/*
- * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
*/
-#define DUMMYNET_DEBUG
+#define DUMMYNET_DEBUG
/*
* This module implements IP dummynet, a bandwidth limiter/delay emulator
- * used in conjunction with the ipfw package.
* Description of the data structures used is in ip_dummynet.h
* Here you mainly find the following blocks of code:
* + variable declarations;
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
-#include <sys/queue.h> /* XXX */
+#include <sys/queue.h> /* XXX */
#include <sys/kernel.h>
#include <sys/random.h>
#include <sys/socket.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
-#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <netinet/ip_var.h>
#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
#include <netinet6/ip6_var.h>
-static struct ip_fw default_rule;
-
/*
* We keep a private variable for the simulation time, but we could
* probably use an existing one ("softticks" in sys/kern/kern_timer.c)
*/
-static dn_key curr_time = 0 ; /* current simulation time */
+static dn_key curr_time = 0; /* current simulation time */
/* this is for the timer that fires to call dummynet() - we only enable the timer when
- there are packets to process, otherwise it's disabled */
+ * there are packets to process, otherwise it's disabled */
static int timer_enabled = 0;
-static int dn_hash_size = 64 ; /* default hash size */
+static int dn_hash_size = 64; /* default hash size */
/* statistics on number of queue searches and search steps */
-static int searches, search_steps ;
-static int pipe_expire = 1 ; /* expire queue if empty */
-static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
+static int searches, search_steps;
+static int pipe_expire = 1; /* expire queue if empty */
+static int dn_max_ratio = 16; /* max queues/buckets ratio */
-static int red_lookup_depth = 256; /* RED - default lookup table depth */
+static int red_lookup_depth = 256; /* RED - default lookup table depth */
static int red_avg_pkt_size = 512; /* RED - default medium packet size */
static int red_max_pkt_size = 1500; /* RED - default max packet size */
* extract_heap contains pipes associated with delay lines.
*
*/
-static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
+static struct dn_heap ready_heap, extract_heap, wfq_ready_heap;
-static int heap_init(struct dn_heap *h, int size) ;
-static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
+static int heap_init(struct dn_heap *h, int size);
+static int heap_insert(struct dn_heap *h, dn_key key1, void *p);
static void heap_extract(struct dn_heap *h, void *obj);
-static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
- struct mbuf **tail);
-static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
- struct mbuf **tail);
-static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
- struct mbuf **tail);
+static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
+ struct mbuf **tail);
/*
* Packets are retrieved from queues in Dummynet in chains instead of
*/
static void dummynet_send(struct mbuf *m);
-#define HASHSIZE 16
-#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
-static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
-static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
+#define HASHSIZE 16
+#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
+static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
+static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
#ifdef SYSCTL_NODE
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
- CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
+ CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
- CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
+ CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
- CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
- CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
- CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
- CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
- CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
- CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
+ CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
- CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
- "Max ratio between dynamic queues and buckets");
+ CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
+ "Max ratio between dynamic queues and buckets");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
- CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
- CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
- CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
#endif
#ifdef DUMMYNET_DEBUG
-int dummynet_debug = 0;
+int dummynet_debug = 0;
#ifdef SYSCTL_NODE
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
- 0, "control debugging printfs");
+ 0, "control debugging printfs");
#endif
-#define DPRINTF(X) if (dummynet_debug) printf X
+#define DPRINTF(X) if (dummynet_debug) printf X
#else
-#define DPRINTF(X)
+#define DPRINTF(X)
#endif
/* dummynet lock */
struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt;
-uint32_t my_random(void)
+uint32_t
+my_random(void)
{
uint32_t val;
read_frandom(&val, sizeof(val));
val &= 0x7FFFFFFF;
- return (val);
+ return val;
}
/*
#define HEAP_LEFT(x) ( 2*(x) + 1 )
#define HEAP_IS_LEFT(x) ( (x) & 1 )
#define HEAP_RIGHT(x) ( 2*(x) + 2 )
-#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
-#define HEAP_INCREMENT 15
+#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
+#define HEAP_INCREMENT 15
-int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
+int
+cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
{
struct dn_pipe_32 user_pipe_32;
- int error=0;
+ int error = 0;
error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
- if ( !error ){
+ if (!error) {
p->pipe_nr = user_pipe_32.pipe_nr;
p->bandwidth = user_pipe_32.bandwidth;
p->delay = user_pipe_32.delay;
}
-int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
+int
+cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
{
struct dn_pipe_64 user_pipe_64;
- int error=0;
+ int error = 0;
error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
- if ( !error ){
+ if (!error) {
p->pipe_nr = user_pipe_64.pipe_nr;
p->bandwidth = user_pipe_64.bandwidth;
p->delay = user_pipe_64.delay;
cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
{
fs_bp->fs_nr = set->fs_nr;
- fs_bp->flags_fs = set->flags_fs ;
- fs_bp->parent_nr = set->parent_nr ;
- fs_bp->weight = set->weight ;
- fs_bp->qsize = set->qsize ;
- fs_bp->plr = set->plr ;
- fs_bp->flow_mask = set->flow_mask ;
- fs_bp->rq_size = set->rq_size ;
- fs_bp->rq_elements = set->rq_elements ;
- fs_bp->last_expired = set->last_expired ;
- fs_bp->backlogged = set->backlogged ;
- fs_bp->w_q = set->w_q ;
- fs_bp->max_th = set->max_th ;
- fs_bp->min_th = set->min_th ;
- fs_bp->max_p = set->max_p ;
- fs_bp->c_1 = set->c_1 ;
- fs_bp->c_2 = set->c_2 ;
- fs_bp->c_3 = set->c_3 ;
- fs_bp->c_4 = set->c_4 ;
- fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
- fs_bp->lookup_depth = set->lookup_depth ;
- fs_bp->lookup_step = set->lookup_step ;
- fs_bp->lookup_weight = set->lookup_weight ;
- fs_bp->avg_pkt_size = set->avg_pkt_size ;
- fs_bp->max_pkt_size = set->max_pkt_size ;
+ fs_bp->flags_fs = set->flags_fs;
+ fs_bp->parent_nr = set->parent_nr;
+ fs_bp->weight = set->weight;
+ fs_bp->qsize = set->qsize;
+ fs_bp->plr = set->plr;
+ fs_bp->flow_mask = set->flow_mask;
+ fs_bp->rq_size = set->rq_size;
+ fs_bp->rq_elements = set->rq_elements;
+ fs_bp->last_expired = set->last_expired;
+ fs_bp->backlogged = set->backlogged;
+ fs_bp->w_q = set->w_q;
+ fs_bp->max_th = set->max_th;
+ fs_bp->min_th = set->min_th;
+ fs_bp->max_p = set->max_p;
+ fs_bp->c_1 = set->c_1;
+ fs_bp->c_2 = set->c_2;
+ fs_bp->c_3 = set->c_3;
+ fs_bp->c_4 = set->c_4;
+ fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup);
+ fs_bp->lookup_depth = set->lookup_depth;
+ fs_bp->lookup_step = set->lookup_step;
+ fs_bp->lookup_weight = set->lookup_weight;
+ fs_bp->avg_pkt_size = set->avg_pkt_size;
+ fs_bp->max_pkt_size = set->max_pkt_size;
}
static void
cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
{
fs_bp->fs_nr = set->fs_nr;
- fs_bp->flags_fs = set->flags_fs ;
- fs_bp->parent_nr = set->parent_nr ;
- fs_bp->weight = set->weight ;
- fs_bp->qsize = set->qsize ;
- fs_bp->plr = set->plr ;
- fs_bp->flow_mask = set->flow_mask ;
- fs_bp->rq_size = set->rq_size ;
- fs_bp->rq_elements = set->rq_elements ;
- fs_bp->last_expired = set->last_expired ;
- fs_bp->backlogged = set->backlogged ;
- fs_bp->w_q = set->w_q ;
- fs_bp->max_th = set->max_th ;
- fs_bp->min_th = set->min_th ;
- fs_bp->max_p = set->max_p ;
- fs_bp->c_1 = set->c_1 ;
- fs_bp->c_2 = set->c_2 ;
- fs_bp->c_3 = set->c_3 ;
- fs_bp->c_4 = set->c_4 ;
- fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
- fs_bp->lookup_depth = set->lookup_depth ;
- fs_bp->lookup_step = set->lookup_step ;
- fs_bp->lookup_weight = set->lookup_weight ;
- fs_bp->avg_pkt_size = set->avg_pkt_size ;
- fs_bp->max_pkt_size = set->max_pkt_size ;
+ fs_bp->flags_fs = set->flags_fs;
+ fs_bp->parent_nr = set->parent_nr;
+ fs_bp->weight = set->weight;
+ fs_bp->qsize = set->qsize;
+ fs_bp->plr = set->plr;
+ fs_bp->flow_mask = set->flow_mask;
+ fs_bp->rq_size = set->rq_size;
+ fs_bp->rq_elements = set->rq_elements;
+ fs_bp->last_expired = set->last_expired;
+ fs_bp->backlogged = set->backlogged;
+ fs_bp->w_q = set->w_q;
+ fs_bp->max_th = set->max_th;
+ fs_bp->min_th = set->min_th;
+ fs_bp->max_p = set->max_p;
+ fs_bp->c_1 = set->c_1;
+ fs_bp->c_2 = set->c_2;
+ fs_bp->c_3 = set->c_3;
+ fs_bp->c_4 = set->c_4;
+ fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup);
+ fs_bp->lookup_depth = set->lookup_depth;
+ fs_bp->lookup_step = set->lookup_step;
+ fs_bp->lookup_weight = set->lookup_weight;
+ fs_bp->avg_pkt_size = set->avg_pkt_size;
+ fs_bp->max_pkt_size = set->max_pkt_size;
}
static
-void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
+void
+cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
{
qp->id = q->id;
qp->len = q->len;
}
static
-void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
+void
+cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
{
qp->id = q->id;
qp->len = q->len;
}
static
-char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
+char *
+cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
{
- char *bp;
+ char *bp;
pipe_bp->pipe_nr = p->pipe_nr;
pipe_bp->bandwidth = p->bandwidth;
cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
- pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
+ pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10);
/*
* XXX the following is a hack based on ->next being the
* first field in dn_pipe and dn_flow_set. The correct
*/
pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
/* clean pointers */
- pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
- pipe_bp->fs.next = (user32_addr_t)0 ;
- pipe_bp->fs.pipe = (user32_addr_t)0 ;
- pipe_bp->fs.rq = (user32_addr_t)0 ;
+ pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0;
+ pipe_bp->fs.next = (user32_addr_t)0;
+ pipe_bp->fs.pipe = (user32_addr_t)0;
+ pipe_bp->fs.rq = (user32_addr_t)0;
bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
- return( dn_copy_set_32( &(p->fs), bp) );
+ return dn_copy_set_32( &(p->fs), bp);
}
static
-char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
+char *
+cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
{
- char *bp;
+ char *bp;
pipe_bp->pipe_nr = p->pipe_nr;
pipe_bp->bandwidth = p->bandwidth;
cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
- pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
+ pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10);
/*
* XXX the following is a hack based on ->next being the
* first field in dn_pipe and dn_flow_set. The correct
*/
pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
/* clean pointers */
- pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
- pipe_bp->fs.next = USER_ADDR_NULL ;
- pipe_bp->fs.pipe = USER_ADDR_NULL ;
- pipe_bp->fs.rq = USER_ADDR_NULL ;
+ pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL;
+ pipe_bp->fs.next = USER_ADDR_NULL;
+ pipe_bp->fs.pipe = USER_ADDR_NULL;
+ pipe_bp->fs.rq = USER_ADDR_NULL;
bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
- return( dn_copy_set_64( &(p->fs), bp) );
+ return dn_copy_set_64( &(p->fs), bp);
}
static int
heap_init(struct dn_heap *h, int new_size)
{
- struct dn_heap_entry *p;
-
- if (h->size >= new_size ) {
- printf("dummynet: heap_init, Bogus call, have %d want %d\n",
- h->size, new_size);
- return 0 ;
- }
- new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
- p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
- if (p == NULL) {
- printf("dummynet: heap_init, resize %d failed\n", new_size );
- return 1 ; /* error */
- }
- if (h->size > 0) {
- bcopy(h->p, p, h->size * sizeof(*p) );
- FREE(h->p, M_DUMMYNET);
- }
- h->p = p ;
- h->size = new_size ;
- return 0 ;
+ struct dn_heap_entry *p;
+
+ if (h->size >= new_size) {
+ printf("dummynet: heap_init, Bogus call, have %d want %d\n",
+ h->size, new_size);
+ return 0;
+ }
+ new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT;
+ p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
+ if (p == NULL) {
+ printf("dummynet: heap_init, resize %d failed\n", new_size );
