#include <arm64/proc_reg.h>
#include <arm64/machine_machdep.h>
#include <arm64/monotonic.h>
+#include <arm64/instructions.h>
#include <kern/debug.h>
#include <kern/thread.h>
#include <mach/exception.h>
+#include <mach/arm/traps.h>
#include <mach/vm_types.h>
#include <mach/machine/thread_status.h>
#include <machine/atomic.h>
-#include <machine/machlimits.h>
+#include <machine/limits.h>
#include <pexpert/arm/protos.h>
#include <vm/vm_fault.h>
#include <vm/vm_kern.h>
+#include <sys/errno.h>
#include <sys/kdebug.h>
+#include <kperf/kperf.h>
#include <kern/policy_internal.h>
#if CONFIG_TELEMETRY
#include <kern/telemetry.h>
#endif
-#include <prng/random.h>
+#include <prng/entropy.h>
+
+
#ifndef __arm64__
#error Should only be compiling for arm64.
assert(TEST_CONTEXT32_SANITY(context) || TEST_CONTEXT64_SANITY(context))
-#define COPYIN(src, dst, size) \
- (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) ? \
- copyin_kern(src, dst, size) \
- : \
- copyin(src, dst, size)
+#define COPYIN(src, dst, size) \
+ (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) ? \
+ copyin_kern(src, dst, size) : \
+ copyin(src, dst, size)
-#define COPYOUT(src, dst, size) \
- (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) ? \
- copyout_kern(src, dst, size) \
- : \
- copyout(src, dst, size)
+#define COPYOUT(src, dst, size) \
+ (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) ? \
+ copyout_kern(src, dst, size) : \
+ copyout(src, dst, size)
// Below is for concatenating a string param to a string literal
#define STR1(x) #x
#define STR(x) STR1(x)
-void panic_with_thread_kernel_state(const char *msg, arm_saved_state_t *ss);
+#define ARM64_KDBG_CODE_KERNEL (0 << 8)
+#define ARM64_KDBG_CODE_USER (1 << 8)
+#define ARM64_KDBG_CODE_GUEST (2 << 8)
+
+_Static_assert(ARM64_KDBG_CODE_GUEST <= KDBG_CODE_MAX, "arm64 KDBG trace codes out of range");
+_Static_assert(ARM64_KDBG_CODE_GUEST <= UINT16_MAX, "arm64 KDBG trace codes out of range");
+
+void panic_with_thread_kernel_state(const char *msg, arm_saved_state_t *ss) __abortlike;
-void sleh_synchronous_sp1(arm_context_t *, uint32_t, vm_offset_t);
+void sleh_synchronous_sp1(arm_context_t *, uint32_t, vm_offset_t) __abortlike;
void sleh_synchronous(arm_context_t *, uint32_t, vm_offset_t);
void sleh_irq(arm_saved_state_t *);
void sleh_fiq(arm_saved_state_t *);
void sleh_serror(arm_context_t *context, uint32_t esr, vm_offset_t far);
-void sleh_invalid_stack(arm_context_t *context, uint32_t esr, vm_offset_t far);
+void sleh_invalid_stack(arm_context_t *context, uint32_t esr, vm_offset_t far) __dead2;
static void sleh_interrupt_handler_prologue(arm_saved_state_t *, unsigned int type);
static void sleh_interrupt_handler_epilogue(void);
static void handle_mach_absolute_time_trap(arm_saved_state_t *);
static void handle_mach_continuous_time_trap(arm_saved_state_t *);
-static void handle_msr_trap(arm_saved_state_t *state, uint32_t iss);
+static void handle_msr_trap(arm_saved_state_t *state, uint32_t esr);
-extern kern_return_t arm_fast_fault(pmap_t, vm_map_address_t, vm_prot_t, boolean_t);
+extern kern_return_t arm_fast_fault(pmap_t, vm_map_address_t, vm_prot_t, bool, bool);
-static void handle_uncategorized(arm_saved_state_t *, boolean_t);
-static void handle_breakpoint(arm_saved_state_t *);
+static void handle_uncategorized(arm_saved_state_t *);
+static void handle_kernel_breakpoint(arm_saved_state_t *, uint32_t) __dead2;
+static void handle_breakpoint(arm_saved_state_t *, uint32_t) __dead2;
-typedef void(*abort_inspector_t)(uint32_t, fault_status_t *, vm_prot_t *);
+typedef void (*abort_inspector_t)(uint32_t, fault_status_t *, vm_prot_t *);
static void inspect_instruction_abort(uint32_t, fault_status_t *, vm_prot_t *);
static void inspect_data_abort(uint32_t, fault_status_t *, vm_prot_t *);
static int is_vm_fault(fault_status_t);
+static int is_translation_fault(fault_status_t);
static int is_alignment_fault(fault_status_t);
-typedef void(*abort_handler_t)(arm_saved_state_t *, uint32_t, vm_offset_t, fault_status_t, vm_prot_t, vm_offset_t);
-static void handle_user_abort(arm_saved_state_t *, uint32_t, vm_offset_t, fault_status_t, vm_prot_t, vm_offset_t);
-static void handle_kernel_abort(arm_saved_state_t *, uint32_t, vm_offset_t, fault_status_t, vm_prot_t, vm_offset_t);
+typedef void (*abort_handler_t)(arm_saved_state_t *, uint32_t, vm_offset_t, fault_status_t, vm_prot_t, vm_offset_t, expected_fault_handler_t);
+static void handle_user_abort(arm_saved_state_t *, uint32_t, vm_offset_t, fault_status_t, vm_prot_t, vm_offset_t, expected_fault_handler_t);
+static void handle_kernel_abort(arm_saved_state_t *, uint32_t, vm_offset_t, fault_status_t, vm_prot_t, vm_offset_t, expected_fault_handler_t);
-static void handle_pc_align(arm_saved_state_t *ss);
-static void handle_sp_align(arm_saved_state_t *ss);
-static void handle_sw_step_debug(arm_saved_state_t *ss);
-static void handle_wf_trap(arm_saved_state_t *ss);
+static void handle_pc_align(arm_saved_state_t *ss) __dead2;
+static void handle_sp_align(arm_saved_state_t *ss) __dead2;
+static void handle_sw_step_debug(arm_saved_state_t *ss) __dead2;
+static void handle_wf_trap(arm_saved_state_t *ss) __dead2;
+static void handle_fp_trap(arm_saved_state_t *ss, uint32_t esr) __dead2;
-static void handle_watchpoint(vm_offset_t fault_addr);
+static void handle_watchpoint(vm_offset_t fault_addr) __dead2;
-static void handle_abort(arm_saved_state_t *, uint32_t, vm_offset_t, vm_offset_t, abort_inspector_t, abort_handler_t);
+static void handle_abort(arm_saved_state_t *, uint32_t, vm_offset_t, vm_offset_t, abort_inspector_t, abort_handler_t, expected_fault_handler_t);
-static void handle_user_trapped_instruction32(arm_saved_state_t *, uint32_t esr);
+static void handle_user_trapped_instruction32(arm_saved_state_t *, uint32_t esr) __dead2;
-static void handle_simd_trap(arm_saved_state_t *, uint32_t esr);
+static void handle_simd_trap(arm_saved_state_t *, uint32_t esr) __dead2;
extern void mach_kauth_cred_uthread_update(void);
void mach_syscall_trace_exit(unsigned int retval, unsigned int call_number);
struct uthread;
struct proc;
+typedef uint32_t arm64_instr_t;
+
extern void
unix_syscall(struct arm_saved_state * regs, thread_t thread_act,
- struct uthread * uthread, struct proc * proc);
+ struct uthread * uthread, struct proc * proc);
extern void
mach_syscall(struct arm_saved_state*);
-volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
-
#if CONFIG_DTRACE
extern kern_return_t dtrace_user_probe(arm_saved_state_t* regs);
extern boolean_t dtrace_tally_fault(user_addr_t);
-/* Traps for userland processing. Can't include bsd/sys/fasttrap_isa.h, so copy and paste the trap instructions
- over from that file. Need to keep these in sync! */
+/*
+ * Traps for userland processing. Can't include bsd/sys/fasttrap_isa.h, so copy
+ * and paste the trap instructions
+ * over from that file. Need to keep these in sync!
