* Copyright (c) 2013 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach/mach_types.h>
#include <kern/clock.h>
#include <kern/coalition.h>
#include <kern/debug.h>
+#include <kern/startup.h>
#include <kern/host.h>
-#include <kern/kalloc.h>
#include <kern/kern_types.h>
#include <kern/machine.h>
#include <kern/simple_lock.h>
#include <kern/ledger.h>
#include <kern/policy_internal.h>
+#include <machine/atomic.h>
+
#include <pexpert/pexpert.h>
#include <libkern/kernel_mach_header.h>
#define dprintf(...) do { } while(0)
#endif
-#ifdef MACH_BSD
-extern sched_call_t workqueue_get_sched_callback(void);
-#endif /* MACH_BSD */
-
/*
* SFI (Selective Forced Idle) operates by enabling a global
* timer on the SFI window interval. When it fires, all processors
* \__ thread_lock
*/
-decl_simple_lock_data(static,sfi_lock);
+decl_simple_lock_data(static, sfi_lock);
static timer_call_data_t sfi_timer_call_entry;
-volatile boolean_t sfi_is_enabled;
+volatile boolean_t sfi_is_enabled;
boolean_t sfi_window_is_set;
uint64_t sfi_window_usecs;
uint64_t sfi_next_off_deadline;
typedef struct {
- sfi_class_id_t class_id;
- thread_continue_t class_continuation;
- const char * class_name;
- const char * class_ledger_name;
+ sfi_class_id_t class_id;
+ thread_continue_t class_continuation;
+ const char * class_name;
+ const char * class_ledger_name;
} sfi_class_registration_t;
/*
* 5) Modify thermald to use the SFI class
*/
-static inline void _sfi_wait_cleanup(sched_call_t callback);
-
-#define SFI_CLASS_REGISTER(class_id, ledger_name) \
-extern char compile_time_assert_ ## class_id[SFI_CLASS_ ## class_id < MAX_SFI_CLASS_ID ? 1 : -1]; \
-void __attribute__((noinline,noreturn)) SFI_ ## class_id ## _THREAD_IS_WAITING(void *callback, wait_result_t wret __unused); \
-void SFI_ ## class_id ## _THREAD_IS_WAITING(void *callback, wait_result_t wret __unused) \
-{ \
- _sfi_wait_cleanup(callback); \
- thread_exception_return(); \
-} \
- \
-sfi_class_registration_t SFI_ ## class_id ## _registration __attribute__((section("__DATA,__sfi_class_reg"),used)) = { SFI_CLASS_ ## class_id, SFI_ ## class_id ## _THREAD_IS_WAITING, "SFI_CLASS_" # class_id, "SFI_CLASS_" # ledger_name };
+static inline void _sfi_wait_cleanup(void);
+
+static void sfi_class_register(sfi_class_registration_t *);
+
+#define SFI_CLASS_REGISTER(clsid, ledger_name) \
+ \
+static void __attribute__((noinline, noreturn)) \
+SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \
+{ \
+ _sfi_wait_cleanup(); \
+ thread_exception_return(); \
+} \
+ \
+static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \
+ \
+static __startup_data sfi_class_registration_t \
+SFI_ ## clsid ## _registration = { \
+ .class_id = SFI_CLASS_ ## clsid, \
+ .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \
+ .class_name = "SFI_CLASS_" # clsid, \
+ .class_ledger_name = "SFI_CLASS_" # ledger_name, \
+}; \
+STARTUP_ARG(TUNABLES, STARTUP_RANK_MIDDLE, \
+ sfi_class_register, &SFI_ ## clsid ## _registration)
/* SFI_CLASS_UNSPECIFIED not included here */
-SFI_CLASS_REGISTER(MAINTENANCE, MAINTENANCE)
-SFI_CLASS_REGISTER(DARWIN_BG, DARWIN_BG)
-SFI_CLASS_REGISTER(APP_NAP, APP_NAP)
-SFI_CLASS_REGISTER(MANAGED_FOCAL, MANAGED)
-SFI_CLASS_REGISTER(MANAGED_NONFOCAL, MANAGED)
-SFI_CLASS_REGISTER(UTILITY, UTILITY)
-SFI_CLASS_REGISTER(DEFAULT_FOCAL, DEFAULT)
-SFI_CLASS_REGISTER(DEFAULT_NONFOCAL, DEFAULT)
-SFI_CLASS_REGISTER(LEGACY_FOCAL, LEGACY)
-SFI_CLASS_REGISTER(LEGACY_NONFOCAL, LEGACY)
