/*
- * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1992-1990 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
-/*
- */
-
#include <mach/exception_types.h>
#include <mach/i386/thread_status.h>
#include <mach/i386/fp_reg.h>
-#include <mach/branch_predicates.h>
#include <kern/mach_param.h>
#include <kern/processor.h>
#include <i386/thread.h>
#include <i386/trap.h>
-xstate_t fpu_capability = UNDEFINED; /* extended state capability */
-xstate_t fpu_default = UNDEFINED; /* default extended state */
+xstate_t fpu_capability = UNDEFINED; /* extended state capability */
+xstate_t fpu_default = UNDEFINED; /* default extended state */
-#define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0)
+#define ALIGNED(addr, size) (((uintptr_t)(addr)&((size)-1))==0)
/* Forward */
-extern void fpinit(void);
-extern void fp_save(
- thread_t thr_act);
-extern void fp_load(
- thread_t thr_act);
+extern void fpinit(void);
+extern void fp_save(
+ thread_t thr_act);
+extern void fp_load(
+ thread_t thr_act);
static void configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps);
static xstate_t thread_xstate(thread_t);
-x86_ext_thread_state_t initial_fp_state __attribute((aligned(64)));
-
+x86_ext_thread_state_t initial_fp_state __attribute((aligned(64)));
+x86_ext_thread_state_t default_avx512_state __attribute((aligned(64)));
+x86_ext_thread_state_t default_avx_state __attribute((aligned(64)));
+x86_ext_thread_state_t default_fx_state __attribute((aligned(64)));
/* Global MXCSR capability bitmask */
static unsigned int mxcsr_capability_mask;
-#define fninit() \
+#define fninit() \
__asm__ volatile("fninit")
-#define fnstcw(control) \
+#define fnstcw(control) \
__asm__("fnstcw %0" : "=m" (*(unsigned short *)(control)))
-#define fldcw(control) \
+#define fldcw(control) \
__asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) )
-#define fnclex() \
+#define fnclex() \
__asm__ volatile("fnclex")
-#define fnsave(state) \
+#define fnsave(state) \
__asm__ volatile("fnsave %0" : "=m" (*state))
-#define frstor(state) \
+#define frstor(state) \
__asm__ volatile("frstor %0" : : "m" (state))
#define fwait() \
- __asm__("fwait");
+ __asm__("fwait");
-static inline void fxrstor(struct x86_fx_thread_state *a) {
- __asm__ __volatile__("fxrstor %0" :: "m" (*a));
+static inline void
+fxrstor(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxrstor %0" :: "m" (*a));
}
-static inline void fxsave(struct x86_fx_thread_state *a) {
- __asm__ __volatile__("fxsave %0" : "=m" (*a));
+static inline void
+fxsave(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxsave %0" : "=m" (*a));
}
-static inline void fxrstor64(struct x86_fx_thread_state *a) {
- __asm__ __volatile__("fxrstor64 %0" :: "m" (*a));
+static inline void
+fxrstor64(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxrstor64 %0" :: "m" (*a));
}
-static inline void fxsave64(struct x86_fx_thread_state *a) {
- __asm__ __volatile__("fxsave64 %0" : "=m" (*a));
+static inline void
+fxsave64(struct x86_fx_thread_state *a)
+{
+ __asm__ __volatile__ ("fxsave64 %0" : "=m" (*a));
}
#if !defined(RC_HIDE_XNU_J137)
-#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX || (x) == AVX512)
+#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX || (x) == AVX512)
#else
-#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX)
+#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX)
#endif
-zone_t ifps_zone[] = {
+zone_t ifps_zone[] = {
[FP] = NULL,
[AVX] = NULL,
#if !defined(RC_HIDE_XNU_J137)
[AVX512] = NULL
#endif
};
-static uint32_t fp_state_size[] = {
+static uint32_t fp_state_size[] = {
[FP] = sizeof(struct x86_fx_thread_state),
[AVX] = sizeof(struct x86_avx_thread_state),
#if !defined(RC_HIDE_XNU_J137)
#else
#define fpu_YMM_capable (fpu_capability == AVX)
#endif
-static uint32_t cpuid_reevaluated = 0;
+static uint32_t cpuid_reevaluated = 0;
static void fpu_store_registers(void *, boolean_t);
static void fpu_load_registers(void *);
-#define FP_XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE))
-#define AVX_XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM))
#if !defined(RC_HIDE_XNU_J137)
-#define AVX512_XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM | XFEM_ZMM))
