]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/kern/timer_call.c
xnu-4903.221.2.tar.gz
[apple/xnu.git] / osfmk / kern / timer_call.c
index b1eec55f1e1fecc8dbbdadfc919e4dcd2a43ec81..86bd1a8df94962b31a5b5209c38bd59ce1487833 100644 (file)
 /*
- * Copyright (c) 1993-1995, 1999-2004 Apple Computer, Inc.
- * All rights reserved.
+ * Copyright (c) 1993-2008 Apple Inc. All rights reserved.
  *
- * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  * 
- * This file contains Original Code and/or Modifications of Original Code 
- * as defined in and that are subject to the Apple Public Source License 
- * Version 2.0 (the 'License'). You may not use this file except in 
- * compliance with the License.  The rights granted to you under the 
- * License may not be used to create, or enable the creation or 
- * redistribution of, unlawful or unlicensed copies of an Apple operating 
- * system, or to circumvent, violate, or enable the circumvention or 
- * violation of, any terms of an Apple operating system software license 
- * agreement.
- *
- * Please obtain a copy of the License at 
- * http://www.opensource.apple.com/apsl/ and read it before using this 
- * file.
- *
- * The Original Code and all software distributed under the License are 
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER 
- * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, 
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, 
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. 
- * Please see the License for the specific language governing rights and 
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ * 
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ * 
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
  * limitations under the License.
- *
- * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
+ * 
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
  * Timer interrupt callout module.
- *
- * HISTORY
- *
- * 20 December 2000 (debo)
- *     Created.
  */
 
 #include <mach/mach_types.h>
 
 #include <kern/clock.h>
+#include <kern/smp.h>
 #include <kern/processor.h>
-
 #include <kern/timer_call.h>
+#include <kern/timer_queue.h>
 #include <kern/call_entry.h>
+#include <kern/thread.h>
+#include <kern/policy_internal.h>
 
 #include <sys/kdebug.h>
 
-decl_simple_lock_data(static,timer_call_lock)
+#if CONFIG_DTRACE
+#include <mach/sdt.h>
+#endif
+
 
-static struct {
-       int             delayed_num,
-                       delayed_hiwat;
-} timer_call_vars;
+#if DEBUG
+#define TIMER_ASSERT   1
+#endif
+
+//#define TIMER_ASSERT 1
+//#define TIMER_DBG    1
+
+#if TIMER_DBG
+#define DBG(x...) kprintf("DBG: " x);
+#else
+#define DBG(x...)
+#endif
+
+#if TIMER_TRACE
+#define TIMER_KDEBUG_TRACE     KERNEL_DEBUG_CONSTANT_IST
+#else
+#define TIMER_KDEBUG_TRACE(x...)
+#endif
+
+
+lck_grp_t               timer_call_lck_grp;
+lck_attr_t              timer_call_lck_attr;
+lck_grp_attr_t          timer_call_lck_grp_attr;
+
+lck_grp_t               timer_longterm_lck_grp;
+lck_attr_t              timer_longterm_lck_attr;
+lck_grp_attr_t          timer_longterm_lck_grp_attr;
+
+/* Timer queue lock must be acquired with interrupts disabled (under splclock()) */
+#if __SMP__
+#define timer_queue_lock_spin(queue)                                   \
+       lck_mtx_lock_spin_always(&queue->lock_data)
+
+#define timer_queue_unlock(queue)              \
+       lck_mtx_unlock_always(&queue->lock_data)
+#else
+#define timer_queue_lock_spin(queue)   (void)1
+#define timer_queue_unlock(queue)              (void)1
+#endif
+
+#define QUEUE(x)       ((queue_t)(x))
+#define MPQUEUE(x)     ((mpqueue_head_t *)(x))
+#define TIMER_CALL(x)  ((timer_call_t)(x))
+#define TCE(x)         (&(x->call_entry))
+/*
+ * The longterm timer object is a global structure holding all timers
+ * beyond the short-term, local timer queue threshold. The boot processor
+ * is responsible for moving each timer to its local timer queue
+ * if and when that timer becomes due within the threshold.
+ */
+
+/* Sentinel for "no time set": */
+#define TIMER_LONGTERM_NONE            EndOfAllTime
+/* The default threadhold is the delta above which a timer is "long-term" */ 
+#if defined(__x86_64__)
+#define        TIMER_LONGTERM_THRESHOLD        (1ULL * NSEC_PER_SEC)   /* 1 sec */
+#else
+#define        TIMER_LONGTERM_THRESHOLD        TIMER_LONGTERM_NONE     /* disabled */
+#endif
+
+/*
+ * The scan_limit throttles processing of the longterm queue.
+ * If the scan time exceeds this limit, we terminate, unlock 
+ * and defer for scan_interval. This prevents unbounded holding of
+ * timer queue locks with interrupts masked.
+ */
+#define TIMER_LONGTERM_SCAN_LIMIT      (100ULL * NSEC_PER_USEC)        /* 100 us */
+#define TIMER_LONGTERM_SCAN_INTERVAL   (100ULL * NSEC_PER_USEC)        /* 100 us */
+/* Sentinel for "scan limit exceeded": */
+#define TIMER_LONGTERM_SCAN_AGAIN      0
+
+typedef struct {
+       uint64_t        interval;       /* longterm timer interval */
+       uint64_t        margin;         /* fudge factor (10% of interval */
+       uint64_t        deadline;       /* first/soonest longterm deadline */
+       uint64_t        preempted;      /* sooner timer has pre-empted */
+       timer_call_t    call;           /* first/soonest longterm timer call */
+       uint64_t        deadline_set;   /* next timer set */
+       timer_call_data_t timer;        /* timer used by threshold management */
+                                       /* Stats: */
+       uint64_t        scans;          /*   num threshold timer scans */
+       uint64_t        preempts;       /*   num threshold reductions */
+       uint64_t        latency;        /*   average threshold latency */       
+       uint64_t        latency_min;    /*   minimum threshold latency */ 
+       uint64_t        latency_max;    /*   maximum threshold latency */
+} threshold_t;
+
+typedef struct {
+       mpqueue_head_t  queue;          /* longterm timer list */
+       uint64_t        enqueues;       /* num timers queued */
+       uint64_t        dequeues;       /* num timers dequeued */
+       uint64_t        escalates;      /* num timers becoming shortterm */
+       uint64_t        scan_time;      /* last time the list was scanned */
+       threshold_t     threshold;      /* longterm timer threshold */
+       uint64_t        scan_limit;     /* maximum scan time */
+       uint64_t        scan_interval;  /* interval between LT "escalation" scans */
+       uint64_t        scan_pauses;    /* num scans exceeding time limit */
+} timer_longterm_t;
+
+timer_longterm_t               timer_longterm = {
+                                       .scan_limit = TIMER_LONGTERM_SCAN_LIMIT,
+                                       .scan_interval = TIMER_LONGTERM_SCAN_INTERVAL,
+                               };
+
+static mpqueue_head_t          *timer_longterm_queue = NULL;
+
+static void                    timer_longterm_init(void);
+static void                    timer_longterm_callout(
+                                       timer_call_param_t      p0,
+                                       timer_call_param_t      p1);
+extern void                    timer_longterm_scan(    
+                                       timer_longterm_t        *tlp,
+                                       uint64_t                now);
+static void                    timer_longterm_update(
+                                       timer_longterm_t *tlp);
+static void                    timer_longterm_update_locked(
+                                       timer_longterm_t *tlp);
+static mpqueue_head_t *                timer_longterm_enqueue_unlocked(
+                                       timer_call_t            call,
+                                       uint64_t                now,
+                                       uint64_t                deadline,
+                                       mpqueue_head_t **       old_queue,
+                                       uint64_t                soft_deadline,
+                                       uint64_t                ttd,
+                                       timer_call_param_t      param1,
+                                       uint32_t                callout_flags);
+static void                    timer_longterm_dequeued_locked(
+                                       timer_call_t            call);
+
+uint64_t past_deadline_timers;
+uint64_t past_deadline_deltas;
+uint64_t past_deadline_longest;
+uint64_t past_deadline_shortest = ~0ULL;
+enum {PAST_DEADLINE_TIMER_ADJUSTMENT_NS = 10 * 1000};
+
+uint64_t past_deadline_timer_adjustment;
+
+static boolean_t timer_call_enter_internal(timer_call_t call, timer_call_param_t param1, uint64_t deadline, uint64_t leeway, uint32_t flags, boolean_t ratelimited);
+boolean_t      mach_timer_coalescing_enabled = TRUE;
+
+mpqueue_head_t *timer_call_enqueue_deadline_unlocked(
+                       timer_call_t            call,
+                       mpqueue_head_t          *queue,
+                       uint64_t                deadline,
+                       uint64_t                soft_deadline,
+                       uint64_t                ttd,
+                       timer_call_param_t      param1,
+                       uint32_t                flags);
+
+mpqueue_head_t *timer_call_dequeue_unlocked(
+                       timer_call_t            call);
+
+timer_coalescing_priority_params_t tcoal_prio_params;
+
+#if TCOAL_PRIO_STATS
+int32_t nc_tcl, rt_tcl, bg_tcl, kt_tcl, fp_tcl, ts_tcl, qos_tcl;
+#define TCOAL_PRIO_STAT(x) (x++)
+#else
+#define TCOAL_PRIO_STAT(x)
+#endif
 
