */
+ phys_sectorsize = sectorsize;
+ }
oldsize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
/*
* Validate new size.
*/
- if ((newsize <= oldsize) || (newsize % sectorsize)) {
+ if ((newsize <= oldsize) || (newsize % sectorsize) || (newsize % phys_sectorsize)) {
printf("hfs_extendfs: invalid size\n");
return (EINVAL);
}
addblks = newblkcnt - vcb->totalBlocks;
- printf("hfs_extendfs: growing %s by %d blocks\n", vcb->vcbVN, addblks);
+ if (hfs_resize_debug) {
+ printf ("hfs_extendfs: old: size=%qu, blkcnt=%u\n", oldsize, hfsmp->totalBlocks);
+ printf ("hfs_extendfs: new: size=%qu, blkcnt=%u, addblks=%u\n", newsize, (u_int32_t)newblkcnt, addblks);
+ }
+ printf("hfs_extendfs: will extend \"%s\" by %d blocks\n", vcb->vcbVN, addblks);
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ error = EALREADY;
+ goto out;
+ }
+ hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ /* Start with a clean journal. */
+ hfs_journal_flush(hfsmp, TRUE);
+
/*
* Enclose changes inside a transaction.
*/
if (hfs_start_transaction(hfsmp) != 0) {
- return (EINVAL);
+ error = EINVAL;
+ goto out;
}
+ transaction_begun = 1;
- lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+ /*
+ * Note: we take the attributes lock in case we have an attribute data vnode
+ * which needs to change size.
+ */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
vp = vcb->allocationsRefNum;
fp = VTOF(vp);
bcopy(&fp->ff_data, &forkdata, sizeof(forkdata));
/*
* Calculate additional space required (if any) by allocation bitmap.
*/
- bitmapblks = roundup(newblkcnt / 8, vcb->vcbVBMIOSize) / vcb->blockSize;
+ oldBitmapSize = fp->ff_size;
+ bitmapblks = roundup((newblkcnt+7) / 8, vcb->vcbVBMIOSize) / vcb->blockSize;
if (bitmapblks > (daddr_t)fp->ff_blocks)
bitmapblks -= fp->ff_blocks;
else
bitmapblks = 0;
+ /*
+ * The allocation bitmap can contain unused bits that are beyond end of
+ * current volume's allocation blocks. Usually they are supposed to be
+ * zero'ed out but there can be cases where they might be marked as used.
+ * After extending the file system, those bits can represent valid
+ * allocation blocks, so we mark all the bits from the end of current
+ * volume to end of allocation bitmap as "free".
+ */
+ BlockMarkFreeUnused(vcb, vcb->totalBlocks,
+ (fp->ff_blocks * vcb->blockSize * 8) - vcb->totalBlocks);
+
if (bitmapblks > 0) {
daddr64_t blkno;
daddr_t blkcnt;
+ off_t bytesAdded;
/*
- * Add a new extent to the allocation bitmap file.
+ * Get the bitmap's current size (in allocation blocks) so we know
+ * where to start zero filling once the new space is added. We've
+ * got to do this before the bitmap is grown.
*/
- error = AddFileExtent(vcb, fp, vcb->totalBlocks, bitmapblks);
- if (error) {
- printf("hfs_extendfs: error %d adding extents\n", error);
- goto out;
- }
- blkcnt = bitmapblks;
blkno = (daddr64_t)fp->ff_blocks;
- fp->ff_blocks += bitmapblks;
+
+ /*
+ * Try to grow the allocation file in the normal way, using allocation
+ * blocks already existing in the file system. This way, we might be
+ * able to grow the bitmap contiguously, or at least in the metadata
+ * zone.
+ */
+ error = ExtendFileC(vcb, fp, bitmapblks * vcb->blockSize, 0,
+ kEFAllMask | kEFNoClumpMask | kEFReserveMask
+ | kEFMetadataMask | kEFContigMask, &bytesAdded);
+
+ if (error == 0) {
+ usedExtendFileC = true;
+ } else {
+ /*
+ * If the above allocation failed, fall back to allocating the new
+ * extent of the bitmap from the space we're going to add. Since those
+ * blocks don't yet belong to the file system, we have to update the
+ * extent list directly, and manually adjust the file size.
+ */
+ bytesAdded = 0;
+ error = AddFileExtent(vcb, fp, vcb->totalBlocks, bitmapblks);
+ if (error) {
+ printf("hfs_extendfs: error %d adding extents\n", error);
+ goto out;
+ }
+ fp->ff_blocks += bitmapblks;
+ VTOC(vp)->c_blocks = fp->ff_blocks;
+ VTOC(vp)->c_flag |= C_MODIFIED;
+ }
+
+ /*
+ * Update the allocation file's size to include the newly allocated
+ * blocks. Note that ExtendFileC doesn't do this, which is why this
+ * statement is outside the above "if" statement.
+ */
fp->ff_size += (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
- VTOC(vp)->c_blocks = fp->ff_blocks;
+
/*
* Zero out the new bitmap blocks.
*/
{
bp = NULL;
+ blkcnt = bitmapblks;
while (blkcnt > 0) {
error = (int)buf_meta_bread(vp, blkno, vcb->blockSize, NOCRED, &bp);
if (error) {
}
/*
* Mark the new bitmap space as allocated.
+ *
+ * Note that ExtendFileC will have marked any blocks it allocated, so
+ * this is only needed if we used AddFileExtent. Also note that this
+ * has to come *after* the zero filling of new blocks in the case where
+ * we used AddFileExtent (since the part of the bitmap we're touching
+ * is in those newly allocated blocks).
*/
- error = BlockMarkAllocated(vcb, vcb->totalBlocks, bitmapblks);
- if (error) {
- printf("hfs_extendfs: error %d setting bitmap\n", error);
- goto out;
+ if (!usedExtendFileC) {
+ error = BlockMarkAllocated(vcb, vcb->totalBlocks, bitmapblks);
+ if (error) {
+ printf("hfs_extendfs: error %d setting bitmap\n", error);
+ goto out;
+ }
+ vcb->freeBlocks -= bitmapblks;
}
}
/*
/*
* Adjust file system variables for new space.
*/
- prev_phys_block_count = hfsmp->hfs_phys_block_count;
+ prev_phys_block_count = hfsmp->hfs_logical_block_count;
prev_alt_sector = hfsmp->hfs_alt_id_sector;
vcb->totalBlocks += addblks;
- vcb->freeBlocks += addblks - bitmapblks;
- hfsmp->hfs_phys_block_count = newsize / sectorsize;
+ vcb->freeBlocks += addblks;
+ hfsmp->hfs_logical_block_count = newsize / sectorsize;
hfsmp->hfs_alt_id_sector = (hfsmp->hfsPlusIOPosOffset / sectorsize) +
- HFS_ALT_SECTOR(sectorsize, hfsmp->hfs_phys_block_count);
+ HFS_ALT_SECTOR(sectorsize, hfsmp->hfs_logical_block_count);
MarkVCBDirty(vcb);
error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
if (error) {
/*
* Restore to old state.
*/
- fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
+ if (usedExtendFileC) {
+ (void) TruncateFileC(vcb, fp, oldBitmapSize, 0, FORK_IS_RSRC(fp),
+ FTOC(fp)->c_fileid, false);
+ } else {
+ fp->ff_blocks -= bitmapblks;
+ fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
+ /*
+ * No need to mark the excess blocks free since those bitmap blocks
+ * are no longer part of the bitmap. But we do need to undo the
+ * effect of the "vcb->freeBlocks -= bitmapblks" above.
+ */
+ vcb->freeBlocks += bitmapblks;
+ }
vcb->totalBlocks -= addblks;
- vcb->freeBlocks -= addblks - bitmapblks;
- hfsmp->hfs_phys_block_count = prev_phys_block_count;
+ vcb->freeBlocks -= addblks;
+ hfsmp->hfs_logical_block_count = prev_phys_block_count;
hfsmp->hfs_alt_id_sector = prev_alt_sector;
MarkVCBDirty(vcb);
- if (vcb->blockSize == 512)
- (void) BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2);
- else
- (void) BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1);
+ if (vcb->blockSize == 512) {
+ if (BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2)) {
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+ } else {
+ if (BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1)) {
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+ }
goto out;
}
/*
*/
bp = NULL;
if (prev_alt_sector) {
- if (buf_meta_bread(hfsmp->hfs_devvp, prev_alt_sector, sectorsize,
- NOCRED, &bp) == 0) {
+ if (buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(prev_alt_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp) == 0) {
journal_modify_block_start(hfsmp->jnl, bp);
- bzero((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(sectorsize), kMDBSize);
+ bzero((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size), kMDBSize);
- journal_modify_block_end(hfsmp->jnl, bp);
+ journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
} else if (bp) {
buf_brelse(bp);
}
}
+
+ /*
+ * Update the metadata zone size based on current volume size
+ */
+ hfs_metadatazone_init(hfsmp, false);
+
+ /*
+ * Adjust the size of hfsmp->hfs_attrdata_vp
+ */
+ if (hfsmp->hfs_attrdata_vp) {
+ struct cnode *attr_cp;
+ struct filefork *attr_fp;
+
+ if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
+ attr_cp = VTOC(hfsmp->hfs_attrdata_vp);
+ attr_fp = VTOF(hfsmp->hfs_attrdata_vp);
+
+ attr_cp->c_blocks = newblkcnt;
+ attr_fp->ff_blocks = newblkcnt;
+ attr_fp->ff_extents[0].blockCount = newblkcnt;
+ attr_fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
+ ubc_setsize(hfsmp->hfs_attrdata_vp, attr_fp->ff_size);
+ vnode_put(hfsmp->hfs_attrdata_vp);
+ }
+ }
+
+ /*
+ * Update the R/B Tree if necessary. Since we don't have to drop the systemfile
+ * locks in the middle of these operations like we do in the truncate case
+ * where we have to relocate files, we can only update the red-black tree
+ * if there were actual changes made to the bitmap. Also, we can't really scan the
+ * new portion of the bitmap before it has been allocated. The BlockMarkAllocated
+ * routines are smart enough to avoid the r/b tree if the portion they are manipulating is
+ * not currently controlled by the tree.
+ *
+ * We only update hfsmp->allocLimit if totalBlocks actually increased.
+ */
+
+ if (error == 0) {
+ UpdateAllocLimit(hfsmp, hfsmp->totalBlocks);
+ }
+
+ /* Log successful extending */
+ printf("hfs_extendfs: extended \"%s\" to %d blocks (was %d blocks)\n",
+ hfsmp->vcbVN, hfsmp->totalBlocks, (u_int32_t)(oldsize/hfsmp->blockSize));
+
out:
if (error && fp) {
/* Restore allocation fork. */
bcopy(&forkdata, &fp->ff_data, sizeof(forkdata));
VTOC(vp)->c_blocks = fp->ff_blocks;
-
+
+ }
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (transaction_begun) {
+ hfs_end_transaction(hfsmp);
+ hfs_journal_flush(hfsmp, FALSE);
+ /* Just to be sure, sync all data to the disk */
+ (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
}
- hfs_systemfile_unlock(hfsmp, lockflags);
- hfs_end_transaction(hfsmp);
- return (error);
+ return MacToVFSError(error);
}
#define HFS_MIN_SIZE (32LL * 1024LL * 1024LL)
/*
* Truncate a file system (while still mounted).
*/
-__private_extern__
int
-hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, __unused vfs_context_t context)
+hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
{
- struct vnode* rvp = NULL;
struct buf *bp = NULL;
u_int64_t oldsize;
u_int32_t newblkcnt;
- u_int32_t reclaimblks;
+ u_int32_t reclaimblks = 0;
int lockflags = 0;
int transaction_begun = 0;
- int error;
+ Boolean updateFreeBlocks = false;
+ Boolean disable_sparse = false;
+ int error = 0;
- /*
- * Grab the root vnode to serialize with another hfs_truncatefs call.
- */
- error = hfs_vget(hfsmp, kHFSRootFolderID, &rvp, 0);
- if (error) {
- return (error);
+ lck_mtx_lock(&hfsmp->hfs_mutex);
+ if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
+ lck_mtx_unlock(&hfsmp->hfs_mutex);
+ return (EALREADY);
}
+ hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
+ hfsmp->hfs_resize_blocksmoved = 0;
+ hfsmp->hfs_resize_totalblocks = 0;
+ hfsmp->hfs_resize_progress = 0;
+ lck_mtx_unlock(&hfsmp->hfs_mutex);
+
/*
- * - HFS Plus file systems only.
- * - Journaling must be enabled.
+ * - Journaled HFS Plus volumes only.
* - No embedded volumes.
*/
- if ((hfsmp->hfs_flags & HFS_STANDARD) ||
- (hfsmp->jnl == NULL) ||
+ if ((hfsmp->jnl == NULL) ||
(hfsmp->hfsPlusIOPosOffset != 0)) {
error = EPERM;
goto out;
newblkcnt = newsize / hfsmp->blockSize;
reclaimblks = hfsmp->totalBlocks - newblkcnt;
+ if (hfs_resize_debug) {
+ printf ("hfs_truncatefs: old: size=%qu, blkcnt=%u, freeblks=%u\n", oldsize, hfsmp->totalBlocks, hfs_freeblks(hfsmp, 1));
+ printf ("hfs_truncatefs: new: size=%qu, blkcnt=%u, reclaimblks=%u\n", newsize, newblkcnt, reclaimblks);
+ }
+
/* Make sure new size is valid. */
if ((newsize < HFS_MIN_SIZE) ||
(newsize >= oldsize) ||
- (newsize % hfsmp->hfs_phys_block_size)) {
+ (newsize % hfsmp->hfs_logical_block_size) ||
+ (newsize % hfsmp->hfs_physical_block_size)) {
+ printf ("hfs_truncatefs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
error = EINVAL;
goto out;
}
- /* Make sure there's enough space to work with. */
- if (reclaimblks > (hfsmp->freeBlocks / 4)) {
+
+ /*
+ * Make sure that the file system has enough free blocks reclaim.
+ *
+ * Before resize, the disk is divided into four zones -
+ * A. Allocated_Stationary - These are allocated blocks that exist
+ * before the new end of disk. These blocks will not be
+ * relocated or modified during resize.
+ * B. Free_Stationary - These are free blocks that exist before the
+ * new end of disk. These blocks can be used for any new
+ * allocations during resize, including allocation for relocating
+ * data from the area of disk being reclaimed.
+ * C. Allocated_To-Reclaim - These are allocated blocks that exist
+ * beyond the new end of disk. These blocks need to be reclaimed
+ * during resize by allocating equal number of blocks in Free
+ * Stationary zone and copying the data.
+ * D. Free_To-Reclaim - These are free blocks that exist beyond the
+ * new end of disk. Nothing special needs to be done to reclaim
+ * them.
+ *
+ * Total number of blocks on the disk before resize:
+ * ------------------------------------------------
+ * Total Blocks = Allocated_Stationary + Free_Stationary +
+ * Allocated_To-Reclaim + Free_To-Reclaim
+ *
+ * Total number of blocks that need to be reclaimed:
+ * ------------------------------------------------
+ * Blocks to Reclaim = Allocated_To-Reclaim + Free_To-Reclaim
+ *
+ * Note that the check below also makes sure that we have enough space
+ * to relocate data from Allocated_To-Reclaim to Free_Stationary.