+ */
#define FASTTRAP_ARM32_INSTR 0xe7ffdefc
#define FASTTRAP_THUMB32_INSTR 0xdefc
#define FASTTRAP_ARM64_INSTR 0xe7eeee7e
perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
#endif
+
#if CONFIG_PGTRACE
extern boolean_t pgtrace_enabled;
#endif
-#if __ARM_PAN_AVAILABLE__
-extern boolean_t arm_pan_enabled;
+#if HAS_TWO_STAGE_SPR_LOCK
+#ifdef CONFIG_XNUPOST
+extern volatile vm_offset_t spr_lock_test_addr;
+extern volatile uint32_t spr_lock_exception_esr;
+#endif
+#endif
+
+#if INTERRUPT_MASKED_DEBUG
+extern boolean_t interrupt_masked_debug;
#endif
-#if defined(APPLECYCLONE)
-#define CPU_NAME "Cyclone"
-#elif defined(APPLETYPHOON)
-#define CPU_NAME "Typhoon"
+extern void arm64_thread_exception_return(void) __dead2;
+
+#if defined(APPLETYPHOON)
+#define CPU_NAME "Typhoon"
#elif defined(APPLETWISTER)
-#define CPU_NAME "Twister"
+#define CPU_NAME "Twister"
#elif defined(APPLEHURRICANE)
-#define CPU_NAME "Hurricane"
+#define CPU_NAME "Hurricane"
+#elif defined(APPLELIGHTNING)
+#define CPU_NAME "Lightning"
#else
-#define CPU_NAME "Unknown"
+#define CPU_NAME "Unknown"
#endif
#if (CONFIG_KERNEL_INTEGRITY && defined(KERNEL_INTEGRITY_WT))
#define WT_REASON_REG_VIOLATION 8
#endif
+#if defined(HAS_IPI)
+void cpu_signal_handler(void);
+extern unsigned int gFastIPI;
+#endif /* defined(HAS_IPI) */
+
+static arm_saved_state64_t *original_faulting_state = NULL;
+
+TUNABLE(bool, fp_exceptions_enabled, "-fp_exceptions", false);
+
+extern vm_offset_t static_memory_end;
+
+static inline int
+is_vm_fault(fault_status_t status)
+{
+ switch (status) {
+ case FSC_TRANSLATION_FAULT_L0:
+ case FSC_TRANSLATION_FAULT_L1:
+ case FSC_TRANSLATION_FAULT_L2:
+ case FSC_TRANSLATION_FAULT_L3:
+ case FSC_ACCESS_FLAG_FAULT_L1:
+ case FSC_ACCESS_FLAG_FAULT_L2:
+ case FSC_ACCESS_FLAG_FAULT_L3:
+ case FSC_PERMISSION_FAULT_L1:
+ case FSC_PERMISSION_FAULT_L2:
+ case FSC_PERMISSION_FAULT_L3:
+ return TRUE;
+ default:
+ return FALSE;
+ }
+}
+
+static inline int
+is_translation_fault(fault_status_t status)
+{
+ switch (status) {
+ case FSC_TRANSLATION_FAULT_L0:
+ case FSC_TRANSLATION_FAULT_L1:
+ case FSC_TRANSLATION_FAULT_L2:
+ case FSC_TRANSLATION_FAULT_L3:
+ return TRUE;
+ default:
+ return FALSE;
+ }
+}
+
+static inline int
+is_permission_fault(fault_status_t status)
+{
+ switch (status) {
+ case FSC_PERMISSION_FAULT_L1:
+ case FSC_PERMISSION_FAULT_L2:
+ case FSC_PERMISSION_FAULT_L3:
+ return TRUE;
+ default:
+ return FALSE;
+ }
+}
+
+static inline int
+is_alignment_fault(fault_status_t status)
+{
+ return status == FSC_ALIGNMENT_FAULT;
+}
-static inline unsigned
-__ror(unsigned value, unsigned shift)
+static inline int
+is_parity_error(fault_status_t status)
{
- return (((unsigned)(value) >> (unsigned)(shift)) |
- (unsigned)(value) << ((unsigned)(sizeof(unsigned) * CHAR_BIT) - (unsigned)(shift)));
+ switch (status) {
+ case FSC_SYNC_PARITY:
+ case FSC_ASYNC_PARITY:
+ case FSC_SYNC_PARITY_TT_L1:
+ case FSC_SYNC_PARITY_TT_L2:
+ case FSC_SYNC_PARITY_TT_L3:
+ return TRUE;
+ default:
+ return FALSE;
+ }
}
+__dead2
static void
arm64_implementation_specific_error(arm_saved_state_t *state, uint32_t esr, vm_offset_t far)
{
fed_err_sts = __builtin_arm_rsr64(STR(ARM64_REG_FED_ERR_STS));
panic_plain("Unhandled " CPU_NAME
- " implementation specific error. state=%p esr=%#x far=%p\n"
- "\tlsu_err_sts:%p, fed_err_sts:%p, mmu_err_sts:%p\n"
- "\tl2c_err_sts:%p, l2c_err_adr:%p, l2c_err_inf:%p\n",
- state, esr, (void *)far,
- (void *)lsu_err_sts, (void *)fed_err_sts, (void *)mmu_err_sts,
- (void *)l2c_err_sts, (void *)l2c_err_adr, (void *)l2c_err_inf);
+ " implementation specific error. state=%p esr=%#x far=%p\n"
+ "\tlsu_err_sts:%p, fed_err_sts:%p, mmu_err_sts:%p\n"
+ "\tl2c_err_sts:%p, l2c_err_adr:%p, l2c_err_inf:%p\n",
+ state, esr, (void *)far,
+ (void *)lsu_err_sts, (void *)fed_err_sts, (void *)mmu_err_sts,
+ (void *)l2c_err_sts, (void *)l2c_err_adr, (void *)l2c_err_inf);
#elif defined(HAS_MIGSTS)
uint64_t l2c_err_sts, l2c_err_adr, l2c_err_inf, mpidr, migsts;
fed_err_sts = __builtin_arm_rsr64(STR(ARM64_REG_FED_ERR_STS));
panic_plain("Unhandled " CPU_NAME
- " implementation specific error. state=%p esr=%#x far=%p p-core?%d migsts=%p\n"
- "\tlsu_err_sts:%p, fed_err_sts:%p, mmu_err_sts:%p\n"
- "\tl2c_err_sts:%p, l2c_err_adr:%p, l2c_err_inf:%p\n",
- state, esr, (void *)far, !!(mpidr & MPIDR_PNE), (void *)migsts,
- (void *)lsu_err_sts, (void *)fed_err_sts, (void *)mmu_err_sts,
- (void *)l2c_err_sts, (void *)l2c_err_adr, (void *)l2c_err_inf);
+ " implementation specific error. state=%p esr=%#x far=%p p-core?%d migsts=%p\n"
+ "\tlsu_err_sts:%p, fed_err_sts:%p, mmu_err_sts:%p\n"
+ "\tl2c_err_sts:%p, l2c_err_adr:%p, l2c_err_inf:%p\n",
+ state, esr, (void *)far, !!(mpidr & MPIDR_PNE), (void *)migsts,
+ (void *)lsu_err_sts, (void *)fed_err_sts, (void *)mmu_err_sts,
+ (void *)l2c_err_sts, (void *)l2c_err_adr, (void *)l2c_err_inf);
#else // !defined(NO_ECORE) && !defined(HAS_MIGSTS)
uint64_t llc_err_sts, llc_err_adr, llc_err_inf, mpidr;
+#if defined(HAS_DPC_ERR)
+ uint64_t dpc_err_sts = __builtin_arm_rsr64(STR(ARM64_REG_DPC_ERR_STS));
+#endif // defined(HAS_DPC_ERR)
mpidr = __builtin_arm_rsr64("MPIDR_EL1");
llc_err_inf = __builtin_arm_rsr64(STR(ARM64_REG_L2C_ERR_INF));
panic_plain("Unhandled " CPU_NAME
- " implementation specific error. state=%p esr=%#x far=%p p-core?%d\n"
- "\tlsu_err_sts:%p, fed_err_sts:%p, mmu_err_sts:%p\n"
- "\tllc_err_sts:%p, llc_err_adr:%p, llc_err_inf:%p\n",
- state, esr, (void *)far, !!(mpidr & MPIDR_PNE),
- (void *)lsu_err_sts, (void *)fed_err_sts, (void *)mmu_err_sts,
- (void *)llc_err_sts, (void *)llc_err_adr, (void *)llc_err_inf);
+ " implementation specific error. state=%p esr=%#x far=%p p-core?%d"
+#if defined(HAS_DPC_ERR)
+ " dpc_err_sts:%p"
+#endif
+ "\n"
+ "\tlsu_err_sts:%p, fed_err_sts:%p, mmu_err_sts:%p\n"
+ "\tllc_err_sts:%p, llc_err_adr:%p, llc_err_inf:%p\n",
+ state, esr, (void *)far, !!(mpidr & MPIDR_PNE),
+#if defined(HAS_DPC_ERR)
+ (void *)dpc_err_sts,
+#endif
+ (void *)lsu_err_sts, (void *)fed_err_sts, (void *)mmu_err_sts,
+ (void *)llc_err_sts, (void *)llc_err_adr, (void *)llc_err_inf);
#endif
#else // !defined(APPLE_ARM64_ARCH_FAMILY)
+#pragma unused (state, esr, far)
panic_plain("Unhandled implementation specific error\n");
#endif
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
static void
-kernel_integrity_error_handler(uint32_t esr, vm_offset_t far) {
+kernel_integrity_error_handler(uint32_t esr, vm_offset_t far)
+{
#if defined(KERNEL_INTEGRITY_WT)
#if (DEVELOPMENT || DEBUG)
if (ESR_WT_SERROR(esr)) {
panic_plain("Kernel integrity, software request.");
case WT_REASON_PT_INVALID:
panic_plain("Kernel integrity, encountered invalid TTE/PTE while "
- "walking 0x%016lx.", far);
+ "walking 0x%016lx.", far);
case WT_REASON_PT_VIOLATION:
panic_plain("Kernel integrity, violation in mapping 0x%016lx.",
- far);
+ far);
case WT_REASON_REG_VIOLATION:
panic_plain("Kernel integrity, violation in system register %d.",
- (unsigned) far);
+ (unsigned) far);
default:
panic_plain("Kernel integrity, unknown (esr=0x%08x).", esr);
}
static void
arm64_platform_error(arm_saved_state_t *state, uint32_t esr, vm_offset_t far)
{
- cpu_data_t *cdp = getCpuDatap();
+ cpu_data_t *cdp = getCpuDatap();
#if CONFIG_KERNEL_INTEGRITY
kernel_integrity_error_handler(esr, far);
#endif
- if (cdp->platform_error_handler != (platform_error_handler_t) NULL)
- (*(platform_error_handler_t)cdp->platform_error_handler) (cdp->cpu_id, far);
- else
+ if (PE_handle_platform_error(far)) {
+ return;
+ } else if (cdp->platform_error_handler != NULL) {
+ cdp->platform_error_handler(cdp->cpu_id, far);
+ } else {
arm64_implementation_specific_error(state, esr, far);
+ }
}
void
ss_valid = is_saved_state64(ss);
arm_saved_state64_t *state = saved_state64(ss);
- panic_plain("%s (saved state: %p%s)\n"
- "\t x0: 0x%016llx x1: 0x%016llx x2: 0x%016llx x3: 0x%016llx\n"
- "\t x4: 0x%016llx x5: 0x%016llx x6: 0x%016llx x7: 0x%016llx\n"
- "\t x8: 0x%016llx x9: 0x%016llx x10: 0x%016llx x11: 0x%016llx\n"
- "\t x12: 0x%016llx x13: 0x%016llx x14: 0x%016llx x15: 0x%016llx\n"
- "\t x16: 0x%016llx x17: 0x%016llx x18: 0x%016llx x19: 0x%016llx\n"
- "\t x20: 0x%016llx x21: 0x%016llx x22: 0x%016llx x23: 0x%016llx\n"
- "\t x24: 0x%016llx x25: 0x%016llx x26: 0x%016llx x27: 0x%016llx\n"
- "\t x28: 0x%016llx fp: 0x%016llx lr: 0x%016llx sp: 0x%016llx\n"
- "\t pc: 0x%016llx cpsr: 0x%08x esr: 0x%08x far: 0x%016llx\n",
- msg, ss, (ss_valid ? "" : " INVALID"),
- state->x[0], state->x[1], state->x[2], state->x[3],
- state->x[4], state->x[5], state->x[6], state->x[7],