 static void
-timer_call_interrupt(
-       uint64_t                        timestamp);
+timer_call_init_abstime(void)
+{
+       int i;
+       uint64_t result;
+       timer_coalescing_priority_params_ns_t * tcoal_prio_params_init = timer_call_get_priority_params();
+       nanoseconds_to_absolutetime(PAST_DEADLINE_TIMER_ADJUSTMENT_NS, &past_deadline_timer_adjustment);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->idle_entry_timer_processing_hdeadline_threshold_ns, &result);
+       tcoal_prio_params.idle_entry_timer_processing_hdeadline_threshold_abstime = (uint32_t)result;
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->interrupt_timer_coalescing_ilat_threshold_ns, &result);
+       tcoal_prio_params.interrupt_timer_coalescing_ilat_threshold_abstime = (uint32_t)result;
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_resort_threshold_ns, &result);
+       tcoal_prio_params.timer_resort_threshold_abstime = (uint32_t)result;
+       tcoal_prio_params.timer_coalesce_rt_shift = tcoal_prio_params_init->timer_coalesce_rt_shift;
+       tcoal_prio_params.timer_coalesce_bg_shift = tcoal_prio_params_init->timer_coalesce_bg_shift;
+       tcoal_prio_params.timer_coalesce_kt_shift = tcoal_prio_params_init->timer_coalesce_kt_shift;
+       tcoal_prio_params.timer_coalesce_fp_shift = tcoal_prio_params_init->timer_coalesce_fp_shift;
+       tcoal_prio_params.timer_coalesce_ts_shift = tcoal_prio_params_init->timer_coalesce_ts_shift;
+
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_rt_ns_max,
+           &tcoal_prio_params.timer_coalesce_rt_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_bg_ns_max,
+           &tcoal_prio_params.timer_coalesce_bg_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_kt_ns_max,
+           &tcoal_prio_params.timer_coalesce_kt_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_fp_ns_max,
+           &tcoal_prio_params.timer_coalesce_fp_abstime_max);
+       nanoseconds_to_absolutetime(tcoal_prio_params_init->timer_coalesce_ts_ns_max,
+           &tcoal_prio_params.timer_coalesce_ts_abstime_max);
+
+       for (i = 0; i < NUM_LATENCY_QOS_TIERS; i++) {
+               tcoal_prio_params.latency_qos_scale[i] = tcoal_prio_params_init->latency_qos_scale[i];
+               nanoseconds_to_absolutetime(tcoal_prio_params_init->latency_qos_ns_max[i],
+                   &tcoal_prio_params.latency_qos_abstime_max[i]);
+               tcoal_prio_params.latency_tier_rate_limited[i] = tcoal_prio_params_init->latency_tier_rate_limited[i];
+       }
+}
 
-#define qe(x)          ((queue_entry_t)(x))
-#define TC(x)          ((timer_call_t)(x))
 
 void
-timer_call_initialize(void)
+timer_call_init(void)
 {
-       spl_t                           s;
+       lck_attr_setdefault(&timer_call_lck_attr);
+       lck_grp_attr_setdefault(&timer_call_lck_grp_attr);
+       lck_grp_init(&timer_call_lck_grp, "timer_call", &timer_call_lck_grp_attr);
 
-       simple_lock_init(&timer_call_lock, 0);
-
-       s = splclock();
-       simple_lock(&timer_call_lock);
+       timer_longterm_init();
+       timer_call_init_abstime();
+}
 
-       clock_set_timer_func((clock_timer_func_t)timer_call_interrupt);
 
-       simple_unlock(&timer_call_lock);
-       splx(s);
+void
+timer_call_queue_init(mpqueue_head_t *queue)
+{
+       DBG("timer_call_queue_init(%p)\n", queue);
+       mpqueue_init(queue, &timer_call_lck_grp, &timer_call_lck_attr);
 }
 
+
 void
 timer_call_setup(
        timer_call_t                    call,
        timer_call_func_t               func,
        timer_call_param_t              param0)
 {
-       call_entry_setup(call, func, param0);
+       DBG("timer_call_setup(%p,%p,%p)\n", call, func, param0);
+       call_entry_setup(TCE(call), func, param0);
+       simple_lock_init(&(call)->lock, 0);
+       call->async_dequeue = FALSE;
+}
+#if TIMER_ASSERT
+static __inline__ mpqueue_head_t *
+timer_call_entry_dequeue(
+       timer_call_t            entry)
+{
+        mpqueue_head_t *old_queue = MPQUEUE(TCE(entry)->queue);
+
+       if (!hw_lock_held((hw_lock_t)&entry->lock))
+               panic("_call_entry_dequeue() "
+                       "entry %p is not locked\n", entry);
+       /*
+        * XXX The queue lock is actually a mutex in spin mode
+        *     but there's no way to test for it being held
+        *     so we pretend it's a spinlock!
+        */
+       if (!hw_lock_held((hw_lock_t)&old_queue->lock_data))
+               panic("_call_entry_dequeue() "
+                       "queue %p is not locked\n", old_queue);
+
+       call_entry_dequeue(TCE(entry));
+       old_queue->count--;
+
+       return (old_queue);
 }
 
-static __inline__
-void
-_delayed_call_enqueue(
-       queue_t                                 queue,
-       timer_call_t                    call)
+static __inline__ mpqueue_head_t *
+timer_call_entry_enqueue_deadline(
+       timer_call_t            entry,
+       mpqueue_head_t          *queue,
+       uint64_t                deadline)
 {
-       timer_call_t    current;
+       mpqueue_head_t  *old_queue = MPQUEUE(TCE(entry)->queue);
+
+       if (!hw_lock_held((hw_lock_t)&entry->lock))
+               panic("_call_entry_enqueue_deadline() "
+                       "entry %p is not locked\n", entry);
+       /* XXX More lock pretense:  */
+       if (!hw_lock_held((hw_lock_t)&queue->lock_data))
+               panic("_call_entry_enqueue_deadline() "
+                       "queue %p is not locked\n", queue);
+       if (old_queue != NULL && old_queue != queue)
+               panic("_call_entry_enqueue_deadline() "
+                       "old_queue %p != queue", old_queue);
+
+       call_entry_enqueue_deadline(TCE(entry), QUEUE(queue), deadline);
+
+/* For efficiency, track the earliest soft deadline on the queue, so that
+ * fuzzy decisions can be made without lock acquisitions.
+ */
+       timer_call_t thead = (timer_call_t)queue_first(&queue->head);
+       
+       queue->earliest_soft_deadline = thead->flags & TIMER_CALL_RATELIMITED ? TCE(thead)->deadline : thead->soft_deadline;
 
-       current = TC(queue_first(queue));
+       if (old_queue)
+               old_queue->count--;
+       queue->count++;
 
-       while (TRUE) {
-               if (    queue_end(queue, qe(current))                   ||
-                               call->deadline < current->deadline              ) {
-                       current = TC(queue_prev(qe(current)));
-                       break;
-               }
+       return (old_queue);
+}
 
-               current = TC(queue_next(qe(current)));
-       }
+#else
+
+static __inline__ mpqueue_head_t *
+timer_call_entry_dequeue(
+       timer_call_t            entry)
+{
+       mpqueue_head_t  *old_queue = MPQUEUE(TCE(entry)->queue);
 
-       insque(qe(call), qe(current));
-       if (++timer_call_vars.delayed_num > timer_call_vars.delayed_hiwat)
-               timer_call_vars.delayed_hiwat = timer_call_vars.delayed_num;
+       call_entry_dequeue(TCE(entry));
+       old_queue->count--;
 
-       call->state = DELAYED;
+       return old_queue;
 }
 
-static __inline__
-void
-_delayed_call_dequeue(
-       timer_call_t                    call)
+static __inline__ mpqueue_head_t *
+timer_call_entry_enqueue_deadline(
+       timer_call_t                    entry,
+       mpqueue_head_t                  *queue,
+       uint64_t                        deadline)
 {
-       (void)remque(qe(call));
-       timer_call_vars.delayed_num--;
+       mpqueue_head_t  *old_queue = MPQUEUE(TCE(entry)->queue);
 
-       call->state = IDLE;
+       call_entry_enqueue_deadline(TCE(entry), QUEUE(queue), deadline);
+
+       /* For efficiency, track the earliest soft deadline on the queue,
+        * so that fuzzy decisions can be made without lock acquisitions.
+        */
+
+       timer_call_t thead = (timer_call_t)queue_first(&queue->head);
+       queue->earliest_soft_deadline = thead->flags & TIMER_CALL_RATELIMITED ? TCE(thead)->deadline : thead->soft_deadline;
+
+       if (old_queue)
+               old_queue->count--;
+       queue->count++;
+
+       return old_queue;
 }
 
-static __inline__
-void
-_set_delayed_call_timer(
-       timer_call_t                    call)
+#endif
+
+static __inline__ void
+timer_call_entry_enqueue_tail(
+       timer_call_t                    entry,
+       mpqueue_head_t                  *queue)
 {
-       etimer_set_deadline(call->deadline);
+       call_entry_enqueue_tail(TCE(entry), QUEUE(queue));
+       queue->count++;
+       return;
 }
 
-boolean_t
-timer_call_enter(
-       timer_call_t                    call,
-       uint64_t                                deadline)
+/*
+ * Remove timer entry from its queue but don't change the queue pointer
+ * and set the async_dequeue flag. This is locking case 2b.
+ */
+static __inline__ void
+timer_call_entry_dequeue_async(
+       timer_call_t            entry)
 {
-       boolean_t               result = TRUE;
-       queue_t                 queue;
-       spl_t                   s;
+       mpqueue_head_t  *old_queue = MPQUEUE(TCE(entry)->queue);
+       if (old_queue) {
+               old_queue->count--;
+               (void) remque(qe(entry));
+               entry->async_dequeue = TRUE;
+       }
+       return;
+}
 