+ * Therefore we do not need to check total number of blocks to relocate
+ * later in the code.
+ *
+ * The condition below gets converted to:
+ *
+ * Allocated To-Reclaim + Free To-Reclaim >= Free Stationary + Free To-Reclaim
+ *
+ * which is equivalent to:
+ *
+ * Allocated To-Reclaim >= Free Stationary
+ */
+ if (reclaimblks >= hfs_freeblks(hfsmp, 1)) {
+ printf("hfs_truncatefs: insufficient space (need %u blocks; have %u free blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1));
error = ENOSPC;
goto out;
}
-
- printf("hfs_truncatefs: shrinking %s by %d blocks out of %d\n",
- hfsmp->vcbVN, reclaimblks, hfsmp->totalBlocks);
-
+
+ /* Start with a clean journal. */
+ hfs_journal_flush(hfsmp, TRUE);
+
if (hfs_start_transaction(hfsmp) != 0) {
error = EINVAL;
goto out;
}
transaction_begun = 1;
+
+ /* Take the bitmap lock to update the alloc limit field */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * Prevent new allocations from using the part we're trying to truncate.
+ *
+ * NOTE: allocLimit is set to the allocation block number where the new
+ * alternate volume header will be. That way there will be no files to
+ * interfere with allocating the new alternate volume header, and no files
+ * in the allocation blocks beyond (i.e. the blocks we're trying to
+ * truncate away.
+ *
+ * Also shrink the red-black tree if needed.
+ */
+ if (hfsmp->blockSize == 512) {
+ error = UpdateAllocLimit (hfsmp, newblkcnt - 2);
+ }
+ else {
+ error = UpdateAllocLimit (hfsmp, newblkcnt - 1);
+ }
+
+ /* Sparse devices use first fit allocation which is not ideal
+ * for volume resize which requires best fit allocation. If a
+ * sparse device is being truncated, disable the sparse device
+ * property temporarily for the duration of resize. Also reset
+ * the free extent cache so that it is rebuilt as sorted by
+ * totalBlocks instead of startBlock.
+ *
+ * Note that this will affect all allocations on the volume and
+ * ideal fix would be just to modify resize-related allocations,
+ * but it will result in complexity like handling of two free
+ * extent caches sorted differently, etc. So we stick to this
+ * solution for now.
+ */
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
+ ResetVCBFreeExtCache(hfsmp);
+ disable_sparse = true;
+ }
+
+ /*
+ * Update the volume free block count to reflect the total number
+ * of free blocks that will exist after a successful resize.
+ * Relocation of extents will result in no net change in the total
+ * free space on the disk. Therefore the code that allocates
+ * space for new extent and deallocates the old extent explicitly
+ * prevents updating the volume free block count. It will also
+ * prevent false disk full error when the number of blocks in
+ * an extent being relocated is more than the free blocks that
+ * will exist after the volume is resized.
+ */
+ hfsmp->freeBlocks -= reclaimblks;
+ updateFreeBlocks = true;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ lockflags = 0;
+ }
+
+ /*
+ * Update the metadata zone size to match the new volume size,
+ * and if it too less, metadata zone might be disabled.
+ */
+ hfs_metadatazone_init(hfsmp, false);
/*
- * Look for files that have blocks beyond newblkcnt.
+ * If some files have blocks at or beyond the location of the
+ * new alternate volume header, recalculate free blocks and
+ * reclaim blocks. Otherwise just update free blocks count.
+ *
+ * The current allocLimit is set to the location of new alternate
+ * volume header, and reclaimblks are the total number of blocks
+ * that need to be reclaimed. So the check below is really
+ * ignoring the blocks allocated for old alternate volume header.
*/
- if (hfs_isallocated(hfsmp, newblkcnt, reclaimblks - 1)) {
+ if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) {
/*
* hfs_reclaimspace will use separate transactions when
* relocating files (so we don't overwhelm the journal).
transaction_begun = 0;
/* Attempt to reclaim some space. */
- if (hfs_reclaimspace(hfsmp, newblkcnt) != 0) {
- printf("hfs_truncatefs: couldn't reclaim space on %s\n", hfsmp->vcbVN);
+ error = hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context);
+ if (error != 0) {
+ printf("hfs_truncatefs: couldn't reclaim space on %s (error=%d)\n", hfsmp->vcbVN, error);
error = ENOSPC;
goto out;
}
transaction_begun = 1;
/* Check if we're clear now. */
- if (hfs_isallocated(hfsmp, newblkcnt, reclaimblks - 1)) {
- printf("hfs_truncatefs: didn't reclaim enough space on %s\n", hfsmp->vcbVN);
- error = ENOSPC;
+ error = hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks);
+ if (error != 0) {
+ printf("hfs_truncatefs: didn't reclaim enough space on %s (error=%d)\n", hfsmp->vcbVN, error);
+ error = EAGAIN; /* tell client to try again */
goto out;
}
+ }
+
+ /*
+ * Note: we take the attributes lock in case we have an attribute data vnode
+ * which needs to change size.
+ */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * Allocate last 1KB for alternate volume header.
+ */
+ error = BlockMarkAllocated(hfsmp, hfsmp->allocLimit, (hfsmp->blockSize == 512) ? 2 : 1);
+ if (error) {
+ printf("hfs_truncatefs: Error %d allocating new alternate volume header\n", error);
+ goto out;
}
- lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
/*
* Mark the old alternate volume header as free.
* We don't bother shrinking allocation bitmap file.
*/
- if (hfsmp->blockSize == 512)
+ if (hfsmp->blockSize == 512)
(void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2);
else
(void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1);
- /*
- * Allocate last block for alternate volume header.
- */
- if (hfsmp->blockSize == 512)
- error = BlockMarkAllocated(hfsmp, newblkcnt - 2, 2);
- else
- error = BlockMarkAllocated(hfsmp, newblkcnt - 1, 1);
-
- if (error) {
- goto out;
- }
-
/*
* Invalidate the existing alternate volume header.
+ *
+ * Don't include this in a transaction (don't call journal_modify_block)
+ * since this block will be outside of the truncated file system!
*/
if (hfsmp->hfs_alt_id_sector) {
- if (buf_meta_bread(hfsmp->hfs_devvp, hfsmp->hfs_alt_id_sector,
- hfsmp->hfs_phys_block_size, NOCRED, &bp) == 0) {
- journal_modify_block_start(hfsmp->jnl, bp);
-
- bzero((void*)((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_phys_block_size)), kMDBSize);
-
- journal_modify_block_end(hfsmp->jnl, bp);
- } else if (bp) {
- buf_brelse(bp);
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
+ if (error == 0) {
+ bzero((void*)((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size)), kMDBSize);
+ (void) VNOP_BWRITE(bp);
+ } else {
+ if (bp) {
+ buf_brelse(bp);
+ }
}
bp = NULL;
}
+ /* Log successful shrinking. */
+ printf("hfs_truncatefs: shrank \"%s\" to %d blocks (was %d blocks)\n",
+ hfsmp->vcbVN, newblkcnt, hfsmp->totalBlocks);
+
/*
* Adjust file system variables and flush them to disk.
*/
- hfsmp->freeBlocks -= hfsmp->totalBlocks - newblkcnt;
hfsmp->totalBlocks = newblkcnt;
- hfsmp->hfs_phys_block_count = newsize / hfsmp->hfs_phys_block_size;
- hfsmp->hfs_alt_id_sector = HFS_ALT_SECTOR(hfsmp->hfs_phys_block_size, hfsmp->hfs_phys_block_count);
+ hfsmp->hfs_logical_block_count = newsize / hfsmp->hfs_logical_block_size;
+ hfsmp->hfs_alt_id_sector = HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size, hfsmp->hfs_logical_block_count);
MarkVCBDirty(hfsmp);
error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
if (error)
panic("hfs_truncatefs: unexpected error flushing volume header (%d)\n", error);
+
+ /*
+ * Adjust the size of hfsmp->hfs_attrdata_vp
+ */
+ if (hfsmp->hfs_attrdata_vp) {
+ struct cnode *cp;
+ struct filefork *fp;
+
+ if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
+ cp = VTOC(hfsmp->hfs_attrdata_vp);
+ fp = VTOF(hfsmp->hfs_attrdata_vp);
+
+ cp->c_blocks = newblkcnt;
+ fp->ff_blocks = newblkcnt;
+ fp->ff_extents[0].blockCount = newblkcnt;
+ fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
+ ubc_setsize(hfsmp->hfs_attrdata_vp, fp->ff_size);
+ vnode_put(hfsmp->hfs_attrdata_vp);
+ }
+ }
+
out:
+ /*
+ * Update the allocLimit to acknowledge the last one or two blocks now.
+ * Add it to the tree as well if necessary.
+ */
+ UpdateAllocLimit (hfsmp, hfsmp->totalBlocks);
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (disable_sparse == true) {
+ /* Now that resize is completed, set the volume to be sparse
+ * device again so that all further allocations will be first
+ * fit instead of best fit. Reset free extent cache so that
+ * it is rebuilt.
+ */
+ hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
+ ResetVCBFreeExtCache(hfsmp);
+ }
+
+ if (error && (updateFreeBlocks == true)) {
+ hfsmp->freeBlocks += reclaimblks;
+ }
+
+ if (hfsmp->nextAllocation >= hfsmp->allocLimit) {
+ hfsmp->nextAllocation = hfsmp->hfs_metazone_end + 1;
+ }
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ /* On error, reset the metadata zone for original volume size */
+ if (error && (updateFreeBlocks == true)) {
+ hfs_metadatazone_init(hfsmp, false);
+ }
+
if (lockflags) {
hfs_systemfile_unlock(hfsmp, lockflags);
}
if (transaction_begun) {
hfs_end_transaction(hfsmp);
+ hfs_journal_flush(hfsmp, FALSE);
+ /* Just to be sure, sync all data to the disk */
+ (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
}
- if (rvp) {
- hfs_unlock(VTOC(rvp));
- vnode_put(rvp);
- }
- return (error);
+
+ return MacToVFSError(error);
}
+
/*
- * Reclaim space at the end of a file system.
+ * Invalidate the physical block numbers associated with buffer cache blocks
+ * in the given extent of the given vnode.
*/
+struct hfs_inval_blk_no {
+ daddr64_t sectorStart;
+ daddr64_t sectorCount;
+};
static int
-hfs_reclaimspace(struct hfsmount *hfsmp, u_long startblk)
+hfs_invalidate_block_numbers_callback(buf_t bp, void *args_in)
{
- struct vnode *vp = NULL;
- FCB *fcb;
- struct BTreeIterator * iterator = NULL;
- struct FSBufferDescriptor btdata;
- struct HFSPlusCatalogFile filerec;
- u_int32_t saved_next_allocation;
- cnid_t * cnidbufp;
- size_t cnidbufsize;
- int filecnt;
- int maxfilecnt;
- u_long block;
- int lockflags;
- int i;
- int error;
+ daddr64_t blkno;
+ struct hfs_inval_blk_no *args;
+
+ blkno = buf_blkno(bp);
+ args = args_in;
+
+ if (blkno >= args->sectorStart && blkno < args->sectorStart+args->sectorCount)
+ buf_setblkno(bp, buf_lblkno(bp));
- /*
- * Check if Attributes file overlaps.
- */
- if (hfsmp->hfs_attribute_vp) {
- struct filefork *fp;
+ return BUF_RETURNED;
+}
+static void
+hfs_invalidate_sectors(struct vnode *vp, daddr64_t sectorStart, daddr64_t sectorCount)
+{
+ struct hfs_inval_blk_no args;
+ args.sectorStart = sectorStart;
+ args.sectorCount = sectorCount;
- fp = VTOF(hfsmp->hfs_attribute_vp);
- for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- block = fp->ff_extents[i].startBlock +
- fp->ff_extents[i].blockCount;
- if (block >= startblk) {
- printf("hfs_reclaimspace: Attributes file can't move\n");
- return (EPERM);
+ buf_iterate(vp, hfs_invalidate_block_numbers_callback, BUF_SCAN_DIRTY|BUF_SCAN_CLEAN, &args);
+}
+
+
+/*
+ * Copy the contents of an extent to a new location. Also invalidates the
+ * physical block number of any buffer cache block in the copied extent
+ * (so that if the block is written, it will go through VNOP_BLOCKMAP to
+ * determine the new physical block number).
+ */
+static int
+hfs_copy_extent(
+ struct hfsmount *hfsmp,
+ struct vnode *vp, /* The file whose extent is being copied. */
+ u_int32_t oldStart, /* The start of the source extent. */
+ u_int32_t newStart, /* The start of the destination extent. */
+ u_int32_t blockCount, /* The number of allocation blocks to copy. */
+ vfs_context_t context)
+{
+ int err = 0;
+ size_t bufferSize;
+ void *buffer = NULL;
+ struct vfsioattr ioattr;
+ buf_t bp = NULL;
+ off_t resid;
+ size_t ioSize;
+ u_int32_t ioSizeSectors; /* Device sectors in this I/O */
+ daddr64_t srcSector, destSector;
+ u_int32_t sectorsPerBlock = hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+#if CONFIG_PROTECT
+ int cpenabled = 0;
+#endif
+
+ /*
+ * Sanity check that we have locked the vnode of the file we're copying.
+ *
+ * But since hfs_systemfile_lock() doesn't actually take the lock on
+ * the allocation file if a journal is active, ignore the check if the
+ * file being copied is the allocation file.
+ */
+ struct cnode *cp = VTOC(vp);
+ if (cp != hfsmp->hfs_allocation_cp && cp->c_lockowner != current_thread())
+ panic("hfs_copy_extent: vp=%p (cp=%p) not owned?\n", vp, cp);
+
+#if CONFIG_PROTECT
+ /* Prepare the CP blob and get it ready for use */
+ if (!vnode_issystem (vp) && vnode_isreg(vp) &&
+ cp_fs_protected (hfsmp->hfs_mp)) {
+ int cp_err = 0;
+ cp_err = cp_handle_relocate (cp);
+ if (cp_err) {
+ /*
+ * can't copy the file because we couldn't set up keys.
+ * bail out
+ */
+ return cp_err;
+ }
+ else {
+ cpenabled = 1;
+ }
+ }
+#endif
+
+ /*
+ * Determine the I/O size to use
+ *
+ * NOTE: Many external drives will result in an ioSize of 128KB.
+ * TODO: Should we use a larger buffer, doing several consecutive
+ * reads, then several consecutive writes?