static const uint32_t xstate_xmask[] = {
- [FP] = FP_XMASK,
- [AVX] = AVX_XMASK,
- [AVX512] = AVX512_XMASK
+ [FP] = FP_XMASK,
+ [AVX] = AVX_XMASK,
+ [AVX512] = AVX512_XMASK
};
#else
static const uint32_t xstate_xmask[] = {
- [FP] = FP_XMASK,
- [AVX] = AVX_XMASK,
+ [FP] = FP_XMASK,
+ [AVX] = AVX_XMASK,
};
#endif
-static inline void xsetbv(uint32_t mask_hi, uint32_t mask_lo) {
- __asm__ __volatile__("xsetbv" :: "a"(mask_lo), "d"(mask_hi), "c" (XCR0));
-}
-
-static inline void xsave(struct x86_fx_thread_state *a, uint32_t rfbm) {
- __asm__ __volatile__("xsave %0" :"=m" (*a) : "a"(rfbm), "d"(0));
+static inline void
+xsave(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xsave %0" :"=m" (*a) : "a"(rfbm), "d"(0));
}
-static inline void xsave64(struct x86_fx_thread_state *a, uint32_t rfbm) {
- __asm__ __volatile__("xsave64 %0" :"=m" (*a) : "a"(rfbm), "d"(0));
+static inline void
+xsave64(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xsave64 %0" :"=m" (*a) : "a"(rfbm), "d"(0));
}
-static inline void xrstor(struct x86_fx_thread_state *a, uint32_t rfbm) {
- __asm__ __volatile__("xrstor %0" :: "m" (*a), "a"(rfbm), "d"(0));
+static inline void
+xrstor(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xrstor %0" :: "m" (*a), "a"(rfbm), "d"(0));
}
-static inline void xrstor64(struct x86_fx_thread_state *a, uint32_t rfbm) {
- __asm__ __volatile__("xrstor64 %0" :: "m" (*a), "a"(rfbm), "d"(0));
+static inline void
+xrstor64(struct x86_fx_thread_state *a, uint32_t rfbm)
+{
+ __asm__ __volatile__ ("xrstor64 %0" :: "m" (*a), "a"(rfbm), "d"(0));
}
#if !defined(RC_HIDE_XNU_J137)
-static inline void vzeroupper(void) {
- __asm__ __volatile__("vzeroupper" ::);
-}
-#if DEVELOPMENT || DEBUG
-static inline uint64_t xgetbv(uint32_t c) {
- uint32_t mask_hi, mask_lo;
- __asm__ __volatile__("xgetbv" : "=a"(mask_lo), "=d"(mask_hi) : "c" (c));
- return ((uint64_t) mask_hi<<32) + (uint64_t) mask_lo;
+__unused static inline void
+vzeroupper(void)
+{
+ __asm__ __volatile__ ("vzeroupper" ::);
}
-#endif
-static boolean_t fpu_thread_promote_avx512(thread_t); /* Forward */
+static boolean_t fpu_thread_promote_avx512(thread_t); /* Forward */
/*
* Define a wrapper for bcopy to defeat destination size checka.
* bcopy_nockch(src,&dst->fpu_ymmh0,8*sizeof(_STRUCT_XMM_REG));
* without the compiler throwing a __builtin__memmove_chk error.
*/
-static inline void bcopy_nochk(void *_src, void *_dst, size_t _len) {
+static inline void
+bcopy_nochk(void *_src, void *_dst, size_t _len)
+{
bcopy(_src, _dst, _len);
-}
+}
/*
* Furthermore, make compile-time asserts that no padding creeps into structures
* for which we're doing this.
*/
-#define ASSERT_PACKED(t, m1, m2, n, mt) \
-extern char assert_packed_ ## t ## _ ## m1 ## _ ## m2 \
+#define ASSERT_PACKED(t, m1, m2, n, mt) \
+extern char assert_packed_ ## t ## _ ## m1 ## _ ## m2 \
[(offsetof(t,m2) - offsetof(t,m1) == (n - 1)*sizeof(mt)) ? 1 : -1]
ASSERT_PACKED(x86_avx_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
#if defined(DEBUG_AVX512)
-#define DBG(x...) kprintf("DBG: " x)
+#define DBG(x...) kprintf("DBG: " x)
typedef struct { uint8_t byte[8]; } opmask_t;
typedef struct { uint8_t byte[16]; } xmm_t;
static void
DBG_AVX512_STATE(struct x86_avx512_thread_state *sp)
{
- int i, j;
+ int i, j;
xmm_t *xmm = (xmm_t *) &sp->fp.fx_XMM_reg;
xmm_t *ymmh = (xmm_t *) &sp->x_YMM_Hi128;
ymm_t *zmmh = (ymm_t *) &sp->x_ZMM_Hi256;
/* Print all ZMM registers */
for (i = 0; i < 16; i++) {
kprintf("zmm%d:\t0x", i);
- for (j = 0; j < 16; j++)
+ for (j = 0; j < 16; j++) {
kprintf("%02x", xmm[i].byte[j]);
- for (j = 0; j < 16; j++)
+ }
+ for (j = 0; j < 16; j++) {
kprintf("%02x", ymmh[i].byte[j]);
- for (j = 0; j < 32; j++)
+ }
+ for (j = 0; j < 32; j++) {
kprintf("%02x", zmmh[i].byte[j]);
+ }
kprintf("\n");
}
for (i = 0; i < 16; i++) {
- kprintf("zmm%d:\t0x", 16+i);
- for (j = 0; j < 64; j++)
+ kprintf("zmm%d:\t0x", 16 + i);
+ for (j = 0; j < 64; j++) {
kprintf("%02x", zmm[i].byte[j]);
+ }
kprintf("\n");
}
for (i = 0; i < 8; i++) {
kprintf("k%d:\t0x", i);
- for (j = 0; j < 8; j++)
+ for (j = 0; j < 8; j++) {
kprintf("%02x", k[i].byte[j]);
+ }
kprintf("\n");
}
kprintf("xcomp_bv: 0x%016llx\n", sp->_xh.xcomp_bv);
}
#else
-#define DBG(x...)