- state->x[8], state->x[9], state->x[10], state->x[11],
- state->x[12], state->x[13], state->x[14], state->x[15],
- state->x[16], state->x[17], state->x[18], state->x[19],
- state->x[20], state->x[21], state->x[22], state->x[23],
- state->x[24], state->x[25], state->x[26], state->x[27],
- state->x[28], state->fp, state->lr, state->sp,
- state->pc, state->cpsr, state->esr, state->far);
+ os_atomic_cmpxchg(&original_faulting_state, NULL, state, seq_cst);
+
+ panic_plain("%s at pc 0x%016llx, lr 0x%016llx (saved state: %p%s)\n"
+ "\t x0: 0x%016llx x1: 0x%016llx x2: 0x%016llx x3: 0x%016llx\n"
+ "\t x4: 0x%016llx x5: 0x%016llx x6: 0x%016llx x7: 0x%016llx\n"
+ "\t x8: 0x%016llx x9: 0x%016llx x10: 0x%016llx x11: 0x%016llx\n"
+ "\t x12: 0x%016llx x13: 0x%016llx x14: 0x%016llx x15: 0x%016llx\n"
+ "\t x16: 0x%016llx x17: 0x%016llx x18: 0x%016llx x19: 0x%016llx\n"
+ "\t x20: 0x%016llx x21: 0x%016llx x22: 0x%016llx x23: 0x%016llx\n"
+ "\t x24: 0x%016llx x25: 0x%016llx x26: 0x%016llx x27: 0x%016llx\n"
+ "\t x28: 0x%016llx fp: 0x%016llx lr: 0x%016llx sp: 0x%016llx\n"
+ "\t pc: 0x%016llx cpsr: 0x%08x esr: 0x%08x far: 0x%016llx\n",
+ msg, state->pc, state->lr, ss, (ss_valid ? "" : " INVALID"),
+ state->x[0], state->x[1], state->x[2], state->x[3],
+ state->x[4], state->x[5], state->x[6], state->x[7],
+ state->x[8], state->x[9], state->x[10], state->x[11],
+ state->x[12], state->x[13], state->x[14], state->x[15],
+ state->x[16], state->x[17], state->x[18], state->x[19],
+ state->x[20], state->x[21], state->x[22], state->x[23],
+ state->x[24], state->x[25], state->x[26], state->x[27],
+ state->x[28], state->fp, state->lr, state->sp,
+ state->pc, state->cpsr, state->esr, state->far);
}
-
void
sleh_synchronous_sp1(arm_context_t *context, uint32_t esr, vm_offset_t far __unused)
{
- esr_exception_class_t class = ESR_EC(esr);
- arm_saved_state_t *state = &context->ss;
+ esr_exception_class_t class = ESR_EC(esr);
+ arm_saved_state_t * state = &context->ss;
switch (class) {
case ESR_EC_UNCATEGORIZED:
{
uint32_t instr = *((uint32_t*)get_saved_state_pc(state));
- if (IS_ARM_GDB_TRAP(instr))
+ if (IS_ARM_GDB_TRAP(instr)) {
DebuggerCall(EXC_BREAKPOINT, state);
- // Intentionally fall through to panic if we return from the debugger
+ }
}
+ OS_FALLTHROUGH; // panic if we return from the debugger
default:
panic_with_thread_kernel_state("Synchronous exception taken while SP1 selected", state);
}
}
+#if defined(HAS_TWO_STAGE_SPR_LOCK) && defined(CONFIG_XNUPOST)
+static bool
+handle_msr_write_from_xnupost(arm_saved_state_t *state, uint32_t esr)
+{
+ user_addr_t pc = get_saved_state_pc(state);
+ if ((spr_lock_test_addr != 0) && (pc == spr_lock_test_addr)) {
+ spr_lock_exception_esr = esr;
+ set_saved_state_pc(state, pc + 4);
+ return true;
+ }
+
+ return false;
+}
+#endif
+
+__attribute__((noreturn))
+void
+thread_exception_return()
+{
+ thread_t thread = current_thread();
+ if (thread->machine.exception_trace_code != 0) {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SYNC_ARM, thread->machine.exception_trace_code) | DBG_FUNC_END, 0, 0, 0, 0, 0);
+ thread->machine.exception_trace_code = 0;
+ }
+
+ arm64_thread_exception_return();
+ __builtin_unreachable();
+}
+
+/*
+ * check whether task vtimers are running and set thread and CPU BSD AST
+ *
+ * must be called with interrupts masked so updates of fields are atomic
+ * must be emitted inline to avoid generating an FBT probe on the exception path
+ *
+ */
+__attribute__((__always_inline__))
+static inline void
+task_vtimer_check(thread_t thread)
+{
+ if (__improbable(thread->task->vtimers)) {
+ thread->ast |= AST_BSD;
+ thread->machine.CpuDatap->cpu_pending_ast |= AST_BSD;
+ }
+}
+
void
sleh_synchronous(arm_context_t *context, uint32_t esr, vm_offset_t far)
{
- esr_exception_class_t class = ESR_EC(esr);
- arm_saved_state_t *state = &context->ss;
- vm_offset_t recover = 0;
- thread_t thread = current_thread();
+ esr_exception_class_t class = ESR_EC(esr);
+ arm_saved_state_t * state = &context->ss;
+ vm_offset_t recover = 0;
+ thread_t thread = current_thread();
+#if MACH_ASSERT
+ int preemption_level = get_preemption_level();
+#endif
+ expected_fault_handler_t expected_fault_handler = NULL;
+#ifdef CONFIG_XNUPOST
+ expected_fault_handler_t saved_expected_fault_handler = NULL;
+ uintptr_t saved_expected_fault_addr = 0;
+#endif /* CONFIG_XNUPOST */
ASSERT_CONTEXT_SANITY(context);
+ task_vtimer_check(thread);
+
+#if CONFIG_DTRACE
+ /*
+ * Handle kernel DTrace probes as early as possible to minimize the likelihood
+ * that this path will itself trigger a DTrace probe, which would lead to infinite
+ * probe recursion.
+ */
+ if (__improbable((class == ESR_EC_UNCATEGORIZED) && tempDTraceTrapHook &&
+ (tempDTraceTrapHook(EXC_BAD_INSTRUCTION, state, 0, 0) == KERN_SUCCESS))) {
+ return;
+ }
+#endif
+ bool is_user = PSR64_IS_USER(get_saved_state_cpsr(state));
+
+ /*
+ * Use KERNEL_DEBUG_CONSTANT_IST here to avoid producing tracepoints
+ * that would disclose the behavior of PT_DENY_ATTACH processes.
+ */
+ if (is_user) {
+ thread->machine.exception_trace_code = (uint16_t)(ARM64_KDBG_CODE_USER | class);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SYNC_ARM, thread->machine.exception_trace_code) | DBG_FUNC_START,
+ esr, far, get_saved_state_pc(state), 0, 0);
+ } else {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SYNC_ARM, ARM64_KDBG_CODE_KERNEL | class) | DBG_FUNC_START,
+ esr, VM_KERNEL_ADDRHIDE(far), VM_KERNEL_UNSLIDE(get_saved_state_pc(state)), 0, 0);
+ }
+
+ if (__improbable(ESR_INSTR_IS_2BYTES(esr))) {
+ /*
+ * We no longer support 32-bit, which means no 2-byte
+ * instructions.
+ */
+ if (is_user) {
+ panic("Exception on 2-byte instruction, "
+ "context=%p, esr=%#x, far=%p",
+ context, esr, (void *)far);
+ } else {
+ panic_with_thread_kernel_state("Exception on 2-byte instruction", state);
+ }
+ }
+
/* Don't run exception handler with recover handler set in case of double fault */
if (thread->recover) {
recover = thread->recover;
thread->recover = (vm_offset_t)NULL;
}
+#ifdef CONFIG_XNUPOST
+ if (thread->machine.expected_fault_handler != NULL) {
+ saved_expected_fault_handler = thread->machine.expected_fault_handler;
+ saved_expected_fault_addr = thread->machine.expected_fault_addr;
+
+ thread->machine.expected_fault_handler = NULL;
+ thread->machine.expected_fault_addr = 0;
+
+ if (saved_expected_fault_addr == far) {
+ expected_fault_handler = saved_expected_fault_handler;
+ }
+ }
+#endif /* CONFIG_XNUPOST */
+
/* Inherit the interrupt masks from previous context */
- if (SPSR_INTERRUPTS_ENABLED(get_saved_state_cpsr(state)))
+ if (SPSR_INTERRUPTS_ENABLED(get_saved_state_cpsr(state))) {
ml_set_interrupts_enabled(TRUE);
+ }
switch (class) {
case ESR_EC_SVC_64:
- if (!is_saved_state64(state) || !PSR64_IS_USER(get_saved_state_cpsr(state))) {
+ if (!is_saved_state64(state) || !is_user) {
panic("Invalid SVC_64 context");
}
break;
case ESR_EC_DABORT_EL0:
- handle_abort(state, esr, far, recover, inspect_data_abort, handle_user_abort);
- assert(0); /* Unreachable */
+ handle_abort(state, esr, far, recover, inspect_data_abort, handle_user_abort, expected_fault_handler);
+ break;
case ESR_EC_MSR_TRAP:
- handle_msr_trap(state, ESR_ISS(esr));
+ handle_msr_trap(state, esr);
break;
+
case ESR_EC_IABORT_EL0:
- handle_abort(state, esr, far, recover, inspect_instruction_abort, handle_user_abort);
- assert(0); /* Unreachable */
+ handle_abort(state, esr, far, recover, inspect_instruction_abort, handle_user_abort, expected_fault_handler);
+ break;
case ESR_EC_IABORT_EL1:
- panic("Kernel instruction fetch abort: pc=%p iss=0x%x far=%p. Note: the faulting frame may be missing in the backtrace.",
- (void *)get_saved_state_pc(state), ESR_ISS(esr), (void*)far);
+#ifdef CONFIG_XNUPOST
+ if ((expected_fault_handler != NULL) && expected_fault_handler(state)) {
+ break;
+ }
+#endif /* CONFIG_XNUPOST */
+
+ panic_with_thread_kernel_state("Kernel instruction fetch abort", state);
case ESR_EC_PC_ALIGN:
handle_pc_align(state);
- assert(0); /* Unreachable */
- break;
+ __builtin_unreachable();
case ESR_EC_DABORT_EL1:
- handle_abort(state, esr, far, recover, inspect_data_abort, handle_kernel_abort);
+ handle_abort(state, esr, far, recover, inspect_data_abort, handle_kernel_abort, expected_fault_handler);
break;
case ESR_EC_UNCATEGORIZED:
assert(!ESR_ISS(esr));
- handle_uncategorized(&context->ss, ESR_INSTR_IS_2BYTES(esr));
- /* TODO: Uncomment this after stackshot uses a brk instruction
- * rather than an undefined instruction, as stackshot is the
- * only case where we want to return to the first-level handler.