-SFI_CLASS_REGISTER(USER_INITIATED_FOCAL, USER_INITIATED)
-SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL, USER_INITIATED)
-SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL, USER_INTERACTIVE)
-SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL, USER_INTERACTIVE)
-SFI_CLASS_REGISTER(KERNEL, OPTED_OUT)
-SFI_CLASS_REGISTER(OPTED_OUT, OPTED_OUT)
+SFI_CLASS_REGISTER(MAINTENANCE, MAINTENANCE);
+SFI_CLASS_REGISTER(DARWIN_BG, DARWIN_BG);
+SFI_CLASS_REGISTER(APP_NAP, APP_NAP);
+SFI_CLASS_REGISTER(MANAGED_FOCAL, MANAGED);
+SFI_CLASS_REGISTER(MANAGED_NONFOCAL, MANAGED);
+SFI_CLASS_REGISTER(UTILITY, UTILITY);
+SFI_CLASS_REGISTER(DEFAULT_FOCAL, DEFAULT);
+SFI_CLASS_REGISTER(DEFAULT_NONFOCAL, DEFAULT);
+SFI_CLASS_REGISTER(LEGACY_FOCAL, LEGACY);
+SFI_CLASS_REGISTER(LEGACY_NONFOCAL, LEGACY);
+SFI_CLASS_REGISTER(USER_INITIATED_FOCAL, USER_INITIATED);
+SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL, USER_INITIATED);
+SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL, USER_INTERACTIVE);
+SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL, USER_INTERACTIVE);
+SFI_CLASS_REGISTER(KERNEL, OPTED_OUT);
+SFI_CLASS_REGISTER(OPTED_OUT, OPTED_OUT);
struct sfi_class_state {
- uint64_t off_time_usecs;
- uint64_t off_time_interval;
+ uint64_t off_time_usecs;
+ uint64_t off_time_interval;
- timer_call_data_t on_timer;
- uint64_t on_timer_deadline;
- boolean_t on_timer_programmed;
+ timer_call_data_t on_timer;
+ uint64_t on_timer_deadline;
+ boolean_t on_timer_programmed;
- boolean_t class_sfi_is_enabled;
- volatile boolean_t class_in_on_phase;
+ boolean_t class_sfi_is_enabled;
+ volatile boolean_t class_in_on_phase;
- struct waitq waitq; /* threads in ready state */
- thread_continue_t continuation;
+ struct waitq waitq; /* threads in ready state */
+ thread_continue_t continuation;
- const char * class_name;
- const char * class_ledger_name;
+ const char * class_name;
+ const char * class_ledger_name;
};
/* Static configuration performed in sfi_early_init() */
struct sfi_class_state sfi_classes[MAX_SFI_CLASS_ID];
-int sfi_enabled_class_count;
+int sfi_enabled_class_count; // protected by sfi_lock and used atomically
static void sfi_timer_global_off(
timer_call_param_t param0,
timer_call_param_t param0,
timer_call_param_t param1);
-static sfi_class_registration_t *
-sfi_get_registration_data(unsigned long *count)
-{
- unsigned long sectlen = 0;
- void *sectdata;
-
- sectdata = getsectdatafromheader(&_mh_execute_header, "__DATA", "__sfi_class_reg", §len);
- if (sectdata) {
-
- if (sectlen % sizeof(sfi_class_registration_t) != 0) {
- /* corrupt data? */
- panic("__sfi_class_reg section has invalid size %lu", sectlen);
- __builtin_unreachable();
- }
-
- *count = sectlen / sizeof(sfi_class_registration_t);
- return (sfi_class_registration_t *)sectdata;
- } else {
- panic("__sfi_class_reg section not found");
- __builtin_unreachable();
- }
-}
-
/* Called early in boot, when kernel is single-threaded */
-void sfi_early_init(void)
+__startup_func
+static void
+sfi_class_register(sfi_class_registration_t *reg)
{
- unsigned long i, count;
- sfi_class_registration_t *registrations;
-
- registrations = sfi_get_registration_data(&count);
- for (i=0; i < count; i++) {
- sfi_class_id_t class_id = registrations[i].class_id;
+ sfi_class_id_t class_id = reg->class_id;
- assert(class_id < MAX_SFI_CLASS_ID); /* should be caught at compile-time */