+#define DBG(x...)
static void
DBG_AVX512_STATE(__unused struct x86_avx512_thread_state *sp)
{
#endif
-#if DEBUG
+#if DEBUG
static inline unsigned short
fnstsw(void)
{
unsigned short status;
- __asm__ volatile("fnstsw %0" : "=ma" (status));
- return(status);
+ __asm__ volatile ("fnstsw %0" : "=ma" (status));
+ return status;
}
#endif
mxcsr_capability_mask = fps->fx.fx_MXCSR_MASK;
/* Set default mask value if necessary */
- if (mxcsr_capability_mask == 0)
+ if (mxcsr_capability_mask == 0) {
mxcsr_capability_mask = 0xffbf;
-
+ }
+
/* Clear vector register store */
- bzero(&fps->fx.fx_XMM_reg[0][0], sizeof(fps->fx.fx_XMM_reg));
+ bzero(&fps->fx.fx_XMM_reg[0][0], sizeof(fps->fx.fx_XMM_reg));
bzero(fps->avx.x_YMM_Hi128, sizeof(fps->avx.x_YMM_Hi128));
#if !defined(RC_HIDE_XNU_J137)
if (fpu_ZMM_capable) {
bzero(fps->avx512.x_ZMM_Hi256, sizeof(fps->avx512.x_ZMM_Hi256));
- bzero(fps->avx512.x_Hi16_ZMM, sizeof(fps->avx512.x_Hi16_ZMM));
- bzero(fps->avx512.x_Opmask, sizeof(fps->avx512.x_Opmask));
+ bzero(fps->avx512.x_Hi16_ZMM, sizeof(fps->avx512.x_Hi16_ZMM));
+ bzero(fps->avx512.x_Opmask, sizeof(fps->avx512.x_Opmask));
}
#endif
fps->fx.fp_save_layout = fpu_YMM_capable ? XSAVE32: FXSAVE32;
fpu_load_registers(fps);
+ if (fpu_ZMM_capable) {
+ xsave64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]);
+ }
+ if (fpu_YMM_capable) {
+ xsave64((struct x86_fx_thread_state *)&default_avx_state, xstate_xmask[AVX]);
+ } else {
+ fxsave64((struct x86_fx_thread_state *)&default_fx_state);
+ }
+
/* Poison values to trap unsafe usage */
fps->fx.fp_valid = 0xFFFFFFFF;
fps->fx.fp_save_layout = FP_UNUSED;
set_ts();
}
+int fpsimd_fault_popc = 0;
/*
* Look for FPU and initialize it.
* Called on each CPU.
void
init_fpu(void)
{
-#if DEBUG
- unsigned short status;
- unsigned short control;
+#if DEBUG
+ unsigned short status;
+ unsigned short control;
#endif
/*
* Check for FPU by initializing it,
* then trying to read the correct bit patterns from
* the control and status registers.
*/
- set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */
+ set_cr0((get_cr0() & ~(CR0_EM | CR0_TS)) | CR0_NE); /* allow use of FPU */
fninit();
-#if DEBUG
+#if DEBUG
status = fnstsw();
fnstcw(&control);
-
+
assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f));
#endif
/* Advertise SSE support */
if (cpuid_features() & CPUID_FEATURE_SSE) {
set_cr4(get_cr4() | CR4_OSXMM);
}
- } else
+ } else {
panic("fpu is not FP_FXSR");
+ }
fpu_capability = fpu_default = FP;
+ PE_parse_boot_argn("fpsimd_fault_popc", &fpsimd_fault_popc, sizeof(fpsimd_fault_popc));
+
#if !defined(RC_HIDE_XNU_J137)
static boolean_t is_avx512_enabled = TRUE;
if (cpu_number() == master_cpu) {
if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_AVX512F) {
PE_parse_boot_argn("avx512", &is_avx512_enabled, sizeof(boolean_t));
kprintf("AVX512 supported %s\n",
- is_avx512_enabled ? "and enabled" : "but disabled");
+ is_avx512_enabled ? "and enabled" : "but disabled");
}
}
#endif
-
+
/* Configure the XSAVE context mechanism if the processor supports
* AVX/YMM registers
*/
set_cr4(get_cr4() | CR4_OSXSAVE);
xsetbv(0, AVX512_XMASK);
/* Re-evaluate CPUID, once, to reflect OSXSAVE */
- if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
+ if (OSCompareAndSwap(0, 1, &cpuid_reevaluated)) {
cpuid_set_info();
+ }
/* Verify that now selected state can be accommodated */
assert(xs0p->extended_state[ebx] == fp_state_size[AVX512]);
/*
set_cr4(get_cr4() | CR4_OSXSAVE);
xsetbv(0, AVX_XMASK);
/* Re-evaluate CPUID, once, to reflect OSXSAVE */
- if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
+ if (OSCompareAndSwap(0, 1, &cpuid_reevaluated)) {
cpuid_set_info();
+ }
/* Verify that now selected state can be accommodated */
assert(xs0p->extended_state[ebx] == fp_state_size[AVX]);
}
}
- if (cpu_number() == master_cpu)
+ if (cpu_number() == master_cpu) {
kprintf("fpu_state: %s, state_size: %d\n",
- xstate_name[fpu_capability],
- fp_state_size[fpu_capability]);
+ xstate_name[fpu_capability],
+ fp_state_size[fpu_capability]);
+ }
fpinit();
+ current_cpu_datap()->cpu_xstate = fpu_default;
/*
* Trap wait instructions. Turn off FPU for now.