- */
- //assert(0); /* Unreachable */
+#if defined(HAS_TWO_STAGE_SPR_LOCK) && defined(CONFIG_XNUPOST)
+ if (handle_msr_write_from_xnupost(state, esr)) {
+ break;
+ }
+#endif
+ handle_uncategorized(&context->ss);
break;
case ESR_EC_SP_ALIGN:
handle_sp_align(state);
- assert(0); /* Unreachable */
- break;
+ __builtin_unreachable();
case ESR_EC_BKPT_AARCH32:
- handle_breakpoint(state);
- assert(0); /* Unreachable */
- break;
+ handle_breakpoint(state, esr);
+ __builtin_unreachable();
case ESR_EC_BRK_AARCH64:
if (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) {
-
- kprintf("Breakpoint instruction exception from kernel. Hanging here (by design).\n");
- for (;;);
-
- __unreachable_ok_push
- DebuggerCall(EXC_BREAKPOINT, &context->ss);
- break;
- __unreachable_ok_pop
+ handle_kernel_breakpoint(state, esr);
} else {
- handle_breakpoint(state);
- assert(0); /* Unreachable */
+ handle_breakpoint(state, esr);
}
+ __builtin_unreachable();
case ESR_EC_BKPT_REG_MATCH_EL0:
if (FSC_DEBUG_FAULT == ISS_SSDE_FSC(esr)) {
- handle_breakpoint(state);
- assert(0); /* Unreachable */
+ handle_breakpoint(state, esr);
}
panic("Unsupported Class %u event code. state=%p class=%u esr=%u far=%p",
- class, state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ class, state, class, esr, (void *)far);
+ __builtin_unreachable();
case ESR_EC_BKPT_REG_MATCH_EL1:
- if (FSC_DEBUG_FAULT == ISS_SSDE_FSC(esr)) {
- kprintf("Hardware Breakpoint Debug exception from kernel. Hanging here (by design).\n");
- for (;;);
-
- __unreachable_ok_push
- DebuggerCall(EXC_BREAKPOINT, &context->ss);
- break;
- __unreachable_ok_pop
- }
- panic("Unsupported Class %u event code. state=%p class=%u esr=%u far=%p",
- class, state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ panic_with_thread_kernel_state("Hardware Breakpoint Debug exception from kernel. Panic (by design)", state);
+ __builtin_unreachable();
case ESR_EC_SW_STEP_DEBUG_EL0:
if (FSC_DEBUG_FAULT == ISS_SSDE_FSC(esr)) {
handle_sw_step_debug(state);
- assert(0); /* Unreachable */
}
panic("Unsupported Class %u event code. state=%p class=%u esr=%u far=%p",
- class, state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ class, state, class, esr, (void *)far);
+ __builtin_unreachable();
case ESR_EC_SW_STEP_DEBUG_EL1:
- if (FSC_DEBUG_FAULT == ISS_SSDE_FSC(esr)) {
- kprintf("Software Step Debug exception from kernel. Hanging here (by design).\n");
- for (;;);
-
- __unreachable_ok_push
- DebuggerCall(EXC_BREAKPOINT, &context->ss);
- break;
- __unreachable_ok_pop
- }
- panic("Unsupported Class %u event code. state=%p class=%u esr=%u far=%p",
- class, state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ panic_with_thread_kernel_state("Software Step Debug exception from kernel. Panic (by design)", state);
+ __builtin_unreachable();
case ESR_EC_WATCHPT_MATCH_EL0:
if (FSC_DEBUG_FAULT == ISS_SSDE_FSC(esr)) {
handle_watchpoint(far);
- assert(0); /* Unreachable */
}
panic("Unsupported Class %u event code. state=%p class=%u esr=%u far=%p",
- class, state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ class, state, class, esr, (void *)far);
+ __builtin_unreachable();
case ESR_EC_WATCHPT_MATCH_EL1:
/*
break; /* return to first level handler */
}
panic("Unsupported Class %u event code. state=%p class=%u esr=%u far=%p",
- class, state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ class, state, class, esr, (void *)far);
+ __builtin_unreachable();
case ESR_EC_TRAP_SIMD_FP:
handle_simd_trap(state, esr);
- assert(0);
- break;
+ __builtin_unreachable();
case ESR_EC_ILLEGAL_INSTR_SET:
- if (EXCB_ACTION_RERUN !=
- ex_cb_invoke(EXCB_CLASS_ILLEGAL_INSTR_SET, far)) {
+ if (EXCB_ACTION_RERUN !=
+ ex_cb_invoke(EXCB_CLASS_ILLEGAL_INSTR_SET, far)) {
// instruction is not re-executed
panic("Illegal instruction set exception. state=%p class=%u esr=%u far=%p spsr=0x%x",
- state, class, esr, (void *)far, get_saved_state_cpsr(state));
- assert(0);
+ state, class, esr, (void *)far, get_saved_state_cpsr(state));
}
// must clear this fault in PSR to re-run
- set_saved_state_cpsr(state, get_saved_state_cpsr(state) & (~PSR64_IL));
+ mask_saved_state_cpsr(state, 0, PSR64_IL);
break;
case ESR_EC_MCR_MRC_CP15_TRAP:
case ESR_EC_LDC_STC_CP14_TRAP:
case ESR_EC_MCRR_MRRC_CP14_TRAP:
handle_user_trapped_instruction32(state, esr);
- assert(0);
- break;
+ __builtin_unreachable();
case ESR_EC_WFI_WFE:
// Use of WFI or WFE instruction when they have been disabled for EL0
handle_wf_trap(state);
- assert(0); /* Unreachable */
- break;
+ __builtin_unreachable();
+
+ case ESR_EC_FLOATING_POINT_64:
+ handle_fp_trap(state, esr);
+ __builtin_unreachable();
default:
panic("Unsupported synchronous exception. state=%p class=%u esr=%u far=%p",
- state, class, esr, (void *)far);
- assert(0); /* Unreachable */
- break;
+ state, class, esr, (void *)far);
+ __builtin_unreachable();
}
- if (recover)
+#ifdef CONFIG_XNUPOST
+ if (saved_expected_fault_handler != NULL) {
+ thread->machine.expected_fault_handler = saved_expected_fault_handler;
+ thread->machine.expected_fault_addr = saved_expected_fault_addr;
+ }
+#endif /* CONFIG_XNUPOST */
+
+ if (recover) {
thread->recover = recover;
+ }
+ if (is_user) {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SYNC_ARM, thread->machine.exception_trace_code) | DBG_FUNC_END,
+ esr, far, get_saved_state_pc(state), 0, 0);
+ thread->machine.exception_trace_code = 0;
+ } else {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SYNC_ARM, ARM64_KDBG_CODE_KERNEL | class) | DBG_FUNC_END,
+ esr, VM_KERNEL_ADDRHIDE(far), VM_KERNEL_UNSLIDE(get_saved_state_pc(state)), 0, 0);
+ }
+#if MACH_ASSERT
+ if (preemption_level != get_preemption_level()) {
+ panic("synchronous exception changed preemption level from %d to %d", preemption_level, get_preemption_level());
+ }
+#endif
}
/*
* ARM64_TODO: For now, we assume this is for undefined instruction exceptions.
*/
static void
-handle_uncategorized(arm_saved_state_t *state, boolean_t instrLen2)
+handle_uncategorized(arm_saved_state_t *state)
{
- exception_type_t exception = EXC_BAD_INSTRUCTION;
- mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
- mach_msg_type_number_t numcodes = 2;
- uint32_t instr;
-
- if (instrLen2) {
- uint16_t instr16;
- COPYIN(get_saved_state_pc(state), (char *)&instr16, sizeof(instr16));
+ exception_type_t exception = EXC_BAD_INSTRUCTION;
+ mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
+ mach_msg_type_number_t numcodes = 2;
+ uint32_t instr = 0;
- instr = instr16;
- } else {
- COPYIN(get_saved_state_pc(state), (char *)&instr, sizeof(instr));
- }
+ COPYIN(get_saved_state_pc(state), (char *)&instr, sizeof(instr));
#if CONFIG_DTRACE
- if (tempDTraceTrapHook && (tempDTraceTrapHook(exception, state, 0, 0) == KERN_SUCCESS)) {
- return;
- }
if (PSR64_IS_USER64(get_saved_state_cpsr(state))) {
/*
* instr.
*/
if (instr == FASTTRAP_ARM64_INSTR || instr == FASTTRAP_ARM64_RET_INSTR) {
- if (dtrace_user_probe(state) == KERN_SUCCESS)
+ if (dtrace_user_probe(state) == KERN_SUCCESS) {
return;
+ }
}
} else if (PSR64_IS_USER32(get_saved_state_cpsr(state))) {
/*
if (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) {
if (IS_ARM_GDB_TRAP(instr)) {
boolean_t interrupt_state;
- vm_offset_t kstackptr;
exception = EXC_BREAKPOINT;
interrupt_state = ml_set_interrupts_enabled(FALSE);
/* Save off the context here (so that the debug logic
* can see the original state of this thread).
*/
- kstackptr = (vm_offset_t) current_thread()->machine.kstackptr;
- if (kstackptr) {
- ((thread_kernel_state_t) kstackptr)->machine.ss = *state;
- }
+ current_thread()->machine.kpcb = state;
/* Hop into the debugger (typically either due to a
* fatal exception, an explicit panic, or a stackshot
}
/*
- * Check for GDB breakpoint via illegal opcode.