-       s = splclock();
-       simple_lock(&timer_call_lock);
+#if TIMER_ASSERT
+unsigned timer_call_enqueue_deadline_unlocked_async1;
+unsigned timer_call_enqueue_deadline_unlocked_async2;
+#endif
+/*
+ * Assumes call_entry and queues unlocked, interrupts disabled.
+ */
+__inline__ mpqueue_head_t *
+timer_call_enqueue_deadline_unlocked(
+       timer_call_t                    call,
+       mpqueue_head_t                  *queue,
+       uint64_t                        deadline,
+       uint64_t                        soft_deadline,
+       uint64_t                        ttd,
+       timer_call_param_t              param1,
+       uint32_t                        callout_flags)
+{
+       call_entry_t    entry = TCE(call);
+       mpqueue_head_t  *old_queue;
+
+       DBG("timer_call_enqueue_deadline_unlocked(%p,%p,)\n", call, queue);
+
+       simple_lock(&call->lock);
+
+       old_queue = MPQUEUE(entry->queue);
+
+       if (old_queue != NULL) {
+               timer_queue_lock_spin(old_queue);
+               if (call->async_dequeue) {
+                       /* collision (1c): timer already dequeued, clear flag */
+#if TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               call->async_dequeue,
+                               VM_KERNEL_UNSLIDE_OR_PERM(TCE(call)->queue),
+                               0x1c, 0);
+                       timer_call_enqueue_deadline_unlocked_async1++;
+#endif
+                       call->async_dequeue = FALSE;
+                       entry->queue = NULL;
+               } else if (old_queue != queue) {
+                       timer_call_entry_dequeue(call);
+#if TIMER_ASSERT
+                       timer_call_enqueue_deadline_unlocked_async2++;
+#endif
+               }
+               if (old_queue == timer_longterm_queue)
+                       timer_longterm_dequeued_locked(call);
+               if (old_queue != queue) {
+                       timer_queue_unlock(old_queue);
+                       timer_queue_lock_spin(queue);
+               }
+       } else {
+               timer_queue_lock_spin(queue);
+       }
 
-       if (call->state == DELAYED)
-               _delayed_call_dequeue(call);
-       else
-               result = FALSE;
+       call->soft_deadline = soft_deadline;
+       call->flags = callout_flags;
+       TCE(call)->param1 = param1;
+       call->ttd = ttd;
 
-       call->param1    = 0;
-       call->deadline  = deadline;
+       timer_call_entry_enqueue_deadline(call, queue, deadline);
+       timer_queue_unlock(queue);
+       simple_unlock(&call->lock);
 
-       queue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       return (old_queue);
+}
 
-       _delayed_call_enqueue(queue, call);
+#if TIMER_ASSERT
+unsigned timer_call_dequeue_unlocked_async1;
+unsigned timer_call_dequeue_unlocked_async2;
+#endif
+mpqueue_head_t *
+timer_call_dequeue_unlocked(
+       timer_call_t            call)
+{
+       call_entry_t    entry = TCE(call);
+       mpqueue_head_t  *old_queue;
+
+       DBG("timer_call_dequeue_unlocked(%p)\n", call);
+
+       simple_lock(&call->lock);
+       old_queue = MPQUEUE(entry->queue);
+#if TIMER_ASSERT
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+               DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+               VM_KERNEL_UNSLIDE_OR_PERM(call),
+               call->async_dequeue,
+               VM_KERNEL_UNSLIDE_OR_PERM(TCE(call)->queue),
+               0, 0);
+#endif
+       if (old_queue != NULL) {
+               timer_queue_lock_spin(old_queue);
+               if (call->async_dequeue) {
+                       /* collision (1c): timer already dequeued, clear flag */
+#if TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                           VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               call->async_dequeue,
+                               VM_KERNEL_UNSLIDE_OR_PERM(TCE(call)->queue),
+                               0x1c, 0);
+                       timer_call_dequeue_unlocked_async1++;
+#endif
+                       call->async_dequeue = FALSE;
+                       entry->queue = NULL;
+               } else {
+                       timer_call_entry_dequeue(call);
+               }
+               if (old_queue == timer_longterm_queue)
+                       timer_longterm_dequeued_locked(call);
+               timer_queue_unlock(old_queue);
+       }
+       simple_unlock(&call->lock);
+       return (old_queue);
+}
 
-       if (queue_first(queue) == qe(call))
-               _set_delayed_call_timer(call);
+static uint64_t
+past_deadline_timer_handle(uint64_t deadline, uint64_t ctime)
+{
+    uint64_t delta = (ctime - deadline);
+    
+    past_deadline_timers++;
+    past_deadline_deltas += delta;
+    if (delta > past_deadline_longest)
+       past_deadline_longest = deadline;
+    if (delta < past_deadline_shortest)
+       past_deadline_shortest = delta;
+
+    return (ctime + past_deadline_timer_adjustment);
+}
 
-       simple_unlock(&timer_call_lock);
-       splx(s);
+/*
+ * Timer call entry locking model
+ * ==============================
+ *
+ * Timer call entries are linked on per-cpu timer queues which are protected
+ * by the queue lock and the call entry lock. The locking protocol is:
+ *
+ *  0) The canonical locking order is timer call entry followed by queue.
+ *
+ *  1) With only the entry lock held, entry.queue is valid:
+ *    1a) NULL: the entry is not queued, or
+ *    1b) non-NULL: this queue must be locked before the entry is modified.
+ *        After locking the queue, the call.async_dequeue flag must be checked:
+ *    1c) TRUE: the entry was removed from the queue by another thread
+ *             and we must NULL the entry.queue and reset this flag, or
+ *    1d) FALSE: (ie. queued), the entry can be manipulated.
+ *
+ *  2) If a queue lock is obtained first, the queue is stable:
+ *    2a) If a try-lock of a queued entry succeeds, the call can be operated on
+ *       and dequeued.
+ *    2b) If a try-lock fails, it indicates that another thread is attempting
+ *        to change the entry and move it to a different position in this queue
+ *        or to different queue. The entry can be dequeued but it should not be
+ *        operated upon since it is being changed. Furthermore, we don't null
+ *       the entry.queue pointer (protected by the entry lock we don't own).
+ *       Instead, we set the async_dequeue flag -- see (1c).
+ *    2c) Same as 2b but occurring when a longterm timer is matured.
+ *  3) A callout's parameters (deadline, flags, parameters, soft deadline &c.)
+ *     should be manipulated with the appropriate timer queue lock held,
+ *     to prevent queue traversal observations from observing inconsistent
+ *     updates to an in-flight callout.
+ */
 
-       return (result);
-}
+/*
+ * Inlines timer_call_entry_dequeue() and timer_call_entry_enqueue_deadline()
+ * cast between pointer types (mpqueue_head_t *) and (queue_t) so that
+ * we can use the call_entry_dequeue() and call_entry_enqueue_deadline()
+ * methods to operate on timer_call structs as if they are call_entry structs.
+ * These structures are identical except for their queue head pointer fields.
+ *
+ * In the debug case, we assert that the timer call locking protocol 
+ * is being obeyed.
+ */
 
-boolean_t
-timer_call_enter1(
-       timer_call_t                    call,
-       timer_call_param_t              param1,
-       uint64_t                                deadline)
+static boolean_t 
+timer_call_enter_internal(
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint64_t                leeway,
+       uint32_t                flags,
+       boolean_t               ratelimited)
 {
-       boolean_t               result = TRUE;
-       queue_t                 queue;
+       mpqueue_head_t          *queue = NULL;
+       mpqueue_head_t          *old_queue;
        spl_t                   s;
+       uint64_t                slop;
+       uint32_t                urgency;
+       uint64_t                sdeadline, ttd;
 
+       assert(call->call_entry.func != NULL);
        s = splclock();
-       simple_lock(&timer_call_lock);
 
-       if (call->state == DELAYED)
-               _delayed_call_dequeue(call);
-       else
-               result = FALSE;
+       sdeadline = deadline;
+       uint64_t ctime = mach_absolute_time();
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_ENTER | DBG_FUNC_START,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           VM_KERNEL_ADDRHIDE(param1), deadline, flags, 0);
+
+       urgency = (flags & TIMER_CALL_URGENCY_MASK);
+
+       boolean_t slop_ratelimited = FALSE;
+       slop = timer_call_slop(deadline, ctime, urgency, current_thread(), &slop_ratelimited);
+
+       if ((flags & TIMER_CALL_LEEWAY) != 0 && leeway > slop)
+               slop = leeway;
+
+       if (UINT64_MAX - deadline <= slop) {
+               deadline = UINT64_MAX;
+       } else {
+               deadline += slop;
+       }
+
+       if (__improbable(deadline < ctime)) {
+               deadline = past_deadline_timer_handle(deadline, ctime);
+               sdeadline = deadline;
+       }
 
-       call->param1    = param1;
-       call->deadline  = deadline;
+       if (ratelimited || slop_ratelimited) {
+               flags |= TIMER_CALL_RATELIMITED;
+       } else {
+               flags &= ~TIMER_CALL_RATELIMITED;
+       }
 
-       queue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       ttd =  sdeadline - ctime;
+#if CONFIG_DTRACE
+       DTRACE_TMR7(callout__create, timer_call_func_t, TCE(call)->func,
+       timer_call_param_t, TCE(call)->param0, uint32_t, flags,
+           (deadline - sdeadline),
+           (ttd >> 32), (unsigned) (ttd & 0xFFFFFFFF), call);
+#endif
+
+       /* Program timer callout parameters under the appropriate per-CPU or
+        * longterm queue lock. The callout may have been previously enqueued
+        * and in-flight on this or another timer queue.
+        */
+       if (!ratelimited && !slop_ratelimited) {
+               queue = timer_longterm_enqueue_unlocked(call, ctime, deadline, &old_queue, sdeadline, ttd, param1, flags);
+       }
 