assert(ifps_zone[xs] != NULL);
ifps = zalloc(ifps_zone[xs]);
-#if DEBUG
- if (!(ALIGNED(ifps,64))) {
+#if DEBUG
+ if (!(ALIGNED(ifps, 64))) {
panic("fp_state_alloc: %p, %u, %p, %u",
- ifps, (unsigned) ifps_zone[xs]->elem_size,
- (void *) ifps_zone[xs]->free_elements,
- (unsigned) ifps_zone[xs]->alloc_size);
+ ifps, (unsigned) ifps_zone[xs]->elem_size,
+ (void *) ifps_zone[xs]->free_elements,
+ (unsigned) ifps_zone[xs]->alloc_size);
}
#endif
bzero(ifps, fp_state_size[xs]);
zfree(ifps_zone[xs], ifps);
}
-void clear_fpu(void)
+void
+clear_fpu(void)
{
set_ts();
}
-static void fpu_load_registers(void *fstate) {
+static void
+fpu_load_registers(void *fstate)
+{
struct x86_fx_thread_state *ifps = fstate;
fp_save_layout_t layout = ifps->fp_save_layout;
- assert(current_task() == NULL || \
- (thread_is_64bit(current_thread()) ? \
- (layout == FXSAVE64 || layout == XSAVE64) : \
- (layout == FXSAVE32 || layout == XSAVE32)));
+ assert(current_task() == NULL || \
+ (thread_is_64bit_addr(current_thread()) ? \
+ (layout == FXSAVE64 || layout == XSAVE64) : \
+ (layout == FXSAVE32 || layout == XSAVE32)));
assert(ALIGNED(ifps, 64));
assert(ml_get_interrupts_enabled() == FALSE);
-#if DEBUG
+#if DEBUG
if (layout == XSAVE32 || layout == XSAVE64) {
struct x86_avx_thread_state *iavx = fstate;
unsigned i;
/* Verify reserved bits in the XSAVE header*/
- if (iavx->_xh.xstate_bv & ~xstate_xmask[current_xstate()])
+ if (iavx->_xh.xstate_bv & ~xstate_xmask[current_xstate()]) {
panic("iavx->_xh.xstate_bv: 0x%llx", iavx->_xh.xstate_bv);
- for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++)
- if (iavx->_xh.xhrsvd[i])
+ }
+ for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++) {
+ if (iavx->_xh.xhrsvd[i]) {
panic("Reserved bit set");
+ }
+ }
}
if (fpu_YMM_capable) {
- if (layout != XSAVE32 && layout != XSAVE64)
+ if (layout != XSAVE32 && layout != XSAVE64) {
panic("Inappropriate layout: %u\n", layout);
+ }
}
-#endif /* DEBUG */
+#endif /* DEBUG */
switch (layout) {
- case FXSAVE64:
+ case FXSAVE64:
fxrstor64(ifps);
break;
- case FXSAVE32:
+ case FXSAVE32:
fxrstor(ifps);
break;
- case XSAVE64:
+ case XSAVE64:
xrstor64(ifps, xstate_xmask[current_xstate()]);
break;
- case XSAVE32:
+ case XSAVE32:
xrstor(ifps, xstate_xmask[current_xstate()]);
break;
- default:
+ default:
panic("fpu_load_registers() bad layout: %d\n", layout);
}
}
-static void fpu_store_registers(void *fstate, boolean_t is64) {
+static void
+fpu_store_registers(void *fstate, boolean_t is64)
+{
struct x86_fx_thread_state *ifps = fstate;
assert(ALIGNED(ifps, 64));
xstate_t xs = current_xstate();
switch (xs) {
- case FP:
+ case FP:
if (is64) {
fxsave64(fstate);
ifps->fp_save_layout = FXSAVE64;
ifps->fp_save_layout = FXSAVE32;
}
break;
- case AVX:
+ case AVX:
#if !defined(RC_HIDE_XNU_J137)
- case AVX512:
+ case AVX512:
#endif
if (is64) {
xsave64(ifps, xstate_xmask[xs]);
ifps->fp_save_layout = XSAVE32;
}
break;
- default:
+ default:
panic("fpu_store_registers() bad xstate: %d\n", xs);
}
}
void
fpu_module_init(void)
{
- if (!IS_VALID_XSTATE(fpu_default))
+ if (!IS_VALID_XSTATE(fpu_default)) {
panic("fpu_module_init: invalid extended state %u\n",
- fpu_default);
+ fpu_default);
+ }
/* We explicitly choose an allocation size of 13 pages = 64 * 832
* to eliminate waste for the 832 byte sized
* AVX XSAVE register save area.
*/
ifps_zone[fpu_default] = zinit(fp_state_size[fpu_default],
- thread_max * fp_state_size[fpu_default],
- 64 * fp_state_size[fpu_default],
- "x86 fpsave state");
+ thread_max * fp_state_size[fpu_default],
+ 64 * fp_state_size[fpu_default],
+ "x86 fpsave state");
/* To maintain the required alignment, disable
* zone debugging for this zone as that appends
*/
if (fpu_capability == AVX512) {
ifps_zone[AVX512] = zinit(fp_state_size[AVX512],
- thread_max * fp_state_size[AVX512],
- 32 * fp_state_size[AVX512],
- "x86 avx512 save state");
+ thread_max * fp_state_size[AVX512],
+ 32 * fp_state_size[AVX512],
+ "x86 avx512 save state");
zone_change(ifps_zone[AVX512], Z_ALIGNMENT_REQUIRED, TRUE);
}
#endif
* Always save old thread`s FPU context but don't load new .. allow that to fault-in.