+ * Check for GDB breakpoint via illegal opcode.
*/
- if (instrLen2) {
- if (IS_THUMB_GDB_TRAP(instr)) {
- exception = EXC_BREAKPOINT;
- codes[0] = EXC_ARM_BREAKPOINT;
- codes[1] = instr;
- } else {
- codes[1] = instr;
- }
+ if (IS_ARM_GDB_TRAP(instr)) {
+ exception = EXC_BREAKPOINT;
+ codes[0] = EXC_ARM_BREAKPOINT;
+ codes[1] = instr;
} else {
- if (IS_ARM_GDB_TRAP(instr)) {
- exception = EXC_BREAKPOINT;
- codes[0] = EXC_ARM_BREAKPOINT;
- codes[1] = instr;
- } else if (IS_THUMB_GDB_TRAP((instr & 0xFFFF))) {
- exception = EXC_BREAKPOINT;
- codes[0] = EXC_ARM_BREAKPOINT;
- codes[1] = instr & 0xFFFF;
- } else if (IS_THUMB_GDB_TRAP((instr >> 16))) {
- exception = EXC_BREAKPOINT;
- codes[0] = EXC_ARM_BREAKPOINT;
- codes[1] = instr >> 16;
- } else {
- codes[1] = instr;
- }
+ codes[1] = instr;
}
exception_triage(exception, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
+}
+
+#if __has_feature(ptrauth_calls)
+static const uint16_t ptrauth_brk_comment_base = 0xc470;
+
+static inline bool
+brk_comment_is_ptrauth(uint16_t comment)
+{
+ return comment >= ptrauth_brk_comment_base &&
+ comment <= ptrauth_brk_comment_base + ptrauth_key_asdb;
+}
+
+static inline const char *
+brk_comment_to_ptrauth_key(uint16_t comment)
+{
+ switch (comment - ptrauth_brk_comment_base) {
+ case ptrauth_key_asia:
+ return "IA";
+ case ptrauth_key_asib:
+ return "IB";
+ case ptrauth_key_asda:
+ return "DA";
+ case ptrauth_key_asdb:
+ return "DB";
+ default:
+ __builtin_unreachable();
+ }
}
+#endif /* __has_feature(ptrauth_calls) */
static void
-handle_breakpoint(arm_saved_state_t *state)
+handle_kernel_breakpoint(arm_saved_state_t *state, uint32_t esr)
{
- exception_type_t exception = EXC_BREAKPOINT;
- mach_exception_data_type_t codes[2] = {EXC_ARM_BREAKPOINT};
- mach_msg_type_number_t numcodes = 2;
+ uint16_t comment = ISS_BRK_COMMENT(esr);
+
+#if __has_feature(ptrauth_calls)
+ if (brk_comment_is_ptrauth(comment)) {
+ const char *msg_fmt = "Break 0x%04X instruction exception from kernel. Ptrauth failure with %s key resulted in 0x%016llx";
+ char msg[strlen(msg_fmt)
+ - strlen("0x%04X") + strlen("0xFFFF")
+ - strlen("%s") + strlen("IA")
+ - strlen("0x%016llx") + strlen("0xFFFFFFFFFFFFFFFF")
+ + 1];
+ const char *key = brk_comment_to_ptrauth_key(comment);
+ snprintf(msg, sizeof(msg), msg_fmt, comment, key, saved_state64(state)->x[16]);
+
+ panic_with_thread_kernel_state(msg, state);
+ }
+#endif /* __has_feature(ptrauth_calls) */
+
+ const char *msg_fmt = "Break 0x%04X instruction exception from kernel. Panic (by design)";
+ char msg[strlen(msg_fmt) - strlen("0x%04X") + strlen("0xFFFF") + 1];
+ snprintf(msg, sizeof(msg), msg_fmt, comment);
+
+ panic_with_thread_kernel_state(msg, state);
+}
+
+static void
+handle_breakpoint(arm_saved_state_t *state, uint32_t esr __unused)
+{
+ exception_type_t exception = EXC_BREAKPOINT;
+ mach_exception_data_type_t codes[2] = {EXC_ARM_BREAKPOINT};
+ mach_msg_type_number_t numcodes = 2;
+
+#if __has_feature(ptrauth_calls) && !__ARM_ARCH_8_6__
+ if (ESR_EC(esr) == ESR_EC_BRK_AARCH64 &&
+ brk_comment_is_ptrauth(ISS_BRK_COMMENT(esr))) {
+ exception |= EXC_PTRAUTH_BIT;
+ }
+#endif /* __has_feature(ptrauth_calls) && !__ARM_ARCH_8_6__ */
codes[1] = get_saved_state_pc(state);
exception_triage(exception, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
}
static void
handle_watchpoint(vm_offset_t fault_addr)
{
- exception_type_t exception = EXC_BREAKPOINT;
- mach_exception_data_type_t codes[2] = {EXC_ARM_DA_DEBUG};
- mach_msg_type_number_t numcodes = 2;
+ exception_type_t exception = EXC_BREAKPOINT;
+ mach_exception_data_type_t codes[2] = {EXC_ARM_DA_DEBUG};
+ mach_msg_type_number_t numcodes = 2;
codes[1] = fault_addr;
exception_triage(exception, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
}
static void
handle_abort(arm_saved_state_t *state, uint32_t esr, vm_offset_t fault_addr, vm_offset_t recover,
- abort_inspector_t inspect_abort, abort_handler_t handler)
+ abort_inspector_t inspect_abort, abort_handler_t handler, expected_fault_handler_t expected_fault_handler)
{
- fault_status_t fault_code;
- vm_prot_t fault_type;
+ fault_status_t fault_code;
+ vm_prot_t fault_type;
inspect_abort(ESR_ISS(esr), &fault_code, &fault_type);
- handler(state, esr, fault_addr, fault_code, fault_type, recover);
+ handler(state, esr, fault_addr, fault_code, fault_type, recover, expected_fault_handler);
}
static void
getCpuDatap()->cpu_stat.data_ex_cnt++;
*fault_code = ISS_DA_FSC(iss);
- /* Cache operations report faults as write access. Change these to read access. */
- if ((iss & ISS_DA_WNR) && !(iss & ISS_DA_CM)) {
+ /*
+ * Cache maintenance operations always report faults as write access.
+ * Change these to read access, unless they report a permission fault.
+ * Only certain cache maintenance operations (e.g. 'dc ivac') require write
+ * access to the mapping, but if a cache maintenance operation that only requires
+ * read access generates a permission fault, then we will not be able to handle
+ * the fault regardless of whether we treat it as a read or write fault.
+ */
+ if ((iss & ISS_DA_WNR) && (!(iss & ISS_DA_CM) || is_permission_fault(*fault_code))) {
*fault_type = (VM_PROT_READ | VM_PROT_WRITE);
} else {
*fault_type = (VM_PROT_READ);
}
}
+#if __has_feature(ptrauth_calls)
+static inline bool
+fault_addr_bit(vm_offset_t fault_addr, unsigned int bit)
+{
+ return (bool)((fault_addr >> bit) & 1);
+}
+
+/**
+ * Determines whether a fault address taken at EL0 contains a PAC error code
+ * corresponding to the specified kind of ptrauth key.
+ */
+static bool
+user_fault_addr_matches_pac_error_code(vm_offset_t fault_addr, bool data_key)
+{
+ bool instruction_tbi = !(get_tcr() & TCR_TBID0_TBI_DATA_ONLY);
+ bool tbi = data_key || __improbable(instruction_tbi);
+ unsigned int poison_shift;
+ if (tbi) {
+ poison_shift = 53;
+ } else {
+ poison_shift = 61;
+ }
+
+ /* PAC error codes are always in the form key_number:NOT(key_number) */
+ bool poison_bit_1 = fault_addr_bit(fault_addr, poison_shift);
+ bool poison_bit_2 = fault_addr_bit(fault_addr, poison_shift + 1);
+ return poison_bit_1 != poison_bit_2;
+}
+#endif /* __has_feature(ptrauth_calls) */
+
static void
handle_pc_align(arm_saved_state_t *ss)
{
}
exc = EXC_BAD_ACCESS;
+#if __has_feature(ptrauth_calls)
+ if (user_fault_addr_matches_pac_error_code(get_saved_state_pc(ss), false)) {
+ exc |= EXC_PTRAUTH_BIT;
+ }
+#endif /* __has_feature(ptrauth_calls) */
+
codes[0] = EXC_ARM_DA_ALIGN;
codes[1] = get_saved_state_pc(ss);
exception_triage(exc, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
}
static void
}
exc = EXC_BAD_ACCESS;
+#if __has_feature(ptrauth_calls)
+ if (user_fault_addr_matches_pac_error_code(get_saved_state_sp(ss), true)) {
+ exc |= EXC_PTRAUTH_BIT;
+ }
+#endif /* __has_feature(ptrauth_calls) */
+
codes[0] = EXC_ARM_SP_ALIGN;
codes[1] = get_saved_state_sp(ss);
exception_triage(exc, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
}
static void
-handle_wf_trap(arm_saved_state_t *ss)
+handle_wf_trap(arm_saved_state_t *state)
{
exception_type_t exc;
mach_exception_data_type_t codes[2];
mach_msg_type_number_t numcodes = 2;
+ uint32_t instr = 0;
+
+ COPYIN(get_saved_state_pc(state), (char *)&instr, sizeof(instr));
exc = EXC_BAD_INSTRUCTION;
codes[0] = EXC_ARM_UNDEFINED;
- codes[1] = get_saved_state_sp(ss);
+ codes[1] = instr;
exception_triage(exc, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
+}
+
+static void
+handle_fp_trap(arm_saved_state_t *state, uint32_t esr)
+{
+ exception_type_t exc = EXC_ARITHMETIC;
+ mach_exception_data_type_t codes[2];
+ mach_msg_type_number_t numcodes = 2;
+ uint32_t instr = 0;
+
+ if (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) {
+ panic_with_thread_kernel_state("Floating point exception from kernel", state);
+ }
+
+ COPYIN(get_saved_state_pc(state), (char *)&instr, sizeof(instr));
+ codes[1] = instr;
+
+ /* The floating point trap flags are only valid if TFV is set. */
+ if (!fp_exceptions_enabled) {
+ exc = EXC_BAD_INSTRUCTION;
+ codes[0] = EXC_ARM_UNDEFINED;
+ } else if (!(esr & ISS_FP_TFV)) {
+ codes[0] = EXC_ARM_FP_UNDEFINED;
+ } else if (esr & ISS_FP_UFF) {
+ codes[0] = EXC_ARM_FP_UF;
+ } else if (esr & ISS_FP_OFF) {
+ codes[0] = EXC_ARM_FP_OF;
+ } else if (esr & ISS_FP_IOF) {
+ codes[0] = EXC_ARM_FP_IO;
+ } else if (esr & ISS_FP_DZF) {
+ codes[0] = EXC_ARM_FP_DZ;
+ } else if (esr & ISS_FP_IDF) {
+ codes[0] = EXC_ARM_FP_ID;
+ } else if (esr & ISS_FP_IXF) {
+ codes[0] = EXC_ARM_FP_IX;
+ } else {
+ panic("Unrecognized floating point exception, state=%p, esr=%#x", state, esr);
+ }
+
+ exception_triage(exc, codes, numcodes);
+ __builtin_unreachable();
+}
+
+
+
+/*
+ * handle_alignment_fault_from_user:
+ * state: Saved state
+ *
+ * Attempts to deal with an alignment fault from userspace (possibly by
+ * emulating the faulting instruction). If emulation failed due to an
+ * unservicable fault, the ESR for that fault will be stored in the
+ * recovery_esr field of the thread by the exception code.