-       _delayed_call_enqueue(queue, call);
+       if (queue == NULL) {
+               queue = timer_queue_assign(deadline);
+               old_queue = timer_call_enqueue_deadline_unlocked(call, queue, deadline, sdeadline, ttd, param1, flags);
+       }
 
-       if (queue_first(queue) == qe(call))
-               _set_delayed_call_timer(call);
+#if TIMER_TRACE
+       TCE(call)->entry_time = ctime;
+#endif
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_ENTER | DBG_FUNC_END,
+               VM_KERNEL_UNSLIDE_OR_PERM(call),
+               (old_queue != NULL), deadline, queue->count, 0); 
 
-       simple_unlock(&timer_call_lock);
        splx(s);
 
-       return (result);
+       return (old_queue != NULL);
+}
+
+/*
+ * timer_call_*()
+ *     return boolean indicating whether the call was previously queued.
+ */
+boolean_t
+timer_call_enter(
+       timer_call_t            call,
+       uint64_t                deadline,
+       uint32_t                flags)
+{
+       return timer_call_enter_internal(call, NULL, deadline, 0, flags, FALSE);
+}
+
+boolean_t
+timer_call_enter1(
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint32_t                flags)
+{
+       return timer_call_enter_internal(call, param1, deadline, 0, flags, FALSE);
+}
+
+boolean_t
+timer_call_enter_with_leeway(
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint64_t                leeway,
+       uint32_t                flags,
+       boolean_t               ratelimited)
+{
+       return timer_call_enter_internal(call, param1, deadline, leeway, flags, ratelimited);
+}
+
+boolean_t 
+timer_call_quantum_timer_enter(
+       timer_call_t            call,
+       timer_call_param_t      param1,
+       uint64_t                deadline,
+       uint64_t                ctime)
+{
+       assert(call->call_entry.func != NULL);
+       assert(ml_get_interrupts_enabled() == FALSE);
+
+       uint32_t flags = TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL;
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_START,
+               VM_KERNEL_UNSLIDE_OR_PERM(call),
+               VM_KERNEL_ADDRHIDE(param1), deadline,
+               flags, 0); 
+       
+       if (__improbable(deadline < ctime)) {
+               deadline = past_deadline_timer_handle(deadline, ctime);
+       }
+
+       uint64_t ttd = deadline - ctime;
+#if CONFIG_DTRACE
+       DTRACE_TMR7(callout__create, timer_call_func_t, TCE(call)->func,
+               timer_call_param_t, TCE(call)->param0, uint32_t, flags, 0,
+               (ttd >> 32), (unsigned) (ttd & 0xFFFFFFFF), call);
+#endif
+       
+       quantum_timer_set_deadline(deadline);
+       TCE(call)->deadline = deadline;
+       TCE(call)->param1 = param1;
+       call->ttd = ttd;
+       call->flags = flags;
+
+#if TIMER_TRACE
+       TCE(call)->entry_time = ctime;
+#endif
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_END,
+               VM_KERNEL_UNSLIDE_OR_PERM(call),
+               1, deadline, 0, 0); 
+       
+       return true;
+}
+
+
+boolean_t
+timer_call_quantum_timer_cancel(
+       timer_call_t            call)
+{
+       assert(ml_get_interrupts_enabled() == FALSE);
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_CANCEL | DBG_FUNC_START,
+               VM_KERNEL_UNSLIDE_OR_PERM(call), TCE(call)->deadline, 
+               0, call->flags, 0);
+       
+       TCE(call)->deadline = 0;
+       quantum_timer_set_deadline(0);
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_CANCEL | DBG_FUNC_END,
+               VM_KERNEL_UNSLIDE_OR_PERM(call), 0,
+               TCE(call)->deadline - mach_absolute_time(),
+               TCE(call)->deadline - TCE(call)->entry_time, 0);
+       
+#if CONFIG_DTRACE
+       DTRACE_TMR6(callout__cancel, timer_call_func_t, TCE(call)->func,
+           timer_call_param_t, TCE(call)->param0, uint32_t, call->flags, 0,
+           (call->ttd >> 32), (unsigned) (call->ttd & 0xFFFFFFFF));
+#endif
+
+       return true;
 }
 
 boolean_t
 timer_call_cancel(
-       timer_call_t                    call)
+       timer_call_t            call)
 {
-       boolean_t               result = TRUE;
+       mpqueue_head_t          *old_queue;
        spl_t                   s;
 
        s = splclock();
-       simple_lock(&timer_call_lock);
 
-       if (call->state == DELAYED)
-               _delayed_call_dequeue(call);
-       else
-               result = FALSE;
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_CANCEL | DBG_FUNC_START,
+               VM_KERNEL_UNSLIDE_OR_PERM(call),
+               TCE(call)->deadline, call->soft_deadline, call->flags, 0);
+
+       old_queue = timer_call_dequeue_unlocked(call);
 
-       simple_unlock(&timer_call_lock);
+       if (old_queue != NULL) {
+               timer_queue_lock_spin(old_queue);
+               if (!queue_empty(&old_queue->head)) {
+                       timer_queue_cancel(old_queue, TCE(call)->deadline, CE(queue_first(&old_queue->head))->deadline);
+                       timer_call_t thead = (timer_call_t)queue_first(&old_queue->head);
+                       old_queue->earliest_soft_deadline = thead->flags & TIMER_CALL_RATELIMITED ? TCE(thead)->deadline : thead->soft_deadline;
+               }
+               else {
+                       timer_queue_cancel(old_queue, TCE(call)->deadline, UINT64_MAX);
+                       old_queue->earliest_soft_deadline = UINT64_MAX;
+               }
+               timer_queue_unlock(old_queue);
+       }
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_CANCEL | DBG_FUNC_END,
+               VM_KERNEL_UNSLIDE_OR_PERM(call),
+               VM_KERNEL_UNSLIDE_OR_PERM(old_queue),
+               TCE(call)->deadline - mach_absolute_time(),
+               TCE(call)->deadline - TCE(call)->entry_time, 0);
        splx(s);
 
-       return (result);
+#if CONFIG_DTRACE
+       DTRACE_TMR6(callout__cancel, timer_call_func_t, TCE(call)->func,
+           timer_call_param_t, TCE(call)->param0, uint32_t, call->flags, 0,
+           (call->ttd >> 32), (unsigned) (call->ttd & 0xFFFFFFFF));
+#endif
+
+       return (old_queue != NULL);
 }
 
-boolean_t
-timer_call_is_delayed(
-       timer_call_t                    call,
-       uint64_t                                *deadline)
+static uint32_t        timer_queue_shutdown_lock_skips;
+static uint32_t timer_queue_shutdown_discarded;
+
+void
+timer_queue_shutdown(
+       mpqueue_head_t          *queue)
 {
-       boolean_t               result = FALSE;
+       timer_call_t            call;
+       mpqueue_head_t          *new_queue;
        spl_t                   s;
 
+
+       DBG("timer_queue_shutdown(%p)\n", queue);
+
        s = splclock();
-       simple_lock(&timer_call_lock);
 
-       if (call->state == DELAYED) {
-               if (deadline != NULL)
-                       *deadline = call->deadline;
-               result = TRUE;
+       /* Note comma operator in while expression re-locking each iteration */
+       while ((void)timer_queue_lock_spin(queue), !queue_empty(&queue->head)) {
+               call = TIMER_CALL(queue_first(&queue->head));
+
+               if (!simple_lock_try(&call->lock)) {
+                       /*
+                        * case (2b) lock order inversion, dequeue and skip
+                        * Don't change the call_entry queue back-pointer
+                        * but set the async_dequeue field.
+                        */
+                       timer_queue_shutdown_lock_skips++;
+                       timer_call_entry_dequeue_async(call);
+#if TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               call->async_dequeue,
+                               VM_KERNEL_UNSLIDE_OR_PERM(TCE(call)->queue),
+                               0x2b, 0);
+#endif
+                       timer_queue_unlock(queue);
+                       continue;
+               }
+
+               boolean_t call_local = ((call->flags & TIMER_CALL_LOCAL) != 0);
+
+               /* remove entry from old queue */
+               timer_call_entry_dequeue(call);
+               timer_queue_unlock(queue);
+
+               if (call_local == FALSE) {
+                       /* and queue it on new, discarding LOCAL timers */
+                       new_queue = timer_queue_assign(TCE(call)->deadline);
+                       timer_queue_lock_spin(new_queue);
+                       timer_call_entry_enqueue_deadline(
+                               call, new_queue, TCE(call)->deadline);
+                       timer_queue_unlock(new_queue);
+               } else {
+                       timer_queue_shutdown_discarded++;
+               }
+
+               assert(call_local == FALSE);
+               simple_unlock(&call->lock);
        }
 
-       simple_unlock(&timer_call_lock);
+       timer_queue_unlock(queue);
        splx(s);
+}
 