+ return 1; /* error */
+ }
+ if (h->size > 0) {
+ bcopy(h->p, p, h->size * sizeof(*p));
+ FREE(h->p, M_DUMMYNET);
+ }
+ h->p = p;
+ h->size = new_size;
+ return 0;
}
/*
static int
heap_insert(struct dn_heap *h, dn_key key1, void *p)
{
- int son = h->elements ;
-
- if (p == NULL) /* data already there, set starting point */
- son = key1 ;
- else { /* insert new element at the end, possibly resize */
- son = h->elements ;
- if (son == h->size) /* need resize... */
- if (heap_init(h, h->elements+1) )
- return 1 ; /* failure... */
- h->p[son].object = p ;
- h->p[son].key = key1 ;
- h->elements++ ;
- }
- while (son > 0) { /* bubble up */
- int father = HEAP_FATHER(son) ;
- struct dn_heap_entry tmp ;
-
- if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
- break ; /* found right position */
- /* son smaller than father, swap and repeat */
- HEAP_SWAP(h->p[son], h->p[father], tmp) ;
+ int son = h->elements;
+
+ if (p == NULL) { /* data already there, set starting point */
+ son = key1;
+ } else { /* insert new element at the end, possibly resize */
+ son = h->elements;
+ if (son == h->size) { /* need resize... */
+ if (heap_init(h, h->elements + 1)) {
+ return 1; /* failure... */
+ }
+ }
+ h->p[son].object = p;
+ h->p[son].key = key1;
+ h->elements++;
+ }
+ while (son > 0) { /* bubble up */
+ int father = HEAP_FATHER(son);
+ struct dn_heap_entry tmp;
+
+ if (DN_KEY_LT( h->p[father].key, h->p[son].key )) {
+ break; /* found right position */
+ }
+ /* son smaller than father, swap and repeat */
+ HEAP_SWAP(h->p[son], h->p[father], tmp);
+ SET_OFFSET(h, son);
+ son = father;
+ }
SET_OFFSET(h, son);
- son = father ;
- }
- SET_OFFSET(h, son);
- return 0 ;
+ return 0;
}
/*
static void
heap_extract(struct dn_heap *h, void *obj)
{
- int child, father, maxelt = h->elements - 1 ;
-
- if (maxelt < 0) {
- printf("dummynet: warning, extract from empty heap 0x%llx\n",
- (uint64_t)VM_KERNEL_ADDRPERM(h));
- return ;
- }
- father = 0 ; /* default: move up smallest child */
- if (obj != NULL) { /* extract specific element, index is at offset */
- if (h->offset <= 0)
- panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
- father = *((int *)((char *)obj + h->offset)) ;
- if (father < 0 || father >= h->elements) {
- printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
- father, h->elements);
- panic("dummynet: heap_extract");
- }
- }
- RESET_OFFSET(h, father);
- child = HEAP_LEFT(father) ; /* left child */
- while (child <= maxelt) { /* valid entry */
- if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
- child = child+1 ; /* take right child, otherwise left */
- h->p[father] = h->p[child] ;
- SET_OFFSET(h, father);
- father = child ;
- child = HEAP_LEFT(child) ; /* left child for next loop */
- }
- h->elements-- ;
- if (father != maxelt) {
- /*
- * Fill hole with last entry and bubble up, reusing the insert code
- */
- h->p[father] = h->p[maxelt] ;
- heap_insert(h, father, NULL); /* this one cannot fail */
- }
+ int child, father, maxelt = h->elements - 1;
+
+ if (maxelt < 0) {
+ printf("dummynet: warning, extract from empty heap 0x%llx\n",
+ (uint64_t)VM_KERNEL_ADDRPERM(h));
+ return;
+ }
+ father = 0; /* default: move up smallest child */
+ if (obj != NULL) { /* extract specific element, index is at offset */
+ if (h->offset <= 0) {
+ panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
+ }
+ father = *((int *)((char *)obj + h->offset));
+ if (father < 0 || father >= h->elements) {
+ printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
+ father, h->elements);
+ panic("dummynet: heap_extract");
+ }
+ }
+ RESET_OFFSET(h, father);
+ child = HEAP_LEFT(father); /* left child */
+ while (child <= maxelt) { /* valid entry */
+ if (child != maxelt && DN_KEY_LT(h->p[child + 1].key, h->p[child].key)) {
+ child = child + 1; /* take right child, otherwise left */
+ }
+ h->p[father] = h->p[child];
+ SET_OFFSET(h, father);
+ father = child;
+ child = HEAP_LEFT(child); /* left child for next loop */
+ }
+ h->elements--;
+ if (father != maxelt) {
+ /*
+ * Fill hole with last entry and bubble up, reusing the insert code
+ */
+ h->p[father] = h->p[maxelt];
+ heap_insert(h, father, NULL); /* this one cannot fail */
+ }
}
/*
static void
heapify(struct dn_heap *h)
{
- int i ;
+ int i;
- for (i = 0 ; i < h->elements ; i++ )
- heap_insert(h, i , NULL) ;
+ for (i = 0; i < h->elements; i++) {
+ heap_insert(h, i, NULL);
+ }
}
/*
static void
heap_free(struct dn_heap *h)
{
- if (h->size >0 )
- FREE(h->p, M_DUMMYNET);
- bzero(h, sizeof(*h));
+ if (h->size > 0) {
+ FREE(h->p, M_DUMMYNET);
+ }
+ bzero(h, sizeof(*h));
}
/*
static struct dn_pkt_tag *
dn_tag_get(struct mbuf *m)
{
- struct m_tag *mtag = m_tag_first(m);
+ struct m_tag *mtag = m_tag_first(m);
- if (!(mtag != NULL &&
- mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
- mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET))
- panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
- (uint64_t)VM_KERNEL_ADDRPERM(m));
+ if (!(mtag != NULL &&
+ mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
+ mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET)) {
+ panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
+ (uint64_t)VM_KERNEL_ADDRPERM(m));
+ }
- return (struct dn_pkt_tag *)(mtag+1);
+ return (struct dn_pkt_tag *)(mtag + 1);
}
/*
static void
transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
{
- struct mbuf *m ;
+ struct mbuf *m;
struct dn_pkt_tag *pkt = NULL;
u_int64_t schedule_time;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- ASSERT(serialize >= 0);
+ ASSERT(serialize >= 0);
if (serialize == 0) {
while ((m = pipe->head) != NULL) {
pkt = dn_tag_get(m);
- if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time))
+ if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time)) {
break;
+ }
pipe->head = m->m_nextpkt;
- if (*tail != NULL)
+ if (*tail != NULL) {
(*tail)->m_nextpkt = m;
- else
+ } else {
*head = m;
+ }
*tail = m;
}
- if (*tail != NULL)
+ if (*tail != NULL) {
(*tail)->m_nextpkt = NULL;
+ }
}
schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
- curr_time + 1 : pkt->dn_output_time;
+ curr_time + 1 : pkt->dn_output_time;
/* if there are leftover packets, put the pipe into the heap for next ready event */
if ((m = pipe->head) != NULL) {
* in place but adjusted by a factor of 10 so that hz is functionally
* equal to 1000.
*/
-#define SET_TICKS(_m, q, p) \
+#define SET_TICKS(_m, q, p) \
((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
p->bandwidth ;
*/
static void
move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
- struct dn_pipe *p, int len)
+ struct dn_pipe *p, int len)
{
- struct dn_pkt_tag *dt = dn_tag_get(pkt);
+ struct dn_pkt_tag *dt = dn_tag_get(pkt);
- q->head = pkt->m_nextpkt ;
- q->len-- ;
- q->len_bytes -= len ;
+ q->head = pkt->m_nextpkt;
+ q->len--;
+ q->len_bytes -= len;
- dt->dn_output_time = curr_time + p->delay ;
+ dt->dn_output_time = curr_time + p->delay;
- if (p->head == NULL)
- p->head = pkt;
- else
- p->tail->m_nextpkt = pkt;
- p->tail = pkt;
- p->tail->m_nextpkt = NULL;
+ if (p->head == NULL) {
+ p->head = pkt;
+ } else {
+ p->tail->m_nextpkt = pkt;
+ }
+ p->tail = pkt;
+ p->tail->m_nextpkt = NULL;
}
/*
static void
ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
{
- struct mbuf *pkt;
- struct dn_pipe *p = q->fs->pipe ;
- int p_was_empty ;
+ struct mbuf *pkt;
+ struct dn_pipe *p = q->fs->pipe;
+ int p_was_empty;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- if (p == NULL) {
+ if (p == NULL) {
printf("dummynet: ready_event pipe is gone\n");
- return ;
- }
- p_was_empty = (p->head == NULL) ;
-
- /*
- * schedule fixed-rate queues linked to this pipe:
- * Account for the bw accumulated since last scheduling, then
- * drain as many pkts as allowed by q->numbytes and move to
- * the delay line (in p) computing output time.
- * bandwidth==0 (no limit) means we can drain the whole queue,
- * setting len_scaled = 0 does the job.
- */
- q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
- while ( (pkt = q->head) != NULL ) {
- int len = pkt->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
- if (len_scaled > q->numbytes )
- break ;
- q->numbytes -= len_scaled ;
- move_pkt(pkt, q, p, len);
- }
- /*
- * If we have more packets queued, schedule next ready event
- * (can only occur when bandwidth != 0, otherwise we would have
- * flushed the whole queue in the previous loop).
- * To this purpose we record the current time and compute how many
- * ticks to go for the finish time of the packet.
- */
- if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
- dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
- q->sched_time = curr_time ;
- heap_insert(&ready_heap, curr_time + t, (void *)q );
- /* XXX should check errors on heap_insert, and drain the whole
- * queue on error hoping next time we are luckier.
+ return;
+ }
+ p_was_empty = (p->head == NULL);
+
+ /*
+ * schedule fixed-rate queues linked to this pipe:
+ * Account for the bw accumulated since last scheduling, then
+ * drain as many pkts as allowed by q->numbytes and move to
+ * the delay line (in p) computing output time.
+ * bandwidth==0 (no limit) means we can drain the whole queue,
+ * setting len_scaled = 0 does the job.
+ */
+ q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
+ while ((pkt = q->head) != NULL) {
+ int len = pkt->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0;
+ if (len_scaled > q->numbytes) {
+ break;
+ }
+ q->numbytes -= len_scaled;
+ move_pkt(pkt, q, p, len);
+ }
+ /*
+ * If we have more packets queued, schedule next ready event
+ * (can only occur when bandwidth != 0, otherwise we would have
+ * flushed the whole queue in the previous loop).
+ * To this purpose we record the current time and compute how many
+ * ticks to go for the finish time of the packet.
*/
- } else { /* RED needs to know when the queue becomes empty */
- q->q_time = curr_time;
- q->numbytes = 0;
- }
- /*
- * If the delay line was empty call transmit_event(p) now.
- * Otherwise, the scheduler will take care of it.
- */
- if (p_was_empty)
+ if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */
+ dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
+ q->sched_time = curr_time;
+ heap_insert(&ready_heap, curr_time + t, (void *)q );
+ /* XXX should check errors on heap_insert, and drain the whole
+ * queue on error hoping next time we are luckier.
+ */
+ } else { /* RED needs to know when the queue becomes empty */
+ q->q_time = curr_time;
+ q->numbytes = 0;
+ }
+ /*
+ * If the delay line was empty call transmit_event(p) now.
+ * Otherwise, the scheduler will take care of it.
+ */
+ if (p_was_empty) {
transmit_event(p, head, tail);
+ }
}
/*
static void
ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
{
- int p_was_empty = (p->head == NULL) ;
- struct dn_heap *sch = &(p->scheduler_heap);
- struct dn_heap *neh = &(p->not_eligible_heap) ;
+ int p_was_empty = (p->head == NULL);
+ struct dn_heap *sch = &(p->scheduler_heap);
+ struct dn_heap *neh = &(p->not_eligible_heap);
int64_t p_numbytes = p->numbytes;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- if (p->if_name[0] == 0) /* tx clock is simulated */
- p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
- else { /* tx clock is for real, the ifq must be empty or this is a NOP */
- if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd))
- return ;
- else {
- DPRINTF(("dummynet: pipe %d ready from %s --\n",
- p->pipe_nr, p->if_name));
- }
- }
-
- /*
- * While we have backlogged traffic AND credit, we need to do
- * something on the queue.
- */
- while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
- if (sch->elements > 0) { /* have some eligible pkts to send out */
- struct dn_flow_queue *q = sch->p[0].object ;
- struct mbuf *pkt = q->head;
- struct dn_flow_set *fs = q->fs;
- u_int64_t len = pkt->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
-
- heap_extract(sch, NULL); /* remove queue from heap */
- p_numbytes -= len_scaled ;
- move_pkt(pkt, q, p, len);
-
- p->V += (len<<MY_M) / p->sum ; /* update V */
- q->S = q->F ; /* update start time */
- if (q->len == 0) { /* Flow not backlogged any more */
- fs->backlogged-- ;
- heap_insert(&(p->idle_heap), q->F, q);
- } else { /* still backlogged */
- /*
- * update F and position in backlogged queue, then
- * put flow in not_eligible_heap (we will fix this later).
- */
- len = (q->head)->m_pkthdr.len;
- q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
- if (DN_KEY_LEQ(q->S, p->V))
- heap_insert(neh, q->S, q);
- else
- heap_insert(sch, q->F, q);
- }
+ if (p->if_name[0] == 0) { /* tx clock is simulated */
+ p_numbytes += (curr_time - p->sched_time) * p->bandwidth;
+ } else { /* tx clock is for real, the ifq must be empty or this is a NOP */
+ if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd)) {
+ return;
+ } else {
+ DPRINTF(("dummynet: pipe %d ready from %s --\n",
+ p->pipe_nr, p->if_name));
+ }
}
+
/*
- * now compute V = max(V, min(S_i)). Remember that all elements in sch
- * have by definition S_i <= V so if sch is not empty, V is surely
- * the max and we must not update it. Conversely, if sch is empty
- * we only need to look at neh.
+ * While we have backlogged traffic AND credit, we need to do
+ * something on the queue.