+ */
+ vfs_ioattr(hfsmp->hfs_mp, &ioattr);
+ bufferSize = MIN(ioattr.io_maxreadcnt, ioattr.io_maxwritecnt);
+ if (kmem_alloc(kernel_map, (vm_offset_t*) &buffer, bufferSize))
+ return ENOMEM;
+
+ /* Get a buffer for doing the I/O */
+ bp = buf_alloc(hfsmp->hfs_devvp);
+ buf_setdataptr(bp, (uintptr_t)buffer);
+
+ resid = (off_t) blockCount * (off_t) hfsmp->blockSize;
+ srcSector = (daddr64_t) oldStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+ destSector = (daddr64_t) newStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+ while (resid > 0) {
+ ioSize = MIN(bufferSize, (size_t) resid);
+ ioSizeSectors = ioSize / hfsmp->hfs_logical_block_size;
+
+ /* Prepare the buffer for reading */
+ buf_reset(bp, B_READ);
+ buf_setsize(bp, ioSize);
+ buf_setcount(bp, ioSize);
+ buf_setblkno(bp, srcSector);
+ buf_setlblkno(bp, srcSector);
+
+ /* Attach the CP to the buffer */
+#if CONFIG_PROTECT
+ if (cpenabled) {
+ buf_setcpaddr (bp, cp->c_cpentry);
+ }
+#endif
+
+ /* Do the read */
+ err = VNOP_STRATEGY(bp);
+ if (!err)
+ err = buf_biowait(bp);
+ if (err) {
+ printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (read)\n", err);
+ break;
+ }
+
+ /* Prepare the buffer for writing */
+ buf_reset(bp, B_WRITE);
+ buf_setsize(bp, ioSize);
+ buf_setcount(bp, ioSize);
+ buf_setblkno(bp, destSector);
+ buf_setlblkno(bp, destSector);
+ if (vnode_issystem(vp) && journal_uses_fua(hfsmp->jnl))
+ buf_markfua(bp);
+
+#if CONFIG_PROTECT
+ /* Attach the CP to the buffer */
+ if (cpenabled) {
+ buf_setcpaddr (bp, cp->c_cpentry);
+ }
+#endif
+
+ /* Do the write */
+ vnode_startwrite(hfsmp->hfs_devvp);
+ err = VNOP_STRATEGY(bp);
+ if (!err)
+ err = buf_biowait(bp);
+ if (err) {
+ printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (write)\n", err);
+ break;
+ }
+
+ resid -= ioSize;
+ srcSector += ioSizeSectors;
+ destSector += ioSizeSectors;
+ }
+ if (bp)
+ buf_free(bp);
+ if (buffer)
+ kmem_free(kernel_map, (vm_offset_t)buffer, bufferSize);
+
+ /* Make sure all writes have been flushed to disk. */
+ if (vnode_issystem(vp) && !journal_uses_fua(hfsmp->jnl)) {
+ err = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
+ if (err) {
+ printf("hfs_copy_extent: DKIOCSYNCHRONIZECACHE failed (%d)\n", err);
+ err = 0; /* Don't fail the copy. */
+ }
+ }
+
+ if (!err)
+ hfs_invalidate_sectors(vp, (daddr64_t)oldStart*sectorsPerBlock, (daddr64_t)blockCount*sectorsPerBlock);
+
+ return err;
+}
+
+
+/* Structure to store state of reclaiming extents from a
+ * given file. hfs_reclaim_file()/hfs_reclaim_xattr()
+ * initializes the values in this structure which are then
+ * used by code that reclaims and splits the extents.
+ */
+struct hfs_reclaim_extent_info {
+ struct vnode *vp;
+ u_int32_t fileID;
+ u_int8_t forkType;
+ u_int8_t is_dirlink; /* Extent belongs to directory hard link */
+ u_int8_t is_sysfile; /* Extent belongs to system file */
+ u_int8_t is_xattr; /* Extent belongs to extent-based xattr */
+ u_int8_t extent_index;
+ int lockflags; /* Locks that reclaim and split code should grab before modifying the extent record */
+ u_int32_t blocks_relocated; /* Total blocks relocated for this file till now */
+ u_int32_t recStartBlock; /* File allocation block number (FABN) for current extent record */
+ u_int32_t cur_blockCount; /* Number of allocation blocks that have been checked for reclaim */
+ struct filefork *catalog_fp; /* If non-NULL, extent is from catalog record */
+ union record {
+ HFSPlusExtentRecord overflow;/* Extent record from overflow extents btree */
+ HFSPlusAttrRecord xattr; /* Attribute record for large EAs */
+ } record;
+ HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being processed.
+ * For catalog extent record, points to the correct
+ * extent information in filefork. For overflow extent
+ * record, or xattr record, points to extent record
+ * in the structure above
+ */
+ struct cat_desc *dirlink_desc;
+ struct cat_attr *dirlink_attr;
+ struct filefork *dirlink_fork; /* For directory hard links, fp points actually to this */
+ struct BTreeIterator *iterator; /* Shared read/write iterator, hfs_reclaim_file/xattr()
+ * use it for reading and hfs_reclaim_extent()/hfs_split_extent()
+ * use it for writing updated extent record
+ */
+ struct FSBufferDescriptor btdata; /* Shared btdata for reading/writing extent record, same as iterator above */
+ u_int16_t recordlen;
+ int overflow_count; /* For debugging, counter for overflow extent record */
+ FCB *fcb; /* Pointer to the current btree being traversed */
+};
+
+/*
+ * Split the current extent into two extents, with first extent
+ * to contain given number of allocation blocks. Splitting of
+ * extent creates one new extent entry which can result in
+ * shifting of many entries through all the extent records of a
+ * file, and/or creating a new extent record in the overflow
+ * extent btree.
+ *
+ * Example:
+ * The diagram below represents two consecutive extent records,
+ * for simplicity, lets call them record X and X+1 respectively.
+ * Interesting extent entries have been denoted by letters.
+ * If the letter is unchanged before and after split, it means
+ * that the extent entry was not modified during the split.
+ * A '.' means that the entry remains unchanged after the split
+ * and is not relevant for our example. A '0' means that the
+ * extent entry is empty.
+ *
+ * If there isn't sufficient contiguous free space to relocate
+ * an extent (extent "C" below), we will have to break the one
+ * extent into multiple smaller extents, and relocate each of
+ * the smaller extents individually. The way we do this is by
+ * finding the largest contiguous free space that is currently
+ * available (N allocation blocks), and then convert extent "C"
+ * into two extents, C1 and C2, that occupy exactly the same
+ * allocation blocks as extent C. Extent C1 is the first
+ * N allocation blocks of extent C, and extent C2 is the remainder
+ * of extent C. Then we can relocate extent C1 since we know
+ * we have enough contiguous free space to relocate it in its
+ * entirety. We then repeat the process starting with extent C2.
+ *
+ * In record X, only the entries following entry C are shifted, and
+ * the original entry C is replaced with two entries C1 and C2 which
+ * are actually two extent entries for contiguous allocation blocks.
+ *
+ * Note that the entry E from record X is shifted into record X+1 as
+ * the new first entry. Since the first entry of record X+1 is updated,
+ * the FABN will also get updated with the blockCount of entry E.
+ * This also results in shifting of all extent entries in record X+1.
+ * Note that the number of empty entries after the split has been
+ * changed from 3 to 2.
+ *
+ * Before:
+ * record X record X+1
+ * ---------------------===--------- ---------------------------------
+ * | A | . | . | . | B | C | D | E | | F | . | . | . | G | 0 | 0 | 0 |
+ * ---------------------===--------- ---------------------------------
+ *
+ * After:
+ * ---------------------=======----- ---------------------------------
+ * | A | . | . | . | B | C1| C2| D | | E | F | . | . | . | G | 0 | 0 |
+ * ---------------------=======----- ---------------------------------
+ *
+ * C1.startBlock = C.startBlock
+ * C1.blockCount = N
+ *
+ * C2.startBlock = C.startBlock + N
+ * C2.blockCount = C.blockCount - N
+ *
+ * FABN = old FABN - E.blockCount
+ *
+ * Inputs:
+ * extent_info - This is the structure that contains state about
+ * the current file, extent, and extent record that
+ * is being relocated. This structure is shared
+ * among code that traverses through all the extents
+ * of the file, code that relocates extents, and
+ * code that splits the extent.
+ * Output:
+ * Zero on success, non-zero on failure.
+ */
+static int
+hfs_split_extent(struct hfs_reclaim_extent_info *extent_info, uint32_t newBlockCount)
+{
+ int error = 0;
+ int index = extent_info->extent_index;
+ int i;
+ HFSPlusExtentDescriptor shift_extent; /* Extent entry that should be shifted into next extent record */
+ HFSPlusExtentDescriptor last_extent;
+ HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being manipulated */
+ HFSPlusExtentRecord *extents_rec = NULL;
+ HFSPlusExtentKey *extents_key = NULL;
+ HFSPlusAttrRecord *xattr_rec = NULL;
+ HFSPlusAttrKey *xattr_key = NULL;
+ struct BTreeIterator iterator;
+ struct FSBufferDescriptor btdata;
+ uint16_t reclen;
+ uint32_t read_recStartBlock; /* Starting allocation block number to read old extent record */
+ uint32_t write_recStartBlock; /* Starting allocation block number to insert newly updated extent record */
+ Boolean create_record = false;
+ Boolean is_xattr;
+ struct cnode *cp;
+
+ is_xattr = extent_info->is_xattr;
+ extents = extent_info->extents;
+ cp = VTOC(extent_info->vp);
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Split record:%u recStartBlock=%u %u:(%u,%u) for %u blocks\n", extent_info->overflow_count, extent_info->recStartBlock, index, extents[index].startBlock, extents[index].blockCount, newBlockCount);
+ }
+
+ /* Extents overflow btree can not have more than 8 extents.
+ * No split allowed if the 8th extent is already used.
+ */
+ if ((extent_info->fileID == kHFSExtentsFileID) && (extents[kHFSPlusExtentDensity - 1].blockCount != 0)) {
+ printf ("hfs_split_extent: Maximum 8 extents allowed for extents overflow btree, cannot split further.\n");
+ error = ENOSPC;
+ goto out;
+ }
+
+ /* Determine the starting allocation block number for the following
+ * overflow extent record, if any, before the current record
+ * gets modified.
+ */
+ read_recStartBlock = extent_info->recStartBlock;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extents[i].blockCount == 0) {
+ break;
+ }
+ read_recStartBlock += extents[i].blockCount;
+ }
+
+ /* Shift and split */
+ if (index == kHFSPlusExtentDensity-1) {
+ /* The new extent created after split will go into following overflow extent record */
+ shift_extent.startBlock = extents[index].startBlock + newBlockCount;
+ shift_extent.blockCount = extents[index].blockCount - newBlockCount;
+
+ /* Last extent in the record will be split, so nothing to shift */
+ } else {
+ /* Splitting of extents can result in at most of one
+ * extent entry to be shifted into following overflow extent
+ * record. So, store the last extent entry for later.
+ */
+ shift_extent = extents[kHFSPlusExtentDensity-1];
+ if ((hfs_resize_debug) && (shift_extent.blockCount != 0)) {
+ printf ("hfs_split_extent: Save 7:(%u,%u) to shift into overflow record\n", shift_extent.startBlock, shift_extent.blockCount);
+ }
+
+ /* Start shifting extent information from the end of the extent
+ * record to the index where we want to insert the new extent.
+ * Note that kHFSPlusExtentDensity-1 is already saved above, and
+ * does not need to be shifted. The extent entry that is being
+ * split does not get shifted.
+ */
+ for (i = kHFSPlusExtentDensity-2; i > index; i--) {
+ if (hfs_resize_debug) {
+ if (extents[i].blockCount) {
+ printf ("hfs_split_extent: Shift %u:(%u,%u) to %u:(%u,%u)\n", i, extents[i].startBlock, extents[i].blockCount, i+1, extents[i].startBlock, extents[i].blockCount);
+ }
+ }
+ extents[i+1] = extents[i];
+ }
+ }
+
+ if (index == kHFSPlusExtentDensity-1) {
+ /* The second half of the extent being split will be the overflow
+ * entry that will go into following overflow extent record. The
+ * value has been stored in 'shift_extent' above, so there is
+ * nothing to be done here.
+ */
+ } else {
+ /* Update the values in the second half of the extent being split
+ * before updating the first half of the split. Note that the
+ * extent to split or first half of the split is at index 'index'
+ * and a new extent or second half of the split will be inserted at
+ * 'index+1' or into following overflow extent record.
+ */
+ extents[index+1].startBlock = extents[index].startBlock + newBlockCount;
+ extents[index+1].blockCount = extents[index].blockCount - newBlockCount;
+ }
+ /* Update the extent being split, only the block count will change */
+ extents[index].blockCount = newBlockCount;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Split %u:(%u,%u) and ", index, extents[index].startBlock, extents[index].blockCount);
+ if (index != kHFSPlusExtentDensity-1) {
+ printf ("%u:(%u,%u)\n", index+1, extents[index+1].startBlock, extents[index+1].blockCount);
+ } else {
+ printf ("overflow:(%u,%u)\n", shift_extent.startBlock, shift_extent.blockCount);
+ }
+ }
+
+ /* Write out information about the newly split extent to the disk */
+ if (extent_info->catalog_fp) {
+ /* (extent_info->catalog_fp != NULL) means the newly split
+ * extent exists in the catalog record. This means that
+ * the cnode was updated. Therefore, to write out the changes,
+ * mark the cnode as modified. We cannot call hfs_update()
+ * in this function because the caller hfs_reclaim_extent()
+ * is holding the catalog lock currently.
+ */
+ cp->c_flag |= C_MODIFIED;
+ } else {
+ /* The newly split extent is for large EAs or is in overflow
+ * extent record, so update it directly in the btree using the
+ * iterator information from the shared extent_info structure
+ */
+ error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), extent_info->recordlen);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u BTReplaceRecord returned error=%d\n", extent_info->fileID, error);
+ goto out;
+ }
+ }
+
+ /* No extent entry to be shifted into another extent overflow record */
+ if (shift_extent.blockCount == 0) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: No extent entry to be shifted into overflow records\n");
+ }
+ error = 0;
+ goto out;
+ }
+
+ /* The overflow extent entry has to be shifted into an extent
+ * overflow record. This means that we might have to shift
+ * extent entries from all subsequent overflow records by one.
+ * We start iteration from the first record to the last record,
+ * and shift the extent entry from one record to another.
+ * We might have to create a new extent record for the last
+ * extent entry for the file.
+ */
+
+ /* Initialize iterator to search the next record */
+ bzero(&iterator, sizeof(iterator));
+ if (is_xattr) {
+ /* Copy the key from the iterator that was used to update the modified attribute record. */
+ xattr_key = (HFSPlusAttrKey *)&(iterator.key);
+ bcopy((HFSPlusAttrKey *)&(extent_info->iterator->key), xattr_key, sizeof(HFSPlusAttrKey));
+ /* Note: xattr_key->startBlock will be initialized later in the iteration loop */
+
+ MALLOC(xattr_rec, HFSPlusAttrRecord *,
+ sizeof(HFSPlusAttrRecord), M_TEMP, M_WAITOK);
+ if (xattr_rec == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ btdata.bufferAddress = xattr_rec;
+ btdata.itemSize = sizeof(HFSPlusAttrRecord);
+ btdata.itemCount = 1;
+ extents = xattr_rec->overflowExtents.extents;
+ } else {
+ /* Initialize the extent key for the current file */
+ extents_key = (HFSPlusExtentKey *) &(iterator.key);
+ extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extents_key->forkType = extent_info->forkType;
+ extents_key->fileID = extent_info->fileID;
+ /* Note: extents_key->startBlock will be initialized later in the iteration loop */
+
+ MALLOC(extents_rec, HFSPlusExtentRecord *,
+ sizeof(HFSPlusExtentRecord), M_TEMP, M_WAITOK);
+ if (extents_rec == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ btdata.bufferAddress = extents_rec;
+ btdata.itemSize = sizeof(HFSPlusExtentRecord);
+ btdata.itemCount = 1;
+ extents = extents_rec[0];
+ }
+
+ /* The overflow extent entry has to be shifted into an extent
+ * overflow record. This means that we might have to shift
+ * extent entries from all subsequent overflow records by one.