- if (class_id < MAX_SFI_CLASS_ID) {
- if (sfi_classes[class_id].continuation != NULL) {
- panic("Duplicate SFI registration for class 0x%x", class_id);
- }
- sfi_classes[class_id].class_sfi_is_enabled = FALSE;
- sfi_classes[class_id].class_in_on_phase = TRUE;
- sfi_classes[class_id].continuation = registrations[i].class_continuation;
- sfi_classes[class_id].class_name = registrations[i].class_name;
- sfi_classes[class_id].class_ledger_name = registrations[i].class_ledger_name;
- }
+ if (class_id >= MAX_SFI_CLASS_ID) {
+ panic("Invalid SFI class 0x%x", class_id);
+ }
+ if (sfi_classes[class_id].continuation != NULL) {
+ panic("Duplicate SFI registration for class 0x%x", class_id);
}
+ sfi_classes[class_id].class_sfi_is_enabled = FALSE;
+ sfi_classes[class_id].class_in_on_phase = TRUE;
+ sfi_classes[class_id].continuation = reg->class_continuation;
+ sfi_classes[class_id].class_name = reg->class_name;
+ sfi_classes[class_id].class_ledger_name = reg->class_ledger_name;
}
-void sfi_init(void)
+void
+sfi_init(void)
{
sfi_class_id_t i;
kern_return_t kret;
simple_lock_init(&sfi_lock, 0);
timer_call_setup(&sfi_timer_call_entry, sfi_timer_global_off, NULL);
sfi_window_is_set = FALSE;
- sfi_enabled_class_count = 0;
+ os_atomic_init(&sfi_enabled_class_count, 0);
sfi_is_enabled = FALSE;
for (i = 0; i < MAX_SFI_CLASS_ID; i++) {
if (sfi_classes[i].continuation) {
timer_call_setup(&sfi_classes[i].on_timer, sfi_timer_per_class_on, (void *)(uintptr_t)i);
sfi_classes[i].on_timer_programmed = FALSE;
-
- kret = waitq_init(&sfi_classes[i].waitq, SYNC_POLICY_FIFO|SYNC_POLICY_DISABLE_IRQ);
+
+ kret = waitq_init(&sfi_classes[i].waitq, SYNC_POLICY_FIFO | SYNC_POLICY_DISABLE_IRQ);
assert(kret == KERN_SUCCESS);
} else {
/* The only allowed gap is for SFI_CLASS_UNSPECIFIED */
- if(i != SFI_CLASS_UNSPECIFIED) {
+ if (i != SFI_CLASS_UNSPECIFIED) {
panic("Gap in registered SFI classes");
}
}
return ledger_entry_add(template, ledger_name, "sfi", "MATUs");
}
-static void sfi_timer_global_off(
+static void
+sfi_timer_global_off(
timer_call_param_t param0 __unused,
timer_call_param_t param1 __unused)
{
- uint64_t now = mach_absolute_time();
- sfi_class_id_t i;
- processor_set_t pset, nset;
- processor_t processor;
- uint32_t needs_cause_ast_mask = 0x0;
- spl_t s;
+ uint64_t now = mach_absolute_time();
+ sfi_class_id_t i;
+ processor_set_t pset, nset;
+ processor_t processor;
+ uint32_t needs_cause_ast_mask = 0x0;
+ spl_t s;
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
if (!sfi_is_enabled) {
/* If SFI has been disabled, let all "on" timers drain naturally */
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_NONE, 1, 0, 0, 0, 0);
for (i = 0; i < MAX_SFI_CLASS_ID; i++) {
if (sfi_classes[i].class_sfi_is_enabled) {
uint64_t on_timer_deadline;
-
+
sfi_classes[i].class_in_on_phase = FALSE;
sfi_classes[i].on_timer_programmed = TRUE;
/* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */
processor = processor_list;
pset = processor->processor_set;
-
+
pset_lock(pset);
-
+
do {
nset = processor->processor_set;
if (nset != pset) {
}
/* Re-arm timer if still enabled */
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
if (sfi_is_enabled) {
clock_deadline_for_periodic_event(sfi_window_interval,
- now,
- &sfi_next_off_deadline);
+ now,
+ &sfi_next_off_deadline);
timer_call_enter1(&sfi_timer_call_entry,
- NULL,
- sfi_next_off_deadline,
- TIMER_CALL_SYS_CRITICAL);
+ NULL,
+ sfi_next_off_deadline,