*/
- if (sch->elements == 0 && neh->elements > 0)
- p->V = MAX64 ( p->V, neh->p[0].key );
- /* move from neh to sch any packets that have become eligible */
- while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
- struct dn_flow_queue *q = neh->p[0].object ;
- heap_extract(neh, NULL);
- heap_insert(sch, q->F, q);
- }
+ while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
+ if (sch->elements > 0) { /* have some eligible pkts to send out */
+ struct dn_flow_queue *q = sch->p[0].object;
+ struct mbuf *pkt = q->head;
+ struct dn_flow_set *fs = q->fs;
+ u_int64_t len = pkt->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0;
+
+ heap_extract(sch, NULL); /* remove queue from heap */
+ p_numbytes -= len_scaled;
+ move_pkt(pkt, q, p, len);
+
+ p->V += (len << MY_M) / p->sum; /* update V */
+ q->S = q->F; /* update start time */
+ if (q->len == 0) { /* Flow not backlogged any more */
+ fs->backlogged--;
+ heap_insert(&(p->idle_heap), q->F, q);
+ } else { /* still backlogged */
+ /*
+ * update F and position in backlogged queue, then
+ * put flow in not_eligible_heap (we will fix this later).
+ */
+ len = (q->head)->m_pkthdr.len;
+ q->F += (len << MY_M) / (u_int64_t) fs->weight;
+ if (DN_KEY_LEQ(q->S, p->V)) {
+ heap_insert(neh, q->S, q);
+ } else {
+ heap_insert(sch, q->F, q);
+ }
+ }
+ }
+ /*
+ * now compute V = max(V, min(S_i)). Remember that all elements in sch
+ * have by definition S_i <= V so if sch is not empty, V is surely
+ * the max and we must not update it. Conversely, if sch is empty
+ * we only need to look at neh.
+ */
+ if (sch->elements == 0 && neh->elements > 0) {
+ p->V = MAX64( p->V, neh->p[0].key );
+ }
+ /* move from neh to sch any packets that have become eligible */
+ while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
+ struct dn_flow_queue *q = neh->p[0].object;
+ heap_extract(neh, NULL);
+ heap_insert(sch, q->F, q);
+ }
- if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
- p_numbytes = -1 ; /* mark not ready for I/O */
- break ;
+ if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
+ p_numbytes = -1; /* mark not ready for I/O */
+ break;
+ }
}
- }
- if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
+ if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
&& p->idle_heap.elements > 0) {
+ /*
+ * no traffic and no events scheduled. We can get rid of idle-heap.
+ */
+ int i;
+
+ for (i = 0; i < p->idle_heap.elements; i++) {
+ struct dn_flow_queue *q = p->idle_heap.p[i].object;
+
+ q->F = 0;
+ q->S = q->F + 1;
+ }
+ p->sum = 0;
+ p->V = 0;
+ p->idle_heap.elements = 0;
+ }
/*
- * no traffic and no events scheduled. We can get rid of idle-heap.
- */
- int i ;
-
- for (i = 0 ; i < p->idle_heap.elements ; i++) {
- struct dn_flow_queue *q = p->idle_heap.p[i].object ;
-
- q->F = 0 ;
- q->S = q->F + 1 ;
- }
- p->sum = 0 ;
- p->V = 0 ;
- p->idle_heap.elements = 0 ;
- }
- /*
- * If we are getting clocks from dummynet (not a real interface) and
- * If we are under credit, schedule the next ready event.
- * Also fix the delivery time of the last packet.
- */
- if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
- dn_key t=0 ; /* number of ticks i have to wait */
-
- if (p->bandwidth > 0)
- t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
- dn_tag_get(p->tail)->dn_output_time += t ;
- p->sched_time = curr_time ;
- heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
- /* XXX should check errors on heap_insert, and drain the whole
- * queue on error hoping next time we are luckier.
+ * If we are getting clocks from dummynet (not a real interface) and
+ * If we are under credit, schedule the next ready event.
+ * Also fix the delivery time of the last packet.
*/
- }
+ if (p->if_name[0] == 0 && p_numbytes < 0) { /* this implies bandwidth >0 */
+ dn_key t = 0; /* number of ticks i have to wait */
+
+ if (p->bandwidth > 0) {
+ t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth;
+ }
+ dn_tag_get(p->tail)->dn_output_time += t;
+ p->sched_time = curr_time;
+ heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
+ /* XXX should check errors on heap_insert, and drain the whole
+ * queue on error hoping next time we are luckier.
+ */
+ }
/* Fit (adjust if necessary) 64bit result into 32bit variable. */
- if (p_numbytes > INT_MAX)
+ if (p_numbytes > INT_MAX) {
p->numbytes = INT_MAX;
- else if (p_numbytes < INT_MIN)
+ } else if (p_numbytes < INT_MIN) {
p->numbytes = INT_MIN;
- else
+ } else {
p->numbytes = p_numbytes;
+ }
- /*
- * If the delay line was empty call transmit_event(p) now.
- * Otherwise, the scheduler will take care of it.
- */
- if (p_was_empty)
+ /*
+ * If the delay line was empty call transmit_event(p) now.
+ * Otherwise, the scheduler will take care of it.
+ */
+ if (p_was_empty) {
transmit_event(p, head, tail);
-
+ }
}
/*
static void
dummynet(__unused void * unused)
{
- void *p ; /* generic parameter to handler */
- struct dn_heap *h ;
- struct dn_heap *heaps[3];
- struct mbuf *head = NULL, *tail = NULL;
- int i;
- struct dn_pipe *pe ;
- struct timespec ts;
- struct timeval tv;
-
- heaps[0] = &ready_heap ; /* fixed-rate queues */
- heaps[1] = &wfq_ready_heap ; /* wfq queues */
- heaps[2] = &extract_heap ; /* delay line */
+ void *p; /* generic parameter to handler */
+ struct dn_heap *h;
+ struct dn_heap *heaps[3];
+ struct mbuf *head = NULL, *tail = NULL;
+ int i;
+ struct dn_pipe *pe;
+ struct timespec ts;
+ struct timeval tv;
+
+ heaps[0] = &ready_heap; /* fixed-rate queues */
+ heaps[1] = &wfq_ready_heap; /* wfq queues */
+ heaps[2] = &extract_heap; /* delay line */
lck_mtx_lock(dn_mutex);
- /* make all time measurements in milliseconds (ms) -
- * here we convert secs and usecs to msecs (just divide the
+ /* make all time measurements in milliseconds (ms) -
+ * here we convert secs and usecs to msecs (just divide the
* usecs and take the closest whole number).
- */
- microuptime(&tv);
- curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
-
- for (i=0; i < 3 ; i++) {
- h = heaps[i];
- while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
- if (h->p[0].key > curr_time)
- printf("dummynet: warning, heap %d is %d ticks late\n",
- i, (int)(curr_time - h->p[0].key));
- p = h->p[0].object ; /* store a copy before heap_extract */
- heap_extract(h, NULL); /* need to extract before processing */
- if (i == 0)
- ready_event(p, &head, &tail) ;
- else if (i == 1) {
- struct dn_pipe *pipe = p;
- if (pipe->if_name[0] != '\0')
- printf("dummynet: bad ready_event_wfq for pipe %s\n",
- pipe->if_name);
- else
- ready_event_wfq(p, &head, &tail) ;
- } else {
- transmit_event(p, &head, &tail);
+ */
+ microuptime(&tv);
+ curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
+
+ for (i = 0; i < 3; i++) {
+ h = heaps[i];
+ while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
+ if (h->p[0].key > curr_time) {
+ printf("dummynet: warning, heap %d is %d ticks late\n",
+ i, (int)(curr_time - h->p[0].key));
+ }
+ p = h->p[0].object; /* store a copy before heap_extract */
+ heap_extract(h, NULL); /* need to extract before processing */
+ if (i == 0) {
+ ready_event(p, &head, &tail);
+ } else if (i == 1) {
+ struct dn_pipe *pipe = p;
+ if (pipe->if_name[0] != '\0') {
+ printf("dummynet: bad ready_event_wfq for pipe %s\n",
+ pipe->if_name);
+ } else {
+ ready_event_wfq(p, &head, &tail);
+ }
+ } else {
+ transmit_event(p, &head, &tail);
+ }
}
}
- }
- /* sweep pipes trying to expire idle flow_queues */
- for (i = 0; i < HASHSIZE; i++)
- SLIST_FOREACH(pe, &pipehash[i], next)
- if (pe->idle_heap.elements > 0 &&
- DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
- struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
-
- heap_extract(&(pe->idle_heap), NULL);
- q->S = q->F + 1 ; /* mark timestamp as invalid */
- pe->sum -= q->fs->weight ;
+ /* sweep pipes trying to expire idle flow_queues */
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(pe, &pipehash[i], next) {
+ if (pe->idle_heap.elements > 0 &&
+ DN_KEY_LT(pe->idle_heap.p[0].key, pe->V)) {
+ struct dn_flow_queue *q = pe->idle_heap.p[0].object;
+
+ heap_extract(&(pe->idle_heap), NULL);
+ q->S = q->F + 1; /* mark timestamp as invalid */
+ pe->sum -= q->fs->weight;
+ }
+ }
}
/* check the heaps to see if there's still stuff in there, and
* only set the timer if there are packets to process
*/
timer_enabled = 0;
- for (i=0; i < 3 ; i++) {
+ for (i = 0; i < 3; i++) {
h = heaps[i];
if (h->elements > 0) { // set the timer
ts.tv_sec = 0;
- ts.tv_nsec = 1 * 1000000; // 1ms
+ ts.tv_nsec = 1 * 1000000; // 1ms
timer_enabled = 1;
bsd_timeout(dummynet, NULL, &ts);
break;
}
}
- if (head != NULL)
+ if (head != NULL) {
serialize++;
+ }
lck_mtx_unlock(dn_mutex);
(uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir,
pkt->dn_flags));
- switch (pkt->dn_dir) {
+ switch (pkt->dn_dir) {
case DN_TO_IP_OUT: {
struct route tmp_rt;
/* route is already in the packet's dn_ro */
- bzero(&tmp_rt, sizeof (tmp_rt));
+ bzero(&tmp_rt, sizeof(tmp_rt));
/* Force IP_RAWOUTPUT as the IP header is fully formed */
pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
(void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
ROUTE_RELEASE(&tmp_rt);
- break ;
+ break;
}
- case DN_TO_IP_IN :
+ case DN_TO_IP_IN:
proto_inject(PF_INET, m);
- break ;
-#ifdef INET6
+ break;
case DN_TO_IP6_OUT: {
/* routes already in the packet's dn_{ro6,pmtu} */
ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
case DN_TO_IP6_IN:
proto_inject(PF_INET6, m);
break;
-#endif /* INET6 */
default:
printf("dummynet: bad switch %d!\n", pkt->dn_dir);
m_freem(m);
- break ;
- }
+ break;
+ }
}
}
static int
expire_queues(struct dn_flow_set *fs)
{
- struct dn_flow_queue *q, *prev ;
- int i, initial_elements = fs->rq_elements ;
+ struct dn_flow_queue *q, *prev;
+ int i, initial_elements = fs->rq_elements;
struct timeval timenow;
/* reviewed for getmicrotime usage */
getmicrotime(&timenow);
- if (fs->last_expired == timenow.tv_sec)
- return 0 ;
- fs->last_expired = timenow.tv_sec ;
- for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
- for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
- if (q->head != NULL || q->S != q->F+1) {
- prev = q ;
- q = q->next ;
- } else { /* entry is idle, expire it */
- struct dn_flow_queue *old_q = q ;
-
- if (prev != NULL)
- prev->next = q = q->next ;
- else
- fs->rq[i] = q = q->next ;
- fs->rq_elements-- ;
- FREE(old_q, M_DUMMYNET);
- }
- return initial_elements - fs->rq_elements ;
+ if (fs->last_expired == timenow.tv_sec) {
+ return 0;
+ }
+ fs->last_expired = timenow.tv_sec;
+ for (i = 0; i <= fs->rq_size; i++) { /* last one is overflow */
+ for (prev = NULL, q = fs->rq[i]; q != NULL;) {
+ if (q->head != NULL || q->S != q->F + 1) {
+ prev = q;
+ q = q->next;
+ } else { /* entry is idle, expire it */
+ struct dn_flow_queue *old_q = q;
+
+ if (prev != NULL) {
+ prev->next = q = q->next;
+ } else {
+ fs->rq[i] = q = q->next;
+ }
+ fs->rq_elements--;
+ FREE(old_q, M_DUMMYNET);
+ }
+ }
+ }
+ return initial_elements - fs->rq_elements;
}
/*
static struct dn_flow_queue *
create_queue(struct dn_flow_set *fs, int i)
{
- struct dn_flow_queue *q ;
+ struct dn_flow_queue *q;
- if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
+ if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
expire_queues(fs) == 0) {
- /*
- * No way to get room, use or create overflow queue.
- */
- i = fs->rq_size ;
- if ( fs->rq[i] != NULL )
- return fs->rq[i] ;
- }
- q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
- if (q == NULL) {
- printf("dummynet: sorry, cannot allocate queue for new flow\n");
- return NULL ;
- }
- q->fs = fs ;
- q->hash_slot = i ;
- q->next = fs->rq[i] ;
- q->S = q->F + 1; /* hack - mark timestamp as invalid */
- fs->rq[i] = q ;
- fs->rq_elements++ ;
- return q ;
+ /*
+ * No way to get room, use or create overflow queue.