+ * We start iteration from the first record to the last record,
+ * examine one extent record in each iteration and shift one
+ * extent entry from one record to another. We might have to
+ * create a new extent record for the last extent entry for the
+ * file.
+ *
+ * If shift_extent.blockCount is non-zero, it means that there is
+ * an extent entry that needs to be shifted into the next
+ * overflow extent record. We keep on going till there are no such
+ * entries left to be shifted. This will also change the starting
+ * allocation block number of the extent record which is part of
+ * the key for the extent record in each iteration. Note that
+ * because the extent record key is changing while we are searching,
+ * the record can not be updated directly, instead it has to be
+ * deleted and inserted again.
+ */
+ while (shift_extent.blockCount) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Will shift (%u,%u) into overflow record with startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, read_recStartBlock);
+ }
+
+ /* Search if there is any existing overflow extent record
+ * that matches the current file and the logical start block
+ * number.
+ *
+ * For this, the logical start block number in the key is
+ * the value calculated based on the logical start block
+ * number of the current extent record and the total number
+ * of blocks existing in the current extent record.
+ */
+ if (is_xattr) {
+ xattr_key->startBlock = read_recStartBlock;
+ } else {
+ extents_key->startBlock = read_recStartBlock;
+ }
+ error = BTSearchRecord(extent_info->fcb, &iterator, &btdata, &reclen, &iterator);
+ if (error) {
+ if (error != btNotFound) {
+ printf ("hfs_split_extent: fileID=%u startBlock=%u BTSearchRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
+ goto out;
+ }
+ /* No matching record was found, so create a new extent record.
+ * Note: Since no record was found, we can't rely on the
+ * btree key in the iterator any longer. This will be initialized
+ * later before we insert the record.
+ */
+ create_record = true;
+ }
+
+ /* The extra extent entry from the previous record is being inserted
+ * as the first entry in the current extent record. This will change
+ * the file allocation block number (FABN) of the current extent
+ * record, which is the startBlock value from the extent record key.
+ * Since one extra entry is being inserted in the record, the new
+ * FABN for the record will less than old FABN by the number of blocks
+ * in the new extent entry being inserted at the start. We have to
+ * do this before we update read_recStartBlock to point at the
+ * startBlock of the following record.
+ */
+ write_recStartBlock = read_recStartBlock - shift_extent.blockCount;
+ if (hfs_resize_debug) {
+ if (create_record) {
+ printf ("hfs_split_extent: No records found for startBlock=%u, will create new with startBlock=%u\n", read_recStartBlock, write_recStartBlock);
+ }
+ }
+
+ /* Now update the read_recStartBlock to account for total number
+ * of blocks in this extent record. It will now point to the
+ * starting allocation block number for the next extent record.
+ */
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extents[i].blockCount == 0) {
+ break;
+ }
+ read_recStartBlock += extents[i].blockCount;
+ }
+
+ if (create_record == true) {
+ /* Initialize new record content with only one extent entry */
+ bzero(extents, sizeof(HFSPlusExtentRecord));
+ /* The new record will contain only one extent entry */
+ extents[0] = shift_extent;
+ /* There are no more overflow extents to be shifted */
+ shift_extent.startBlock = shift_extent.blockCount = 0;
+
+ if (is_xattr) {
+ /* BTSearchRecord above returned btNotFound,
+ * but since the attribute btree is never empty
+ * if we are trying to insert new overflow
+ * record for the xattrs, the extents_key will
+ * contain correct data. So we don't need to
+ * re-initialize it again like below.
+ */
+
+ /* Initialize the new xattr record */
+ xattr_rec->recordType = kHFSPlusAttrExtents;
+ xattr_rec->overflowExtents.reserved = 0;
+ reclen = sizeof(HFSPlusAttrExtents);
+ } else {
+ /* BTSearchRecord above returned btNotFound,
+ * which means that extents_key content might
+ * not correspond to the record that we are
+ * trying to create, especially when the extents
+ * overflow btree is empty. So we reinitialize
+ * the extents_key again always.
+ */
+ extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extents_key->forkType = extent_info->forkType;
+ extents_key->fileID = extent_info->fileID;
+
+ /* Initialize the new extent record */
+ reclen = sizeof(HFSPlusExtentRecord);
+ }
+ } else {
+ /* The overflow extent entry from previous record will be
+ * the first entry in this extent record. If the last
+ * extent entry in this record is valid, it will be shifted
+ * into the following extent record as its first entry. So
+ * save the last entry before shifting entries in current
+ * record.
+ */
+ last_extent = extents[kHFSPlusExtentDensity-1];
+
+ /* Shift all entries by one index towards the end */
+ for (i = kHFSPlusExtentDensity-2; i >= 0; i--) {
+ extents[i+1] = extents[i];
+ }
+
+ /* Overflow extent entry saved from previous record
+ * is now the first entry in the current record.
+ */
+ extents[0] = shift_extent;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Shift overflow=(%u,%u) to record with updated startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, write_recStartBlock);
+ }
+
+ /* The last entry from current record will be the
+ * overflow entry which will be the first entry for
+ * the following extent record.
+ */
+ shift_extent = last_extent;
+
+ /* Since the key->startBlock is being changed for this record,
+ * it should be deleted and inserted with the new key.
+ */
+ error = BTDeleteRecord(extent_info->fcb, &iterator);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u startBlock=%u BTDeleteRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
+ goto out;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Deleted record with startBlock=%u\n", (is_xattr ? xattr_key->startBlock : extents_key->startBlock));
+ }
+ }
+
+ /* Insert the newly created or modified extent record */
+ bzero(&iterator.hint, sizeof(iterator.hint));
+ if (is_xattr) {
+ xattr_key->startBlock = write_recStartBlock;
+ } else {
+ extents_key->startBlock = write_recStartBlock;
+ }
+ error = BTInsertRecord(extent_info->fcb, &iterator, &btdata, reclen);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u, startBlock=%u BTInsertRecord error=%d\n", extent_info->fileID, write_recStartBlock, error);
+ goto out;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Inserted extent record with startBlock=%u\n", write_recStartBlock);
+ }
+ }
+ BTFlushPath(extent_info->fcb);
+out:
+ if (extents_rec) {
+ FREE (extents_rec, M_TEMP);
+ }
+ if (xattr_rec) {
+ FREE (xattr_rec, M_TEMP);
+ }
+ return error;
+}
+
+
+/*
+ * Relocate an extent if it lies beyond the expected end of volume.
+ *
+ * This function is called for every extent of the file being relocated.
+ * It allocates space for relocation, copies the data, deallocates
+ * the old extent, and update corresponding on-disk extent. If the function
+ * does not find contiguous space to relocate an extent, it splits the
+ * extent in smaller size to be able to relocate it out of the area of
+ * disk being reclaimed. As an optimization, if an extent lies partially
+ * in the area of the disk being reclaimed, it is split so that we only
+ * have to relocate the area that was overlapping with the area of disk
+ * being reclaimed.
+ *
+ * Note that every extent is relocated in its own transaction so that
+ * they do not overwhelm the journal. This function handles the extent
+ * record that exists in the catalog record, extent record from overflow
+ * extents btree, and extents for large EAs.
+ *
+ * Inputs:
+ * extent_info - This is the structure that contains state about
+ * the current file, extent, and extent record that
+ * is being relocated. This structure is shared
+ * among code that traverses through all the extents
+ * of the file, code that relocates extents, and
+ * code that splits the extent.
+ */
+static int
+hfs_reclaim_extent(struct hfsmount *hfsmp, const u_long allocLimit, struct hfs_reclaim_extent_info *extent_info, vfs_context_t context)
+{
+ int error = 0;
+ int index;
+ struct cnode *cp;
+ u_int32_t oldStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newStartBlock;
+ u_int32_t newBlockCount;
+ u_int32_t roundedBlockCount;
+ uint16_t node_size;
+ uint32_t remainder_blocks;
+ u_int32_t alloc_flags;
+ int blocks_allocated = false;
+
+ index = extent_info->extent_index;
+ cp = VTOC(extent_info->vp);
+
+ oldStartBlock = extent_info->extents[index].startBlock;
+ oldBlockCount = extent_info->extents[index].blockCount;
+
+ if (0 && hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Examine record:%u recStartBlock=%u, %u:(%u,%u)\n", extent_info->overflow_count, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount);
+ }
+
+ /* If the current extent lies completely within allocLimit,
+ * it does not require any relocation.
+ */
+ if ((oldStartBlock + oldBlockCount) <= allocLimit) {
+ extent_info->cur_blockCount += oldBlockCount;
+ return error;
+ }
+
+ /* Every extent should be relocated in its own transaction
+ * to make sure that we don't overflow the journal buffer.
+ */
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ return error;
+ }
+ extent_info->lockflags = hfs_systemfile_lock(hfsmp, extent_info->lockflags, HFS_EXCLUSIVE_LOCK);
+
+ /* Check if the extent lies partially in the area to reclaim,
+ * i.e. it starts before allocLimit and ends beyond allocLimit.
+ * We have already skipped extents that lie completely within
+ * allocLimit in the check above, so we only check for the
+ * startBlock. If it lies partially, split it so that we
+ * only relocate part of the extent.
+ */
+ if (oldStartBlock < allocLimit) {
+ newBlockCount = allocLimit - oldStartBlock;
+
+ /* If the extent belongs to a btree, check and trim
+ * it to be multiple of the node size.
+ */
+ if (extent_info->is_sysfile) {
+ node_size = get_btree_nodesize(extent_info->vp);
+ /* If the btree node size is less than the block size,
+ * splitting this extent will not split a node across
+ * different extents. So we only check and trim if
+ * node size is more than the allocation block size.
+ */
+ if (node_size > hfsmp->blockSize) {
+ remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
+ if (remainder_blocks) {
+ newBlockCount -= remainder_blocks;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
+ }
+ }
+ }
+ }
+
+ if (hfs_resize_debug) {
+ int idx = extent_info->extent_index;
+ printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount);
+ }
+
+ /* Split the extents into two parts --- the first extent lies
+ * completely within allocLimit and therefore does not require
+ * relocation. The second extent will require relocation which
+ * will be handled when the caller calls this function again
+ * for the next extent.
+ */
+ error = hfs_split_extent(extent_info, newBlockCount);
+ if (error == 0) {
+ /* Split success, no relocation required */
+ goto out;
+ }
+ /* Split failed, so try to relocate entire extent */
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Split straddling extent failed, reclocate full extent\n");
+ }
+ }
+
+ /* At this point, the current extent requires relocation.
+ * We will try to allocate space equal to the size of the extent
+ * being relocated first to try to relocate it without splitting.
+ * If the allocation fails, we will try to allocate contiguous
+ * blocks out of metadata zone. If that allocation also fails,
+ * then we will take a whatever contiguous block run is returned
+ * by the allocation, split the extent into two parts, and then
+ * relocate the first splitted extent.
+ */
+ alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS;
+ if (extent_info->is_sysfile) {
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ }
+
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags,
+ &newStartBlock, &newBlockCount);
+ if ((extent_info->is_sysfile == false) &&
+ ((error == dskFulErr) || (error == ENOSPC))) {
+ /* For non-system files, try reallocating space in metadata zone */
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ alloc_flags, &newStartBlock, &newBlockCount);
+ }
+ if ((error == dskFulErr) || (error == ENOSPC)) {
+ /* We did not find desired contiguous space for this extent.
+ * So try to allocate the maximum contiguous space available.
+ */
+ alloc_flags &= ~HFS_ALLOC_FORCECONTIG;
+
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ alloc_flags, &newStartBlock, &newBlockCount);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ blocks_allocated = true;
+
+ /* The number of blocks allocated is less than the requested
+ * number of blocks. For btree extents, check and trim the
+ * extent to be multiple of the node size.
+ */
+ if (extent_info->is_sysfile) {
+ node_size = get_btree_nodesize(extent_info->vp);
+ if (node_size > hfsmp->blockSize) {
+ remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
+ if (remainder_blocks) {
+ roundedBlockCount = newBlockCount - remainder_blocks;
+ /* Free tail-end blocks of the newly allocated extent */
+ BlockDeallocate(hfsmp, newStartBlock + roundedBlockCount,
+ newBlockCount - roundedBlockCount,
+ HFS_ALLOC_SKIPFREEBLKS);
+ newBlockCount = roundedBlockCount;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
+ }
+ if (newBlockCount == 0) {
+ printf ("hfs_reclaim_extent: Not enough contiguous blocks available to relocate fileID=%d\n", extent_info->fileID);
+ error = ENOSPC;
+ goto out;
+ }
+ }
+ }
+ }
+
+ /* The number of blocks allocated is less than the number of
+ * blocks requested, so split this extent --- the first extent
+ * will be relocated as part of this function call and the caller
+ * will handle relocating the second extent by calling this
+ * function again for the second extent.
+ */
+ error = hfs_split_extent(extent_info, newBlockCount);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) split error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ oldBlockCount = newBlockCount;
+ }
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) contig BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ blocks_allocated = true;
+
+ /* Copy data from old location to new location */
+ error = hfs_copy_extent(hfsmp, extent_info->vp, oldStartBlock,
+ newStartBlock, newBlockCount, context);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u)=>(%u,%u) hfs_copy_extent error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount, error);
+ goto out;
+ }
+
+ /* Update the extent record with the new start block information */
+ extent_info->extents[index].startBlock = newStartBlock;
+
+ /* Sync the content back to the disk */
+ if (extent_info->catalog_fp) {
+ /* Update the extents in catalog record */
+ if (extent_info->is_dirlink) {
+ error = cat_update_dirlink(hfsmp, extent_info->forkType,
+ extent_info->dirlink_desc, extent_info->dirlink_attr,
+ &(extent_info->dirlink_fork->ff_data));
+ } else {
+ cp->c_flag |= C_MODIFIED;
+ /* If this is a system file, sync volume headers on disk */
+ if (extent_info->is_sysfile) {
+ error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
+ }
+ }
+ } else {
+ /* Replace record for extents overflow or extents-based xattrs */
+ error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), extent_info->recordlen);
+ }
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u, update record error=%u\n", extent_info->fileID, error);
+ goto out;
+ }
+
+ /* Deallocate the old extent */
+ error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockDeallocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ extent_info->blocks_relocated += newBlockCount;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Relocated record:%u %u:(%u,%u) to (%u,%u)\n", extent_info->overflow_count, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+
+out:
+ if (error != 0) {
+ if (blocks_allocated == true) {
+ BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ }
+ } else {
+ /* On success, increment the total allocation blocks processed */
+ extent_info->cur_blockCount += newBlockCount;
+ }
+
+ hfs_systemfile_unlock(hfsmp, extent_info->lockflags);
+
+ /* For a non-system file, if an extent entry from catalog record
+ * was modified, sync the in-memory changes to the catalog record
+ * on disk before ending the transaction.