+ TIMER_CALL_SYS_CRITICAL);
}
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0);
splx(s);
}
-static void sfi_timer_per_class_on(
+static void
+sfi_timer_per_class_on(
timer_call_param_t param0,
timer_call_param_t param1 __unused)
{
sfi_class_id_t sfi_class_id = (sfi_class_id_t)(uintptr_t)param0;
- struct sfi_class_state *sfi_class = &sfi_classes[sfi_class_id];
- kern_return_t kret;
- spl_t s;
+ struct sfi_class_state *sfi_class = &sfi_classes[sfi_class_id];
+ kern_return_t kret;
+ spl_t s;
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_START, sfi_class_id, 0, 0, 0, 0);
sfi_class->on_timer_programmed = FALSE;
kret = waitq_wakeup64_all(&sfi_class->waitq,
- CAST_EVENT64_T(sfi_class_id),
- THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
+ CAST_EVENT64_T(sfi_class_id),
+ THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING);
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0);
}
-kern_return_t sfi_set_window(uint64_t window_usecs)
+kern_return_t
+sfi_set_window(uint64_t window_usecs)
{
- uint64_t interval, deadline;
- uint64_t now = mach_absolute_time();
- sfi_class_id_t i;
- spl_t s;
- uint64_t largest_class_off_interval = 0;
+ uint64_t interval, deadline;
+ uint64_t now = mach_absolute_time();
+ sfi_class_id_t i;
+ spl_t s;
+ uint64_t largest_class_off_interval = 0;
- if (window_usecs < MIN_SFI_WINDOW_USEC)
+ if (window_usecs < MIN_SFI_WINDOW_USEC) {
window_usecs = MIN_SFI_WINDOW_USEC;
+ }
- if (window_usecs > UINT32_MAX)
- return (KERN_INVALID_ARGUMENT);
+ if (window_usecs > UINT32_MAX) {
+ return KERN_INVALID_ARGUMENT;
+ }
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_WINDOW), window_usecs, 0, 0, 0, 0);
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
/* Check that we are not bringing in the SFI window smaller than any class */
for (i = 0; i < MAX_SFI_CLASS_ID; i++) {
if (interval <= largest_class_off_interval) {
simple_unlock(&sfi_lock);
splx(s);
- return (KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
/*
sfi_window_interval = interval;
sfi_window_is_set = TRUE;
- if (sfi_enabled_class_count == 0) {
+ if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) {
/* Can't program timer yet */
} else if (!sfi_is_enabled) {
sfi_is_enabled = TRUE;
sfi_next_off_deadline = deadline;
timer_call_enter1(&sfi_timer_call_entry,
- NULL,
- sfi_next_off_deadline,
- TIMER_CALL_SYS_CRITICAL);
+ NULL,
+ sfi_next_off_deadline,
+ TIMER_CALL_SYS_CRITICAL);
} else if (deadline >= sfi_next_off_deadline) {
sfi_next_off_deadline = deadline;
} else {
sfi_next_off_deadline = deadline;
timer_call_enter1(&sfi_timer_call_entry,
- NULL,
- sfi_next_off_deadline,
- TIMER_CALL_SYS_CRITICAL);
+ NULL,
+ sfi_next_off_deadline,
+ TIMER_CALL_SYS_CRITICAL);
}
simple_unlock(&sfi_lock);
splx(s);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
-kern_return_t sfi_window_cancel(void)
+kern_return_t
+sfi_window_cancel(void)
{
- spl_t s;
+ spl_t s;
s = splsched();
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_WINDOW), 0, 0, 0, 0, 0);
/* Disable globals so that global "off-timer" is not re-armed */
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
sfi_window_is_set = FALSE;
sfi_window_usecs = 0;
sfi_window_interval = 0;
splx(s);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
/* Defers SFI off and per-class on timers (if live) by the specified interval
* alignment and congruency of the SFI/GFI periods can distort this to some extent.