* Switch to the new task's xstate.
*/
+
void
fpu_switch_context(thread_t old, thread_t new)
{
- struct x86_fx_thread_state *ifps;
- boolean_t is_ts_cleared = FALSE;
+ struct x86_fx_thread_state *ifps;
+ cpu_data_t *cdp = current_cpu_datap();
+ xstate_t new_xstate = new ? thread_xstate(new) : fpu_default;
assert(ml_get_interrupts_enabled() == FALSE);
ifps = (old)->machine.ifps;
-#if DEBUG
+#if DEBUG
if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) {
panic("ifps->fp_valid: %u\n", ifps->fp_valid);
}
* (such as sendsig & sigreturn) manipulate TS directly.
*/
clear_ts();
- is_ts_cleared = TRUE;
/* registers are in FPU - save to memory */
- fpu_store_registers(ifps, (thread_is_64bit(old) && is_saved_state64(old->machine.iss)));
+ boolean_t is64 = (thread_is_64bit_addr(old) &&
+ is_saved_state64(old->machine.iss));
+
+ fpu_store_registers(ifps, is64);
ifps->fp_valid = TRUE;
+
+ if (fpu_ZMM_capable && (cdp->cpu_xstate == AVX512)) {
+ xrstor64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]);
+ } else if (fpu_YMM_capable) {
+ xrstor64((struct x86_fx_thread_state *) &default_avx_state, xstate_xmask[AVX]);
+ } else {
+ fxrstor64((struct x86_fx_thread_state *)&default_fx_state);
+ }
}
-#if !defined(RC_HIDE_XNU_J137)
- xstate_t old_xstate = thread_xstate(old);
- xstate_t new_xstate = new ? thread_xstate(new) : fpu_default;
- if (old_xstate == AVX512 && ifps != 0) {
- DBG_AVX512_STATE((struct x86_avx512_thread_state *) ifps);
- /*
- * Clear upper bits for potential power-saving
- * but first ensure the TS bit is clear.
- */
- if (!is_ts_cleared)
- clear_ts();
- vzeroupper();
- }
- if (new_xstate != old_xstate) {
+
+ assertf(fpu_YMM_capable ? (xgetbv(XCR0) == xstate_xmask[cdp->cpu_xstate]) : TRUE, "XCR0 mismatch: 0x%llx 0x%x 0x%x", xgetbv(XCR0), cdp->cpu_xstate, xstate_xmask[cdp->cpu_xstate]);
+ if (new_xstate != (xstate_t) cdp->cpu_xstate) {
DBG("fpu_switch_context(%p,%p) new xstate: %s\n",
- old, new, xstate_name[new_xstate]);
+ old, new, xstate_name[new_xstate]);
xsetbv(0, xstate_xmask[new_xstate]);
+ cdp->cpu_xstate = new_xstate;
}
-#else
-#pragma unused(new)
-#endif
set_ts();
}
void
fpu_free(thread_t thread, void *fps)
{
- pcb_t pcb = THREAD_TO_PCB(thread);
-
+ pcb_t pcb = THREAD_TO_PCB(thread);
+
fp_state_free(fps, pcb->xstate);
pcb->xstate = UNDEFINED;
}
/*
- * Set the floating-point state for a thread based
- * on the FXSave formatted data. This is basically
- * the same as fpu_set_state except it uses the
- * expanded data structure.
+ * Set the floating-point state for a thread based
+ * on the FXSave formatted data. This is basically
+ * the same as fpu_set_state except it uses the
+ * expanded data structure.
* If the thread is not the current thread, it is
* not running (held). Locking needed against
* concurrent fpu_set_state or fpu_get_state.
*/
kern_return_t
fpu_set_fxstate(
- thread_t thr_act,
- thread_state_t tstate,
+ thread_t thr_act,
+ thread_state_t tstate,
thread_flavor_t f)
{
- struct x86_fx_thread_state *ifps;
- struct x86_fx_thread_state *new_ifps;
- x86_float_state64_t *state;
- pcb_t pcb;
- boolean_t old_valid, fresh_state = FALSE;
+ struct x86_fx_thread_state *ifps;
+ struct x86_fx_thread_state *new_ifps;
+ x86_float_state64_t *state;
+ pcb_t pcb;
+ boolean_t old_valid, fresh_state = FALSE;
- if (fpu_capability == UNDEFINED)
+ if (fpu_capability == UNDEFINED) {
return KERN_FAILURE;
+ }
if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
- fpu_capability < AVX)
+ fpu_capability < AVX) {
return KERN_FAILURE;
+ }
#if !defined(RC_HIDE_XNU_J137)
if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
- thread_xstate(thr_act) == AVX)
- if (!fpu_thread_promote_avx512(thr_act))
+ thread_xstate(thr_act) == AVX) {
+ if (!fpu_thread_promote_avx512(thr_act)) {
return KERN_FAILURE;
+ }
+ }
#endif
state = (x86_float_state64_t *)tstate;
* new FPU state is 'invalid'.
* Deallocate the fp state if it exists.
*/
- simple_lock(&pcb->lock);
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
pcb->ifps = 0;
* Valid incoming state. Allocate the fp state if there is none.