-       return (result);
+
+void
+quantum_timer_expire(
+       uint64_t                deadline)
+{
+       processor_t processor = current_processor();
+       timer_call_t call = TIMER_CALL(&(processor->quantum_timer));
+
+       if (__improbable(TCE(call)->deadline > deadline))
+               panic("CPU quantum timer deadlin out of sync with timer call deadline");
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+           DECR_TIMER_EXPIRE | DBG_FUNC_NONE,
+           VM_KERNEL_UNSLIDE_OR_PERM(call),
+           TCE(call)->deadline,
+           TCE(call)->deadline,
+           TCE(call)->entry_time, 0);
+       
+       timer_call_func_t func = TCE(call)->func;
+       timer_call_param_t param0 = TCE(call)->param0; 
+       timer_call_param_t param1 = TCE(call)->param1;
+       
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+               DECR_TIMER_CALLOUT | DBG_FUNC_START,
+               VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func),
+               VM_KERNEL_ADDRHIDE(param0),
+               VM_KERNEL_ADDRHIDE(param1),
+               0);
+
+#if CONFIG_DTRACE
+       DTRACE_TMR7(callout__start, timer_call_func_t, func,
+               timer_call_param_t, param0, unsigned, call->flags,
+               0, (call->ttd >> 32),
+               (unsigned) (call->ttd & 0xFFFFFFFF), call);
+#endif
+       (*func)(param0, param1);
+                       
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+               DECR_TIMER_CALLOUT | DBG_FUNC_END,
+               VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func),
+               VM_KERNEL_ADDRHIDE(param0),
+               VM_KERNEL_ADDRHIDE(param1),
+               0);
 }
 
+static uint32_t        timer_queue_expire_lock_skips;
+uint64_t
+timer_queue_expire_with_options(
+       mpqueue_head_t          *queue,
+       uint64_t                deadline,
+       boolean_t               rescan)
+{
+       timer_call_t    call = NULL;
+       uint32_t tc_iterations = 0;
+       DBG("timer_queue_expire(%p,)\n", queue);
+
+       uint64_t cur_deadline = deadline;
+       timer_queue_lock_spin(queue);
+
+       while (!queue_empty(&queue->head)) {
+               /* Upon processing one or more timer calls, refresh the
+                * deadline to account for time elapsed in the callout
+                */
+               if (++tc_iterations > 1)
+                       cur_deadline = mach_absolute_time();
+
+               if (call == NULL)
+                       call = TIMER_CALL(queue_first(&queue->head));
+
+               if (call->soft_deadline <= cur_deadline) {
+                       timer_call_func_t               func;
+                       timer_call_param_t              param0, param1;
+
+                       TCOAL_DEBUG(0xDDDD0000, queue->earliest_soft_deadline, call->soft_deadline, 0, 0, 0);
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_EXPIRE | DBG_FUNC_NONE,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               call->soft_deadline,
+                               TCE(call)->deadline,
+                               TCE(call)->entry_time, 0);
+
+                       if ((call->flags & TIMER_CALL_RATELIMITED) &&
+                           (TCE(call)->deadline > cur_deadline)) {
+                               if (rescan == FALSE)
+                                       break;
+                       }
+
+                       if (!simple_lock_try(&call->lock)) {
+                               /* case (2b) lock inversion, dequeue and skip */
+                               timer_queue_expire_lock_skips++;
+                               timer_call_entry_dequeue_async(call);
+                               call = NULL;
+                               continue;
+                       }
+
+                       timer_call_entry_dequeue(call);
+
+                       func = TCE(call)->func;
+                       param0 = TCE(call)->param0;
+                       param1 = TCE(call)->param1;
+
+                       simple_unlock(&call->lock);
+                       timer_queue_unlock(queue);
+
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_CALLOUT | DBG_FUNC_START,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func),
+                               VM_KERNEL_ADDRHIDE(param0),
+                               VM_KERNEL_ADDRHIDE(param1),
+                               0);
+
+#if CONFIG_DTRACE
+                       DTRACE_TMR7(callout__start, timer_call_func_t, func,
+                           timer_call_param_t, param0, unsigned, call->flags,
+                           0, (call->ttd >> 32),
+                           (unsigned) (call->ttd & 0xFFFFFFFF), call);
+#endif
+                       /* Maintain time-to-deadline in per-processor data
+                        * structure for thread wakeup deadline statistics.
+                        */
+                       uint64_t *ttdp = &(PROCESSOR_DATA(current_processor(), timer_call_ttd));
+                       *ttdp = call->ttd;
+                       (*func)(param0, param1);
+                       *ttdp = 0;
+#if CONFIG_DTRACE
+                       DTRACE_TMR4(callout__end, timer_call_func_t, func,
+                           param0, param1, call);
+#endif
+
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_CALLOUT | DBG_FUNC_END,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func),
+                               VM_KERNEL_ADDRHIDE(param0),
+                               VM_KERNEL_ADDRHIDE(param1),
+                               0);
+                       call = NULL;
+                       timer_queue_lock_spin(queue);
+               } else {
+                       if (__probable(rescan == FALSE)) {
+                               break;
+                       } else {
+                               int64_t skew = TCE(call)->deadline - call->soft_deadline;
+                               assert(TCE(call)->deadline >= call->soft_deadline);
+
+                               /* DRK: On a latency quality-of-service level change,
+                                * re-sort potentially rate-limited timers. The platform
+                                * layer determines which timers require
+                                * this. In the absence of the per-callout
+                                * synchronization requirement, a global resort could
+                                * be more efficient. The re-sort effectively
+                                * annuls all timer adjustments, i.e. the "soft
+                                * deadline" is the sort key.
+                                */
+       
+                               if (timer_resort_threshold(skew)) {
+                                       if (__probable(simple_lock_try(&call->lock))) {
+                                               timer_call_entry_dequeue(call);
+                                               timer_call_entry_enqueue_deadline(call, queue, call->soft_deadline);
+                                               simple_unlock(&call->lock);
+                                               call = NULL;
+                                       }
+                               }
+                               if (call) {
+                                       call = TIMER_CALL(queue_next(qe(call)));
+                                       if (queue_end(&queue->head, qe(call)))
+                                               break;
+                               }
+                       }
+               }
+       }
+
+       if (!queue_empty(&queue->head)) {
+               call = TIMER_CALL(queue_first(&queue->head));
+               cur_deadline = TCE(call)->deadline;
+               queue->earliest_soft_deadline = (call->flags & TIMER_CALL_RATELIMITED) ? TCE(call)->deadline: call->soft_deadline;
+       } else {
+               queue->earliest_soft_deadline = cur_deadline = UINT64_MAX;
+       }
+
+       timer_queue_unlock(queue);
+
+       return (cur_deadline);
+}
+
+uint64_t
+timer_queue_expire(
+       mpqueue_head_t          *queue,
+       uint64_t                deadline)
+{
+       return timer_queue_expire_with_options(queue, deadline, FALSE);
+}
+
+extern int serverperfmode;
+static uint32_t        timer_queue_migrate_lock_skips;
 /*
- * Called at splclock.
+ * timer_queue_migrate() is called by timer_queue_migrate_cpu()
+ * to move timer requests from the local processor (queue_from)
+ * to a target processor's (queue_to).
  */
+int
+timer_queue_migrate(mpqueue_head_t *queue_from, mpqueue_head_t *queue_to)
+{
+       timer_call_t    call;
+       timer_call_t    head_to;
+       int             timers_migrated = 0;
+
+       DBG("timer_queue_migrate(%p,%p)\n", queue_from, queue_to);
+
+       assert(!ml_get_interrupts_enabled());
+       assert(queue_from != queue_to);
+
+       if (serverperfmode) {
+               /*
+                * if we're running a high end server
+                * avoid migrations... they add latency
+                * and don't save us power under typical
+                * server workloads
+                */
+               return -4;
+       }
+
+       /*
+        * Take both local (from) and target (to) timer queue locks while
+        * moving the timers from the local queue to the target processor.
+        * We assume that the target is always the boot processor.
+        * But only move if all of the following is true:
+        *  - the target queue is non-empty
+        *  - the local queue is non-empty
+        *  - the local queue's first deadline is later than the target's
+        *  - the local queue contains no non-migrateable "local" call
+        * so that we need not have the target resync.
+        */
+
+        timer_queue_lock_spin(queue_to);
+
+       head_to = TIMER_CALL(queue_first(&queue_to->head));
+       if (queue_empty(&queue_to->head)) {
+               timers_migrated = -1;
+               goto abort1;
+       }
+
+        timer_queue_lock_spin(queue_from);
+
+       if (queue_empty(&queue_from->head)) {
+               timers_migrated = -2;
+               goto abort2;
+       }
+
+       call = TIMER_CALL(queue_first(&queue_from->head));
+       if (TCE(call)->deadline < TCE(head_to)->deadline) {
+               timers_migrated = 0;
+               goto abort2;
+       }
+
+       /* perform scan for non-migratable timers */
+       do {
+               if (call->flags & TIMER_CALL_LOCAL) {
+                       timers_migrated = -3;
+                       goto abort2;
+               }
+               call = TIMER_CALL(queue_next(qe(call)));
+       } while (!queue_end(&queue_from->head, qe(call)));
+
+       /* migration loop itself -- both queues are locked */
+       while (!queue_empty(&queue_from->head)) {
+               call = TIMER_CALL(queue_first(&queue_from->head));
+               if (!simple_lock_try(&call->lock)) {
+                       /* case (2b) lock order inversion, dequeue only */
+#ifdef TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+                               DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               VM_KERNEL_UNSLIDE_OR_PERM(TCE(call)->queue),
+                               VM_KERNEL_UNSLIDE_OR_PERM(call->lock.interlock.lock_data),
+                               0x2b, 0);
+#endif
+                       timer_queue_migrate_lock_skips++;
+                       timer_call_entry_dequeue_async(call);
+                       continue;
+               }
+               timer_call_entry_dequeue(call);
+               timer_call_entry_enqueue_deadline(
+                       call, queue_to, TCE(call)->deadline);
+               timers_migrated++;
+               simple_unlock(&call->lock);
+       }
+       queue_from->earliest_soft_deadline = UINT64_MAX;
+abort2:
+               timer_queue_unlock(queue_from);
+abort1:
+               timer_queue_unlock(queue_to);
+
+       return timers_migrated;
+}
 
 void
-timer_call_shutdown(
-       processor_t                     processor)
+timer_queue_trace_cpu(int ncpu)
 {
-       timer_call_t            call;
-       queue_t                         queue, myqueue;
+       timer_call_nosync_cpu(
+               ncpu,
+               (void(*)(void *))timer_queue_trace,
+               (void*) timer_queue_cpu(ncpu));
+}
+
+void
+timer_queue_trace(
+       mpqueue_head_t                  *queue)
+{
+       timer_call_t    call;
+       spl_t           s;
 