+ */
+ i = fs->rq_size;
+ if (fs->rq[i] != NULL) {
+ return fs->rq[i];
+ }
+ }
+ q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
+ if (q == NULL) {
+ printf("dummynet: sorry, cannot allocate queue for new flow\n");
+ return NULL;
+ }
+ q->fs = fs;
+ q->hash_slot = i;
+ q->next = fs->rq[i];
+ q->S = q->F + 1; /* hack - mark timestamp as invalid */
+ fs->rq[i] = q;
+ fs->rq_elements++;
+ return q;
}
/*
static struct dn_flow_queue *
find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
{
- int i = 0 ; /* we need i and q for new allocations */
- struct dn_flow_queue *q, *prev;
- int is_v6 = IS_IP6_FLOW_ID(id);
-
- if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
- q = fs->rq[0] ;
- else {
- /* first, do the masking, then hash */
- id->dst_port &= fs->flow_mask.dst_port ;
- id->src_port &= fs->flow_mask.src_port ;
- id->proto &= fs->flow_mask.proto ;
- id->flags = 0 ; /* we don't care about this one */
- if (is_v6) {
- APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
- APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
- id->flow_id6 &= fs->flow_mask.flow_id6;
-
- i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
- ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
- ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
- ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
-
- ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
- ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
- ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
- ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
-
- ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
- ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
- ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
- ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
-
- ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff)^
- ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff)^
- ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff)^
- ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff)^
-
- (id->dst_port << 1) ^ (id->src_port) ^
- (id->proto ) ^
- (id->flow_id6);
- } else {
- id->dst_ip &= fs->flow_mask.dst_ip ;
- id->src_ip &= fs->flow_mask.src_ip ;
-
- i = ( (id->dst_ip) & 0xffff ) ^
- ( (id->dst_ip >> 15) & 0xffff ) ^
- ( (id->src_ip << 1) & 0xffff ) ^
- ( (id->src_ip >> 16 ) & 0xffff ) ^
- (id->dst_port << 1) ^ (id->src_port) ^
- (id->proto );
- }
- i = i % fs->rq_size ;
- /* finally, scan the current list for a match */
- searches++ ;
- for (prev=NULL, q = fs->rq[i] ; q ; ) {
- search_steps++;
- if (is_v6 &&
- IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
- IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
- id->dst_port == q->id.dst_port &&
- id->src_port == q->id.src_port &&
- id->proto == q->id.proto &&
- id->flags == q->id.flags &&
- id->flow_id6 == q->id.flow_id6)
- break ; /* found */
-
- if (!is_v6 && id->dst_ip == q->id.dst_ip &&
- id->src_ip == q->id.src_ip &&
- id->dst_port == q->id.dst_port &&
- id->src_port == q->id.src_port &&
- id->proto == q->id.proto &&
- id->flags == q->id.flags)
- break ; /* found */
-
- /* No match. Check if we can expire the entry */
- if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
- /* entry is idle and not in any heap, expire it */
- struct dn_flow_queue *old_q = q ;
-
- if (prev != NULL)
- prev->next = q = q->next ;
- else
- fs->rq[i] = q = q->next ;
- fs->rq_elements-- ;
- FREE(old_q, M_DUMMYNET);
- continue ;
- }
- prev = q ;
- q = q->next ;
- }
- if (q && prev != NULL) { /* found and not in front */
- prev->next = q->next ;
- q->next = fs->rq[i] ;
- fs->rq[i] = q ;
- }
- }
- if (q == NULL) { /* no match, need to allocate a new entry */
- q = create_queue(fs, i);
- if (q != NULL)
- q->id = *id ;
- }
- return q ;
+ int i = 0; /* we need i and q for new allocations */
+ struct dn_flow_queue *q, *prev;
+ int is_v6 = IS_IP6_FLOW_ID(id);
+
+ if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) {
+ q = fs->rq[0];
+ } else {
+ /* first, do the masking, then hash */
+ id->dst_port &= fs->flow_mask.dst_port;
+ id->src_port &= fs->flow_mask.src_port;
+ id->proto &= fs->flow_mask.proto;
+ id->flags = 0; /* we don't care about this one */
+ if (is_v6) {
+ APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
+ APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
+ id->flow_id6 &= fs->flow_mask.flow_id6;
+
+ i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff) ^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff) ^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff) ^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff) ^
+
+ ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff) ^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff) ^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff) ^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff) ^
+
+ ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff) ^
+ ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff) ^
+ ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff) ^
+ ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff) ^
+
+ ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff) ^
+ ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff) ^
+ ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff) ^
+ ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff) ^
+
+ (id->dst_port << 1) ^ (id->src_port) ^
+ (id->proto) ^
+ (id->flow_id6);
+ } else {
+ id->dst_ip &= fs->flow_mask.dst_ip;
+ id->src_ip &= fs->flow_mask.src_ip;
+
+ i = ((id->dst_ip) & 0xffff) ^
+ ((id->dst_ip >> 15) & 0xffff) ^
+ ((id->src_ip << 1) & 0xffff) ^
+ ((id->src_ip >> 16) & 0xffff) ^
+ (id->dst_port << 1) ^ (id->src_port) ^
+ (id->proto);
+ }
+ i = i % fs->rq_size;
+ /* finally, scan the current list for a match */
+ searches++;
+ for (prev = NULL, q = fs->rq[i]; q;) {
+ search_steps++;
+ if (is_v6 &&
+ IN6_ARE_ADDR_EQUAL(&id->dst_ip6, &q->id.dst_ip6) &&
+ IN6_ARE_ADDR_EQUAL(&id->src_ip6, &q->id.src_ip6) &&
+ id->dst_port == q->id.dst_port &&
+ id->src_port == q->id.src_port &&
+ id->proto == q->id.proto &&
+ id->flags == q->id.flags &&
+ id->flow_id6 == q->id.flow_id6) {
+ break; /* found */
+ }
+ if (!is_v6 && id->dst_ip == q->id.dst_ip &&
+ id->src_ip == q->id.src_ip &&
+ id->dst_port == q->id.dst_port &&
+ id->src_port == q->id.src_port &&
+ id->proto == q->id.proto &&
+ id->flags == q->id.flags) {
+ break; /* found */
+ }
+ /* No match. Check if we can expire the entry */
+ if (pipe_expire && q->head == NULL && q->S == q->F + 1) {
+ /* entry is idle and not in any heap, expire it */
+ struct dn_flow_queue *old_q = q;
+
+ if (prev != NULL) {
+ prev->next = q = q->next;
+ } else {
+ fs->rq[i] = q = q->next;
+ }
+ fs->rq_elements--;
+ FREE(old_q, M_DUMMYNET);
+ continue;
+ }
+ prev = q;
+ q = q->next;
+ }
+ if (q && prev != NULL) { /* found and not in front */
+ prev->next = q->next;
+ q->next = fs->rq[i];
+ fs->rq[i] = q;
+ }
+ }
+ if (q == NULL) { /* no match, need to allocate a new entry */
+ q = create_queue(fs, i);
+ if (q != NULL) {
+ q->id = *id;
+ }
+ }
+ return q;
}
static int
red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
{
- /*
- * RED algorithm
- *
- * RED calculates the average queue size (avg) using a low-pass filter
- * with an exponential weighted (w_q) moving average:
- * avg <- (1-w_q) * avg + w_q * q_size
- * where q_size is the queue length (measured in bytes or * packets).
- *
- * If q_size == 0, we compute the idle time for the link, and set
- * avg = (1 - w_q)^(idle/s)
- * where s is the time needed for transmitting a medium-sized packet.
- *
- * Now, if avg < min_th the packet is enqueued.
- * If avg > max_th the packet is dropped. Otherwise, the packet is
- * dropped with probability P function of avg.
- *
- */
-
- int64_t p_b = 0;
- /* queue in bytes or packets ? */
- u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
-
- DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
-
- /* average queue size estimation */
- if (q_size != 0) {
/*
- * queue is not empty, avg <- avg + (q_size - avg) * w_q
+ * RED algorithm
+ *
+ * RED calculates the average queue size (avg) using a low-pass filter
+ * with an exponential weighted (w_q) moving average:
+ * avg <- (1-w_q) * avg + w_q * q_size
+ * where q_size is the queue length (measured in bytes or * packets).
+ *
+ * If q_size == 0, we compute the idle time for the link, and set
+ * avg = (1 - w_q)^(idle/s)
+ * where s is the time needed for transmitting a medium-sized packet.
+ *
+ * Now, if avg < min_th the packet is enqueued.
+ * If avg > max_th the packet is dropped. Otherwise, the packet is
+ * dropped with probability P function of avg.
+ *
*/
- int diff = SCALE(q_size) - q->avg;
- int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
- q->avg += (int) v;
- } else {
- /*
- * queue is empty, find for how long the queue has been
- * empty and use a lookup table for computing
- * (1 - * w_q)^(idle_time/s) where s is the time to send a
- * (small) packet.
- * XXX check wraps...
- */
- if (q->avg) {
- u_int t = (curr_time - q->q_time) / fs->lookup_step;
-
- q->avg = (t < fs->lookup_depth) ?
- SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
- }
- }
- DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
-
- /* should i drop ? */
-
- if (q->avg < fs->min_th) {
- q->count = -1;
- return 0; /* accept packet ; */
- }
- if (q->avg >= fs->max_th) { /* average queue >= max threshold */
- if (fs->flags_fs & DN_IS_GENTLE_RED) {
- /*
- * According to Gentle-RED, if avg is greater than max_th the
- * packet is dropped with a probability
- * p_b = c_3 * avg - c_4
- * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
- */
- p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
+ int64_t p_b = 0;
+ /* queue in bytes or packets ? */
+ u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
+
+ DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
+
+ /* average queue size estimation */
+ if (q_size != 0) {
+ /*
+ * queue is not empty, avg <- avg + (q_size - avg) * w_q
+ */
+ int diff = SCALE(q_size) - q->avg;
+ int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
+
+ q->avg += (int) v;
} else {
- q->count = -1;
- DPRINTF(("dummynet: - drop"));
- return 1 ;
+ /*
+ * queue is empty, find for how long the queue has been
+ * empty and use a lookup table for computing
+ * (1 - * w_q)^(idle_time/s) where s is the time to send a
+ * (small) packet.
+ * XXX check wraps...
+ */
+ if (q->avg) {
+ u_int t = (curr_time - q->q_time) / fs->lookup_step;
+
+ q->avg = (t < fs->lookup_depth) ?
+ SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
+ }
}
- } else if (q->avg > fs->min_th) {
- /*
- * we compute p_b using the linear dropping function p_b = c_1 *
- * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
- * max_p * min_th / (max_th - min_th)
- */
- p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
- }
- if (fs->flags_fs & DN_QSIZE_IS_BYTES)
- p_b = (p_b * len) / fs->max_pkt_size;
- if (++q->count == 0)
- q->random = (my_random() & 0xffff);
- else {
- /*
- * q->count counts packets arrived since last drop, so a greater
- * value of q->count means a greater packet drop probability.
- */
- if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
- q->count = 0;
- DPRINTF(("dummynet: - red drop"));
- /* after a drop we calculate a new random value */
- q->random = (my_random() & 0xffff);
- return 1; /* drop */
- }
- }
- /* end of RED algorithm */
- return 0 ; /* accept */
+ DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
+
+ /* should i drop ? */
+
+ if (q->avg < fs->min_th) {
+ q->count = -1;
+ return 0; /* accept packet ; */
+ }
+ if (q->avg >= fs->max_th) { /* average queue >= max threshold */
+ if (fs->flags_fs & DN_IS_GENTLE_RED) {
+ /*
+ * According to Gentle-RED, if avg is greater than max_th the
+ * packet is dropped with a probability
+ * p_b = c_3 * avg - c_4
+ * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
+ */
+ p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
+ } else {
+ q->count = -1;
+ DPRINTF(("dummynet: - drop"));
+ return 1;
+ }
+ } else if (q->avg > fs->min_th) {
+ /*
+ * we compute p_b using the linear dropping function p_b = c_1 *
+ * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
+ * max_p * min_th / (max_th - min_th)
+ */
+ p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
+ }
+ if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
+ p_b = (p_b * len) / fs->max_pkt_size;
+ }
+ if (++q->count == 0) {
+ q->random = (my_random() & 0xffff);
+ } else {
+ /*
+ * q->count counts packets arrived since last drop, so a greater
+ * value of q->count means a greater packet drop probability.