*/
new_ifps = 0;
- Retry:
- simple_lock(&pcb->lock);
+Retry:
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
if (ifps == 0) {
old_valid = ifps->fp_valid;
-#if DEBUG || DEVELOPMENT
+#if DEBUG || DEVELOPMENT
if ((fresh_state == FALSE) && (old_valid == FALSE) && (thr_act != current_thread())) {
panic("fpu_set_fxstate inconsistency, thread: %p not stopped", thr_act);
}
bcopy((char *)&state->fpu_fcw, (char *)ifps, fp_state_size[FP]);
switch (thread_xstate(thr_act)) {
- case UNDEFINED:
+ case UNDEFINED_FULL:
+ case FP_FULL:
+ case AVX_FULL:
+ case AVX512_FULL:
+ panic("fpu_set_fxstate() INVALID xstate: 0x%x", thread_xstate(thr_act));
+ break;
+
+ case UNDEFINED:
panic("fpu_set_fxstate() UNDEFINED xstate");
break;
- case FP:
- ifps->fp_save_layout = thread_is_64bit(thr_act) ? FXSAVE64 : FXSAVE32;
+ case FP:
+ ifps->fp_save_layout = thread_is_64bit_addr(thr_act) ? FXSAVE64 : FXSAVE32;
break;
- case AVX: {
+ case AVX: {
struct x86_avx_thread_state *iavx = (void *) ifps;
x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
- iavx->fp.fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
+ iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32;
/* Sanitize XSAVE header */
bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
iavx->_xh.xstate_bv = (XFEM_SSE | XFEM_X87);
}
break;
- }
+ }
#if !defined(RC_HIDE_XNU_J137)
- case AVX512: {
+ case AVX512: {
struct x86_avx512_thread_state *iavx = (void *) ifps;
union {
thread_state_t ts;
x86_avx512_state64_t *s64;
} xs = { .ts = tstate };
- iavx->fp.fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
+ iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32;
/* Sanitize XSAVE header */
bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
iavx->_xh.xcomp_bv = 0;
switch (f) {
- case x86_AVX512_STATE32:
- bcopy_nochk(&xs.s32->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
- bcopy_nochk(&xs.s32->fpu_zmmh0, iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG));
- bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ case x86_AVX512_STATE32:
+ bcopy_nochk(&xs.s32->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(&xs.s32->fpu_zmmh0, iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG));
+ bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
DBG_AVX512_STATE(iavx);
break;
- case x86_AVX_STATE32:
- bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ case x86_AVX_STATE32:
+ bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
break;
- case x86_AVX512_STATE64:
- bcopy_nochk(&xs.s64->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
- bcopy_nochk(&xs.s64->fpu_zmm16, iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG));
+ case x86_AVX512_STATE64:
+ bcopy_nochk(&xs.s64->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(&xs.s64->fpu_zmm16, iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG));
bcopy_nochk(&xs.s64->fpu_zmmh0, iavx->x_ZMM_Hi256, 16 * sizeof(_STRUCT_YMM_REG));
bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
DBG_AVX512_STATE(iavx);
break;
- case x86_AVX_STATE64:
+ case x86_AVX_STATE64:
bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
break;
}
break;
- }
+ }
#endif
}
boolean_t istate = ml_set_interrupts_enabled(FALSE);
ifps->fp_valid = TRUE;
/* If altering the current thread's state, disable FPU */
- if (thr_act == current_thread())
+ if (thr_act == current_thread()) {
set_ts();
+ }
ml_set_interrupts_enabled(istate);
}
simple_unlock(&pcb->lock);
- if (new_ifps != 0)
+ if (new_ifps != 0) {
fp_state_free(new_ifps, thread_xstate(thr_act));
+ }
}
return KERN_SUCCESS;
}
*/
kern_return_t
fpu_get_fxstate(
- thread_t thr_act,
- thread_state_t tstate,
+ thread_t thr_act,
+ thread_state_t tstate,
thread_flavor_t f)
{
- struct x86_fx_thread_state *ifps;
- x86_float_state64_t *state;
- kern_return_t ret = KERN_FAILURE;
- pcb_t pcb;
+ struct x86_fx_thread_state *ifps;
+ x86_float_state64_t *state;
+ kern_return_t ret = KERN_FAILURE;
+ pcb_t pcb;
- if (fpu_capability == UNDEFINED)
+ if (fpu_capability == UNDEFINED) {
return KERN_FAILURE;
+ }
if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
- fpu_capability < AVX)
+ fpu_capability < AVX) {
return KERN_FAILURE;
+ }
#if !defined(RC_HIDE_XNU_J137)
if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
- thread_xstate(thr_act) != AVX512)
+ thread_xstate(thr_act) != AVX512) {
return KERN_FAILURE;
+ }
#endif