+ *
+ * Returns:
+ * -1: Emulation failed (emulation of state/instr not supported)
+ * 0: Successfully emulated the instruction
+ * EFAULT: Emulation failed (probably due to permissions)
+ * EINVAL: Emulation failed (probably due to a bad address)
+ */
+static int
+handle_alignment_fault_from_user(arm_saved_state_t *state, kern_return_t *vmfr)
+{
+ int ret = -1;
+
+#pragma unused (state)
+#pragma unused (vmfr)
+
+ return ret;
}
panic_with_thread_kernel_state("SW_STEP_DEBUG exception thread DebugData is NULL.", state);
}
- set_saved_state_cpsr((thread->machine.upcb),
- get_saved_state_cpsr((thread->machine.upcb)) & ~(PSR64_SS | DAIF_IRQF | DAIF_FIQF));
+ mask_saved_state_cpsr(thread->machine.upcb, 0, PSR64_SS | DAIF_IRQF | DAIF_FIQF);
// Special encoding for gdb single step event on ARM
exc = EXC_BREAKPOINT;
codes[1] = 0;
exception_triage(exc, codes, numcodes);
- assert(0); /* NOTREACHED */
-}
-
-static int
-is_vm_fault(fault_status_t status)
-{
- switch (status) {
- case FSC_TRANSLATION_FAULT_L0:
- case FSC_TRANSLATION_FAULT_L1:
- case FSC_TRANSLATION_FAULT_L2:
- case FSC_TRANSLATION_FAULT_L3:
- case FSC_ACCESS_FLAG_FAULT_L1:
- case FSC_ACCESS_FLAG_FAULT_L2:
- case FSC_ACCESS_FLAG_FAULT_L3:
- case FSC_PERMISSION_FAULT_L1:
- case FSC_PERMISSION_FAULT_L2:
- case FSC_PERMISSION_FAULT_L3:
- return TRUE;
- default:
- return FALSE;
- }
+ __builtin_unreachable();
}
-#if __ARM_PAN_AVAILABLE__
-static int
-is_permission_fault(fault_status_t status)
+static void
+set_saved_state_pc_to_recovery_handler(arm_saved_state_t *iss, vm_offset_t recover)
{
- switch (status) {
- case FSC_PERMISSION_FAULT_L1:
- case FSC_PERMISSION_FAULT_L2:
- case FSC_PERMISSION_FAULT_L3:
- return TRUE;
- default:
- return FALSE;
- }
-}
+#if defined(HAS_APPLE_PAC)
+ thread_t thread = current_thread();
+ const uintptr_t disc = ptrauth_blend_discriminator(&thread->recover, PAC_DISCRIMINATOR_RECOVER);
+ const char *panic_msg = "Illegal thread->recover value %p";
+
+ MANIPULATE_SIGNED_THREAD_STATE(iss,
+ // recover = (vm_offset_t)ptrauth_auth_data((void *)recover, ptrauth_key_function_pointer,
+ // ptrauth_blend_discriminator(&thread->recover, PAC_DISCRIMINATOR_RECOVER));
+ "mov x1, %[recover] \n"
+ "mov x6, %[disc] \n"
+ "autia x1, x6 \n"
+ // if (recover != (vm_offset_t)ptrauth_strip((void *)recover, ptrauth_key_function_pointer)) {
+ "mov x6, x1 \n"
+ "xpaci x6 \n"
+ "cmp x1, x6 \n"
+ "beq 1f \n"
+ // panic("Illegal thread->recover value %p", (void *)recover);
+ "mov x0, %[panic_msg] \n"
+ "bl _panic \n"
+ // }
+ "1: \n"
+ "str x1, [x0, %[SS64_PC]] \n",
+ [recover] "r"(recover),
+ [disc] "r"(disc),
+ [panic_msg] "r"(panic_msg)
+ );
+#else
+ set_saved_state_pc(iss, recover);
#endif
-
-static int
-is_alignment_fault(fault_status_t status)
-{
- return (status == FSC_ALIGNMENT_FAULT);
-}
-
-static int
-is_parity_error(fault_status_t status)
-{
- switch (status) {
- case FSC_SYNC_PARITY:
- case FSC_ASYNC_PARITY:
- case FSC_SYNC_PARITY_TT_L1:
- case FSC_SYNC_PARITY_TT_L2:
- case FSC_SYNC_PARITY_TT_L3:
- return TRUE;
- default:
- return FALSE;
- }
}
static void
handle_user_abort(arm_saved_state_t *state, uint32_t esr, vm_offset_t fault_addr,
- fault_status_t fault_code, vm_prot_t fault_type, vm_offset_t recover)
+ fault_status_t fault_code, vm_prot_t fault_type, vm_offset_t recover, expected_fault_handler_t expected_fault_handler)
{
- exception_type_t exc = EXC_BAD_ACCESS;
- mach_exception_data_type_t codes[2];
- mach_msg_type_number_t numcodes = 2;
- thread_t thread = current_thread();
+ exception_type_t exc = EXC_BAD_ACCESS;
+ mach_exception_data_type_t codes[2];
+ mach_msg_type_number_t numcodes = 2;
+ thread_t thread = current_thread();
(void)esr;
- (void)state;
+ (void)expected_fault_handler;
- if (ml_at_interrupt_context())
+ if (ml_at_interrupt_context()) {
panic_with_thread_kernel_state("Apparently on interrupt stack when taking user abort!\n", state);
+ }
thread->iotier_override = THROTTLE_LEVEL_NONE; /* Reset IO tier override before handling abort from userspace */
if (is_vm_fault(fault_code)) {
- kern_return_t result;
- vm_map_t map = thread->map;
- vm_offset_t vm_fault_addr = fault_addr;
+ kern_return_t result = KERN_FAILURE;
+ vm_map_t map = thread->map;
+ vm_offset_t vm_fault_addr = fault_addr;
assert(map != kernel_map);
- if (!(fault_type & VM_PROT_EXECUTE) && user_tbi_enabled())
- vm_fault_addr = tbi_clear(fault_addr);
+ if (!(fault_type & VM_PROT_EXECUTE)) {
+ vm_fault_addr = tbi_clear(fault_addr);
+ }
#if CONFIG_DTRACE
- if (thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
+ if (thread->t_dtrace_inprobe) { /* Executing under dtrace_probe? */
if (dtrace_tally_fault(vm_fault_addr)) { /* Should a user mode fault under dtrace be ignored? */
if (recover) {
- set_saved_state_pc(state, recover);
+ thread->machine.recover_esr = esr;
+ thread->machine.recover_far = vm_fault_addr;
+ set_saved_state_pc_to_recovery_handler(state, recover);
} else {
- boolean_t intr = ml_set_interrupts_enabled(FALSE);
panic_with_thread_kernel_state("copyin/out has no recovery point", state);
- (void) ml_set_interrupts_enabled(intr);
}
return;
} else {
- boolean_t intr = ml_set_interrupts_enabled(FALSE);
panic_with_thread_kernel_state("Unexpected UMW page fault under dtrace_probe", state);
- (void) ml_set_interrupts_enabled(intr);
- return;
}
}
#else
if (pgtrace_enabled) {
/* Check to see if trace bit is set */
result = pmap_pgtrace_fault(map->pmap, fault_addr, state);
- if (result == KERN_SUCCESS) return;
+ if (result == KERN_SUCCESS) {
+ return;
+ }
}
#endif
/* check to see if it is just a pmap ref/modify fault */
- result = arm_fast_fault(map->pmap, trunc_page(vm_fault_addr), fault_type, TRUE);
- if (result != KERN_SUCCESS) {
+ if ((result != KERN_SUCCESS) && !is_translation_fault(fault_code)) {
+ result = arm_fast_fault(map->pmap,
+ vm_fault_addr,
+ fault_type, (fault_code == FSC_ACCESS_FLAG_FAULT_L3), TRUE);
+ }
+ if (result != KERN_SUCCESS) {
{
/* We have to fault the page in */
result = vm_fault(map, vm_fault_addr, fault_type,
- /* change_wiring */ FALSE, VM_KERN_MEMORY_NONE, THREAD_ABORTSAFE,
- /* caller_pmap */ NULL, /* caller_pmap_addr */ 0);
+ /* change_wiring */ FALSE, VM_KERN_MEMORY_NONE, THREAD_ABORTSAFE,
+ /* caller_pmap */ NULL, /* caller_pmap_addr */ 0);
}
}
if (result == KERN_SUCCESS || result == KERN_ABORTED) {
- thread_exception_return();
- /* NOTREACHED */
+ return;
+ }
+
+ /*
+ * vm_fault() should never return KERN_FAILURE for page faults from user space.
+ * If it does, we're leaking preemption disables somewhere in the kernel.