*/
-kern_return_t sfi_defer(uint64_t sfi_defer_matus)
+kern_return_t
+sfi_defer(uint64_t sfi_defer_matus)
{
- spl_t s;
+ spl_t s;
kern_return_t kr = KERN_FAILURE;
s = splsched();
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_GLOBAL_DEFER), sfi_defer_matus, 0, 0, 0, 0);
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
if (!sfi_is_enabled) {
goto sfi_defer_done;
}
splx(s);
- return (kr);
+ return kr;
}
-kern_return_t sfi_get_window(uint64_t *window_usecs)
+kern_return_t
+sfi_get_window(uint64_t *window_usecs)
{
- spl_t s;
- uint64_t off_window_us;
+ spl_t s;
+ uint64_t off_window_us;
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
off_window_us = sfi_window_usecs;
*window_usecs = off_window_us;
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
-kern_return_t sfi_set_class_offtime(sfi_class_id_t class_id, uint64_t offtime_usecs)
+kern_return_t
+sfi_set_class_offtime(sfi_class_id_t class_id, uint64_t offtime_usecs)
{
- uint64_t interval;
- spl_t s;
- uint64_t off_window_interval;
+ uint64_t interval;
+ spl_t s;
+ uint64_t off_window_interval;
- if (offtime_usecs < MIN_SFI_WINDOW_USEC)
+ if (offtime_usecs < MIN_SFI_WINDOW_USEC) {
offtime_usecs = MIN_SFI_WINDOW_USEC;
+ }
- if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID)
- return (KERN_INVALID_ARGUMENT);
+ if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) {
+ return KERN_INVALID_ARGUMENT;
+ }
- if (offtime_usecs > UINT32_MAX)
- return (KERN_INVALID_ARGUMENT);
+ if (offtime_usecs > UINT32_MAX) {
+ return KERN_INVALID_ARGUMENT;
+ }
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_CLASS_OFFTIME), offtime_usecs, class_id, 0, 0, 0);
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
off_window_interval = sfi_window_interval;
/* Check that we are not bringing in class off-time larger than the SFI window */
if (off_window_interval && (interval >= off_window_interval)) {
simple_unlock(&sfi_lock);
splx(s);
- return (KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
/* We never re-program the per-class on-timer, but rather just let it expire naturally */
if (!sfi_classes[class_id].class_sfi_is_enabled) {
- sfi_enabled_class_count++;
+ os_atomic_inc(&sfi_enabled_class_count, relaxed);
}
sfi_classes[class_id].off_time_usecs = offtime_usecs;
sfi_classes[class_id].off_time_interval = interval;
sfi_is_enabled = TRUE;
sfi_next_off_deadline = mach_absolute_time() + sfi_window_interval;
timer_call_enter1(&sfi_timer_call_entry,
- NULL,
- sfi_next_off_deadline,
- TIMER_CALL_SYS_CRITICAL);
+ NULL,
+ sfi_next_off_deadline,
+ TIMER_CALL_SYS_CRITICAL);
}
simple_unlock(&sfi_lock);
splx(s);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
-kern_return_t sfi_class_offtime_cancel(sfi_class_id_t class_id)
+kern_return_t
+sfi_class_offtime_cancel(sfi_class_id_t class_id)
{
- spl_t s;
+ spl_t s;
- if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID)
- return (KERN_INVALID_ARGUMENT);
+ if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) {
+ return KERN_INVALID_ARGUMENT;
+ }
s = splsched();
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_CLASS_OFFTIME), class_id, 0, 0, 0, 0);
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
/* We never re-program the per-class on-timer, but rather just let it expire naturally */
if (sfi_classes[class_id].class_sfi_is_enabled) {
- sfi_enabled_class_count--;
+ os_atomic_dec(&sfi_enabled_class_count, relaxed);
}
sfi_classes[class_id].off_time_usecs = 0;
sfi_classes[class_id].off_time_interval = 0;
sfi_classes[class_id].class_sfi_is_enabled = FALSE;
- if (sfi_enabled_class_count == 0) {
+ if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) {
sfi_is_enabled = FALSE;
}
splx(s);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
-kern_return_t sfi_get_class_offtime(sfi_class_id_t class_id, uint64_t *offtime_usecs)
+kern_return_t
+sfi_get_class_offtime(sfi_class_id_t class_id, uint64_t *offtime_usecs)
{
- uint64_t off_time_us;
- spl_t s;
+ uint64_t off_time_us;
+ spl_t s;
- if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID)
- return (0);
+ if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) {
+ return 0;
+ }
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
off_time_us = sfi_classes[class_id].off_time_usecs;
simple_unlock(&sfi_lock);
*offtime_usecs = off_time_us;
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
/*
* Thread must be locked. Ultimately, the real decision to enter
* SFI wait happens at the AST boundary.