+ */
+ if ((extent_info->catalog_fp) &&
+ (extent_info->is_sysfile == false)) {
+ (void) hfs_update(extent_info->vp, MNT_WAIT);
+ }
+
+ hfs_end_transaction(hfsmp);
+
+ return error;
+}
+
+/* Report intermediate progress during volume resize */
+static void
+hfs_truncatefs_progress(struct hfsmount *hfsmp)
+{
+ u_int32_t cur_progress;
+
+ hfs_resize_progress(hfsmp, &cur_progress);
+ if (cur_progress > (hfsmp->hfs_resize_progress + 9)) {
+ printf("hfs_truncatefs: %d%% done...\n", cur_progress);
+ hfsmp->hfs_resize_progress = cur_progress;
+ }
+ return;
+}
+
+/*
+ * Reclaim space at the end of a volume for given file and forktype.
+ *
+ * This routine attempts to move any extent which contains allocation blocks
+ * at or after "allocLimit." A separate transaction is used for every extent
+ * that needs to be moved. If there is not contiguous space available for
+ * moving an extent, it can be split into smaller extents. The contents of
+ * any moved extents are read and written via the volume's device vnode --
+ * NOT via "vp." During the move, moved blocks which are part of a transaction
+ * have their physical block numbers invalidated so they will eventually be
+ * written to their new locations.
+ *
+ * This function is also called for directory hard links. Directory hard links
+ * are regular files with no data fork and resource fork that contains alias
+ * information for backward compatibility with pre-Leopard systems. However
+ * non-Mac OS X implementation can add/modify data fork or resource fork
+ * information to directory hard links, so we check, and if required, relocate
+ * both data fork and resource fork.
+ *
+ * Inputs:
+ * hfsmp The volume being resized.
+ * vp The vnode for the system file.
+ * fileID ID of the catalog record that needs to be relocated
+ * forktype The type of fork that needs relocated,
+ * kHFSResourceForkType for resource fork,
+ * kHFSDataForkType for data fork
+ * allocLimit Allocation limit for the new volume size,
+ * do not use this block or beyond. All extents
+ * that use this block or any blocks beyond this limit
+ * will be relocated.
+ *
+ * Side Effects:
+ * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
+ * blocks that were relocated.
+ */
+static int
+hfs_reclaim_file(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID,
+ u_int8_t forktype, u_long allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ struct hfs_reclaim_extent_info *extent_info;
+ int i;
+ int lockflags = 0;
+ struct cnode *cp;
+ struct filefork *fp;
+ int took_truncate_lock = false;
+ int release_desc = false;
+ HFSPlusExtentKey *key;
+
+ /* If there is no vnode for this file, then there's nothing to do. */
+ if (vp == NULL) {
+ return 0;
+ }
+
+ cp = VTOC(vp);
+
+ MALLOC(extent_info, struct hfs_reclaim_extent_info *,
+ sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK);
+ if (extent_info == NULL) {
+ return ENOMEM;
+ }
+ bzero(extent_info, sizeof(struct hfs_reclaim_extent_info));
+ extent_info->vp = vp;
+ extent_info->fileID = fileID;
+ extent_info->forkType = forktype;
+ extent_info->is_sysfile = vnode_issystem(vp);
+ if (vnode_isdir(vp) && (cp->c_flag & C_HARDLINK)) {
+ extent_info->is_dirlink = true;
+ }
+ /* We always need allocation bitmap and extent btree lock */
+ lockflags = SFL_BITMAP | SFL_EXTENTS;
+ if ((fileID == kHFSCatalogFileID) || (extent_info->is_dirlink == true)) {
+ lockflags |= SFL_CATALOG;
+ } else if (fileID == kHFSAttributesFileID) {
+ lockflags |= SFL_ATTRIBUTE;
+ } else if (fileID == kHFSStartupFileID) {
+ lockflags |= SFL_STARTUP;
+ }
+ extent_info->lockflags = lockflags;
+ extent_info->fcb = VTOF(hfsmp->hfs_extents_vp);
+
+ /* Flush data associated with current file on disk.
+ *
+ * If the current vnode is directory hard link, no flushing of
+ * journal or vnode is required. The current kernel does not
+ * modify data/resource fork of directory hard links, so nothing
+ * will be in the cache. If a directory hard link is newly created,
+ * the resource fork data is written directly using devvp and
+ * the code that actually relocates data (hfs_copy_extent()) also
+ * uses devvp for its I/O --- so they will see a consistent copy.
+ */
+ if (extent_info->is_sysfile) {
+ /* If the current vnode is system vnode, flush journal
+ * to make sure that all data is written to the disk.
+ */
+ error = hfs_journal_flush(hfsmp, TRUE);
+ if (error) {
+ printf ("hfs_reclaim_file: journal_flush returned %d\n", error);
+ goto out;
+ }
+ } else if (extent_info->is_dirlink == false) {
+ /* Flush all blocks associated with this regular file vnode.
+ * Normally there should not be buffer cache blocks for regular
+ * files, but for objects like symlinks, we can have buffer cache
+ * blocks associated with the vnode. Therefore we call
+ * buf_flushdirtyblks() also.
+ */
+ buf_flushdirtyblks(vp, 0, BUF_SKIP_LOCKED, "hfs_reclaim_file");
+
+ hfs_unlock(cp);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
+ took_truncate_lock = true;
+ (void) cluster_push(vp, 0);
+ error = hfs_lock(cp, HFS_FORCE_LOCK);
+ if (error) {
+ goto out;
+ }
+
+ /* If the file no longer exists, nothing left to do */
+ if (cp->c_flag & C_NOEXISTS) {
+ error = 0;
+ goto out;
+ }
+
+ /* Wait for any in-progress writes to this vnode to complete, so that we'll
+ * be copying consistent bits. (Otherwise, it's possible that an async
+ * write will complete to the old extent after we read from it. That
+ * could lead to corruption.)
+ */
+ error = vnode_waitforwrites(vp, 0, 0, 0, "hfs_reclaim_file");
+ if (error) {
+ goto out;
+ }
+ }
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: === Start reclaiming %sfork for %sid=%u ===\n", (forktype ? "rsrc" : "data"), (extent_info->is_dirlink ? "dirlink" : "file"), fileID);
+ }
+
+ if (extent_info->is_dirlink) {
+ MALLOC(extent_info->dirlink_desc, struct cat_desc *,
+ sizeof(struct cat_desc), M_TEMP, M_WAITOK);
+ MALLOC(extent_info->dirlink_attr, struct cat_attr *,
+ sizeof(struct cat_attr), M_TEMP, M_WAITOK);
+ MALLOC(extent_info->dirlink_fork, struct filefork *,
+ sizeof(struct filefork), M_TEMP, M_WAITOK);
+ if ((extent_info->dirlink_desc == NULL) ||
+ (extent_info->dirlink_attr == NULL) ||
+ (extent_info->dirlink_fork == NULL)) {
+ error = ENOMEM;
+ goto out;
+ }
+
+ /* Lookup catalog record for directory hard link and
+ * create a fake filefork for the value looked up from
+ * the disk.
+ */
+ fp = extent_info->dirlink_fork;
+ bzero(extent_info->dirlink_fork, sizeof(struct filefork));
+ extent_info->dirlink_fork->ff_cp = cp;
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = cat_lookup_dirlink(hfsmp, fileID, forktype,
+ extent_info->dirlink_desc, extent_info->dirlink_attr,
+ &(extent_info->dirlink_fork->ff_data));
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ printf ("hfs_reclaim_file: cat_lookup_dirlink for fileID=%u returned error=%u\n", fileID, error);
+ goto out;
+ }
+ release_desc = true;
+ } else {
+ fp = VTOF(vp);
+ }
+
+ extent_info->catalog_fp = fp;
+ extent_info->recStartBlock = 0;
+ extent_info->extents = extent_info->catalog_fp->ff_extents;
+ /* Relocate extents from the catalog record */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (fp->ff_extents[i].blockCount == 0) {
+ break;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, fp->ff_extents[i].startBlock, fp->ff_extents[i].blockCount, error);
+ goto out;
+ }
+ }
+
+ /* If the number of allocation blocks processed for reclaiming
+ * are less than total number of blocks for the file, continuing
+ * working on overflow extents record.
+ */
+ if (fp->ff_blocks <= extent_info->cur_blockCount) {
+ if (0 && hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Nothing more to relocate, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
+ }
+ goto out;
+ }
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Will check overflow records, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
+ }
+
+ MALLOC(extent_info->iterator, struct BTreeIterator *, sizeof(struct BTreeIterator), M_TEMP, M_WAITOK);
+ if (extent_info->iterator == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ bzero(extent_info->iterator, sizeof(struct BTreeIterator));
+ key = (HFSPlusExtentKey *) &(extent_info->iterator->key);
+ key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ key->forkType = forktype;
+ key->fileID = fileID;
+ key->startBlock = extent_info->cur_blockCount;
+
+ extent_info->btdata.bufferAddress = extent_info->record.overflow;
+ extent_info->btdata.itemSize = sizeof(HFSPlusExtentRecord);
+ extent_info->btdata.itemCount = 1;
+
+ extent_info->catalog_fp = NULL;
+
+ /* Search the first overflow extent with expected startBlock as 'cur_blockCount' */
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), &(extent_info->recordlen),
+ extent_info->iterator);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ while (error == 0) {
+ extent_info->overflow_count++;
+ extent_info->recStartBlock = key->startBlock;
+ extent_info->extents = extent_info->record.overflow;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extent_info->record.overflow[i].blockCount == 0) {
+ goto out;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, extent_info->record.overflow[i].startBlock, extent_info->record.overflow[i].blockCount, error);
+ goto out;
+ }
+ }
+
+ /* Look for more overflow records */
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
+ extent_info->iterator, &(extent_info->btdata),
+ &(extent_info->recordlen));
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ break;
+ }
+ /* Stop when we encounter a different file or fork. */
+ if ((key->fileID != fileID) || (key->forkType != forktype)) {
+ break;
+ }
+ }
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+
+out:
+ /* If any blocks were relocated, account them and report progress */
+ if (extent_info->blocks_relocated) {
+ hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
+ hfs_truncatefs_progress(hfsmp);
+ if (fileID < kHFSFirstUserCatalogNodeID) {
+ printf ("hfs_reclaim_file: Relocated %u blocks from fileID=%u on \"%s\"\n",
+ extent_info->blocks_relocated, fileID, hfsmp->vcbVN);
+ }
+ }
+ if (extent_info->iterator) {
+ FREE(extent_info->iterator, M_TEMP);
+ }
+ if (release_desc == true) {
+ cat_releasedesc(extent_info->dirlink_desc);
+ }
+ if (extent_info->dirlink_desc) {
+ FREE(extent_info->dirlink_desc, M_TEMP);
+ }
+ if (extent_info->dirlink_attr) {
+ FREE(extent_info->dirlink_attr, M_TEMP);
+ }
+ if (extent_info->dirlink_fork) {
+ FREE(extent_info->dirlink_fork, M_TEMP);
+ }
+ if ((extent_info->blocks_relocated != 0) && (extent_info->is_sysfile == false)) {
+ (void) hfs_update(vp, MNT_WAIT);
+ }
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, 0);
+ }
+ if (extent_info) {
+ FREE(extent_info, M_TEMP);
+ }
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: === Finished relocating %sfork for fileid=%u (error=%d) ===\n", (forktype ? "rsrc" : "data"), fileID, error);
+ }
+
+ return error;
+}
+
+
+/*
+ * This journal_relocate callback updates the journal info block to point
+ * at the new journal location. This write must NOT be done using the
+ * transaction. We must write the block immediately. We must also force
+ * it to get to the media so that the new journal location will be seen by
+ * the replay code before we can safely let journaled blocks be written
+ * to their normal locations.
+ *
+ * The tests for journal_uses_fua below are mildly hacky. Since the journal
+ * and the file system are both on the same device, I'm leveraging what
+ * the journal has decided about FUA.
+ */
+struct hfs_journal_relocate_args {
+ struct hfsmount *hfsmp;
+ vfs_context_t context;
+ u_int32_t newStartBlock;
+};
+
+static errno_t
+hfs_journal_relocate_callback(void *_args)
+{
+ int error;
+ struct hfs_journal_relocate_args *args = _args;
+ struct hfsmount *hfsmp = args->hfsmp;
+ buf_t bp;
+ JournalInfoBlock *jibp;
+
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, vfs_context_ucred(args->context), &bp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: failed to read JIB (%d)\n", error);
+ if (bp) {
+ buf_brelse(bp);
+ }
+ return error;
+ }
+ jibp = (JournalInfoBlock*) buf_dataptr(bp);
+ jibp->offset = SWAP_BE64((u_int64_t)args->newStartBlock * hfsmp->blockSize);
+ jibp->size = SWAP_BE64(hfsmp->jnl_size);
+ if (journal_uses_fua(hfsmp->jnl))
+ buf_markfua(bp);
+ error = buf_bwrite(bp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: failed to write JIB (%d)\n", error);
+ return error;
+ }
+ if (!journal_uses_fua(hfsmp->jnl)) {
+ error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, args->context);
+ if (error) {
+ printf("hfs_reclaim_journal_file: DKIOCSYNCHRONIZECACHE failed (%d)\n", error);
+ error = 0; /* Don't fail the operation. */
+ }
+ }
+
+ return error;
+}
+
+
+static int
+hfs_reclaim_journal_file(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error;
+ int journal_err;
+ int lockflags;
+ u_int32_t oldStartBlock;
+ u_int32_t newStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newBlockCount;
+ struct cat_desc journal_desc;
+ struct cat_attr journal_attr;
+ struct cat_fork journal_fork;
+ struct hfs_journal_relocate_args callback_args;
+
+ if (hfsmp->jnl_start + (hfsmp->jnl_size / hfsmp->blockSize) <= allocLimit) {
+ /* The journal does not require relocation */
+ return 0;
+ }
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: hfs_start_transaction returned %d\n", error);
+ return error;
+ }
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ oldBlockCount = hfsmp->jnl_size / hfsmp->blockSize;
+
+ /* TODO: Allow the journal to change size based on the new volume size. */
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS,
+ &newStartBlock, &newBlockCount);
+ if (error) {
+ printf("hfs_reclaim_journal_file: BlockAllocate returned %d\n", error);
+ goto fail;
+ }
+ if (newBlockCount != oldBlockCount) {
+ printf("hfs_reclaim_journal_file: newBlockCount != oldBlockCount (%u, %u)\n", newBlockCount, oldBlockCount);
+ goto free_fail;
+ }
+
+ error = BlockDeallocate(hfsmp, hfsmp->jnl_start, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error);
+ goto free_fail;
+ }
+
+ /* Update the catalog record for .journal */
+ error = cat_idlookup(hfsmp, hfsmp->hfs_jnlfileid, 1, &journal_desc, &journal_attr, &journal_fork);
+ if (error) {
+ printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error);
+ goto free_fail;
+ }
+ oldStartBlock = journal_fork.cf_extents[0].startBlock;
+ journal_fork.cf_size = newBlockCount * hfsmp->blockSize;
+ journal_fork.cf_extents[0].startBlock = newStartBlock;
+ journal_fork.cf_extents[0].blockCount = newBlockCount;
+ journal_fork.cf_blocks = newBlockCount;
+ error = cat_update(hfsmp, &journal_desc, &journal_attr, &journal_fork, NULL);
+ cat_releasedesc(&journal_desc); /* all done with cat descriptor */
+ if (error) {
+ printf("hfs_reclaim_journal_file: cat_update returned %d\n", error);
+ goto free_fail;
+ }
+ callback_args.hfsmp = hfsmp;
+ callback_args.context = context;
+ callback_args.newStartBlock = newStartBlock;
+
+ error = journal_relocate(hfsmp->jnl, (off_t)newStartBlock*hfsmp->blockSize,
+ (off_t)newBlockCount*hfsmp->blockSize, 0,
+ hfs_journal_relocate_callback, &callback_args);
+ if (error) {
+ /* NOTE: journal_relocate will mark the journal invalid. */
+ printf("hfs_reclaim_journal_file: journal_relocate returned %d\n", error);
+ goto fail;
+ }
+ hfsmp->jnl_start = newStartBlock;
+ hfsmp->jnl_size = (off_t)newBlockCount * hfsmp->blockSize;
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ error = hfs_end_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: hfs_end_transaction returned %d\n", error);
+ }
+
+ /* Account for the blocks relocated and print progress */
+ hfsmp->hfs_resize_blocksmoved += oldBlockCount;
+ hfs_truncatefs_progress(hfsmp);
+ if (!error) {
+ printf ("hfs_reclaim_journal_file: Relocated %u blocks from journal on \"%s\"\n",
+ oldBlockCount, hfsmp->vcbVN);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_file: Successfully relocated journal from (%u,%u) to (%u,%u)\n", oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+ }
+ return error;
+
+free_fail:
+ journal_err = BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (journal_err) {
+ printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_file: Error relocating journal file (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+/*
+ * Move the journal info block to a new location. We have to make sure the
+ * new copy of the journal info block gets to the media first, then change
+ * the field in the volume header and the catalog record.