-       assert(processor != current_processor());
+       if (!kdebug_enable)
+               return;
 
-       queue = &PROCESSOR_DATA(processor, timer_call_queue);
-       myqueue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+       s = splclock();
+       timer_queue_lock_spin(queue);
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_QUEUE | DBG_FUNC_START,
+               queue->count, mach_absolute_time(), 0, 0, 0); 
+
+       if (!queue_empty(&queue->head)) {
+               call = TIMER_CALL(queue_first(&queue->head));
+               do {
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                               DECR_TIMER_QUEUE | DBG_FUNC_NONE,
+                               call->soft_deadline,
+                               TCE(call)->deadline,
+                               TCE(call)->entry_time,
+                               VM_KERNEL_UNSLIDE(TCE(call)->func),
+                               0);
+                       call = TIMER_CALL(queue_next(qe(call)));
+               } while (!queue_end(&queue->head, qe(call)));
+       }
 
-       simple_lock(&timer_call_lock);
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+               DECR_TIMER_QUEUE | DBG_FUNC_END,
+               queue->count, mach_absolute_time(), 0, 0, 0); 
 
-       call = TC(queue_first(queue));
+       timer_queue_unlock(queue);
+       splx(s);
+}
 
-       while (!queue_end(queue, qe(call))) {
-               _delayed_call_dequeue(call);
+void
+timer_longterm_dequeued_locked(timer_call_t call)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
 
-               _delayed_call_enqueue(myqueue, call);
+       tlp->dequeues++;
+       if (call == tlp->threshold.call)
+               tlp->threshold.call = NULL;
+}
 
-               call = TC(queue_first(queue));
+/*
+ * Place a timer call in the longterm list
+ * and adjust the next timer callout deadline if the new timer is first.
+ */
+mpqueue_head_t *
+timer_longterm_enqueue_unlocked(timer_call_t   call,
+                               uint64_t        now,
+                               uint64_t        deadline,
+                               mpqueue_head_t  **old_queue,
+                               uint64_t        soft_deadline,
+                               uint64_t        ttd,
+                               timer_call_param_t      param1,
+                               uint32_t        callout_flags)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
+       boolean_t               update_required = FALSE;
+       uint64_t                longterm_threshold;
+
+       longterm_threshold = now + tlp->threshold.interval;
+
+       /*
+        * Return NULL without doing anything if:
+        *  - this timer is local, or
+        *  - the longterm mechanism is disabled, or
+        *  - this deadline is too short.
+        */
+       if ((callout_flags & TIMER_CALL_LOCAL) != 0 ||
+           (tlp->threshold.interval == TIMER_LONGTERM_NONE) ||
+               (deadline <= longterm_threshold))
+               return NULL;
+
+       /*
+        * Remove timer from its current queue, if any.
+        */
+       *old_queue = timer_call_dequeue_unlocked(call);
+
+       /*
+        * Lock the longterm queue, queue timer and determine
+        * whether an update is necessary.
+        */
+       assert(!ml_get_interrupts_enabled());
+       simple_lock(&call->lock);
+       timer_queue_lock_spin(timer_longterm_queue);
+       TCE(call)->deadline = deadline;
+       TCE(call)->param1 = param1;
+       call->ttd = ttd;
+       call->soft_deadline = soft_deadline;
+       call->flags = callout_flags;
+       timer_call_entry_enqueue_tail(call, timer_longterm_queue);
+       
+       tlp->enqueues++;
+
+       /*
+        * We'll need to update the currently set threshold timer
+        * if the new deadline is sooner and no sooner update is in flight.
+        */ 
+       if (deadline < tlp->threshold.deadline &&
+           deadline < tlp->threshold.preempted) {
+               tlp->threshold.preempted = deadline;
+               tlp->threshold.call = call;
+               update_required = TRUE;
+       }
+       timer_queue_unlock(timer_longterm_queue);
+       simple_unlock(&call->lock);
+       
+       if (update_required) {
+               /*
+                * Note: this call expects that calling the master cpu
+                * alone does not involve locking the topo lock.
+                */
+               timer_call_nosync_cpu(
+                       master_cpu,
+                       (void (*)(void *)) timer_longterm_update,
+                       (void *)tlp);
        }
 
-       call = TC(queue_first(myqueue));
+       return timer_longterm_queue;
+}
 
-       if (!queue_end(myqueue, qe(call)))
-               _set_delayed_call_timer(call);
+/*
+ * Scan for timers below the longterm threshold.
+ * Move these to the local timer queue (of the boot processor on which the
+ * calling thread is running).
+ * Both the local (boot) queue and the longterm queue are locked.
+ * The scan is similar to the timer migrate sequence but is performed by
+ * successively examining each timer on the longterm queue:
+ *  - if within the short-term threshold
+ *    - enter on the local queue (unless being deleted), 
+ *  - otherwise:
+ *    - if sooner, deadline becomes the next threshold deadline.
+ * The total scan time is limited to TIMER_LONGTERM_SCAN_LIMIT. Should this be
+ * exceeded, we abort and reschedule again so that we don't shut others from
+ * the timer queues. Longterm timers firing late is not critical.
+ */
+void
+timer_longterm_scan(timer_longterm_t   *tlp,
+                   uint64_t            time_start)
+{
+       queue_entry_t   qe;
+       timer_call_t    call;
+       uint64_t        threshold;
+       uint64_t        deadline;
+       uint64_t        time_limit = time_start + tlp->scan_limit;
+       mpqueue_head_t  *timer_master_queue;
+
+       assert(!ml_get_interrupts_enabled());
+       assert(cpu_number() == master_cpu);
+
+       if (tlp->threshold.interval != TIMER_LONGTERM_NONE)
+               threshold = time_start + tlp->threshold.interval;
+
+       tlp->threshold.deadline = TIMER_LONGTERM_NONE;
+       tlp->threshold.call = NULL;
+
+       if (queue_empty(&timer_longterm_queue->head))
+               return;
+
+       timer_master_queue = timer_queue_cpu(master_cpu);
+       timer_queue_lock_spin(timer_master_queue);
+
+       qe = queue_first(&timer_longterm_queue->head);
+       while (!queue_end(&timer_longterm_queue->head, qe)) {
+               call = TIMER_CALL(qe);
+               deadline = call->soft_deadline;
+               qe = queue_next(qe);
+               if (!simple_lock_try(&call->lock)) {
+                       /* case (2c) lock order inversion, dequeue only */
+#ifdef TIMER_ASSERT
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                               DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               VM_KERNEL_UNSLIDE_OR_PERM(TCE(call)->queue),
+                               VM_KERNEL_UNSLIDE_OR_PERM(call->lock.interlock.lock_data),
+                               0x2c, 0);
+#endif
+                       timer_call_entry_dequeue_async(call);
+                       continue;
+               }
+               if (deadline < threshold) {
+                       /*
+                        * This timer needs moving (escalating)
+                        * to the local (boot) processor's queue.
+                        */
+#ifdef TIMER_ASSERT
+                       if (deadline < time_start)
+                               TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                                               DECR_TIMER_OVERDUE | DBG_FUNC_NONE,
+                                       VM_KERNEL_UNSLIDE_OR_PERM(call),
+                                       deadline,
+                                       time_start,
+                                       threshold,
+                                       0);
+#endif
+                       TIMER_KDEBUG_TRACE(KDEBUG_TRACE,
+                                       DECR_TIMER_ESCALATE | DBG_FUNC_NONE,
+                               VM_KERNEL_UNSLIDE_OR_PERM(call),
+                               TCE(call)->deadline,
+                               TCE(call)->entry_time,
+                               VM_KERNEL_UNSLIDE(TCE(call)->func),
+                               0);
+                       tlp->escalates++;
+                       timer_call_entry_dequeue(call);
+                       timer_call_entry_enqueue_deadline(
+                               call, timer_master_queue, TCE(call)->deadline);
+                       /*
+                        * A side-effect of the following call is to update
+                        * the actual hardware deadline if required.
+                        */
+                       (void) timer_queue_assign(deadline);
+               } else {
+                       if (deadline < tlp->threshold.deadline) {
+                               tlp->threshold.deadline = deadline;
+                               tlp->threshold.call = call;
+                       }
+               }
+               simple_unlock(&call->lock);
+
+               /* Abort scan if we're taking too long. */
+               if (mach_absolute_time() > time_limit) {
+                       tlp->threshold.deadline = TIMER_LONGTERM_SCAN_AGAIN;
+                       tlp->scan_pauses++;
+                       DBG("timer_longterm_scan() paused %llu, qlen: %llu\n",
+                           time_limit, tlp->queue.count); 
+                       break;
+               }
+       }
 
-       simple_unlock(&timer_call_lock);
+       timer_queue_unlock(timer_master_queue);
 }
 
-static
 void
-timer_call_interrupt(
-       uint64_t                                timestamp)
+timer_longterm_callout(timer_call_param_t p0, __unused timer_call_param_t p1)
 {
-       timer_call_t            call;
-       queue_t                         queue;
+       timer_longterm_t        *tlp = (timer_longterm_t *) p0;
 