*/
-sfi_class_id_t sfi_thread_classify(thread_t thread)
+sfi_class_id_t
+sfi_thread_classify(thread_t thread)
{
task_t task = thread->task;
boolean_t is_kernel_thread = (task == kernel_task);
sched_mode_t thmode = thread->sched_mode;
boolean_t focal = FALSE;
+ /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */
+ if (is_kernel_thread) {
+ return SFI_CLASS_KERNEL;
+ }
+
+ /* no need to re-classify threads unless there is at least one enabled SFI class */
+ if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) {
+ return SFI_CLASS_OPTED_OUT;
+ }
+
int task_role = proc_get_effective_task_policy(task, TASK_POLICY_ROLE);
int latency_qos = proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS);
int managed_task = proc_get_effective_task_policy(task, TASK_POLICY_SFI_MANAGED);
int thread_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS);
int thread_bg = proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG);
- /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */
- if (is_kernel_thread) {
- return SFI_CLASS_KERNEL;
- }
-
- if (thread_qos == THREAD_QOS_MAINTENANCE)
+ if (thread_qos == THREAD_QOS_MAINTENANCE) {
return SFI_CLASS_MAINTENANCE;
+ }
if (thread_bg || thread_qos == THREAD_QOS_BACKGROUND) {
return SFI_CLASS_DARWIN_BG;
break;
case TASK_BACKGROUND_APPLICATION:
case TASK_DEFAULT_APPLICATION:
- case TASK_THROTTLE_APPLICATION:
case TASK_UNSPECIFIED:
/* Focal if the task is in a coalition with a FG/focal app */
- if (task_coalition_focal_count(thread->task) > 0)
+ if (task_coalition_focal_count(thread->task) > 0) {
focal = TRUE;
+ }
break;
+ case TASK_THROTTLE_APPLICATION:
+ case TASK_DARWINBG_APPLICATION:
+ case TASK_NONUI_APPLICATION:
+ /* Definitely not focal */
default:
break;
}
case THREAD_QOS_UNSPECIFIED:
case THREAD_QOS_LEGACY:
case THREAD_QOS_USER_INITIATED:
- if (focal)
+ if (focal) {
return SFI_CLASS_MANAGED_FOCAL;
- else
+ } else {
return SFI_CLASS_MANAGED_NONFOCAL;
+ }
default:
break;
}
}
- if (thread_qos == THREAD_QOS_UTILITY)
+ if (thread_qos == THREAD_QOS_UTILITY) {
return SFI_CLASS_UTILITY;
+ }
/*
* Classify threads in non-managed tasks
/*
* pset must be locked.
*/
-sfi_class_id_t sfi_processor_active_thread_classify(processor_t processor)
+sfi_class_id_t
+sfi_processor_active_thread_classify(processor_t processor)
{
return processor->current_sfi_class;
}
* at the AST boundary, it will be fully evaluated whether we need to
* perform an AST wait
*/
-ast_t sfi_thread_needs_ast(thread_t thread, sfi_class_id_t *out_class)
+ast_t
+sfi_thread_needs_ast(thread_t thread, sfi_class_id_t *out_class)
{
sfi_class_id_t class_id;
class_id = sfi_thread_classify(thread);
- if (out_class)
+ if (out_class) {
*out_class = class_id;
+ }
/* No lock taken, so a stale value may be used. */
- if (!sfi_classes[class_id].class_in_on_phase)
+ if (!sfi_classes[class_id].class_in_on_phase) {
return AST_SFI;
- else
+ } else {
return AST_NONE;
+ }
}
/*
* to evaluate if the current running thread at that
* later point in time should be in an SFI wait.