+ */
+static int
+hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error;
+ int journal_err;
+ int lockflags;
+ u_int32_t oldBlock;
+ u_int32_t newBlock;
+ u_int32_t blockCount;
+ struct cat_desc jib_desc;
+ struct cat_attr jib_attr;
+ struct cat_fork jib_fork;
+ buf_t old_bp, new_bp;
+
+ if (hfsmp->vcbJinfoBlock <= allocLimit) {
+ /* The journal info block does not require relocation */
+ return 0;
+ }
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_start_transaction returned %d\n", error);
+ return error;
+ }
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ error = BlockAllocate(hfsmp, 1, 1, 1,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS,
+ &newBlock, &blockCount);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: BlockAllocate returned %d\n", error);
+ goto fail;
+ }
+ if (blockCount != 1) {
+ printf("hfs_reclaim_journal_info_block: blockCount != 1 (%u)\n", blockCount);
+ goto free_fail;
+ }
+ error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
+ goto free_fail;
+ }
+
+ /* Copy the old journal info block content to the new location */
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, vfs_context_ucred(context), &old_bp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: failed to read JIB (%d)\n", error);
+ if (old_bp) {
+ buf_brelse(old_bp);
+ }
+ goto free_fail;
+ }
+ new_bp = buf_getblk(hfsmp->hfs_devvp,
+ newBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, 0, 0, BLK_META);
+ bcopy((char*)buf_dataptr(old_bp), (char*)buf_dataptr(new_bp), hfsmp->blockSize);
+ buf_brelse(old_bp);
+ if (journal_uses_fua(hfsmp->jnl))
+ buf_markfua(new_bp);
+ error = buf_bwrite(new_bp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: failed to write new JIB (%d)\n", error);
+ goto free_fail;
+ }
+ if (!journal_uses_fua(hfsmp->jnl)) {
+ error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: DKIOCSYNCHRONIZECACHE failed (%d)\n", error);
+ /* Don't fail the operation. */
+ }
+ }
+
+ /* Update the catalog record for .journal_info_block */
+ error = cat_idlookup(hfsmp, hfsmp->hfs_jnlinfoblkid, 1, &jib_desc, &jib_attr, &jib_fork);
+ if (error) {
+ printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error);
+ goto fail;
+ }
+ oldBlock = jib_fork.cf_extents[0].startBlock;
+ jib_fork.cf_size = hfsmp->blockSize;
+ jib_fork.cf_extents[0].startBlock = newBlock;
+ jib_fork.cf_extents[0].blockCount = 1;
+ jib_fork.cf_blocks = 1;
+ error = cat_update(hfsmp, &jib_desc, &jib_attr, &jib_fork, NULL);
+ cat_releasedesc(&jib_desc); /* all done with cat descriptor */
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: cat_update returned %d\n", error);
+ goto fail;
+ }
+
+ /* Update the pointer to the journal info block in the volume header. */
+ hfsmp->vcbJinfoBlock = newBlock;
+ error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_flushvolumeheader returned %d\n", error);
+ goto fail;
+ }
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ error = hfs_end_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_end_transaction returned %d\n", error);
+ }
+ error = hfs_journal_flush(hfsmp, FALSE);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error);
+ }
+
+ /* Account for the block relocated and print progress */
+ hfsmp->hfs_resize_blocksmoved += 1;
+ hfs_truncatefs_progress(hfsmp);
+ if (!error) {
+ printf ("hfs_reclaim_journal_info: Relocated 1 block from journal info on \"%s\"\n",
+ hfsmp->vcbVN);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Successfully relocated journal info block from (%u,%u) to (%u,%u)\n", oldBlock, blockCount, newBlock, blockCount);
+ }
+ }
+ return error;
+
+free_fail:
+ journal_err = BlockDeallocate(hfsmp, newBlock, blockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (journal_err) {
+ printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Error relocating journal info block (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+/*
+ * This function traverses through all extended attribute records for a given
+ * fileID, and calls function that reclaims data blocks that exist in the
+ * area of the disk being reclaimed which in turn is responsible for allocating
+ * new space, copying extent data, deallocating new space, and if required,
+ * splitting the extent.
+ *
+ * Note: The caller has already acquired the cnode lock on the file. Therefore
+ * we are assured that no other thread would be creating/deleting/modifying
+ * extended attributes for this file.
+ *
+ * Side Effects:
+ * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
+ * blocks that were relocated.
+ *
+ * Returns:
+ * 0 on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_xattr(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ struct hfs_reclaim_extent_info *extent_info;
+ int i;
+ HFSPlusAttrKey *key;
+ int *lockflags;
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_xattr: === Start reclaiming xattr for id=%u ===\n", fileID);
+ }
+
+ MALLOC(extent_info, struct hfs_reclaim_extent_info *,
+ sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK);
+ if (extent_info == NULL) {
+ return ENOMEM;
+ }
+ bzero(extent_info, sizeof(struct hfs_reclaim_extent_info));
+ extent_info->vp = vp;
+ extent_info->fileID = fileID;
+ extent_info->is_xattr = true;
+ extent_info->is_sysfile = vnode_issystem(vp);
+ extent_info->fcb = VTOF(hfsmp->hfs_attribute_vp);
+ lockflags = &(extent_info->lockflags);
+ *lockflags = SFL_ATTRIBUTE | SFL_BITMAP;
+
+ /* Initialize iterator from the extent_info structure */
+ MALLOC(extent_info->iterator, struct BTreeIterator *,
+ sizeof(struct BTreeIterator), M_TEMP, M_WAITOK);
+ if (extent_info->iterator == NULL) {
+ error = ENOMEM;
+ goto out;
+ }
+ bzero(extent_info->iterator, sizeof(struct BTreeIterator));
+
+ /* Build attribute key */
+ key = (HFSPlusAttrKey *)&(extent_info->iterator->key);
+ error = hfs_buildattrkey(fileID, NULL, key);
+ if (error) {
+ goto out;
+ }
+
+ /* Initialize btdata from extent_info structure. Note that the
+ * buffer pointer actually points to the xattr record from the
+ * extent_info structure itself.
+ */
+ extent_info->btdata.bufferAddress = &(extent_info->record.xattr);
+ extent_info->btdata.itemSize = sizeof(HFSPlusAttrRecord);
+ extent_info->btdata.itemCount = 1;
+
+ /*
+ * Sync all extent-based attribute data to the disk.
+ *
+ * All extent-based attribute data I/O is performed via cluster
+ * I/O using a virtual file that spans across entire file system
+ * space.
+ */
+ hfs_lock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_EXCLUSIVE_LOCK);
+ (void)cluster_push(hfsmp->hfs_attrdata_vp, 0);
+ error = vnode_waitforwrites(hfsmp->hfs_attrdata_vp, 0, 0, 0, "hfs_reclaim_xattr");
+ hfs_unlock_truncate(VTOC(hfsmp->hfs_attrdata_vp), 0);
+ if (error) {
+ goto out;
+ }
+
+ /* Search for extended attribute for current file. This
+ * will place the iterator before the first matching record.
+ */
+ *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), &(extent_info->recordlen),
+ extent_info->iterator);
+ hfs_systemfile_unlock(hfsmp, *lockflags);
+ if (error) {
+ if (error != btNotFound) {
+ goto out;
+ }
+ /* btNotFound is expected here, so just mask it */
+ error = 0;
+ }
+
+ while (1) {
+ /* Iterate to the next record */
+ *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
+ extent_info->iterator, &(extent_info->btdata),
+ &(extent_info->recordlen));
+ hfs_systemfile_unlock(hfsmp, *lockflags);
+
+ /* Stop the iteration if we encounter end of btree or xattr with different fileID */
+ if (error || key->fileID != fileID) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+ break;
+ }
+
+ /* We only care about extent-based EAs */
+ if ((extent_info->record.xattr.recordType != kHFSPlusAttrForkData) &&
+ (extent_info->record.xattr.recordType != kHFSPlusAttrExtents)) {
+ continue;
+ }
+
+ if (extent_info->record.xattr.recordType == kHFSPlusAttrForkData) {
+ extent_info->overflow_count = 0;
+ extent_info->extents = extent_info->record.xattr.forkData.theFork.extents;
+ } else if (extent_info->record.xattr.recordType == kHFSPlusAttrExtents) {
+ extent_info->overflow_count++;
+ extent_info->extents = extent_info->record.xattr.overflowExtents.extents;
+ }
+
+ extent_info->recStartBlock = key->startBlock;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extent_info->extents[i].blockCount == 0) {
+ break;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_xattr: fileID=%u hfs_reclaim_extent error=%d\n", fileID, error);
+ goto out;
+ }
+ }
+ }
+
+out:
+ /* If any blocks were relocated, account them and report progress */
+ if (extent_info->blocks_relocated) {
+ hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
+ hfs_truncatefs_progress(hfsmp);
+ }
+ if (extent_info->iterator) {
+ FREE(extent_info->iterator, M_TEMP);
+ }
+ if (extent_info) {
+ FREE(extent_info, M_TEMP);
+ }
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_xattr: === Finished relocating xattr for fileid=%u (error=%d) ===\n", fileID, error);
+ }
+ return error;
+}
+
+/*
+ * Reclaim any extent-based extended attributes allocation blocks from
+ * the area of the disk that is being truncated.
+ *
+ * The function traverses the attribute btree to find out the fileIDs
+ * of the extended attributes that need to be relocated. For every
+ * file whose large EA requires relocation, it looks up the cnode and
+ * calls hfs_reclaim_xattr() to do all the work for allocating
+ * new space, copying data, deallocating old space, and if required,
+ * splitting the extents.
+ *
+ * Inputs:
+ * allocLimit - starting block of the area being reclaimed
+ *
+ * Returns:
+ * returns 0 on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_xattrspace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ FCB *fcb;
+ struct BTreeIterator *iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ HFSPlusAttrKey *key;
+ HFSPlusAttrRecord rec;
+ int lockflags = 0;
+ cnid_t prev_fileid = 0;
+ struct vnode *vp;
+ int need_relocate;
+ int btree_operation;
+ u_int32_t files_moved = 0;
+ u_int32_t prev_blocksmoved;
+ int i;
+
+ fcb = VTOF(hfsmp->hfs_attribute_vp);
+ /* Store the value to print total blocks moved by this function in end */
+ prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
+
+ if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
+ return ENOMEM;
+ }
+ bzero(iterator, sizeof(*iterator));
+ key = (HFSPlusAttrKey *)&iterator->key;
+ btdata.bufferAddress = &rec;
+ btdata.itemSize = sizeof(rec);
+ btdata.itemCount = 1;
+
+ need_relocate = false;
+ btree_operation = kBTreeFirstRecord;
+ /* Traverse the attribute btree to find extent-based EAs to reclaim */
+ while (1) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK);
+ error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
}
+ break;
+ }
+ btree_operation = kBTreeNextRecord;
+
+ /* If the extents of current fileID were already relocated, skip it */
+ if (prev_fileid == key->fileID) {
+ continue;
+ }
+
+ /* Check if any of the extents in the current record need to be relocated */
+ need_relocate = false;
+ switch(rec.recordType) {
+ case kHFSPlusAttrForkData:
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (rec.forkData.theFork.extents[i].blockCount == 0) {
+ break;
+ }
+ if ((rec.forkData.theFork.extents[i].startBlock +
+ rec.forkData.theFork.extents[i].blockCount) > allocLimit) {
+ need_relocate = true;
+ break;
+ }
+ }
+ break;
+
+ case kHFSPlusAttrExtents:
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (rec.overflowExtents.extents[i].blockCount == 0) {
+ break;
+ }
+ if ((rec.overflowExtents.extents[i].startBlock +
+ rec.overflowExtents.extents[i].blockCount) > allocLimit) {
+ need_relocate = true;
+ break;
+ }
+ }
+ break;
+ };
+
+ /* Continue iterating to next attribute record */
+ if (need_relocate == false) {
+ continue;
+ }
+
+ /* Look up the vnode for corresponding file. The cnode
+ * will be locked which will ensure that no one modifies
+ * the xattrs when we are relocating them.
+ *
+ * We want to allow open-unlinked files to be moved,
+ * so provide allow_deleted == 1 for hfs_vget().