+ */
+ if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
+ q->count = 0;
+ DPRINTF(("dummynet: - red drop"));
+ /* after a drop we calculate a new random value */
+ q->random = (my_random() & 0xffff);
+ return 1; /* drop */
+ }
+ }
+ /* end of RED algorithm */
+ return 0; /* accept */
}
static __inline
struct dn_flow_set *
locate_flowset(int fs_nr)
{
- struct dn_flow_set *fs;
- SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
- if (fs->fs_nr == fs_nr)
- return fs ;
+ struct dn_flow_set *fs;
+ SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) {
+ if (fs->fs_nr == fs_nr) {
+ return fs;
+ }
+ }
- return (NULL);
+ return NULL;
}
static __inline struct dn_pipe *
{
struct dn_pipe *pipe;
- SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
- if (pipe->pipe_nr == pipe_nr)
- return (pipe);
+ SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) {
+ if (pipe->pipe_nr == pipe_nr) {
+ return pipe;
+ }
+ }
- return (NULL);
+ return NULL;
}
*
*/
static int
-dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa, int client)
+dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
{
- struct mbuf *head = NULL, *tail = NULL;
- struct dn_pkt_tag *pkt;
- struct m_tag *mtag;
- struct dn_flow_set *fs = NULL;
- struct dn_pipe *pipe ;
- u_int64_t len = m->m_pkthdr.len ;
- struct dn_flow_queue *q = NULL ;
- int is_pipe = 0;
- struct timespec ts;
- struct timeval tv;
-
- DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d client: %d\n",
- (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir, client));
-
-#if IPFIREWALL
-#if IPFW2
- if (client == DN_CLIENT_IPFW) {
- ipfw_insn *cmd = fwa->fwa_ipfw_rule->cmd + fwa->fwa_ipfw_rule->act_ofs;
-
- if (cmd->opcode == O_LOG)
- cmd += F_LEN(cmd);
- is_pipe = (cmd->opcode == O_PIPE);
- }
-#else
- if (client == DN_CLIENT_IPFW)
- is_pipe = (fwa->fwa_ipfw_rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
-#endif
-#endif /* IPFIREWALL */
+ struct mbuf *head = NULL, *tail = NULL;
+ struct dn_pkt_tag *pkt;
+ struct m_tag *mtag;
+ struct dn_flow_set *fs = NULL;
+ struct dn_pipe *pipe;
+ u_int64_t len = m->m_pkthdr.len;
+ struct dn_flow_queue *q = NULL;
+ int is_pipe = 0;
+ struct timespec ts;
+ struct timeval tv;
+
+ DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d\n",
+ (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir));
+
#if DUMMYNET
- if (client == DN_CLIENT_PF)
- is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
+ is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
#endif /* DUMMYNET */
- pipe_nr &= 0xffff ;
+ pipe_nr &= 0xffff;
- lck_mtx_lock(dn_mutex);
+ lck_mtx_lock(dn_mutex);
/* make all time measurements in milliseconds (ms) -
- * here we convert secs and usecs to msecs (just divide the
- * usecs and take the closest whole number).
+ * here we convert secs and usecs to msecs (just divide the
+ * usecs and take the closest whole number).
*/
- microuptime(&tv);
+ microuptime(&tv);
curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
- /*
- * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
- */
- if (is_pipe) {
+ /*
+ * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
+ */
+ if (is_pipe) {
pipe = locate_pipe(pipe_nr);
- if (pipe != NULL)
+ if (pipe != NULL) {
fs = &(pipe->fs);
- } else
+ }
+ } else {
fs = locate_flowset(pipe_nr);
+ }
+
+
+ if (fs == NULL) {
+ goto dropit; /* this queue/pipe does not exist! */
+ }
+ pipe = fs->pipe;
+ if (pipe == NULL) { /* must be a queue, try find a matching pipe */
+ pipe = locate_pipe(fs->parent_nr);
+
+ if (pipe != NULL) {
+ fs->pipe = pipe;
+ } else {
+ printf("dummynet: no pipe %d for queue %d, drop pkt\n",
+ fs->parent_nr, fs->fs_nr);
+ goto dropit;
+ }
+ }
+ q = find_queue(fs, &(fwa->fwa_id));
+ if (q == NULL) {
+ goto dropit; /* cannot allocate queue */
+ }
+ /*
+ * update statistics, then check reasons to drop pkt
+ */
+ q->tot_bytes += len;
+ q->tot_pkts++;
+ if (fs->plr && (my_random() < fs->plr)) {
+ goto dropit; /* random pkt drop */
+ }
+ if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
+ if (q->len_bytes > fs->qsize) {
+ goto dropit; /* queue size overflow */
+ }
+ } else {
+ if (q->len >= fs->qsize) {
+ goto dropit; /* queue count overflow */
+ }
+ }
+ if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) {
+ goto dropit;
+ }
+
+ /* XXX expensive to zero, see if we can remove it*/
+ mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
+ sizeof(struct dn_pkt_tag), M_NOWAIT, m);
+ if (mtag == NULL) {
+ goto dropit; /* cannot allocate packet header */
+ }
+ m_tag_prepend(m, mtag); /* attach to mbuf chain */
+ pkt = (struct dn_pkt_tag *)(mtag + 1);
+ bzero(pkt, sizeof(struct dn_pkt_tag));
+ /* ok, i can handle the pkt now... */
+ /* build and enqueue packet + parameters */
+ pkt->dn_pf_rule = fwa->fwa_pf_rule;
+ pkt->dn_dir = dir;
- if (fs == NULL){
- goto dropit ; /* this queue/pipe does not exist! */
- }
- pipe = fs->pipe ;
- if (pipe == NULL) { /* must be a queue, try find a matching pipe */
- pipe = locate_pipe(fs->parent_nr);
-
- if (pipe != NULL)
- fs->pipe = pipe ;
- else {
- printf("dummynet: no pipe %d for queue %d, drop pkt\n",
- fs->parent_nr, fs->fs_nr);
- goto dropit ;
- }
- }
- q = find_queue(fs, &(fwa->fwa_id));
- if ( q == NULL )
- goto dropit ; /* cannot allocate queue */
- /*
- * update statistics, then check reasons to drop pkt
- */
- q->tot_bytes += len ;
- q->tot_pkts++ ;
- if ( fs->plr && (my_random() < fs->plr))
- goto dropit ; /* random pkt drop */
- if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
- if (q->len_bytes > fs->qsize)
- goto dropit ; /* queue size overflow */
- } else {
- if (q->len >= fs->qsize)
- goto dropit ; /* queue count overflow */
- }
- if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
- goto dropit ;
-
- /* XXX expensive to zero, see if we can remove it*/
- mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
- sizeof(struct dn_pkt_tag), M_NOWAIT, m);
- if ( mtag == NULL )
- goto dropit ; /* cannot allocate packet header */
- m_tag_prepend(m, mtag); /* attach to mbuf chain */
-
- pkt = (struct dn_pkt_tag *)(mtag+1);
- bzero(pkt, sizeof(struct dn_pkt_tag));
- /* ok, i can handle the pkt now... */
- /* build and enqueue packet + parameters */
- /*
- * PF is checked before ipfw so remember ipfw rule only when
- * the caller is ipfw. When the caller is PF, fwa_ipfw_rule
- * is a fake rule just used for convenience
- */
- if (client == DN_CLIENT_IPFW)
- pkt->dn_ipfw_rule = fwa->fwa_ipfw_rule;
- pkt->dn_pf_rule = fwa->fwa_pf_rule;
- pkt->dn_dir = dir ;
- pkt->dn_client = client;
-
- pkt->dn_ifp = fwa->fwa_oif;
- if (dir == DN_TO_IP_OUT) {
+ pkt->dn_ifp = fwa->fwa_oif;
+ if (dir == DN_TO_IP_OUT) {
/*
* We need to copy *ro because for ICMP pkts (and maybe others)
* the caller passed a pointer into the stack; dst might also be
* a pointer into *ro so it needs to be updated.
*/
if (fwa->fwa_ro) {
- route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof (pkt->dn_ro));
+ route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof(pkt->dn_ro));
}
if (fwa->fwa_dst) {
- if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) /* dst points into ro */
- fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst) ;
+ if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) { /* dst points into ro */
+ fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst);
+ }
- bcopy (fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
+ bcopy(fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
}
- } else if (dir == DN_TO_IP6_OUT) {
+ } else if (dir == DN_TO_IP6_OUT) {
if (fwa->fwa_ro6) {
route_copyout((struct route *)&pkt->dn_ro6,
- (struct route *)fwa->fwa_ro6, sizeof (pkt->dn_ro6));
+ (struct route *)fwa->fwa_ro6, sizeof(pkt->dn_ro6));
}
if (fwa->fwa_ro6_pmtu) {
route_copyout((struct route *)&pkt->dn_ro6_pmtu,
- (struct route *)fwa->fwa_ro6_pmtu, sizeof (pkt->dn_ro6_pmtu));
+ (struct route *)fwa->fwa_ro6_pmtu, sizeof(pkt->dn_ro6_pmtu));
}
if (fwa->fwa_dst6) {
- if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) /* dst points into ro */
- fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst) ;
+ if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) { /* dst points into ro */
+ fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst);
+ }
- bcopy (fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
+ bcopy(fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
}
pkt->dn_origifp = fwa->fwa_origifp;
pkt->dn_mtu = fwa->fwa_mtu;
- pkt->dn_alwaysfrag = fwa->fwa_alwaysfrag;
pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
if (fwa->fwa_exthdrs) {
- bcopy (fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
+ bcopy(fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
/*
* Need to zero out the source structure so the mbufs
* won't be freed by ip6_output()
*/
bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
}
- }
- if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
+ }
+ if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
pkt->dn_flags = fwa->fwa_oflags;
- if (fwa->fwa_ipoa != NULL)
+ if (fwa->fwa_ipoa != NULL) {
pkt->dn_ipoa = *(fwa->fwa_ipoa);
- }
- if (q->head == NULL)
- q->head = m;
- else
- q->tail->m_nextpkt = m;
- q->tail = m;
- q->len++;
- q->len_bytes += len ;
-
- if ( q->head != m ) /* flow was not idle, we are done */
- goto done;
- /*
- * If we reach this point the flow was previously idle, so we need
- * to schedule it. This involves different actions for fixed-rate or
- * WF2Q queues.
- */
- if (is_pipe) {
- /*
- * Fixed-rate queue: just insert into the ready_heap.
- */
- dn_key t = 0 ;
- if (pipe->bandwidth)
- t = SET_TICKS(m, q, pipe);
- q->sched_time = curr_time ;
- if (t == 0) /* must process it now */
- ready_event( q , &head, &tail );
- else
- heap_insert(&ready_heap, curr_time + t , q );
- } else {
- /*
- * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
- * set S to the virtual time V for the controlling pipe, and update
- * the sum of weights for the pipe; otherwise, remove flow from
- * idle_heap and set S to max(F,V).
- * Second, compute finish time F = S + len/weight.
- * Third, if pipe was idle, update V=max(S, V).
- * Fourth, count one more backlogged flow.
- */
- if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
- q->S = pipe->V ;
- pipe->sum += fs->weight ; /* add weight of new queue */
+ }
+ }
+ if (q->head == NULL) {
+ q->head = m;
} else {
- heap_extract(&(pipe->idle_heap), q);
- q->S = MAX64(q->F, pipe->V ) ;
+ q->tail->m_nextpkt = m;
}
- q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
+ q->tail = m;
+ q->len++;
+ q->len_bytes += len;
- if (pipe->not_eligible_heap.elements == 0 &&
- pipe->scheduler_heap.elements == 0)
- pipe->V = MAX64 ( q->S, pipe->V );
- fs->backlogged++ ;
+ if (q->head != m) { /* flow was not idle, we are done */
+ goto done;
+ }
/*
- * Look at eligibility. A flow is not eligibile if S>V (when
- * this happens, it means that there is some other flow already
- * scheduled for the same pipe, so the scheduler_heap cannot be
- * empty). If the flow is not eligible we just store it in the
- * not_eligible_heap. Otherwise, we store in the scheduler_heap
- * and possibly invoke ready_event_wfq() right now if there is
- * leftover credit.
- * Note that for all flows in scheduler_heap (SCH), S_i <= V,
- * and for all flows in not_eligible_heap (NEH), S_i > V .
- * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
- * we only need to look into NEH.
+ * If we reach this point the flow was previously idle, so we need
+ * to schedule it. This involves different actions for fixed-rate or
+ * WF2Q queues.
*/
- if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
- if (pipe->scheduler_heap.elements == 0)
- printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
- heap_insert(&(pipe->not_eligible_heap), q->S, q);
+ if (is_pipe) {
+ /*
+ * Fixed-rate queue: just insert into the ready_heap.
+ */
+ dn_key t = 0;
+ if (pipe->bandwidth) {
+ t = SET_TICKS(m, q, pipe);
+ }
+ q->sched_time = curr_time;
+ if (t == 0) { /* must process it now */
+ ready_event( q, &head, &tail );
+ } else {
+ heap_insert(&ready_heap, curr_time + t, q );
+ }
} else {
- heap_insert(&(pipe->scheduler_heap), q->F, q);
- if (pipe->numbytes >= 0) { /* pipe is idle */
- if (pipe->scheduler_heap.elements != 1)
- printf("dummynet: OUCH! pipe should have been idle!\n");
- DPRINTF(("dummynet: waking up pipe %d at %d\n",
- pipe->pipe_nr, (int)(q->F >> MY_M)));
- pipe->sched_time = curr_time ;
- ready_event_wfq(pipe, &head, &tail);
- }
- }
- }
+ /*
+ * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
+ * set S to the virtual time V for the controlling pipe, and update
+ * the sum of weights for the pipe; otherwise, remove flow from
+ * idle_heap and set S to max(F,V).
+ * Second, compute finish time F = S + len/weight.
+ * Third, if pipe was idle, update V=max(S, V).
+ * Fourth, count one more backlogged flow.
+ */
+ if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
+ q->S = pipe->V;
+ pipe->sum += fs->weight; /* add weight of new queue */
+ } else {
+ heap_extract(&(pipe->idle_heap), q);
+ q->S = MAX64(q->F, pipe->V );
+ }
+ q->F = q->S + (len << MY_M) / (u_int64_t) fs->weight;
+
+ if (pipe->not_eligible_heap.elements == 0 &&
+ pipe->scheduler_heap.elements == 0) {
+ pipe->V = MAX64( q->S, pipe->V );
+ }
+ fs->backlogged++;
+ /*
+ * Look at eligibility. A flow is not eligibile if S>V (when
+ * this happens, it means that there is some other flow already
+ * scheduled for the same pipe, so the scheduler_heap cannot be
+ * empty). If the flow is not eligible we just store it in the
+ * not_eligible_heap. Otherwise, we store in the scheduler_heap
+ * and possibly invoke ready_event_wfq() right now if there is
+ * leftover credit.