*/
-ast_t sfi_processor_needs_ast(processor_t processor)
+ast_t
+sfi_processor_needs_ast(processor_t processor)
{
sfi_class_id_t class_id;
class_id = sfi_processor_active_thread_classify(processor);
/* No lock taken, so a stale value may be used. */
- if (!sfi_classes[class_id].class_in_on_phase)
+ if (!sfi_classes[class_id].class_in_on_phase) {
return AST_SFI;
- else
+ } else {
return AST_NONE;
-
+ }
}
-static inline void _sfi_wait_cleanup(sched_call_t callback) {
+static inline void
+_sfi_wait_cleanup(void)
+{
thread_t self = current_thread();
- sfi_class_id_t current_sfi_wait_class = SFI_CLASS_UNSPECIFIED;
- int64_t sfi_wait_time, sfi_wait_begin = 0;
spl_t s = splsched();
- thread_lock(self);
- if (callback) {
- thread_sched_call(self, callback);
- }
- sfi_wait_begin = self->wait_sfi_begin_time;
- thread_unlock(self);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
+
+ sfi_class_id_t current_sfi_wait_class = self->sfi_wait_class;
+
+ assert((SFI_CLASS_UNSPECIFIED < current_sfi_wait_class) &&
+ (current_sfi_wait_class < MAX_SFI_CLASS_ID));
- simple_lock(&sfi_lock);
- sfi_wait_time = mach_absolute_time() - sfi_wait_begin;
- current_sfi_wait_class = self->sfi_wait_class;
self->sfi_wait_class = SFI_CLASS_UNSPECIFIED;
+
simple_unlock(&sfi_lock);
splx(s);
- assert((SFI_CLASS_UNSPECIFIED < current_sfi_wait_class) && (current_sfi_wait_class < MAX_SFI_CLASS_ID));
-#if !CONFIG_EMBEDDED
- ledger_credit(self->task->ledger, task_ledgers.sfi_wait_times[current_sfi_wait_class], sfi_wait_time);
-#endif /* !CONFIG_EMBEDDED */
+
+ /*
+ * It's possible for the thread to be woken up due to the SFI period
+ * ending *before* it finishes blocking. In that case,
+ * wait_sfi_begin_time won't be set.
+ *
+ * Derive the time sacrificed to SFI by looking at when this thread was
+ * awoken by the on-timer, to avoid counting the time this thread spent
+ * waiting to get scheduled.
+ *
+ * Note that last_made_runnable_time could be reset if this thread
+ * gets preempted before we read the value. To fix that, we'd need to
+ * track wait time in a thread timer, sample the timer before blocking,
+ * pass the value through thread->parameter, and subtract that.
+ */
+
+ if (self->wait_sfi_begin_time != 0) {
+ uint64_t made_runnable = os_atomic_load(&self->last_made_runnable_time, relaxed);
+ int64_t sfi_wait_time = made_runnable - self->wait_sfi_begin_time;
+ assert(sfi_wait_time >= 0);
+
+ ledger_credit(self->task->ledger, task_ledgers.sfi_wait_times[current_sfi_wait_class],
+ sfi_wait_time);
+
+ self->wait_sfi_begin_time = 0;
+ }
}
/*
* We must take the sfi_lock to check whether we are in the "off" period
* for the class, and if so, block.
*/
-void sfi_ast(thread_t thread)
+void
+sfi_ast(thread_t thread)
{
sfi_class_id_t class_id;
- spl_t s;
- struct sfi_class_state *sfi_class;
- wait_result_t waitret;
- boolean_t did_wait = FALSE;
- uint64_t tid;
- thread_continue_t continuation;
- sched_call_t workq_callback = workqueue_get_sched_callback();
+ spl_t s;
+ struct sfi_class_state *sfi_class;
+ wait_result_t waitret;
+ boolean_t did_wait = FALSE;
+ thread_continue_t continuation;
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
if (!sfi_is_enabled) {
/*
thread_lock(thread);
thread->sfi_class = class_id = sfi_thread_classify(thread);
- tid = thread_tid(thread);
+ thread_unlock(thread);
/*
* Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we
* classification.