+ */
+ if (hfs_vget(hfsmp, key->fileID, &vp, 0, 1) != 0) {
+ continue;
+ }
+
+ error = hfs_reclaim_xattr(hfsmp, vp, key->fileID, allocLimit, context);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ if (error) {
+ printf ("hfs_reclaim_xattrspace: Error relocating xattrs for fileid=%u (error=%d)\n", key->fileID, error);
+ break;
}
+ prev_fileid = key->fileID;
+ files_moved++;
}
- /* For now we'll move a maximum of 16,384 files. */
- maxfilecnt = MIN(hfsmp->hfs_filecount, 16384);
- cnidbufsize = maxfilecnt * sizeof(cnid_t);
- if (kmem_alloc(kernel_map, (vm_offset_t *)&cnidbufp, cnidbufsize)) {
- return (ENOMEM);
- }
- if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
- kmem_free(kernel_map, (vm_offset_t)cnidbufp, cnidbufsize);
- return (ENOMEM);
- }
+ if (files_moved) {
+ printf("hfs_reclaim_xattrspace: Relocated %u xattr blocks from %u files on \"%s\"\n",
+ (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
+ files_moved, hfsmp->vcbVN);
+ }
+
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
+ return error;
+}
- saved_next_allocation = hfsmp->nextAllocation;
- hfsmp->nextAllocation = hfsmp->hfs_metazone_start;
+/*
+ * Reclaim blocks from regular files.
+ *
+ * This function iterates over all the record in catalog btree looking
+ * for files with extents that overlap into the space we're trying to
+ * free up. If a file extent requires relocation, it looks up the vnode
+ * and calls function to relocate the data.
+ *
+ * Returns:
+ * Zero on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_filespace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error;
+ FCB *fcb;
+ struct BTreeIterator *iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ int btree_operation;
+ int lockflags;
+ struct HFSPlusCatalogFile filerec;
+ struct vnode *vp;
+ struct vnode *rvp;
+ struct filefork *datafork;
+ u_int32_t files_moved = 0;
+ u_int32_t prev_blocksmoved;
fcb = VTOF(hfsmp->hfs_catalog_vp);
+ /* Store the value to print total blocks moved by this function at the end */
+ prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
+
+ if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
+ return ENOMEM;
+ }
bzero(iterator, sizeof(*iterator));
btdata.bufferAddress = &filerec;
btdata.itemSize = sizeof(filerec);
btdata.itemCount = 1;
- /* Keep the Catalog file locked during iteration. */
- lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
- error = BTIterateRecord(fcb, kBTreeFirstRecord, iterator, NULL, NULL);
- if (error) {
+ btree_operation = kBTreeFirstRecord;
+ while (1) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
hfs_systemfile_unlock(hfsmp, lockflags);
- goto out;
- }
-
- /*
- * Iterate over all the catalog records looking for files
- * that overlap into the space we're trying to free up.
- */
- for (filecnt = 0; filecnt < maxfilecnt; ) {
- error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
if (error) {
- if (error == btNotFound)
- error = 0;
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
break;
}
- if (filerec.recordType != kHFSPlusFileRecord ||
- filerec.fileID == hfsmp->hfs_jnlfileid)
+ btree_operation = kBTreeNextRecord;
+
+ if (filerec.recordType != kHFSPlusFileRecord) {
continue;
- /*
- * Check if either fork overlaps target space.
- */
- for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- block = filerec.dataFork.extents[i].startBlock +
- filerec.dataFork.extents[i].blockCount;
- if (block >= startblk) {
- if (filerec.fileID == hfsmp->hfs_jnlfileid) {
- printf("hfs_reclaimspace: cannot move active journal\n");
- error = EPERM;
+ }
+
+ /* Check if any of the extents require relocation */
+ if (hfs_file_extent_overlaps(hfsmp, allocLimit, &filerec) == false) {
+ continue;
+ }
+
+ /* We want to allow open-unlinked files to be moved, so allow_deleted == 1 */
+ if (hfs_vget(hfsmp, filerec.fileID, &vp, 0, 1) != 0) {
+ continue;
+ }
+
+ /* If data fork exists or item is a directory hard link, relocate blocks */
+ datafork = VTOF(vp);
+ if ((datafork && datafork->ff_blocks > 0) || vnode_isdir(vp)) {
+ error = hfs_reclaim_file(hfsmp, vp, filerec.fileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming datafork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ break;
+ }
+ }
+
+ /* If resource fork exists or item is a directory hard link, relocate blocks */
+ if (((VTOC(vp)->c_blocks - (datafork ? datafork->ff_blocks : 0)) > 0) || vnode_isdir(vp)) {
+ if (vnode_isdir(vp)) {
+ /* Resource fork vnode lookup is invalid for directory hard link.
+ * So we fake data fork vnode as resource fork vnode.
+ */
+ rvp = vp;
+ } else {
+ error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, FALSE);
+ if (error) {
+ printf ("hfs_reclaimspace: Error looking up rvp for fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
break;
}
- cnidbufp[filecnt++] = filerec.fileID;
- break;
+ VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT;
}
- block = filerec.resourceFork.extents[i].startBlock +
- filerec.resourceFork.extents[i].blockCount;
- if (block >= startblk) {
- cnidbufp[filecnt++] = filerec.fileID;
+
+ error = hfs_reclaim_file(hfsmp, rvp, filerec.fileID,
+ kHFSResourceForkType, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming rsrcfork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
break;
}
}
+
+ /* The file forks were relocated successfully, now drop the
+ * cnode lock and vnode reference, and continue iterating to
+ * next catalog record.
+ */
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ files_moved++;
}
- /* All done with catalog. */
- hfs_systemfile_unlock(hfsmp, lockflags);
- if (error)
- goto out;
- /* Now move any files that are in the way. */
- for (i = 0; i < filecnt; ++i) {
- struct vnode * rvp;
+ if (files_moved) {
+ printf("hfs_reclaim_filespace: Relocated %u blocks from %u files on \"%s\"\n",
+ (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
+ files_moved, hfsmp->vcbVN);
+ }
- if (hfs_vget(hfsmp, cnidbufp[i], &vp, 0) != 0)
- continue;
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
+ return error;
+}
- /* Relocate any data fork blocks. */
- if (VTOF(vp)->ff_blocks > 0) {
- error = hfs_relocate(vp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc());
- }
- if (error)
+/*
+ * Reclaim space at the end of a file system.
+ *
+ * Inputs -
+ * allocLimit - start block of the space being reclaimed
+ * reclaimblks - number of allocation blocks to reclaim
+ */
+static int
+hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context)
+{
+ int error = 0;
+
+ /*
+ * Preflight the bitmap to find out total number of blocks that need
+ * relocation.
+ *
+ * Note: Since allocLimit is set to the location of new alternate volume
+ * header, the check below does not account for blocks allocated for old
+ * alternate volume header.
+ */
+ error = hfs_count_allocated(hfsmp, allocLimit, reclaimblks, &(hfsmp->hfs_resize_totalblocks));
+ if (error) {
+ printf ("hfs_reclaimspace: Unable to determine total blocks to reclaim error=%d\n", error);
+ return error;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaimspace: Total number of blocks to reclaim = %u\n", hfsmp->hfs_resize_totalblocks);
+ }
+
+ /* Just to be safe, sync the content of the journal to the disk before we proceed */
+ hfs_journal_flush(hfsmp, TRUE);
+
+ /* First, relocate journal file blocks if they're in the way.
+ * Doing this first will make sure that journal relocate code
+ * gets access to contiguous blocks on disk first. The journal
+ * file has to be contiguous on the disk, otherwise resize will
+ * fail.
+ */
+ error = hfs_reclaim_journal_file(hfsmp, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error);
+ return error;
+ }
+
+ /* Relocate journal info block blocks if they're in the way. */
+ error = hfs_reclaim_journal_info_block(hfsmp, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Extents B-tree if they're in the way.
+ * Relocating extents btree before other btrees is important as
+ * this will provide access to largest contiguous block range on
+ * the disk for relocating extents btree. Note that extents btree
+ * can only have maximum of 8 extents.
+ */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_extents_vp, kHFSExtentsFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Allocation file if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_allocation_vp, kHFSAllocationFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Catalog B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_catalog_vp, kHFSCatalogFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Attributes B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_attribute_vp, kHFSAttributesFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Startup File if there is one and they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_startup_vp, kHFSStartupFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim startup file returned %d\n", error);
+ return error;
+ }
+
+ /*
+ * We need to make sure the alternate volume header gets flushed if we moved
+ * any extents in the volume header. But we need to do that before
+ * shrinking the size of the volume, or else the journal code will panic
+ * with an invalid (too large) block number.
+ *
+ * Note that blks_moved will be set if ANY extent was moved, even
+ * if it was just an overflow extent. In this case, the journal_flush isn't
+ * strictly required, but shouldn't hurt.
+ */
+ if (hfsmp->hfs_resize_blocksmoved) {
+ hfs_journal_flush(hfsmp, TRUE);
+ }
+
+ /* Reclaim extents from catalog file records */
+ error = hfs_reclaim_filespace(hfsmp, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: hfs_reclaim_filespace returned error=%d\n", error);
+ return error;
+ }
+
+ /* Reclaim extents from extent-based extended attributes, if any */
+ error = hfs_reclaim_xattrspace(hfsmp, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: hfs_reclaim_xattrspace returned error=%d\n", error);
+ return error;
+ }
+
+ return error;
+}
+
+
+/*
+ * Check if there are any extents (including overflow extents) that overlap
+ * into the disk space that is being reclaimed.
+ *
+ * Output -
+ * true - One of the extents need to be relocated
+ * false - No overflow extents need to be relocated, or there was an error
+ */
+static int
+hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec)
+{
+ struct BTreeIterator * iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ HFSPlusExtentRecord extrec;
+ HFSPlusExtentKey *extkeyptr;
+ FCB *fcb;
+ int overlapped = false;
+ int i, j;
+ int error;
+ int lockflags = 0;
+ u_int32_t endblock;
+
+ /* Check if data fork overlaps the target space */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (filerec->dataFork.extents[i].blockCount == 0) {
break;
+ }
+ endblock = filerec->dataFork.extents[i].startBlock +
+ filerec->dataFork.extents[i].blockCount;
+ if (endblock > allocLimit) {
+ overlapped = true;
+ goto out;
+ }
+ }
- /* Relocate any resource fork blocks. */
- if ((VTOC((vp))->c_blocks - VTOF((vp))->ff_blocks) > 0) {
- error = hfs_vgetrsrc(hfsmp, vp, &rvp, current_proc());
- if (error)
- break;
- error = hfs_relocate(rvp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc());
- vnode_put(rvp);
- if (error)
- break;
+ /* Check if resource fork overlaps the target space */
+ for (j = 0; j < kHFSPlusExtentDensity; ++j) {
+ if (filerec->resourceFork.extents[j].blockCount == 0) {
+ break;
+ }
+ endblock = filerec->resourceFork.extents[j].startBlock +
+ filerec->resourceFork.extents[j].blockCount;
+ if (endblock > allocLimit) {
+ overlapped = true;
+ goto out;
}
- hfs_unlock(VTOC(vp));
- vnode_put(vp);
- vp = NULL;
}
- if (vp) {
- hfs_unlock(VTOC(vp));
- vnode_put(vp);
- vp = NULL;
+
+ /* Return back if there are no overflow extents for this file */
+ if ((i < kHFSPlusExtentDensity) && (j < kHFSPlusExtentDensity)) {
+ goto out;
}
- /*
- * Note: this implementation doesn't handle overflow extents.
+ if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
+ return 0;
+ }
+ bzero(iterator, sizeof(*iterator));
+ extkeyptr = (HFSPlusExtentKey *)&iterator->key;
+ extkeyptr->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extkeyptr->forkType = 0;
+ extkeyptr->fileID = filerec->fileID;
+ extkeyptr->startBlock = 0;
+
+ btdata.bufferAddress = &extrec;
+ btdata.itemSize = sizeof(extrec);
+ btdata.itemCount = 1;
+
+ fcb = VTOF(hfsmp->hfs_extents_vp);
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_SHARED_LOCK);
+
+ /* This will position the iterator just before the first overflow
+ * extent record for given fileID. It will always return btNotFound,
+ * so we special case the error code.
+ */
+ error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
+ if (error && (error != btNotFound)) {
+ goto out;
+ }
+
+ /* BTIterateRecord() might return error if the btree is empty, and
+ * therefore we return that the extent does not overflow to the caller
*/
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+ while (error == 0) {
+ /* Stop when we encounter a different file. */
+ if (extkeyptr->fileID != filerec->fileID) {
+ break;
+ }
+ /* Check if any of the forks exist in the target space. */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (extrec[i].blockCount == 0) {
+ break;
+ }
+ endblock = extrec[i].startBlock + extrec[i].blockCount;
+ if (endblock > allocLimit) {
+ overlapped = true;
+ goto out;
+ }
+ }
+ /* Look for more records. */
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+ }
+
out:
- kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- kmem_free(kernel_map, (vm_offset_t)cnidbufp, cnidbufsize);
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (iterator) {
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
+ }
+ return overlapped;
+}
- /* On errors restore the roving allocation pointer. */
- if (error) {
- hfsmp->nextAllocation = saved_next_allocation;
+
+/*
+ * Calculate the progress of a file system resize operation.
+ */
+__private_extern__
+int
+hfs_resize_progress(struct hfsmount *hfsmp, u_int32_t *progress)
+{
+ if ((hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) == 0) {
+ return (ENXIO);
}
- return (error);
+
+ if (hfsmp->hfs_resize_totalblocks > 0) {
+ *progress = (u_int32_t)((hfsmp->hfs_resize_blocksmoved * 100ULL) / hfsmp->hfs_resize_totalblocks);
+ } else {
+ *progress = 0;
+ }
+
+ return (0);
}
+/*
+ * Creates a UUID from a unique "name" in the HFS UUID Name space.
+ * See version 3 UUID.
+ */
+static void
+hfs_getvoluuid(struct hfsmount *hfsmp, uuid_t result)
+{
+ MD5_CTX md5c;
+ uint8_t rawUUID[8];
+
+ ((uint32_t *)rawUUID)[0] = hfsmp->vcbFndrInfo[6];
+ ((uint32_t *)rawUUID)[1] = hfsmp->vcbFndrInfo[7];
+
+ MD5Init( &md5c );
+ MD5Update( &md5c, HFS_UUID_NAMESPACE_ID, sizeof( uuid_t ) );
+ MD5Update( &md5c, rawUUID, sizeof (rawUUID) );
+ MD5Final( result, &md5c );
+
+ result[6] = 0x30 | ( result[6] & 0x0F );
+ result[8] = 0x80 | ( result[8] & 0x3F );
+}
+
/*
* Get file system attributes.