state = (x86_float_state64_t *)tstate;
assert(thr_act != THREAD_NULL);
pcb = THREAD_TO_PCB(thr_act);
- simple_lock(&pcb->lock);
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
if (ifps == 0) {
* If the live fpu state belongs to our target
*/
if (thr_act == current_thread()) {
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
(void)ml_set_interrupts_enabled(intr);
}
if (ifps->fp_valid) {
- bcopy((char *)ifps, (char *)&state->fpu_fcw, fp_state_size[FP]);
+ bcopy((char *)ifps, (char *)&state->fpu_fcw, fp_state_size[FP]);
switch (thread_xstate(thr_act)) {
- case UNDEFINED:
+ case UNDEFINED_FULL:
+ case FP_FULL:
+ case AVX_FULL:
+ case AVX512_FULL:
+ panic("fpu_get_fxstate() INVALID xstate: 0x%x", thread_xstate(thr_act));
+ break;
+
+ case UNDEFINED:
panic("fpu_get_fxstate() UNDEFINED xstate");
break;
- case FP:
- break; /* already done */
- case AVX: {
+ case FP:
+ break; /* already done */
+ case AVX: {
struct x86_avx_thread_state *iavx = (void *) ifps;
x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
if (f == x86_AVX_STATE32) {
bcopy_nochk(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
}
break;
- }
+ }
#if !defined(RC_HIDE_XNU_J137)
- case AVX512: {
+ case AVX512: {
struct x86_avx512_thread_state *iavx = (void *) ifps;
union {
thread_state_t ts;
x86_avx512_state64_t *s64;
} xs = { .ts = tstate };
switch (f) {
- case x86_AVX512_STATE32:
- bcopy_nochk(iavx->x_Opmask, &xs.s32->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
+ case x86_AVX512_STATE32:
+ bcopy_nochk(iavx->x_Opmask, &xs.s32->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
bcopy_nochk(iavx->x_ZMM_Hi256, &xs.s32->fpu_zmmh0, 8 * sizeof(_STRUCT_YMM_REG));
bcopy_nochk(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
DBG_AVX512_STATE(iavx);
break;
- case x86_AVX_STATE32:
+ case x86_AVX_STATE32:
bcopy_nochk(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
break;
- case x86_AVX512_STATE64:
- bcopy_nochk(iavx->x_Opmask, &xs.s64->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
- bcopy_nochk(iavx->x_Hi16_ZMM, &xs.s64->fpu_zmm16, 16 * sizeof(_STRUCT_ZMM_REG));
+ case x86_AVX512_STATE64:
+ bcopy_nochk(iavx->x_Opmask, &xs.s64->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(iavx->x_Hi16_ZMM, &xs.s64->fpu_zmm16, 16 * sizeof(_STRUCT_ZMM_REG));
bcopy_nochk(iavx->x_ZMM_Hi256, &xs.s64->fpu_zmmh0, 16 * sizeof(_STRUCT_YMM_REG));
bcopy_nochk(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
DBG_AVX512_STATE(iavx);
break;
- case x86_AVX_STATE64:
+ case x86_AVX_STATE64:
bcopy_nochk(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
break;
}
break;
- }
+ }
#endif
}
void
fpu_dup_fxstate(
- thread_t parent,
- thread_t child)
+ thread_t parent,
+ thread_t child)
{
struct x86_fx_thread_state *new_ifps = NULL;
- boolean_t intr;
- pcb_t ppcb;
- xstate_t xstate = thread_xstate(parent);
+ boolean_t intr;
+ pcb_t ppcb;
+ xstate_t xstate = thread_xstate(parent);
ppcb = THREAD_TO_PCB(parent);
- if (ppcb->ifps == NULL)
- return;
+ if (ppcb->ifps == NULL) {
+ return;
+ }
- if (child->machine.ifps)
- panic("fpu_dup_fxstate: child's ifps non-null");
+ if (child->machine.ifps) {
+ panic("fpu_dup_fxstate: child's ifps non-null");
+ }
new_ifps = fp_state_alloc(xstate);
- simple_lock(&ppcb->lock);
+ simple_lock(&ppcb->lock, LCK_GRP_NULL);
if (ppcb->ifps != NULL) {
struct x86_fx_thread_state *ifps = ppcb->ifps;
- /*
+ /*
* Make sure we`ve got the latest fp state info
*/
if (current_thread() == parent) {
child->machine.ifps = new_ifps;
child->machine.xstate = xstate;
bcopy((char *)(ppcb->ifps),
- (char *)(child->machine.ifps),
- fp_state_size[xstate]);
+ (char *)(child->machine.ifps),
+ fp_state_size[xstate]);
/* Mark the new fp saved state as non-live. */
/* Temporarily disabled: radar 4647827
}
simple_unlock(&ppcb->lock);
- if (new_ifps != NULL)
- fp_state_free(new_ifps, xstate);
+ if (new_ifps != NULL) {
+ fp_state_free(new_ifps, xstate);
+ }
}
-
/*
* Initialize FPU.
- *
+ * FNINIT programs the x87 control word to 0x37f, which matches
+ * the desired default for macOS.
*/
void
fpinit(void)
{
- unsigned short control;
-
+ boolean_t istate = ml_set_interrupts_enabled(FALSE);
clear_ts();
fninit();
+#if DEBUG
+ /* We skip this power-on-default verification sequence on
+ * non-DEBUG, as dirtying the x87 control word may slow down
+ * xsave/xrstor and affect energy use.