+ * Note that for all flows in scheduler_heap (SCH), S_i <= V,
+ * and for all flows in not_eligible_heap (NEH), S_i > V .
+ * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
+ * we only need to look into NEH.
+ */
+ if (DN_KEY_GT(q->S, pipe->V)) { /* not eligible */
+ if (pipe->scheduler_heap.elements == 0) {
+ printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
+ }
+ heap_insert(&(pipe->not_eligible_heap), q->S, q);
+ } else {
+ heap_insert(&(pipe->scheduler_heap), q->F, q);
+ if (pipe->numbytes >= 0) { /* pipe is idle */
+ if (pipe->scheduler_heap.elements != 1) {
+ printf("dummynet: OUCH! pipe should have been idle!\n");
+ }
+ DPRINTF(("dummynet: waking up pipe %d at %d\n",
+ pipe->pipe_nr, (int)(q->F >> MY_M)));
+ pipe->sched_time = curr_time;
+ ready_event_wfq(pipe, &head, &tail);
+ }
+ }
+ }
done:
/* start the timer and set global if not already set */
if (!timer_enabled) {
ts.tv_sec = 0;
- ts.tv_nsec = 1 * 1000000; // 1ms
+ ts.tv_nsec = 1 * 1000000; // 1ms
timer_enabled = 1;
bsd_timeout(dummynet, NULL, &ts);
}
dummynet_send(head);
}
- return 0;
+ return 0;
dropit:
- if (q)
- q->drops++ ;
+ if (q) {
+ q->drops++;
+ }
lck_mtx_unlock(dn_mutex);
- m_freem(m);
- return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
+ m_freem(m);
+ return (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS;
}
/*
* Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
* Doing this would probably save us the initial bzero of dn_pkt
*/
-#define DN_FREE_PKT(_m) do { \
+#define DN_FREE_PKT(_m) do { \
struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
- if (tag) { \
- struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
- ROUTE_RELEASE(&n->dn_ro); \
- } \
- m_tag_delete(_m, tag); \
- m_freem(_m); \
+ if (tag) { \
+ struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
+ ROUTE_RELEASE(&n->dn_ro); \
+ } \
+ m_tag_delete(_m, tag); \
+ m_freem(_m); \
} while (0)
/*
static void
purge_flow_set(struct dn_flow_set *fs, int all)
{
- struct dn_flow_queue *q, *qn ;
- int i ;
+ struct dn_flow_queue *q, *qn;
+ int i;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- for (i = 0 ; i <= fs->rq_size ; i++ ) {
- for (q = fs->rq[i] ; q ; q = qn ) {
- struct mbuf *m, *mnext;
+ for (i = 0; i <= fs->rq_size; i++) {
+ for (q = fs->rq[i]; q; q = qn) {
+ struct mbuf *m, *mnext;
- mnext = q->head;
- while ((m = mnext) != NULL) {
- mnext = m->m_nextpkt;
- DN_FREE_PKT(m);
- }
- qn = q->next ;
- FREE(q, M_DUMMYNET);
- }
- fs->rq[i] = NULL ;
- }
- fs->rq_elements = 0 ;
- if (all) {
- /* RED - free lookup table */
- if (fs->w_q_lookup)
- FREE(fs->w_q_lookup, M_DUMMYNET);
- if (fs->rq)
- FREE(fs->rq, M_DUMMYNET);
- /* if this fs is not part of a pipe, free it */
- if (fs->pipe && fs != &(fs->pipe->fs) )
- FREE(fs, M_DUMMYNET);
- }
+ mnext = q->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
+ qn = q->next;
+ FREE(q, M_DUMMYNET);
+ }
+ fs->rq[i] = NULL;
+ }
+ fs->rq_elements = 0;
+ if (all) {
+ /* RED - free lookup table */
+ if (fs->w_q_lookup) {
+ FREE(fs->w_q_lookup, M_DUMMYNET);
+ }
+ if (fs->rq) {
+ FREE(fs->rq, M_DUMMYNET);
+ }
+ /* if this fs is not part of a pipe, free it */
+ if (fs->pipe && fs != &(fs->pipe->fs)) {
+ FREE(fs, M_DUMMYNET);
+ }
+ }
}
/*
static void
purge_pipe(struct dn_pipe *pipe)
{
- struct mbuf *m, *mnext;
+ struct mbuf *m, *mnext;
- purge_flow_set( &(pipe->fs), 1 );
+ purge_flow_set( &(pipe->fs), 1 );
- mnext = pipe->head;
- while ((m = mnext) != NULL) {
- mnext = m->m_nextpkt;
- DN_FREE_PKT(m);
- }
+ mnext = pipe->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
- heap_free( &(pipe->scheduler_heap) );
- heap_free( &(pipe->not_eligible_heap) );
- heap_free( &(pipe->idle_heap) );
+ heap_free( &(pipe->scheduler_heap));
+ heap_free( &(pipe->not_eligible_heap));
+ heap_free( &(pipe->idle_heap));
}
/*
- * Delete all pipes and heaps returning memory. Must also
- * remove references from all ipfw rules to all pipes.
+ * Delete all pipes and heaps returning memory.
*/
static void
dummynet_flush(void)
lck_mtx_lock(dn_mutex);
-#if IPFW2
- /* remove all references to pipes ...*/
- flush_pipe_ptrs(NULL);
-#endif /* IPFW2 */
/* Free heaps so we don't have unwanted events. */
heap_free(&ready_heap);
*
* XXXGL: can we merge the for(;;) cycles into one or not?
*/
- for (i = 0; i < HASHSIZE; i++)
+ for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
purge_flow_set(fs, 1);
}
- for (i = 0; i < HASHSIZE; i++)
+ }
+ for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
purge_pipe(pipe);
FREE(pipe, M_DUMMYNET);
}
- lck_mtx_unlock(dn_mutex);
-}
-
-
-static void
-dn_ipfw_rule_delete_fs(struct dn_flow_set *fs, void *r)
-{
- int i ;
- struct dn_flow_queue *q ;
- struct mbuf *m ;
-
- for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
- for (q = fs->rq[i] ; q ; q = q->next )
- for (m = q->head ; m ; m = m->m_nextpkt ) {
- struct dn_pkt_tag *pkt = dn_tag_get(m) ;
- if (pkt->dn_ipfw_rule == r)
- pkt->dn_ipfw_rule = &default_rule ;
- }
-}
-/*
- * when a firewall rule is deleted, scan all queues and remove the flow-id
- * from packets matching this rule.
- */
-void
-dn_ipfw_rule_delete(void *r)
-{
- struct dn_pipe *p ;
- struct dn_flow_set *fs ;
- struct dn_pkt_tag *pkt ;
- struct mbuf *m ;
- int i;
-
- lck_mtx_lock(dn_mutex);
-
- /*
- * If the rule references a queue (dn_flow_set), then scan
- * the flow set, otherwise scan pipes. Should do either, but doing
- * both does not harm.
- */
- for (i = 0; i < HASHSIZE; i++)
- SLIST_FOREACH(fs, &flowsethash[i], next)
- dn_ipfw_rule_delete_fs(fs, r);
-
- for (i = 0; i < HASHSIZE; i++)
- SLIST_FOREACH(p, &pipehash[i], next) {
- fs = &(p->fs);
- dn_ipfw_rule_delete_fs(fs, r);
- for (m = p->head ; m ; m = m->m_nextpkt ) {
- pkt = dn_tag_get(m);
- if (pkt->dn_ipfw_rule == r)
- pkt->dn_ipfw_rule = &default_rule;
- }
}
lck_mtx_unlock(dn_mutex);
}
static int
config_red(struct dn_flow_set *p, struct dn_flow_set * x)
{
- int i;
-
- x->w_q = p->w_q;
- x->min_th = SCALE(p->min_th);
- x->max_th = SCALE(p->max_th);
- x->max_p = p->max_p;
-
- x->c_1 = p->max_p / (p->max_th - p->min_th);
- x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
- if (x->flags_fs & DN_IS_GENTLE_RED) {
- x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
- x->c_4 = (SCALE(1) - 2 * p->max_p);
- }
-
- /* if the lookup table already exist, free and create it again */
- if (x->w_q_lookup) {
- FREE(x->w_q_lookup, M_DUMMYNET);
- x->w_q_lookup = NULL ;
- }
- if (red_lookup_depth == 0) {
- printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
- FREE(x, M_DUMMYNET);
- return EINVAL;
- }
- x->lookup_depth = red_lookup_depth;
- x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
+ int i;
+
+ x->w_q = p->w_q;
+ x->min_th = SCALE(p->min_th);
+ x->max_th = SCALE(p->max_th);
+ x->max_p = p->max_p;
+
+ x->c_1 = p->max_p / (p->max_th - p->min_th);
+ x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
+ if (x->flags_fs & DN_IS_GENTLE_RED) {
+ x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
+ x->c_4 = (SCALE(1) - 2 * p->max_p);
+ }
+
+ /* if the lookup table already exist, free and create it again */
+ if (x->w_q_lookup) {
+ FREE(x->w_q_lookup, M_DUMMYNET);
+ x->w_q_lookup = NULL;
+ }
+ if (red_lookup_depth == 0) {
+ printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
+ FREE(x, M_DUMMYNET);
+ return EINVAL;
+ }
+ x->lookup_depth = red_lookup_depth;
+ x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
M_DUMMYNET, M_DONTWAIT);
- if (x->w_q_lookup == NULL) {
- printf("dummynet: sorry, cannot allocate red lookup table\n");
- FREE(x, M_DUMMYNET);
- return ENOSPC;
- }
-
- /* fill the lookup table with (1 - w_q)^x */
- x->lookup_step = p->lookup_step ;
- x->lookup_weight = p->lookup_weight ;
- x->w_q_lookup[0] = SCALE(1) - x->w_q;
- for (i = 1; i < x->lookup_depth; i++)
- x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
- if (red_avg_pkt_size < 1)
- red_avg_pkt_size = 512 ;
- x->avg_pkt_size = red_avg_pkt_size ;
- if (red_max_pkt_size < 1)
- red_max_pkt_size = 1500 ;
- x->max_pkt_size = red_max_pkt_size ;
- return 0 ;
+ if (x->w_q_lookup == NULL) {
+ printf("dummynet: sorry, cannot allocate red lookup table\n");
+ FREE(x, M_DUMMYNET);
+ return ENOSPC;
+ }
+
+ /* fill the lookup table with (1 - w_q)^x */
+ x->lookup_step = p->lookup_step;
+ x->lookup_weight = p->lookup_weight;
+ x->w_q_lookup[0] = SCALE(1) - x->w_q;
+ for (i = 1; i < x->lookup_depth; i++) {
+ x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
+ }
+ if (red_avg_pkt_size < 1) {
+ red_avg_pkt_size = 512;
+ }
+ x->avg_pkt_size = red_avg_pkt_size;
+ if (red_max_pkt_size < 1) {
+ red_max_pkt_size = 1500;
+ }
+ x->max_pkt_size = red_max_pkt_size;
+ return 0;
}
static int
alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
{
- if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
- int l = pfs->rq_size;
-
- if (l == 0)
- l = dn_hash_size;
- if (l < 4)
- l = 4;
- else if (l > DN_MAX_HASH_SIZE)
- l = DN_MAX_HASH_SIZE;
- x->rq_size = l;
- } else /* one is enough for null mask */
- x->rq_size = 1;
- x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
+ if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
+ int l = pfs->rq_size;
+
+ if (l == 0) {
+ l = dn_hash_size;
+ }
+ if (l < 4) {
+ l = 4;
+ } else if (l > DN_MAX_HASH_SIZE) {
+ l = DN_MAX_HASH_SIZE;
+ }
+ x->rq_size = l;
+ } else { /* one is enough for null mask */
+ x->rq_size = 1;
+ }
+ x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
M_DUMMYNET, M_DONTWAIT | M_ZERO);
- if (x->rq == NULL) {
- printf("dummynet: sorry, cannot allocate queue\n");
- return ENOSPC;
- }
- x->rq_elements = 0;
- return 0 ;
+ if (x->rq == NULL) {
+ printf("dummynet: sorry, cannot allocate queue\n");
+ return ENOSPC;
+ }
+ x->rq_elements = 0;
+ return 0;
}
static void
set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
{
- x->flags_fs = src->flags_fs;
- x->qsize = src->qsize;
- x->plr = src->plr;
- x->flow_mask = src->flow_mask;
- if (x->flags_fs & DN_QSIZE_IS_BYTES) {
- if (x->qsize > 1024*1024)
- x->qsize = 1024*1024 ;
- } else {
- if (x->qsize == 0)
- x->qsize = 50 ;
- if (x->qsize > 100)
- x->qsize = 50 ;
- }
- /* configuring RED */
- if ( x->flags_fs & DN_IS_RED )
- config_red(src, x) ; /* XXX should check errors */
+ x->flags_fs = src->flags_fs;
+ x->qsize = src->qsize;
+ x->plr = src->plr;
+ x->flow_mask = src->flow_mask;
+ if (x->flags_fs & DN_QSIZE_IS_BYTES) {
+ if (x->qsize > 1024 * 1024) {
+ x->qsize = 1024 * 1024;
+ }
+ } else {
+ if (x->qsize == 0) {
+ x->qsize = 50;
+ }
+ if (x->qsize > 100) {
+ x->qsize = 50;
+ }
+ }
+ /* configuring RED */
+ if (x->flags_fs & DN_IS_RED) {
+ config_red(src, x); /* XXX should check errors */
+ }
}
/*
static int
config_pipe(struct dn_pipe *p)
{
- int i, r;
- struct dn_flow_set *pfs = &(p->fs);
- struct dn_flow_queue *q;
-
- /*
- * The config program passes parameters as follows:
- * bw = bits/second (0 means no limits),
- * delay = ms, must be translated into ticks.