*/
static int
hfs_vfs_getattr(struct mount *mp, struct vfs_attr *fsap, __unused vfs_context_t context)
{
+#define HFS_ATTR_CMN_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST))
+#define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST))
+#define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST | ATTR_CMN_ACCTIME))
+
ExtendedVCB *vcb = VFSTOVCB(mp);
struct hfsmount *hfsmp = VFSTOHFS(mp);
- u_long freeCNIDs;
-
- freeCNIDs = (u_long)0xFFFFFFFF - (u_long)hfsmp->vcbNxtCNID;
-
- VFSATTR_RETURN(fsap, f_objcount, (uint64_t)hfsmp->vcbFilCnt + (uint64_t)hfsmp->vcbDirCnt);
- VFSATTR_RETURN(fsap, f_filecount, (uint64_t)hfsmp->vcbFilCnt);
- VFSATTR_RETURN(fsap, f_dircount, (uint64_t)hfsmp->vcbDirCnt);
- VFSATTR_RETURN(fsap, f_maxobjcount, (uint64_t)0xFFFFFFFF);
- VFSATTR_RETURN(fsap, f_iosize, (size_t)(MAX_UPL_TRANSFER * PAGE_SIZE));
- VFSATTR_RETURN(fsap, f_blocks, (uint64_t)hfsmp->totalBlocks);
- VFSATTR_RETURN(fsap, f_bfree, (uint64_t)hfs_freeblks(hfsmp, 0));
- VFSATTR_RETURN(fsap, f_bavail, (uint64_t)hfs_freeblks(hfsmp, 1));
- VFSATTR_RETURN(fsap, f_bsize, (uint32_t)vcb->blockSize);
+ u_int32_t freeCNIDs;
+
+ freeCNIDs = (u_int32_t)0xFFFFFFFF - (u_int32_t)hfsmp->vcbNxtCNID;
+
+ VFSATTR_RETURN(fsap, f_objcount, (u_int64_t)hfsmp->vcbFilCnt + (u_int64_t)hfsmp->vcbDirCnt);
+ VFSATTR_RETURN(fsap, f_filecount, (u_int64_t)hfsmp->vcbFilCnt);
+ VFSATTR_RETURN(fsap, f_dircount, (u_int64_t)hfsmp->vcbDirCnt);
+ VFSATTR_RETURN(fsap, f_maxobjcount, (u_int64_t)0xFFFFFFFF);
+ VFSATTR_RETURN(fsap, f_iosize, (size_t)cluster_max_io_size(mp, 0));
+ VFSATTR_RETURN(fsap, f_blocks, (u_int64_t)hfsmp->totalBlocks);
+ VFSATTR_RETURN(fsap, f_bfree, (u_int64_t)hfs_freeblks(hfsmp, 0));
+ VFSATTR_RETURN(fsap, f_bavail, (u_int64_t)hfs_freeblks(hfsmp, 1));
+ VFSATTR_RETURN(fsap, f_bsize, (u_int32_t)vcb->blockSize);
/* XXX needs clarification */
VFSATTR_RETURN(fsap, f_bused, hfsmp->totalBlocks - hfs_freeblks(hfsmp, 1));
/* Maximum files is constrained by total blocks. */
- VFSATTR_RETURN(fsap, f_files, (uint64_t)(hfsmp->totalBlocks - 2));
- VFSATTR_RETURN(fsap, f_ffree, MIN((uint64_t)freeCNIDs, (uint64_t)hfs_freeblks(hfsmp, 1)));
+ VFSATTR_RETURN(fsap, f_files, (u_int64_t)(hfsmp->totalBlocks - 2));
+ VFSATTR_RETURN(fsap, f_ffree, MIN((u_int64_t)freeCNIDs, (u_int64_t)hfs_freeblks(hfsmp, 1)));
fsap->f_fsid.val[0] = hfsmp->hfs_raw_dev;
fsap->f_fsid.val[1] = vfs_typenum(mp);
cap->capabilities[VOL_CAPABILITIES_FORMAT] =
VOL_CAP_FMT_PERSISTENTOBJECTIDS |
VOL_CAP_FMT_CASE_PRESERVING |
- VOL_CAP_FMT_FAST_STATFS;
+ VOL_CAP_FMT_FAST_STATFS |
+ VOL_CAP_FMT_HIDDEN_FILES |
+ VOL_CAP_FMT_PATH_FROM_ID;
} else {
cap->capabilities[VOL_CAPABILITIES_FORMAT] =
VOL_CAP_FMT_PERSISTENTOBJECTIDS |
VOL_CAP_FMT_SYMBOLICLINKS |
VOL_CAP_FMT_HARDLINKS |
VOL_CAP_FMT_JOURNAL |
+ VOL_CAP_FMT_ZERO_RUNS |
(hfsmp->jnl ? VOL_CAP_FMT_JOURNAL_ACTIVE : 0) |
(hfsmp->hfs_flags & HFS_CASE_SENSITIVE ? VOL_CAP_FMT_CASE_SENSITIVE : 0) |
VOL_CAP_FMT_CASE_PRESERVING |
VOL_CAP_FMT_FAST_STATFS |
- VOL_CAP_FMT_2TB_FILESIZE;
+ VOL_CAP_FMT_2TB_FILESIZE |
+ VOL_CAP_FMT_HIDDEN_FILES |
+#if HFS_COMPRESSION
+ VOL_CAP_FMT_PATH_FROM_ID |
+ VOL_CAP_FMT_DECMPFS_COMPRESSION;
+#else
+ VOL_CAP_FMT_PATH_FROM_ID;
+#endif
}
cap->capabilities[VOL_CAPABILITIES_INTERFACES] =
VOL_CAP_INT_SEARCHFS |
VOL_CAP_INT_ALLOCATE |
VOL_CAP_INT_VOL_RENAME |
VOL_CAP_INT_ADVLOCK |
- VOL_CAP_INT_FLOCK;
+ VOL_CAP_INT_FLOCK |
+#if NAMEDSTREAMS
+ VOL_CAP_INT_EXTENDED_ATTR |
+ VOL_CAP_INT_NAMEDSTREAMS;
+#else
+ VOL_CAP_INT_EXTENDED_ATTR;
+#endif
cap->capabilities[VOL_CAPABILITIES_RESERVED1] = 0;
cap->capabilities[VOL_CAPABILITIES_RESERVED2] = 0;
VOL_CAP_FMT_CASE_SENSITIVE |
VOL_CAP_FMT_CASE_PRESERVING |
VOL_CAP_FMT_FAST_STATFS |
- VOL_CAP_FMT_2TB_FILESIZE;
+ VOL_CAP_FMT_2TB_FILESIZE |
+ VOL_CAP_FMT_OPENDENYMODES |
+ VOL_CAP_FMT_HIDDEN_FILES |
+#if HFS_COMPRESSION
+ VOL_CAP_FMT_PATH_FROM_ID |
+ VOL_CAP_FMT_DECMPFS_COMPRESSION;
+#else
+ VOL_CAP_FMT_PATH_FROM_ID;
+#endif
cap->valid[VOL_CAPABILITIES_INTERFACES] =
VOL_CAP_INT_SEARCHFS |
VOL_CAP_INT_ATTRLIST |
VOL_CAP_INT_ALLOCATE |
VOL_CAP_INT_VOL_RENAME |
VOL_CAP_INT_ADVLOCK |
- VOL_CAP_INT_FLOCK;
+ VOL_CAP_INT_FLOCK |
+ VOL_CAP_INT_MANLOCK |
+#if NAMEDSTREAMS
+ VOL_CAP_INT_EXTENDED_ATTR |
+ VOL_CAP_INT_NAMEDSTREAMS;
+#else
+ VOL_CAP_INT_EXTENDED_ATTR;
+#endif
cap->valid[VOL_CAPABILITIES_RESERVED1] = 0;
cap->valid[VOL_CAPABILITIES_RESERVED2] = 0;
VFSATTR_SET_SUPPORTED(fsap, f_capabilities);
if (VFSATTR_IS_ACTIVE(fsap, f_attributes)) {
vol_attributes_attr_t *attrp = &fsap->f_attributes;
- attrp->validattr.commonattr = ATTR_CMN_VALIDMASK;
+ attrp->validattr.commonattr = HFS_ATTR_CMN_VOL_VALIDMASK;
attrp->validattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO;
attrp->validattr.dirattr = ATTR_DIR_VALIDMASK;
- attrp->validattr.fileattr = ATTR_FILE_VALIDMASK;
+ attrp->validattr.fileattr = HFS_ATTR_FILE_VALIDMASK;
attrp->validattr.forkattr = 0;
- attrp->nativeattr.commonattr = ATTR_CMN_VALIDMASK;
+ attrp->nativeattr.commonattr = HFS_ATTR_CMN_VOL_VALIDMASK;
attrp->nativeattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO;
attrp->nativeattr.dirattr = ATTR_DIR_VALIDMASK;
- attrp->nativeattr.fileattr = ATTR_FILE_VALIDMASK;
+ attrp->nativeattr.fileattr = HFS_ATTR_FILE_VALIDMASK;
attrp->nativeattr.forkattr = 0;
VFSATTR_SET_SUPPORTED(fsap, f_attributes);
}
- fsap->f_create_time.tv_sec = hfsmp->vcbCrDate;
+ fsap->f_create_time.tv_sec = hfsmp->hfs_itime;
fsap->f_create_time.tv_nsec = 0;
VFSATTR_SET_SUPPORTED(fsap, f_create_time);
fsap->f_modify_time.tv_sec = hfsmp->vcbLsMod;
fsap->f_backup_time.tv_nsec = 0;
VFSATTR_SET_SUPPORTED(fsap, f_backup_time);
if (VFSATTR_IS_ACTIVE(fsap, f_fssubtype)) {
- uint16_t subtype = 0;
+ u_int16_t subtype = 0;
/*
* Subtypes (flavors) for HFS
}
if (VFSATTR_IS_ACTIVE(fsap, f_vol_name)) {
- strncpy(fsap->f_vol_name, hfsmp->vcbVN, MAXPATHLEN);
- fsap->f_vol_name[MAXPATHLEN - 1] = 0;
+ strlcpy(fsap->f_vol_name, (char *) hfsmp->vcbVN, MAXPATHLEN);
VFSATTR_SET_SUPPORTED(fsap, f_vol_name);
}
+ if (VFSATTR_IS_ACTIVE(fsap, f_uuid)) {
+ hfs_getvoluuid(hfsmp, fsap->f_uuid);
+ VFSATTR_SET_SUPPORTED(fsap, f_uuid);
+ }
return (0);
}
cat_cookie_t cookie;
int lockflags;
int error = 0;
+ char converted_volname[256];
+ size_t volname_length = 0;
+ size_t conv_volname_length = 0;
+
/*
* Ignore attempts to rename a volume to a zero-length name.
todir_desc.cd_cnid = kHFSRootFolderID;
todir_desc.cd_flags = CD_ISDIR;
- to_desc.cd_nameptr = name;
+ to_desc.cd_nameptr = (const u_int8_t *)name;
to_desc.cd_namelen = strlen(name);
to_desc.cd_parentcnid = kHFSRootParentID;
to_desc.cd_cnid = cp->c_cnid;
* If successful, update the name in the VCB, ensure it's terminated.
*/
if (!error) {
- strncpy(vcb->vcbVN, name, sizeof(vcb->vcbVN));
- vcb->vcbVN[sizeof(vcb->vcbVN) - 1] = 0;
+ strlcpy((char *)vcb->vcbVN, name, sizeof(vcb->vcbVN));
+ volname_length = strlen ((const char*)vcb->vcbVN);
+#define DKIOCCSSETLVNAME _IOW('d', 198, char[1024])
+ /* Send the volume name down to CoreStorage if necessary */
+ error = utf8_normalizestr(vcb->vcbVN, volname_length, (u_int8_t*)converted_volname, &conv_volname_length, 256, UTF_PRECOMPOSED);
+ if (error == 0) {
+ (void) VNOP_IOCTL (hfsmp->hfs_devvp, DKIOCCSSETLVNAME, converted_volname, 0, vfs_context_current());
+ }
+ error = 0;
}
-
+
hfs_systemfile_unlock(hfsmp, lockflags);
cat_postflight(hfsmp, &cookie, p);
if (error)
- vcb->vcbFlags |= 0xFF00;
+ MarkVCBDirty(vcb);
(void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
}
hfs_end_transaction(hfsmp);
if (!error) {
/* Release old allocated name buffer */
if (cp->c_desc.cd_flags & CD_HASBUF) {
- char *name = cp->c_desc.cd_nameptr;
+ const char *tmp_name = (const char *)cp->c_desc.cd_nameptr;
cp->c_desc.cd_nameptr = 0;
cp->c_desc.cd_namelen = 0;
cp->c_desc.cd_flags &= ~CD_HASBUF;
- vfs_removename(name);
+ vfs_removename(tmp_name);
}
/* Update cnode's catalog descriptor */
replace_desc(cp, &new_desc);
return error;
}
+/* If a runtime corruption is detected, set the volume inconsistent
+ * bit in the volume attributes. The volume inconsistent bit is a persistent
+ * bit which represents that the volume is corrupt and needs repair.
+ * The volume inconsistent bit can be set from the kernel when it detects
+ * runtime corruption or from file system repair utilities like fsck_hfs when
+ * a repair operation fails. The bit should be cleared only from file system
+ * verify/repair utility like fsck_hfs when a verify/repair succeeds.
+ */
+void hfs_mark_volume_inconsistent(struct hfsmount *hfsmp)
+{
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if ((hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) == 0) {
+ hfsmp->vcbAtrb |= kHFSVolumeInconsistentMask;
+ MarkVCBDirty(hfsmp);
+ }
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY)==0) {
+ /* Log information to ASL log */
+ fslog_fs_corrupt(hfsmp->hfs_mp);
+ printf("hfs: Runtime corruption detected on %s, fsck will be forced on next mount.\n", hfsmp->vcbVN);
+ }
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+}
+
+/* Replay the journal on the device node provided. Returns zero if
+ * journal replay succeeded or no journal was supposed to be replayed.
+ */
+static int hfs_journal_replay(vnode_t devvp, vfs_context_t context)
+{
+ int retval = 0;
+ struct mount *mp = NULL;
+ struct hfs_mount_args *args = NULL;
+
+ /* Replay allowed only on raw devices */
+ if (!vnode_ischr(devvp) && !vnode_isblk(devvp)) {
+ retval = EINVAL;
+ goto out;
+ }
+
+ /* Create dummy mount structures */
+ MALLOC(mp, struct mount *, sizeof(struct mount), M_TEMP, M_WAITOK);
+ if (mp == NULL) {
+ retval = ENOMEM;
+ goto out;
+ }
+ bzero(mp, sizeof(struct mount));
+ mount_lock_init(mp);
+
+ MALLOC(args, struct hfs_mount_args *, sizeof(struct hfs_mount_args), M_TEMP, M_WAITOK);
+ if (args == NULL) {
+ retval = ENOMEM;
+ goto out;
+ }
+ bzero(args, sizeof(struct hfs_mount_args));
+
+ retval = hfs_mountfs(devvp, mp, args, 1, context);
+ buf_flushdirtyblks(devvp, TRUE, 0, "hfs_journal_replay");
+
+ /* FSYNC the devnode to be sure all data has been flushed */
+ retval = VNOP_FSYNC(devvp, MNT_WAIT, context);
+
+out:
+ if (mp) {
+ mount_lock_destroy(mp);
+ FREE(mp, M_TEMP);
+ }
+ if (args) {
+ FREE(args, M_TEMP);
+ }
+ return retval;
+}
/*
* hfs vfs operations.
hfs_vptofh,
hfs_init,
hfs_sysctl,
- hfs_vfs_setattr
+ hfs_vfs_setattr,
+ {NULL}
};