-       simple_lock(&timer_call_lock);
+       timer_longterm_update(tlp);
+}
 
-       queue = &PROCESSOR_DATA(current_processor(), timer_call_queue);
+void
+timer_longterm_update_locked(timer_longterm_t *tlp)
+{
+       uint64_t        latency;
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+               DECR_TIMER_UPDATE | DBG_FUNC_START,
+               VM_KERNEL_UNSLIDE_OR_PERM(&tlp->queue),
+               tlp->threshold.deadline,
+               tlp->threshold.preempted,
+               tlp->queue.count, 0);
+
+       tlp->scan_time = mach_absolute_time();
+       if (tlp->threshold.preempted != TIMER_LONGTERM_NONE) {
+               tlp->threshold.preempts++;
+               tlp->threshold.deadline = tlp->threshold.preempted;
+               tlp->threshold.preempted = TIMER_LONGTERM_NONE;
+               /*
+                * Note: in the unlikely event that a pre-empted timer has
+                * itself been cancelled, we'll simply re-scan later at the
+                * time of the preempted/cancelled timer.
+                */
+       } else {
+               tlp->threshold.scans++;
+
+               /*
+                * Maintain a moving average of our wakeup latency.
+                * Clamp latency to 0 and ignore above threshold interval.
+                */
+               if (tlp->scan_time > tlp->threshold.deadline_set)
+                       latency = tlp->scan_time - tlp->threshold.deadline_set;
+               else
+                       latency = 0;
+               if (latency < tlp->threshold.interval) {
+                       tlp->threshold.latency_min =
+                               MIN(tlp->threshold.latency_min, latency);
+                       tlp->threshold.latency_max =
+                               MAX(tlp->threshold.latency_max, latency);
+                       tlp->threshold.latency =
+                               (tlp->threshold.latency*99 + latency) / 100;
+               }
 
-       call = TC(queue_first(queue));
+               timer_longterm_scan(tlp, tlp->scan_time); 
+       }
 
-       while (!queue_end(queue, qe(call))) {
+       tlp->threshold.deadline_set = tlp->threshold.deadline;
+       /* The next deadline timer to be set is adjusted */
+       if (tlp->threshold.deadline != TIMER_LONGTERM_NONE &&
+           tlp->threshold.deadline != TIMER_LONGTERM_SCAN_AGAIN) {
+               tlp->threshold.deadline_set -= tlp->threshold.margin;
+               tlp->threshold.deadline_set -= tlp->threshold.latency;
+       }
+       
+       /* Throttle next scan time */
+       uint64_t scan_clamp = mach_absolute_time() + tlp->scan_interval;
+       if (tlp->threshold.deadline_set < scan_clamp)
+               tlp->threshold.deadline_set = scan_clamp;
+
+       TIMER_KDEBUG_TRACE(KDEBUG_TRACE, 
+               DECR_TIMER_UPDATE | DBG_FUNC_END,
+               VM_KERNEL_UNSLIDE_OR_PERM(&tlp->queue),
+               tlp->threshold.deadline,
+               tlp->threshold.scans,
+               tlp->queue.count, 0);
+}
 
-               if (call->deadline <= timestamp) {
-                       timer_call_func_t               func;
-                       timer_call_param_t              param0, param1;
+void
+timer_longterm_update(timer_longterm_t *tlp)
+{
+       spl_t   s = splclock();
+
+       timer_queue_lock_spin(timer_longterm_queue);
+
+       if (cpu_number() != master_cpu)
+               panic("timer_longterm_update_master() on non-boot cpu");
 
-                       _delayed_call_dequeue(call);
+       timer_longterm_update_locked(tlp);
 
-                       func = call->func;
-                       param0 = call->param0;
-                       param1 = call->param1;
+       if (tlp->threshold.deadline != TIMER_LONGTERM_NONE)
+               timer_call_enter(
+                       &tlp->threshold.timer,
+                       tlp->threshold.deadline_set,
+                       TIMER_CALL_LOCAL | TIMER_CALL_SYS_CRITICAL);
+       
+       timer_queue_unlock(timer_longterm_queue);
+       splx(s);
+}
 
-                       simple_unlock(&timer_call_lock);
+void
+timer_longterm_init(void)
+{
+       uint32_t                longterm;
+       timer_longterm_t        *tlp = &timer_longterm;
+
+       DBG("timer_longterm_init() tlp: %p, queue: %p\n", tlp, &tlp->queue);
+
+       /*
+        * Set the longterm timer threshold. Defaults to TIMER_LONGTERM_THRESHOLD
+        * or TIMER_LONGTERM_NONE (disabled) for server;
+        * overridden longterm boot-arg 
+        */
+       tlp->threshold.interval = serverperfmode ? TIMER_LONGTERM_NONE
+                                                : TIMER_LONGTERM_THRESHOLD;
+       if (PE_parse_boot_argn("longterm", &longterm, sizeof (longterm))) {
+               tlp->threshold.interval = (longterm == 0) ?
+                                               TIMER_LONGTERM_NONE :
+                                               longterm * NSEC_PER_MSEC;
+       }
+       if (tlp->threshold.interval != TIMER_LONGTERM_NONE) {
+               printf("Longterm timer threshold: %llu ms\n",
+                       tlp->threshold.interval / NSEC_PER_MSEC); 
+               kprintf("Longterm timer threshold: %llu ms\n",
+                       tlp->threshold.interval / NSEC_PER_MSEC); 
+               nanoseconds_to_absolutetime(tlp->threshold.interval,
+                                           &tlp->threshold.interval);
+               tlp->threshold.margin = tlp->threshold.interval / 10;
+               tlp->threshold.latency_min = EndOfAllTime;
+               tlp->threshold.latency_max = 0;
+       }
 
-                       KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_DECI, 2) | DBG_FUNC_START, (int)func, param0, param1, 0, 0);
+       tlp->threshold.preempted = TIMER_LONGTERM_NONE;
+       tlp->threshold.deadline = TIMER_LONGTERM_NONE;
 
-                       (*func)(param0, param1);
+       lck_attr_setdefault(&timer_longterm_lck_attr);
+       lck_grp_attr_setdefault(&timer_longterm_lck_grp_attr);
+       lck_grp_init(&timer_longterm_lck_grp,
+                    "timer_longterm", &timer_longterm_lck_grp_attr);
+       mpqueue_init(&tlp->queue,
+                    &timer_longterm_lck_grp, &timer_longterm_lck_attr);
+
+       timer_call_setup(&tlp->threshold.timer,
+                        timer_longterm_callout, (timer_call_param_t) tlp);
+
+       timer_longterm_queue = &tlp->queue;
+}
 
-                       KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_EXCP_DECI, 2) | DBG_FUNC_END, (int)func, param0, param1, 0, 0);
+enum {
+       THRESHOLD, QCOUNT,
+       ENQUEUES, DEQUEUES, ESCALATES, SCANS, PREEMPTS,
+       LATENCY, LATENCY_MIN, LATENCY_MAX, SCAN_LIMIT, SCAN_INTERVAL, PAUSES
+};
+uint64_t
+timer_sysctl_get(int oid)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
+
+       switch (oid) {
+       case THRESHOLD:
+               return (tlp->threshold.interval == TIMER_LONGTERM_NONE) ?
+                       0 : tlp->threshold.interval / NSEC_PER_MSEC;
+       case QCOUNT:
+               return tlp->queue.count;
+       case ENQUEUES:
+               return tlp->enqueues;
+       case DEQUEUES:
+               return tlp->dequeues;
+       case ESCALATES:
+               return tlp->escalates;
+       case SCANS:
+               return tlp->threshold.scans;
+       case PREEMPTS:
+               return tlp->threshold.preempts;
+       case LATENCY:
+               return tlp->threshold.latency;
+       case LATENCY_MIN:
+               return tlp->threshold.latency_min;
+       case LATENCY_MAX:
+               return tlp->threshold.latency_max;
+       case SCAN_LIMIT:
+               return tlp->scan_limit;
+       case SCAN_INTERVAL:
+               return tlp->scan_interval;
+       case PAUSES:
+               return tlp->scan_pauses;
+       default:
+               return 0;
+       }
+}
 