+ */
+ if (__improbable(result == KERN_FAILURE)) {
+ panic("vm_fault() KERN_FAILURE from user fault on thread %p", thread);
}
codes[0] = result;
} else if (is_alignment_fault(fault_code)) {
- codes[0] = EXC_ARM_DA_ALIGN;
+ kern_return_t vmfkr = KERN_SUCCESS;
+ thread->machine.recover_esr = 0;
+ thread->machine.recover_far = 0;
+ int result = handle_alignment_fault_from_user(state, &vmfkr);
+ if (result == 0) {
+ /* Successfully emulated, or instruction
+ * copyin() for decode/emulation failed.
+ * Continue, or redrive instruction.
+ */
+ thread_exception_return();
+ } else if (((result == EFAULT) || (result == EINVAL)) &&
+ (thread->machine.recover_esr == 0)) {
+ /*
+ * If we didn't actually take a fault, but got one of
+ * these errors, then we failed basic sanity checks of
+ * the fault address. Treat this as an invalid
+ * address.
+ */
+ codes[0] = KERN_INVALID_ADDRESS;
+ } else if ((result == EFAULT) &&
+ (thread->machine.recover_esr)) {
+ /*
+ * Since alignment aborts are prioritized
+ * ahead of translation aborts, the misaligned
+ * atomic emulation flow may have triggered a
+ * VM pagefault, which the VM could not resolve.
+ * Report the VM fault error in codes[]
+ */
+
+ codes[0] = vmfkr;
+ assertf(vmfkr != KERN_SUCCESS, "Unexpected vmfkr 0x%x", vmfkr);
+ /* Cause ESR_EC to reflect an EL0 abort */
+ thread->machine.recover_esr &= ~ESR_EC_MASK;
+ thread->machine.recover_esr |= (ESR_EC_DABORT_EL0 << ESR_EC_SHIFT);
+ set_saved_state_esr(thread->machine.upcb, thread->machine.recover_esr);
+ set_saved_state_far(thread->machine.upcb, thread->machine.recover_far);
+ fault_addr = thread->machine.recover_far;
+ } else {
+ /* This was just an unsupported alignment
+ * exception. Misaligned atomic emulation
+ * timeouts fall in this category.
+ */
+ codes[0] = EXC_ARM_DA_ALIGN;
+ }
} else if (is_parity_error(fault_code)) {
#if defined(APPLE_ARM64_ARCH_FAMILY)
if (fault_code == FSC_SYNC_PARITY) {
arm64_platform_error(state, esr, fault_addr);
- thread_exception_return();
- /* NOTREACHED */
+ return;
}
#else
panic("User parity error.");
}
codes[1] = fault_addr;
+#if __has_feature(ptrauth_calls)
+ bool is_data_abort = (ESR_EC(esr) == ESR_EC_DABORT_EL0);
+ if (user_fault_addr_matches_pac_error_code(fault_addr, is_data_abort)) {
+ exc |= EXC_PTRAUTH_BIT;
+ }
+#endif /* __has_feature(ptrauth_calls) */
exception_triage(exc, codes, numcodes);
- assert(0); /* NOTREACHED */
+ __builtin_unreachable();
}
#if __ARM_PAN_AVAILABLE__
static void
handle_kernel_abort(arm_saved_state_t *state, uint32_t esr, vm_offset_t fault_addr,
- fault_status_t fault_code, vm_prot_t fault_type, vm_offset_t recover)
+ fault_status_t fault_code, vm_prot_t fault_type, vm_offset_t recover, expected_fault_handler_t expected_fault_handler)
{
- thread_t thread = current_thread();
+ thread_t thread = current_thread();
(void)esr;
+#ifndef CONFIG_XNUPOST
+ (void)expected_fault_handler;
+#endif /* CONFIG_XNUPOST */
+
#if CONFIG_DTRACE
- if (is_vm_fault(fault_code) && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
+ if (is_vm_fault(fault_code) && thread->t_dtrace_inprobe) { /* Executing under dtrace_probe? */
if (dtrace_tally_fault(fault_addr)) { /* Should a fault under dtrace be ignored? */
/*
* Point to next instruction, or recovery handler if set.
*/
if (recover) {
- set_saved_state_pc(state, recover);
+ thread->machine.recover_esr = esr;
+ thread->machine.recover_far = fault_addr;
+ set_saved_state_pc_to_recovery_handler(state, recover);
} else {
- set_saved_state_pc(state, get_saved_state_pc(state) + 4);
+ add_saved_state_pc(state, 4);
}
return;
} else {
- boolean_t intr = ml_set_interrupts_enabled(FALSE);
panic_with_thread_kernel_state("Unexpected page fault under dtrace_probe", state);
- (void) ml_set_interrupts_enabled(intr);
- return;
}
}
#endif
#if !CONFIG_PGTRACE /* This will be moved next to pgtrace fault evaluation */
- if (ml_at_interrupt_context())
+ if (ml_at_interrupt_context()) {
panic_with_thread_kernel_state("Unexpected abort while on interrupt stack.", state);
+ }
#endif
if (is_vm_fault(fault_code)) {
- kern_return_t result;
- vm_map_t map;
- int interruptible;
+ kern_return_t result = KERN_FAILURE;
+ vm_map_t map;
+ int interruptible;
+
+ /*
+ * Ensure no faults in the physical aperture. This could happen if
+ * a page table is incorrectly allocated from the read only region
+ * when running with KTRR.
+ */
- if (fault_addr >= gVirtBase && fault_addr < (gVirtBase+gPhysSize)) {
- panic_with_thread_kernel_state("Unexpected fault in kernel static region\n",state);
+#ifdef CONFIG_XNUPOST
+ if (expected_fault_handler && expected_fault_handler(state)) {
+ return;
+ }
+#endif /* CONFIG_XNUPOST */
+
+ if (fault_addr >= gVirtBase && fault_addr < static_memory_end) {
+ panic_with_thread_kernel_state("Unexpected fault in kernel static region\n", state);
}
if (VM_KERNEL_ADDRESS(fault_addr) || thread == THREAD_NULL) {
if (pgtrace_enabled) {
/* Check to see if trace bit is set */
result = pmap_pgtrace_fault(map->pmap, fault_addr, state);
- if (result == KERN_SUCCESS) return;
+ if (result == KERN_SUCCESS) {
+ return;
+ }
}
- if (ml_at_interrupt_context())
+ if (ml_at_interrupt_context()) {
panic_with_thread_kernel_state("Unexpected abort while on interrupt stack.", state);
+ }
#endif
/* check to see if it is just a pmap ref/modify fault */
- result = arm_fast_fault(map->pmap, trunc_page(fault_addr), fault_type, FALSE);
- if (result == KERN_SUCCESS) return;
+ if (!is_translation_fault(fault_code)) {
+ result = arm_fast_fault(map->pmap,
+ fault_addr,
+ fault_type, (fault_code == FSC_ACCESS_FLAG_FAULT_L3), FALSE);
+ if (result == KERN_SUCCESS) {
+ return;
+ }
+ }
- {
+ if (result != KERN_PROTECTION_FAILURE) {
/*
* We have to "fault" the page in.
*/
result = vm_fault(map, fault_addr, fault_type,
- /* change_wiring */ FALSE, VM_KERN_MEMORY_NONE, interruptible,
- /* caller_pmap */ NULL, /* caller_pmap_addr */ 0);
+ /* change_wiring */ FALSE, VM_KERN_MEMORY_NONE, interruptible,
+ /* caller_pmap */ NULL, /* caller_pmap_addr */ 0);
}
- if (result == KERN_SUCCESS) return;
+ if (result == KERN_SUCCESS) {
+ return;
+ }
/*
* If we have a recover handler, invoke it now.