*/
- /* Optimistically clear workq callback while thread is already locked */
- if (workq_callback && (thread->sched_call == workq_callback)) {
- thread_sched_call(thread, NULL);
- } else {
- workq_callback = NULL;
- }
- thread_unlock(thread);
-
sfi_class = &sfi_classes[class_id];
if (!sfi_class->class_in_on_phase) {
/* Need to block thread in wait queue */
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_THREAD_DEFER), tid, class_id, 0, 0, 0);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_THREAD_DEFER),
+ thread_tid(thread), class_id, 0, 0, 0);
waitret = waitq_assert_wait64(&sfi_class->waitq,
- CAST_EVENT64_T(class_id),
- THREAD_INTERRUPTIBLE,
- 0);
+ CAST_EVENT64_T(class_id),
+ THREAD_INTERRUPTIBLE | THREAD_WAIT_NOREPORT, 0);
if (waitret == THREAD_WAITING) {
thread->sfi_wait_class = class_id;
did_wait = TRUE;
}
}
simple_unlock(&sfi_lock);
-
+
splx(s);
if (did_wait) {
- thread_block_reason(continuation, workq_callback, AST_SFI);
- } else if (workq_callback) {
- thread_reenable_sched_call(thread, workq_callback);
+ assert(thread->wait_sfi_begin_time == 0);
+
+ thread_block_reason(continuation, NULL, AST_SFI);
}
}
/* Thread must be unlocked */
-void sfi_reevaluate(thread_t thread)
+void
+sfi_reevaluate(thread_t thread)
{
kern_return_t kret;
- spl_t s;
+ spl_t s;
sfi_class_id_t class_id, current_class_id;
- ast_t sfi_ast;
+ ast_t sfi_ast;
s = splsched();
- simple_lock(&sfi_lock);
+ simple_lock(&sfi_lock, LCK_GRP_NULL);
thread_lock(thread);
sfi_ast = sfi_thread_needs_ast(thread, &class_id);
*/
if ((current_class_id = thread->sfi_wait_class) != SFI_CLASS_UNSPECIFIED) {
-
thread_unlock(thread); /* not needed anymore */
assert(current_class_id < MAX_SFI_CLASS_ID);
if ((sfi_ast == AST_NONE) || (class_id != current_class_id)) {
- struct sfi_class_state *sfi_class = &sfi_classes[current_class_id];
+ struct sfi_class_state *sfi_class = &sfi_classes[current_class_id];
KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_WAIT_CANCELED), thread_tid(thread), current_class_id, class_id, 0, 0);
kret = waitq_wakeup64_thread(&sfi_class->waitq,
- CAST_EVENT64_T(current_class_id),
- thread,
- THREAD_AWAKENED);
+ CAST_EVENT64_T(current_class_id),
+ thread,
+ THREAD_AWAKENED);
assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING);
}
} else {
if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) {
if (sfi_ast != AST_NONE) {
- if (thread == current_thread())
+ if (thread == current_thread()) {
ast_on(sfi_ast);
- else {
+ } else {
processor_t processor = thread->last_processor;
-
+
if (processor != PROCESSOR_NULL &&
- processor->state == PROCESSOR_RUNNING &&
- processor->active_thread == thread) {
+ processor->state == PROCESSOR_RUNNING &&
+ processor->active_thread == thread) {
cause_ast_check(processor);
} else {
/*
#else /* !CONFIG_SCHED_SFI */
-kern_return_t sfi_set_window(uint64_t window_usecs __unused)
+kern_return_t
+sfi_set_window(uint64_t window_usecs __unused)
{
- return (KERN_NOT_SUPPORTED);
+ return KERN_NOT_SUPPORTED;
}
-kern_return_t sfi_window_cancel(void)
+kern_return_t
+sfi_window_cancel(void)
{
- return (KERN_NOT_SUPPORTED);
+ return KERN_NOT_SUPPORTED;
}
-kern_return_t sfi_get_window(uint64_t *window_usecs __unused)
+kern_return_t
+sfi_get_window(uint64_t *window_usecs __unused)
{
- return (KERN_NOT_SUPPORTED);
+ return KERN_NOT_SUPPORTED;
}
-kern_return_t sfi_set_class_offtime(sfi_class_id_t class_id __unused, uint64_t offtime_usecs __unused)
+kern_return_t
+sfi_set_class_offtime(sfi_class_id_t class_id __unused, uint64_t offtime_usecs __unused)
{
- return (KERN_NOT_SUPPORTED);
+ return KERN_NOT_SUPPORTED;
}
-kern_return_t sfi_class_offtime_cancel(sfi_class_id_t class_id __unused)
+kern_return_t
+sfi_class_offtime_cancel(sfi_class_id_t class_id __unused)
{
- return (KERN_NOT_SUPPORTED);
+ return KERN_NOT_SUPPORTED;
}
-kern_return_t sfi_get_class_offtime(sfi_class_id_t class_id __unused, uint64_t *offtime_usecs __unused)
+kern_return_t
+sfi_get_class_offtime(sfi_class_id_t class_id __unused, uint64_t *offtime_usecs __unused)
{
- return (KERN_NOT_SUPPORTED);
+ return KERN_NOT_SUPPORTED;
}
-void sfi_reevaluate(thread_t thread __unused)
+void
+sfi_reevaluate(thread_t thread __unused)
{
return;
}
-sfi_class_id_t sfi_thread_classify(thread_t thread)
+sfi_class_id_t
+sfi_thread_classify(thread_t thread)
{
task_t task = thread->task;
boolean_t is_kernel_thread = (task == kernel_task);