- * qsize = slots/bytes
- */
- p->delay = ( p->delay * (hz*10) ) / 1000 ;
- /* We need either a pipe number or a flow_set number */
- if (p->pipe_nr == 0 && pfs->fs_nr == 0)
- return EINVAL ;
- if (p->pipe_nr != 0 && pfs->fs_nr != 0)
- return EINVAL ;
- if (p->pipe_nr != 0) { /* this is a pipe */
- struct dn_pipe *x, *b;
- struct dummynet_event dn_event;
- lck_mtx_lock(dn_mutex);
-
- /* locate pipe */
- b = locate_pipe(p->pipe_nr);
+ int i, r;
+ struct dn_flow_set *pfs = &(p->fs);
+ struct dn_flow_queue *q;
- if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
- x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
- if (x == NULL) {
- lck_mtx_unlock(dn_mutex);
- printf("dummynet: no memory for new pipe\n");
- return ENOSPC;
- }
- x->pipe_nr = p->pipe_nr;
- x->fs.pipe = x ;
- /* idle_heap is the only one from which we extract from the middle.
- */
- x->idle_heap.size = x->idle_heap.elements = 0 ;
- x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
- } else {
- x = b;
- /* Flush accumulated credit for all queues */
- for (i = 0; i <= x->fs.rq_size; i++)
- for (q = x->fs.rq[i]; q; q = q->next)
- q->numbytes = 0;
+ /*
+ * The config program passes parameters as follows:
+ * bw = bits/second (0 means no limits),
+ * delay = ms, must be translated into ticks.
+ * qsize = slots/bytes
+ */
+ p->delay = (p->delay * (hz * 10)) / 1000;
+ /* We need either a pipe number or a flow_set number */
+ if (p->pipe_nr == 0 && pfs->fs_nr == 0) {
+ return EINVAL;
}
+ if (p->pipe_nr != 0 && pfs->fs_nr != 0) {
+ return EINVAL;
+ }
+ if (p->pipe_nr != 0) { /* this is a pipe */
+ struct dn_pipe *x, *b;
+ struct dummynet_event dn_event;
+ lck_mtx_lock(dn_mutex);
- x->bandwidth = p->bandwidth ;
- x->numbytes = 0; /* just in case... */
- bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
- x->ifp = NULL ; /* reset interface ptr */
- x->delay = p->delay ;
- set_fs_parms(&(x->fs), pfs);
+ /* locate pipe */
+ b = locate_pipe(p->pipe_nr);
+ if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
+ x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO);
+ if (x == NULL) {
+ lck_mtx_unlock(dn_mutex);
+ printf("dummynet: no memory for new pipe\n");
+ return ENOSPC;
+ }
+ x->pipe_nr = p->pipe_nr;
+ x->fs.pipe = x;
+ /* idle_heap is the only one from which we extract from the middle.
+ */
+ x->idle_heap.size = x->idle_heap.elements = 0;
+ x->idle_heap.offset = offsetof(struct dn_flow_queue, heap_pos);
+ } else {
+ x = b;
+ /* Flush accumulated credit for all queues */
+ for (i = 0; i <= x->fs.rq_size; i++) {
+ for (q = x->fs.rq[i]; q; q = q->next) {
+ q->numbytes = 0;
+ }
+ }
+ }
- if ( x->fs.rq == NULL ) { /* a new pipe */
- r = alloc_hash(&(x->fs), pfs) ;
- if (r) {
- lck_mtx_unlock(dn_mutex);
- FREE(x, M_DUMMYNET);
- return r ;
- }
- SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
+ x->bandwidth = p->bandwidth;
+ x->numbytes = 0; /* just in case... */
+ bcopy(p->if_name, x->if_name, sizeof(p->if_name));
+ x->ifp = NULL; /* reset interface ptr */
+ x->delay = p->delay;
+ set_fs_parms(&(x->fs), pfs);
+
+
+ if (x->fs.rq == NULL) { /* a new pipe */
+ r = alloc_hash(&(x->fs), pfs);
+ if (r) {
+ lck_mtx_unlock(dn_mutex);
+ FREE(x, M_DUMMYNET);
+ return r;
+ }
+ SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
x, next);
- }
- lck_mtx_unlock(dn_mutex);
+ }
+ lck_mtx_unlock(dn_mutex);
- bzero(&dn_event, sizeof(dn_event));
- dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG;
- dn_event.dn_event_pipe_config.bandwidth = p->bandwidth;
- dn_event.dn_event_pipe_config.delay = p->delay;
- dn_event.dn_event_pipe_config.plr = pfs->plr;
+ bzero(&dn_event, sizeof(dn_event));
+ dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG;
+ dn_event.dn_event_pipe_config.bandwidth = p->bandwidth;
+ dn_event.dn_event_pipe_config.delay = p->delay;
+ dn_event.dn_event_pipe_config.plr = pfs->plr;
- dummynet_event_enqueue_nwk_wq_entry(&dn_event);
- } else { /* config queue */
- struct dn_flow_set *x, *b ;
+ dummynet_event_enqueue_nwk_wq_entry(&dn_event);
+ } else { /* config queue */
+ struct dn_flow_set *x, *b;
- lck_mtx_lock(dn_mutex);
- /* locate flow_set */
- b = locate_flowset(pfs->fs_nr);
-
- if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
- if (pfs->parent_nr == 0) { /* need link to a pipe */
- lck_mtx_unlock(dn_mutex);
- return EINVAL ;
- }
- x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
- if (x == NULL) {
- lck_mtx_unlock(dn_mutex);
- printf("dummynet: no memory for new flow_set\n");
- return ENOSPC;
- }
- x->fs_nr = pfs->fs_nr;
- x->parent_nr = pfs->parent_nr;
- x->weight = pfs->weight ;
- if (x->weight == 0)
- x->weight = 1 ;
- else if (x->weight > 100)
- x->weight = 100 ;
- } else {
- /* Change parent pipe not allowed; must delete and recreate */
- if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
- lck_mtx_unlock(dn_mutex);
- return EINVAL ;
- }
- x = b;
- }
- set_fs_parms(x, pfs);
+ lck_mtx_lock(dn_mutex);
+ /* locate flow_set */
+ b = locate_flowset(pfs->fs_nr);
- if ( x->rq == NULL ) { /* a new flow_set */
- r = alloc_hash(x, pfs) ;
- if (r) {
- lck_mtx_unlock(dn_mutex);
- FREE(x, M_DUMMYNET);
- return r ;
- }
- SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
+ if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
+ if (pfs->parent_nr == 0) { /* need link to a pipe */
+ lck_mtx_unlock(dn_mutex);
+ return EINVAL;
+ }
+ x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
+ if (x == NULL) {
+ lck_mtx_unlock(dn_mutex);
+ printf("dummynet: no memory for new flow_set\n");
+ return ENOSPC;
+ }
+ x->fs_nr = pfs->fs_nr;
+ x->parent_nr = pfs->parent_nr;
+ x->weight = pfs->weight;
+ if (x->weight == 0) {
+ x->weight = 1;
+ } else if (x->weight > 100) {
+ x->weight = 100;
+ }
+ } else {
+ /* Change parent pipe not allowed; must delete and recreate */
+ if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
+ lck_mtx_unlock(dn_mutex);
+ return EINVAL;
+ }
+ x = b;
+ }
+ set_fs_parms(x, pfs);
+
+ if (x->rq == NULL) { /* a new flow_set */
+ r = alloc_hash(x, pfs);
+ if (r) {
+ lck_mtx_unlock(dn_mutex);
+ FREE(x, M_DUMMYNET);
+ return r;
+ }
+ SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
x, next);
+ }
+ lck_mtx_unlock(dn_mutex);
}
- lck_mtx_unlock(dn_mutex);
- }
- return 0 ;
+ return 0;
}
/*
static void
fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
{
- int i = 0, found = 0 ;
- for (; i < h->elements ;)
- if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
- h->elements-- ;
- h->p[i] = h->p[h->elements] ;
- found++ ;
- } else
- i++ ;
- if (found)
- heapify(h);
+ int i = 0, found = 0;
+ for (; i < h->elements;) {
+ if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
+ h->elements--;
+ h->p[i] = h->p[h->elements];
+ found++;
+ } else {
+ i++;
+ }
+ }
+ if (found) {
+ heapify(h);
+ }
}
/*
static void
pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
{
- if (h->elements > 0) {
- int i = 0 ;
- for (i=0; i < h->elements ; i++ ) {
- if (h->p[i].object == p) { /* found it */
- h->elements-- ;
- h->p[i] = h->p[h->elements] ;
- heapify(h);
- break ;
- }
+ if (h->elements > 0) {
+ int i = 0;
+ for (i = 0; i < h->elements; i++) {
+ if (h->p[i].object == p) { /* found it */
+ h->elements--;
+ h->p[i] = h->p[h->elements];
+ heapify(h);
+ break;
+ }
+ }
}
- }
}
/*
void
dummynet_drain(void)
{
- struct dn_flow_set *fs;
- struct dn_pipe *p;
- struct mbuf *m, *mnext;
+ struct dn_flow_set *fs;
+ struct dn_pipe *p;
+ struct mbuf *m, *mnext;
int i;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- heap_free(&ready_heap);
- heap_free(&wfq_ready_heap);
- heap_free(&extract_heap);
- /* remove all references to this pipe from flow_sets */
- for (i = 0; i < HASHSIZE; i++)
- SLIST_FOREACH(fs, &flowsethash[i], next)
- purge_flow_set(fs, 0);
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
+ /* remove all references to this pipe from flow_sets */
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(fs, &flowsethash[i], next) {
+ purge_flow_set(fs, 0);
+ }
+ }
- for (i = 0; i < HASHSIZE; i++)
- SLIST_FOREACH(p, &pipehash[i], next) {
- purge_flow_set(&(p->fs), 0);
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ purge_flow_set(&(p->fs), 0);
- mnext = p->head;
- while ((m = mnext) != NULL) {
- mnext = m->m_nextpkt;
- DN_FREE_PKT(m);
+ mnext = p->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
+ p->head = p->tail = NULL;
+ }
}
- p->head = p->tail = NULL ;
- }
}
/*
static int
delete_pipe(struct dn_pipe *p)
{
- if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
- return EINVAL ;
- if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
- return EINVAL ;
- if (p->pipe_nr != 0) { /* this is an old-style pipe */
- struct dn_pipe *b;
- struct dn_flow_set *fs;
- int i;
-
- lck_mtx_lock(dn_mutex);
- /* locate pipe */
- b = locate_pipe(p->pipe_nr);
- if(b == NULL){
- lck_mtx_unlock(dn_mutex);
- return EINVAL ; /* not found */
+ if (p->pipe_nr == 0 && p->fs.fs_nr == 0) {
+ return EINVAL;
}
+ if (p->pipe_nr != 0 && p->fs.fs_nr != 0) {
+ return EINVAL;
+ }
+ if (p->pipe_nr != 0) { /* this is an old-style pipe */
+ struct dn_pipe *b;
+ struct dn_flow_set *fs;
+ int i;
- /* Unlink from list of pipes. */
- SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
+ lck_mtx_lock(dn_mutex);
+ /* locate pipe */
+ b = locate_pipe(p->pipe_nr);
+ if (b == NULL) {
+ lck_mtx_unlock(dn_mutex);
+ return EINVAL; /* not found */
+ }
-#if IPFW2
- /* remove references to this pipe from the ip_fw rules. */
- flush_pipe_ptrs(&(b->fs));
-#endif /* IPFW2 */
+ /* Unlink from list of pipes. */
+ SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
- /* Remove all references to this pipe from flow_sets. */
- for (i = 0; i < HASHSIZE; i++)
- SLIST_FOREACH(fs, &flowsethash[i], next)
- if (fs->pipe == b) {
- printf("dummynet: ++ ref to pipe %d from fs %d\n",
- p->pipe_nr, fs->fs_nr);
- fs->pipe = NULL ;
- purge_flow_set(fs, 0);
+
+ /* Remove all references to this pipe from flow_sets. */
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(fs, &flowsethash[i], next) {
+ if (fs->pipe == b) {
+ printf("dummynet: ++ ref to pipe %d from fs %d\n",
+ p->pipe_nr, fs->fs_nr);
+ fs->pipe = NULL;
+ purge_flow_set(fs, 0);
+ }
+ }
}
- fs_remove_from_heap(&ready_heap, &(b->fs));
+ fs_remove_from_heap(&ready_heap, &(b->fs));
- purge_pipe(b); /* remove all data associated to this pipe */
- /* remove reference to here from extract_heap and wfq_ready_heap */
- pipe_remove_from_heap(&extract_heap, b);
- pipe_remove_from_heap(&wfq_ready_heap, b);
- lck_mtx_unlock(dn_mutex);
+ purge_pipe(b); /* remove all data associated to this pipe */
+ /* remove reference to here from extract_heap and wfq_ready_heap */