*/
if (recover) {
- set_saved_state_pc(state, recover);
+ thread->machine.recover_esr = esr;
+ thread->machine.recover_far = fault_addr;
+ set_saved_state_pc_to_recovery_handler(state, recover);
return;
}
#endif
#if CONFIG_PGTRACE
- } else if (ml_at_interrupt_context()) {
- panic_with_thread_kernel_state("Unexpected abort while on interrupt stack.", state);
+ } else if (ml_at_interrupt_context()) {
+ panic_with_thread_kernel_state("Unexpected abort while on interrupt stack.", state);
#endif
} else if (is_alignment_fault(fault_code)) {
+ if (recover) {
+ thread->machine.recover_esr = esr;
+ thread->machine.recover_far = fault_addr;
+ set_saved_state_pc_to_recovery_handler(state, recover);
+ return;
+ }
panic_with_thread_kernel_state("Unaligned kernel data abort.", state);
} else if (is_parity_error(fault_code)) {
#if defined(APPLE_ARM64_ARCH_FAMILY)
static void
handle_svc(arm_saved_state_t *state)
{
- int trap_no = get_saved_state_svc_number(state);
- thread_t thread = current_thread();
- struct proc *p;
+ int trap_no = get_saved_state_svc_number(state);
+ thread_t thread = current_thread();
+ struct proc *p;
#define handle_svc_kprintf(x...) /* kprintf("handle_svc: " x) */
mach_kauth_cred_uthread_update();
if (trap_no < 0) {
- if (trap_no == -3) {
+ if (trap_no == MACH_ARM_TRAP_ABSTIME) {
handle_mach_absolute_time_trap(state);
return;
- } else if (trap_no == -4) {
+ } else if (trap_no == MACH_ARM_TRAP_CONTTIME) {
handle_mach_continuous_time_trap(state);
return;
}
saved_state64(state)->x[0] = now;
}
+__attribute__((noreturn))
static void
-handle_msr_trap(arm_saved_state_t *state, uint32_t iss)
+handle_msr_trap(arm_saved_state_t *state, uint32_t esr)
{
- exception_type_t exception = EXC_BAD_INSTRUCTION;
- mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
- mach_msg_type_number_t numcodes = 2;
- uint32_t instr;
-
- (void)iss;
+ exception_type_t exception = EXC_BAD_INSTRUCTION;
+ mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
+ mach_msg_type_number_t numcodes = 2;
+ uint32_t instr = 0;
if (!is_saved_state64(state)) {
- panic("MSR/MRS trap (EC 0x%x) from 32-bit state\n", ESR_EC_MSR_TRAP);
+ panic("MSR/MRS trap (ESR 0x%x) from 32-bit state\n", esr);
}
if (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) {
- panic("MSR/MRS trap (EC 0x%x) from kernel\n", ESR_EC_MSR_TRAP);
+ panic("MSR/MRS trap (ESR 0x%x) from kernel\n", esr);
}
COPYIN(get_saved_state_pc(state), (char *)&instr, sizeof(instr));
codes[1] = instr;
exception_triage(exception, codes, numcodes);
+ __builtin_unreachable();
}
+
static void
handle_user_trapped_instruction32(arm_saved_state_t *state, uint32_t esr)
{
- exception_type_t exception = EXC_BAD_INSTRUCTION;
- mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
- mach_msg_type_number_t numcodes = 2;
- uint32_t instr;
+ exception_type_t exception = EXC_BAD_INSTRUCTION;
+ mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
+ mach_msg_type_number_t numcodes = 2;
+ uint32_t instr;
if (is_saved_state64(state)) {
panic("ESR (0x%x) for instruction trapped from U32, but saved state is 64-bit.", esr);
codes[1] = instr;
exception_triage(exception, codes, numcodes);
+ __builtin_unreachable();
}
static void
handle_simd_trap(arm_saved_state_t *state, uint32_t esr)
{
- exception_type_t exception = EXC_BAD_INSTRUCTION;
- mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
- mach_msg_type_number_t numcodes = 2;
- uint32_t instr;
+ exception_type_t exception = EXC_BAD_INSTRUCTION;
+ mach_exception_data_type_t codes[2] = {EXC_ARM_UNDEFINED};
+ mach_msg_type_number_t numcodes = 2;
+ uint32_t instr = 0;
if (PSR64_IS_KERNEL(get_saved_state_cpsr(state))) {
panic("ESR (0x%x) for SIMD trap from userland, actually came from kernel?", esr);
codes[1] = instr;
exception_triage(exception, codes, numcodes);
+ __builtin_unreachable();
}
void
sleh_irq(arm_saved_state_t *state)
{
- uint64_t timestamp = 0;
- uint32_t old_entropy_data = 0;
- uint32_t * old_entropy_data_ptr = NULL;
- uint32_t * new_entropy_data_ptr = NULL;
- cpu_data_t * cdp = getCpuDatap();
+ cpu_data_t * cdp __unused = getCpuDatap();
+#if MACH_ASSERT
+ int preemption_level = get_preemption_level();
+#endif
+
sleh_interrupt_handler_prologue(state, DBG_INTR_TYPE_OTHER);
+#if USE_APPLEARMSMP
+ PE_handle_ext_interrupt();
+#else
/* Run the registered interrupt handler. */
cdp->interrupt_handler(cdp->interrupt_target,
- cdp->interrupt_refCon,
- cdp->interrupt_nub,
- cdp->interrupt_source);
-
- /* We use interrupt timing as an entropy source. */
- timestamp = ml_get_timebase();
-
- /*
- * The buffer index is subject to races, but as these races should only
- * result in multiple CPUs updating the same location, the end result
- * should be that noise gets written into the entropy buffer. As this
- * is the entire point of the entropy buffer, we will not worry about
- * these races for now.
- */
- old_entropy_data_ptr = EntropyData.index_ptr;
- new_entropy_data_ptr = old_entropy_data_ptr + 1;
-
- if (new_entropy_data_ptr >= &EntropyData.buffer[ENTROPY_BUFFER_SIZE]) {
- new_entropy_data_ptr = EntropyData.buffer;
- }
-
- EntropyData.index_ptr = new_entropy_data_ptr;
+ cdp->interrupt_refCon,
+ cdp->interrupt_nub,
+ cdp->interrupt_source);
+#endif
- /* Mix the timestamp data and the old data together. */
- old_entropy_data = *old_entropy_data_ptr;
- *old_entropy_data_ptr = (uint32_t)timestamp ^ __ror(old_entropy_data, 9);
+ entropy_collect();
sleh_interrupt_handler_epilogue();
+#if MACH_ASSERT
+ if (preemption_level != get_preemption_level()) {
+ panic("irq handler %p changed preemption level from %d to %d", cdp->interrupt_handler, preemption_level, get_preemption_level());
+ }
+#endif
}
void
sleh_fiq(arm_saved_state_t *state)
{
unsigned int type = DBG_INTR_TYPE_UNKNOWN;
+#if MACH_ASSERT
+ int preemption_level = get_preemption_level();
+#endif
+
+#if MONOTONIC_FIQ
+ uint64_t pmcr0 = 0, upmsr = 0;
+#endif /* MONOTONIC_FIQ */
+
+#if defined(HAS_IPI)
+ boolean_t is_ipi = FALSE;
+ uint64_t ipi_sr = 0;
+
+ if (gFastIPI) {
+ MRS(ipi_sr, ARM64_REG_IPI_SR);
+
+ if (ipi_sr & 1) {
+ is_ipi = TRUE;
+ }
+ }
+
+ if (is_ipi) {
+ type = DBG_INTR_TYPE_IPI;
+ } else
+#endif /* defined(HAS_IPI) */
+#if MONOTONIC_FIQ
+ if (mt_pmi_pending(&pmcr0, &upmsr)) {
+ type = DBG_INTR_TYPE_PMI;
+ } else
+#endif /* MONOTONIC_FIQ */
if (ml_get_timer_pending()) {
type = DBG_INTR_TYPE_TIMER;
}
sleh_interrupt_handler_prologue(state, type);
+#if defined(HAS_IPI)
+ if (is_ipi) {
+ /*
+ * Order is important here: we must ack the IPI by writing IPI_SR
+ * before we call cpu_signal_handler(). Otherwise, there will be
+ * a window between the completion of pending-signal processing in
+ * cpu_signal_handler() and the ack during which a newly-issued
+ * IPI to this CPU may be lost. ISB is required to ensure the msr
+ * is retired before execution of cpu_signal_handler().
+ */
+ MSR(ARM64_REG_IPI_SR, ipi_sr);
+ __builtin_arm_isb(ISB_SY);
+ cpu_signal_handler();
+ } else
+#endif /* defined(HAS_IPI) */
+#if MONOTONIC_FIQ
+ if (type == DBG_INTR_TYPE_PMI) {
+ INTERRUPT_MASKED_DEBUG_START(mt_fiq, DBG_INTR_TYPE_PMI);
+ mt_fiq(getCpuDatap(), pmcr0, upmsr);
+ INTERRUPT_MASKED_DEBUG_END();
+ } else
+#endif /* MONOTONIC_FIQ */
{
/*
* We don't know that this is a timer, but we don't have insight into
* the other interrupts that go down this path.
*/
-
cpu_data_t *cdp = getCpuDatap();
cdp->cpu_decrementer = -1; /* Large */
* We can easily thread it through, but not bothering for the
* moment (AArch32 doesn't either).
*/
+ INTERRUPT_MASKED_DEBUG_START(rtclock_intr, DBG_INTR_TYPE_TIMER);
rtclock_intr(TRUE);
+ INTERRUPT_MASKED_DEBUG_END();
}
sleh_interrupt_handler_epilogue();
+#if MACH_ASSERT
+ if (preemption_level != get_preemption_level()) {
+ panic("fiq type %u changed preemption level from %d to %d", type, preemption_level, get_preemption_level());
+ }
+#endif
}
void
sleh_serror(arm_context_t *context, uint32_t esr, vm_offset_t far)
{
- arm_saved_state_t *state = &context->ss;
+ task_vtimer_check(current_thread());
+
+ KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_SERR_ARM, 0) | DBG_FUNC_START,
+ esr, VM_KERNEL_ADDRHIDE(far));
+ arm_saved_state_t *state = &context->ss;
+#if MACH_ASSERT
+ int preemption_level = get_preemption_level();
+#endif
ASSERT_CONTEXT_SANITY(context);
arm64_platform_error(state, esr, far);
+#if MACH_ASSERT
+ if (preemption_level != get_preemption_level()) {
+ panic("serror changed preemption level from %d to %d", preemption_level, get_preemption_level());
+ }
+#endif
+ KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_SERR_ARM, 0) | DBG_FUNC_END,
+ esr, VM_KERNEL_ADDRHIDE(far));
}
void
-mach_syscall_trace_exit(
- unsigned int retval,
- unsigned int call_number)
+mach_syscall_trace_exit(unsigned int retval,
+ unsigned int call_number)
{
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_SC, (call_number)) | DBG_FUNC_END,
- retval, 0, 0, 0, 0);
+ MACHDBG_CODE(DBG_MACH_EXCP_SC, (call_number)) |
+ DBG_FUNC_END, retval, 0, 0, 0, 0);
}
__attribute__((noreturn))
assert(is_saved_state64(state));
saved_state64(state)->x[0] = error;
-#if DEBUG || DEVELOPMENT
+#if MACH_ASSERT
kern_allocation_name_t
prior __assert_only = thread_get_kernel_state(thread)->allocation_name;
assertf(prior == NULL, "thread_set_allocation_name(\"%s\") not cleared", kern_allocation_get_name(prior));
-#endif /* DEBUG || DEVELOPMENT */
+#endif /* MACH_ASSERT */
if (kdebug_enable) {
/* Invert syscall number (negative for a mach syscall) */
void
syscall_trace(
- struct arm_saved_state * regs __unused)
+ struct arm_saved_state * regs __unused)
{
/* kprintf("syscall: %d\n", saved_state64(regs)->x[16]); */
}
static void
sleh_interrupt_handler_prologue(arm_saved_state_t *state, unsigned int type)
{
- uint64_t is_user = PSR64_IS_USER(get_saved_state_cpsr(state));
+ bool is_user = PSR64_IS_USER(get_saved_state_cpsr(state));
+
+ task_vtimer_check(current_thread());
uint64_t pc = is_user ? get_saved_state_pc(state) :
- VM_KERNEL_UNSLIDE(get_saved_state_pc(state));
+ VM_KERNEL_UNSLIDE(get_saved_state_pc(state));
KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
- 0, pc, is_user, type);
+ 0, pc, is_user, type);
#if CONFIG_TELEMETRY
if (telemetry_needs_record) {
- telemetry_mark_curthread((boolean_t)is_user);
+ telemetry_mark_curthread((boolean_t)is_user, FALSE);
}
#endif /* CONFIG_TELEMETRY */
}
static void
sleh_interrupt_handler_epilogue(void)
{
+#if KPERF
+ kperf_interrupt();
+#endif /* KPERF */
KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END);
}