-                       simple_lock(&timer_call_lock);
+/*
+ * timer_master_scan() is the inverse of timer_longterm_scan()
+ * since it un-escalates timers to the longterm queue.
+ */
+static void
+timer_master_scan(timer_longterm_t     *tlp,
+                 uint64_t              now)
+{
+       queue_entry_t   qe;
+       timer_call_t    call;
+       uint64_t        threshold;
+       uint64_t        deadline;
+       mpqueue_head_t  *timer_master_queue;
+
+       if (tlp->threshold.interval != TIMER_LONGTERM_NONE)
+               threshold = now + tlp->threshold.interval;
+       else
+               threshold = TIMER_LONGTERM_NONE;
+
+       timer_master_queue = timer_queue_cpu(master_cpu);
+       timer_queue_lock_spin(timer_master_queue);
+
+       qe = queue_first(&timer_master_queue->head);
+       while (!queue_end(&timer_master_queue->head, qe)) {
+               call = TIMER_CALL(qe);
+               deadline = TCE(call)->deadline;
+               qe = queue_next(qe);
+               if ((call->flags & TIMER_CALL_LOCAL) != 0)
+                       continue;
+               if (!simple_lock_try(&call->lock)) {
+                       /* case (2c) lock order inversion, dequeue only */
+                       timer_call_entry_dequeue_async(call);
+                       continue;
                }
+               if (deadline > threshold) {
+                       /* move from master to longterm */
+                       timer_call_entry_dequeue(call);
+                       timer_call_entry_enqueue_tail(call, timer_longterm_queue);
+                       if (deadline < tlp->threshold.deadline) {
+                               tlp->threshold.deadline = deadline;
+                               tlp->threshold.call = call;
+                       }
+               }
+               simple_unlock(&call->lock);
+       }
+       timer_queue_unlock(timer_master_queue);
+}
+
+static void
+timer_sysctl_set_threshold(uint64_t value)
+{
+       timer_longterm_t        *tlp = &timer_longterm;
+       spl_t                   s = splclock();
+       boolean_t               threshold_increase;
+
+       timer_queue_lock_spin(timer_longterm_queue);
+
+       timer_call_cancel(&tlp->threshold.timer);
+
+       /*
+        * Set the new threshold and note whther it's increasing.
+        */
+       if (value == 0) {
+               tlp->threshold.interval = TIMER_LONGTERM_NONE;
+               threshold_increase = TRUE;
+               timer_call_cancel(&tlp->threshold.timer);
+       } else {
+               uint64_t        old_interval = tlp->threshold.interval;
+               tlp->threshold.interval = value * NSEC_PER_MSEC;
+               nanoseconds_to_absolutetime(tlp->threshold.interval,
+                                           &tlp->threshold.interval);
+               tlp->threshold.margin = tlp->threshold.interval / 10;
+               if  (old_interval == TIMER_LONGTERM_NONE)
+                       threshold_increase = FALSE;
                else
-                       break;
+                       threshold_increase = (tlp->threshold.interval > old_interval);
+       }
+
+       if (threshold_increase /* or removal */) {
+               /* Escalate timers from the longterm queue */
+               timer_longterm_scan(tlp, mach_absolute_time());
+       } else /* decrease or addition  */ {
+               /*
+                * We scan the local/master queue for timers now longterm.
+                * To be strictly correct, we should scan all processor queues
+                * but timer migration results in most timers gravitating to the
+                * master processor in any case.
+                */
+               timer_master_scan(tlp, mach_absolute_time());
+       }
+
+       /* Set new timer accordingly */
+       tlp->threshold.deadline_set = tlp->threshold.deadline;
+       if (tlp->threshold.deadline != TIMER_LONGTERM_NONE) {
+               tlp->threshold.deadline_set -= tlp->threshold.margin;
+               tlp->threshold.deadline_set -= tlp->threshold.latency;
+               timer_call_enter(
+                       &tlp->threshold.timer,
+                       tlp->threshold.deadline_set,
+                       TIMER_CALL_LOCAL | TIMER_CALL_SYS_CRITICAL);
+       }
+
+       /* Reset stats */
+       tlp->enqueues = 0;
+       tlp->dequeues = 0;
+       tlp->escalates = 0;
+       tlp->scan_pauses = 0;
+       tlp->threshold.scans = 0;
+       tlp->threshold.preempts = 0;
+       tlp->threshold.latency = 0;
+       tlp->threshold.latency_min = EndOfAllTime;
+       tlp->threshold.latency_max = 0;
+
+       timer_queue_unlock(timer_longterm_queue);
+       splx(s);
+}
+
+int
+timer_sysctl_set(int oid, uint64_t value)
+{
+       switch (oid) {
+       case THRESHOLD:
+               timer_call_cpu(
+                       master_cpu,
+                       (void (*)(void *)) timer_sysctl_set_threshold,
+                       (void *) value);
+               return KERN_SUCCESS;
+       case SCAN_LIMIT:
+               timer_longterm.scan_limit = value;
+               return KERN_SUCCESS;
+       case SCAN_INTERVAL:
+               timer_longterm.scan_interval = value;
+               return KERN_SUCCESS;
+       default:
+               return KERN_INVALID_ARGUMENT;
+       }
+}
+
+
+/* Select timer coalescing window based on per-task quality-of-service hints */
+static boolean_t tcoal_qos_adjust(thread_t t, int32_t *tshift, uint64_t *tmax_abstime, boolean_t *pratelimited) {
+       uint32_t latency_qos;
+       boolean_t adjusted = FALSE;
+       task_t ctask = t->task;
+
+       if (ctask) {
+               latency_qos = proc_get_effective_thread_policy(t, TASK_POLICY_LATENCY_QOS);
+
+               assert(latency_qos <= NUM_LATENCY_QOS_TIERS);
+
+               if (latency_qos) {
+                       *tshift = tcoal_prio_params.latency_qos_scale[latency_qos - 1];
+                       *tmax_abstime = tcoal_prio_params.latency_qos_abstime_max[latency_qos - 1];
+                       *pratelimited = tcoal_prio_params.latency_tier_rate_limited[latency_qos - 1];
+                       adjusted = TRUE;
+               }
+       }
+       return adjusted;
+}
+
+
+/* Adjust timer deadlines based on priority of the thread and the
+ * urgency value provided at timeout establishment. With this mechanism,
+ * timers are no longer necessarily sorted in order of soft deadline
+ * on a given timer queue, i.e. they may be differentially skewed.
+ * In the current scheme, this could lead to fewer pending timers
+ * processed than is technically possible when the HW deadline arrives.
+ */
+static void
+timer_compute_leeway(thread_t cthread, int32_t urgency, int32_t *tshift, uint64_t *tmax_abstime, boolean_t *pratelimited) {
+       int16_t tpri = cthread->sched_pri;
+       if ((urgency & TIMER_CALL_USER_MASK) != 0) {
+               if (tpri >= BASEPRI_RTQUEUES ||
+               urgency == TIMER_CALL_USER_CRITICAL) {
+                       *tshift = tcoal_prio_params.timer_coalesce_rt_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_rt_abstime_max;
+                       TCOAL_PRIO_STAT(rt_tcl);
+               } else if (proc_get_effective_thread_policy(cthread, TASK_POLICY_DARWIN_BG) ||
+               (urgency == TIMER_CALL_USER_BACKGROUND)) {
+                       /* Determine if timer should be subjected to a lower QoS */
+                       if (tcoal_qos_adjust(cthread, tshift, tmax_abstime, pratelimited)) {
+                               if (*tmax_abstime > tcoal_prio_params.timer_coalesce_bg_abstime_max) {
+                                       return;
+                               } else {
+                                       *pratelimited = FALSE;
+                               }
+                       }
+                       *tshift = tcoal_prio_params.timer_coalesce_bg_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_bg_abstime_max;
+                       TCOAL_PRIO_STAT(bg_tcl);
+               } else if (tpri >= MINPRI_KERNEL) {
+                       *tshift = tcoal_prio_params.timer_coalesce_kt_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_kt_abstime_max;
+                       TCOAL_PRIO_STAT(kt_tcl);
+               } else if (cthread->sched_mode == TH_MODE_FIXED) {
+                       *tshift = tcoal_prio_params.timer_coalesce_fp_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_fp_abstime_max;
+                       TCOAL_PRIO_STAT(fp_tcl);
+               } else if (tcoal_qos_adjust(cthread, tshift, tmax_abstime, pratelimited)) {
+                       TCOAL_PRIO_STAT(qos_tcl);
+               } else if (cthread->sched_mode == TH_MODE_TIMESHARE) {
+                       *tshift = tcoal_prio_params.timer_coalesce_ts_shift;
+                       *tmax_abstime = tcoal_prio_params.timer_coalesce_ts_abstime_max;
+                       TCOAL_PRIO_STAT(ts_tcl);
+               } else {
+                       TCOAL_PRIO_STAT(nc_tcl);
+               }
+       } else if (urgency == TIMER_CALL_SYS_BACKGROUND) {
+               *tshift = tcoal_prio_params.timer_coalesce_bg_shift;
+               *tmax_abstime = tcoal_prio_params.timer_coalesce_bg_abstime_max;
+               TCOAL_PRIO_STAT(bg_tcl);
+       } else {
+               *tshift = tcoal_prio_params.timer_coalesce_kt_shift;
+               *tmax_abstime = tcoal_prio_params.timer_coalesce_kt_abstime_max;
+               TCOAL_PRIO_STAT(kt_tcl);
+       }
+}
+
+
+int timer_user_idle_level;
+
+uint64_t
+timer_call_slop(uint64_t deadline, uint64_t now, uint32_t flags, thread_t cthread, boolean_t *pratelimited)
+{
+       int32_t tcs_shift = 0;
+       uint64_t tcs_max_abstime = 0;
+       uint64_t adjval;
+       uint32_t urgency = (flags & TIMER_CALL_URGENCY_MASK);
+
+       if (mach_timer_coalescing_enabled && 
+           (deadline > now) && (urgency != TIMER_CALL_SYS_CRITICAL)) {
+               timer_compute_leeway(cthread, urgency, &tcs_shift, &tcs_max_abstime, pratelimited);
+       
+               if (tcs_shift >= 0)
+                       adjval =  MIN((deadline - now) >> tcs_shift, tcs_max_abstime);
+               else
+                       adjval =  MIN((deadline - now) << (-tcs_shift), tcs_max_abstime);
+               /* Apply adjustments derived from "user idle level" heuristic */
+               adjval += (adjval * timer_user_idle_level) >> 7;
+               return adjval;
+       } else {
+               return 0;
+       }
+}
+
+int
+timer_get_user_idle_level(void) {
+       return timer_user_idle_level;
+}
+
+kern_return_t timer_set_user_idle_level(int ilevel) {
+       boolean_t do_reeval = FALSE;
+
+       if ((ilevel < 0) || (ilevel > 128))
+               return KERN_INVALID_ARGUMENT;
 
-               call = TC(queue_first(queue));
+       if (ilevel < timer_user_idle_level) {
+               do_reeval = TRUE;
        }
 
-       if (!queue_end(queue, qe(call)))
-               _set_delayed_call_timer(call);
+       timer_user_idle_level = ilevel;
 
-       simple_unlock(&timer_call_lock);
+       if (do_reeval)
+               ml_timer_evaluate();
 
+       return KERN_SUCCESS;
 }