+ pipe_remove_from_heap(&extract_heap, b);
+ pipe_remove_from_heap(&wfq_ready_heap, b);
+ lck_mtx_unlock(dn_mutex);
- FREE(b, M_DUMMYNET);
- } else { /* this is a WF2Q queue (dn_flow_set) */
- struct dn_flow_set *b;
+ FREE(b, M_DUMMYNET);
+ } else { /* this is a WF2Q queue (dn_flow_set) */
+ struct dn_flow_set *b;
- lck_mtx_lock(dn_mutex);
- /* locate set */
- b = locate_flowset(p->fs.fs_nr);
- if (b == NULL) {
- lck_mtx_unlock(dn_mutex);
- return EINVAL ; /* not found */
- }
+ lck_mtx_lock(dn_mutex);
+ /* locate set */
+ b = locate_flowset(p->fs.fs_nr);
+ if (b == NULL) {
+ lck_mtx_unlock(dn_mutex);
+ return EINVAL; /* not found */
+ }
-#if IPFW2
- /* remove references to this flow_set from the ip_fw rules. */
- flush_pipe_ptrs(b);
-#endif /* IPFW2 */
- /* Unlink from list of flowsets. */
- SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
+ /* Unlink from list of flowsets. */
+ SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
- if (b->pipe != NULL) {
- /* Update total weight on parent pipe and cleanup parent heaps */
- b->pipe->sum -= b->weight * b->backlogged ;
- fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
- fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
-#if 1 /* XXX should i remove from idle_heap as well ? */
- fs_remove_from_heap(&(b->pipe->idle_heap), b);
+ if (b->pipe != NULL) {
+ /* Update total weight on parent pipe and cleanup parent heaps */
+ b->pipe->sum -= b->weight * b->backlogged;
+ fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
+ fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
+#if 1 /* XXX should i remove from idle_heap as well ? */
+ fs_remove_from_heap(&(b->pipe->idle_heap), b);
#endif
+ }
+ purge_flow_set(b, 1);
+ lck_mtx_unlock(dn_mutex);
}
- purge_flow_set(b, 1);
- lck_mtx_unlock(dn_mutex);
- }
- return 0 ;
+ return 0;
}
/*
* helper function used to copy data from kernel in DUMMYNET_GET
*/
static
-char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
+char*
+dn_copy_set_32(struct dn_flow_set *set, char *bp)
{
- int i, copied = 0 ;
- struct dn_flow_queue *q;
+ int i, copied = 0;
+ struct dn_flow_queue *q;
struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- for (i = 0 ; i <= set->rq_size ; i++)
- for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
- if (q->hash_slot != i)
+ for (i = 0; i <= set->rq_size; i++) {
+ for (q = set->rq[i]; q; q = q->next, qp++) {
+ if (q->hash_slot != i) {
printf("dummynet: ++ at %d: wrong slot (have %d, "
- "should be %d)\n", copied, q->hash_slot, i);
- if (q->fs != set)
+ "should be %d)\n", copied, q->hash_slot, i);
+ }
+ if (q->fs != set) {
printf("dummynet: ++ at %d: wrong fs ptr "
"(have 0x%llx, should be 0x%llx)\n", i,
(uint64_t)VM_KERNEL_ADDRPERM(q->fs),
(uint64_t)VM_KERNEL_ADDRPERM(set));
- copied++ ;
+ }
+ copied++;
cp_queue_to_32_user( q, qp );
/* cleanup pointers */
- qp->next = (user32_addr_t)0 ;
- qp->head = qp->tail = (user32_addr_t)0 ;
- qp->fs = (user32_addr_t)0 ;
+ qp->next = (user32_addr_t)0;
+ qp->head = qp->tail = (user32_addr_t)0;
+ qp->fs = (user32_addr_t)0;
}
- if (copied != set->rq_elements)
+ }
+ if (copied != set->rq_elements) {
printf("dummynet: ++ wrong count, have %d should be %d\n",
- copied, set->rq_elements);
- return (char *)qp ;
+ copied, set->rq_elements);
+ }
+ return (char *)qp;
}
static
-char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
+char*
+dn_copy_set_64(struct dn_flow_set *set, char *bp)
{
- int i, copied = 0 ;
- struct dn_flow_queue *q;
+ int i, copied = 0;
+ struct dn_flow_queue *q;
struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- for (i = 0 ; i <= set->rq_size ; i++)
- for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
- if (q->hash_slot != i)
+ for (i = 0; i <= set->rq_size; i++) {
+ for (q = set->rq[i]; q; q = q->next, qp++) {
+ if (q->hash_slot != i) {
printf("dummynet: ++ at %d: wrong slot (have %d, "
- "should be %d)\n", copied, q->hash_slot, i);
- if (q->fs != set)
+ "should be %d)\n", copied, q->hash_slot, i);
+ }
+ if (q->fs != set) {
printf("dummynet: ++ at %d: wrong fs ptr "
"(have 0x%llx, should be 0x%llx)\n", i,
(uint64_t)VM_KERNEL_ADDRPERM(q->fs),
(uint64_t)VM_KERNEL_ADDRPERM(set));
- copied++ ;
+ }
+ copied++;
//bcopy(q, qp, sizeof(*q));
cp_queue_to_64_user( q, qp );
/* cleanup pointers */
- qp->next = USER_ADDR_NULL ;
- qp->head = qp->tail = USER_ADDR_NULL ;
- qp->fs = USER_ADDR_NULL ;
+ qp->next = USER_ADDR_NULL;
+ qp->head = qp->tail = USER_ADDR_NULL;
+ qp->fs = USER_ADDR_NULL;
}
- if (copied != set->rq_elements)
+ }
+ if (copied != set->rq_elements) {
printf("dummynet: ++ wrong count, have %d should be %d\n",
- copied, set->rq_elements);
- return (char *)qp ;
+ copied, set->rq_elements);
+ }
+ return (char *)qp;
}
static size_t
dn_calc_size(int is64user)
{
- struct dn_flow_set *set ;
- struct dn_pipe *p ;
- size_t size = 0 ;
+ struct dn_flow_set *set;
+ struct dn_pipe *p;
+ size_t size = 0;
size_t pipesize;
size_t queuesize;
size_t setsize;
int i;
LCK_MTX_ASSERT(dn_mutex, LCK_MTX_ASSERT_OWNED);
- if ( is64user ){
+ if (is64user) {
pipesize = sizeof(struct dn_pipe_64);
queuesize = sizeof(struct dn_flow_queue_64);
setsize = sizeof(struct dn_flow_set_64);
- }
- else {
+ } else {
pipesize = sizeof(struct dn_pipe_32);
- queuesize = sizeof( struct dn_flow_queue_32 );
+ queuesize = sizeof(struct dn_flow_queue_32);
setsize = sizeof(struct dn_flow_set_32);
}
- /*
- * compute size of data structures: list of pipes and flow_sets.
- */
- for (i = 0; i < HASHSIZE; i++) {
- SLIST_FOREACH(p, &pipehash[i], next)
- size += sizeof(*p) +
- p->fs.rq_elements * sizeof(struct dn_flow_queue);
- SLIST_FOREACH(set, &flowsethash[i], next)
- size += sizeof (*set) +
- set->rq_elements * sizeof(struct dn_flow_queue);
- }
- return size;
+ /*
+ * compute size of data structures: list of pipes and flow_sets.
+ */
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ size += sizeof(*p) +
+ p->fs.rq_elements * sizeof(struct dn_flow_queue);
+ }
+ SLIST_FOREACH(set, &flowsethash[i], next) {
+ size += sizeof(*set) +
+ set->rq_elements * sizeof(struct dn_flow_queue);
+ }
+ }
+ return size;
}
static int
/*
* XXX: Ugly, but we need to allocate memory with M_WAITOK flag
* and we cannot use this flag while holding a mutex.
- */
- if (proc_is64bit(sopt->sopt_p))
+ */
+ if (proc_is64bit(sopt->sopt_p)) {
is64user = 1;
+ }
for (i = 0; i < 10; i++) {
size = dn_calc_size(is64user);
lck_mtx_unlock(dn_mutex);
- buf = _MALLOC(size, M_TEMP, M_WAITOK);
- if (buf == NULL)
- return(ENOBUFS);
+ buf = _MALLOC(size, M_TEMP, M_WAITOK | M_ZERO);
+ if (buf == NULL) {
+ return ENOBUFS;
+ }
lck_mtx_lock(dn_mutex);
- if (size == dn_calc_size(is64user))
+ if (size == dn_calc_size(is64user)) {
break;
+ }
FREE(buf, M_TEMP);
buf = NULL;
}
if (buf == NULL) {
lck_mtx_unlock(dn_mutex);
- return(ENOBUFS);
+ return ENOBUFS;
}
bp = buf;
* one at a time. After each flow_set, copy the
* queue descriptor it owns.
*/
- if ( is64user ) {
+ if (is64user) {
bp = cp_pipe_to_64_user(p,
(struct dn_pipe_64 *)bp);
} else {
for (i = 0; i < HASHSIZE; i++) {
SLIST_FOREACH(set, &flowsethash[i], next) {
struct dn_flow_set_64 *fs_bp =
- (struct dn_flow_set_64 *)bp ;
+ (struct dn_flow_set_64 *)bp;
cp_flow_set_to_64_user(set, fs_bp);
/* XXX same hack as above */
fs_bp->next = CAST_DOWN(user64_addr_t,
DN_IS_QUEUE);
fs_bp->pipe = USER_ADDR_NULL;
- fs_bp->rq = USER_ADDR_NULL ;
+ fs_bp->rq = USER_ADDR_NULL;
bp += sizeof(struct dn_flow_set_64);
bp = dn_copy_set_64( set, bp );
}
lck_mtx_unlock(dn_mutex);
error = sooptcopyout(sopt, buf, size);
FREE(buf, M_TEMP);
- return(error);
+ return error;
}
/*
static int
ip_dn_ctl(struct sockopt *sopt)
{
- int error = 0 ;
- struct dn_pipe *p, tmp_pipe;
-
- /* Disallow sets in really-really secure mode. */
- if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
- return (EPERM);
-
- switch (sopt->sopt_name) {
- default :
- printf("dummynet: -- unknown option %d", sopt->sopt_name);
- return EINVAL ;
-
- case IP_DUMMYNET_GET :
- error = dummynet_get(sopt);
- break ;
-
- case IP_DUMMYNET_FLUSH :
- dummynet_flush() ;
- break ;
-
- case IP_DUMMYNET_CONFIGURE :
- p = &tmp_pipe ;
- if (proc_is64bit(sopt->sopt_p))
- error = cp_pipe_from_user_64( sopt, p );
- else
- error = cp_pipe_from_user_32( sopt, p );
-
- if (error)
- break ;
- error = config_pipe(p);
- break ;
-
- case IP_DUMMYNET_DEL : /* remove a pipe or queue */
- p = &tmp_pipe ;
- if (proc_is64bit(sopt->sopt_p))
- error = cp_pipe_from_user_64( sopt, p );
- else
- error = cp_pipe_from_user_32( sopt, p );
- if (error)
- break ;
-
- error = delete_pipe(p);
- break ;
- }
- return error ;
+ int error = 0;
+ struct dn_pipe *p, tmp_pipe;
+
+ /* Disallow sets in really-really secure mode. */
+ if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) {
+ return EPERM;
+ }
+
+ switch (sopt->sopt_name) {
+ default:
+ printf("dummynet: -- unknown option %d", sopt->sopt_name);
+ return EINVAL;
+
+ case IP_DUMMYNET_GET:
+ error = dummynet_get(sopt);
+ break;
+
+ case IP_DUMMYNET_FLUSH:
+ dummynet_flush();
+ break;
+
+ case IP_DUMMYNET_CONFIGURE:
+ p = &tmp_pipe;
+ if (proc_is64bit(sopt->sopt_p)) {
+ error = cp_pipe_from_user_64( sopt, p );
+ } else {
+ error = cp_pipe_from_user_32( sopt, p );
+ }
+
+ if (error) {
+ break;
+ }
+ error = config_pipe(p);
+ break;
+
+ case IP_DUMMYNET_DEL: /* remove a pipe or queue */
+ p = &tmp_pipe;
+ if (proc_is64bit(sopt->sopt_p)) {
+ error = cp_pipe_from_user_64( sopt, p );
+ } else {
+ error = cp_pipe_from_user_32( sopt, p );
+ }
+ if (error) {
+ break;
+ }
+
+ error = delete_pipe(p);
+ break;
+ }
+ return error;
}
void
dn_mutex_attr = lck_attr_alloc_init();
lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr);
- ready_heap.size = ready_heap.elements = 0 ;
- ready_heap.offset = 0 ;
+ ready_heap.size = ready_heap.elements = 0;
+ ready_heap.offset = 0;
- wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
- wfq_ready_heap.offset = 0 ;
+ wfq_ready_heap.size = wfq_ready_heap.elements = 0;
+ wfq_ready_heap.offset = 0;
- extract_heap.size = extract_heap.elements = 0 ;
- extract_heap.offset = 0 ;
+ extract_heap.size = extract_heap.elements = 0;
+ extract_heap.offset = 0;
ip_dn_ctl_ptr = ip_dn_ctl;
ip_dn_io_ptr = dummynet_io;
-
- bzero(&default_rule, sizeof default_rule);
-#if IPFIREWALL
- default_rule.act_ofs = 0;
- default_rule.rulenum = IPFW_DEFAULT_RULE;
- default_rule.cmd_len = 1;
- default_rule.set = RESVD_SET;
-
- default_rule.cmd[0].len = 1;
- default_rule.cmd[0].opcode =
-#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
- (1) ? O_ACCEPT :
-#endif
- O_DENY;
-#endif
}
-struct dn_event_nwk_wq_entry
-{
+struct dn_event_nwk_wq_entry {
struct nwk_wq_entry nwk_wqe;
struct dummynet_event dn_ev_arg;
};