+ */
+ unsigned short control, control2;
fnstcw(&control);
- control &= ~(FPC_PC|FPC_RC); /* Clear precision & rounding control */
- control |= (FPC_PC_64 | /* Set precision */
- FPC_RC_RN | /* round-to-nearest */
- FPC_ZE | /* Suppress zero-divide */
- FPC_OE | /* and overflow */
- FPC_UE | /* underflow */
- FPC_IE | /* Allow NaNQs and +-INF */
- FPC_DE | /* Allow denorms as operands */
- FPC_PE); /* No trap for precision loss */
+ control2 = control;
+ control &= ~(FPC_PC | FPC_RC); /* Clear precision & rounding control */
+ control |= (FPC_PC_64 | /* Set precision */
+ FPC_RC_RN | /* round-to-nearest */
+ FPC_ZE | /* Suppress zero-divide */
+ FPC_OE | /* and overflow */
+ FPC_UE | /* underflow */
+ FPC_IE | /* Allow NaNQs and +-INF */
+ FPC_DE | /* Allow denorms as operands */
+ FPC_PE); /* No trap for precision loss */
+ assert(control == control2);
fldcw(control);
-
+#endif
/* Initialize SSE/SSE2 */
__builtin_ia32_ldmxcsr(0x1f80);
+ if (fpu_YMM_capable) {
+ vzeroall();
+ } else {
+ xmmzeroall();
+ }
+ ml_set_interrupts_enabled(istate);
}
/*
void
fpnoextflt(void)
{
- boolean_t intr;
- thread_t thr_act;
- pcb_t pcb;
+ boolean_t intr;
+ thread_t thr_act;
+ pcb_t pcb;
struct x86_fx_thread_state *ifps = 0;
- xstate_t xstate = current_xstate();
+ xstate_t xstate = current_xstate();
thr_act = current_thread();
pcb = THREAD_TO_PCB(thr_act);
if (pcb->ifps == 0 && !get_interrupt_level()) {
- ifps = fp_state_alloc(xstate);
+ ifps = fp_state_alloc(xstate);
bcopy((char *)&initial_fp_state, (char *)ifps,
fp_state_size[xstate]);
- if (!thread_is_64bit(thr_act)) {
+ if (!thread_is_64bit_addr(thr_act)) {
ifps->fp_save_layout = fpu_YMM_capable ? XSAVE32 : FXSAVE32;
- }
- else
+ } else {
ifps->fp_save_layout = fpu_YMM_capable ? XSAVE64 : FXSAVE64;
+ }
ifps->fp_valid = TRUE;
}
intr = ml_set_interrupts_enabled(FALSE);
- clear_ts(); /* Enable FPU use */
+ clear_ts(); /* Enable FPU use */
if (__improbable(get_interrupt_level())) {
/* Track number of #DNA traps at interrupt context,
}
fpinit();
} else {
- if (pcb->ifps == 0) {
- pcb->ifps = ifps;
- pcb->xstate = xstate;
+ if (pcb->ifps == 0) {
+ pcb->ifps = ifps;
+ pcb->xstate = xstate;
ifps = 0;
}
/*
}
(void)ml_set_interrupts_enabled(intr);
- if (ifps)
- fp_state_free(ifps, xstate);
+ if (ifps) {
+ fp_state_free(ifps, xstate);
+ }
}
/*
void
fpextovrflt(void)
{
- thread_t thr_act = current_thread();
- pcb_t pcb;
+ thread_t thr_act = current_thread();
+ pcb_t pcb;
struct x86_fx_thread_state *ifps;
- boolean_t intr;
- xstate_t xstate = current_xstate();
+ boolean_t intr;
+ xstate_t xstate = current_xstate();
intr = ml_set_interrupts_enabled(FALSE);
- if (get_interrupt_level())
+ if (get_interrupt_level()) {
panic("FPU segment overrun exception at interrupt context\n");
- if (current_task() == kernel_task)
+ }
+ if (current_task() == kernel_task) {
panic("FPU segment overrun exception in kernel thread context\n");
+ }
/*
* This is a non-recoverable error.
* Invalidate the thread`s FPU state.
*/
pcb = THREAD_TO_PCB(thr_act);
- simple_lock(&pcb->lock);
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
ifps = pcb->ifps;
pcb->ifps = 0;
simple_unlock(&pcb->lock);
(void)ml_set_interrupts_enabled(intr);
- if (ifps)
- fp_state_free(ifps, xstate);
+ if (ifps) {
+ fp_state_free(ifps, xstate);
+ }
/*
* Raise exception.
*/
- i386_exception(EXC_BAD_ACCESS, VM_PROT_READ|VM_PROT_EXECUTE, 0);
+ i386_exception(EXC_BAD_ACCESS, VM_PROT_READ | VM_PROT_EXECUTE, 0);
/*NOTREACHED*/
}
+extern void fpxlog(int, uint32_t, uint32_t, uint32_t);
+
/*
* FPU error. Called by AST.
*/
void
fpexterrflt(void)
{
- thread_t thr_act = current_thread();
+ thread_t thr_act = current_thread();
struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
- if (get_interrupt_level())
+ if (get_interrupt_level()) {
panic("FPU error exception at interrupt context\n");
- if (current_task() == kernel_task)
+ }
+ if (current_task() == kernel_task) {
panic("FPU error exception in kernel thread context\n");
+ }
/*
* Save the FPU state and turn off the FPU.
(void)ml_set_interrupts_enabled(intr);
+ const uint32_t mask = ifps->fx_control &
+ (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE);
+ const uint32_t xcpt = ~mask & (ifps->fx_status &
+ (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE));
+ fpxlog(EXC_I386_EXTERR, ifps->fx_status, ifps->fx_control, xcpt);
/*
* Raise FPU exception.
* Locking not needed on pcb->ifps,
* since thread is running.
*/
i386_exception(EXC_ARITHMETIC,
- EXC_I386_EXTERR,
- ifps->fx_status);
+ EXC_I386_EXTERR,
+ ifps->fx_status);
/*NOTREACHED*/
}
void
fp_save(
- thread_t thr_act)
+ thread_t thr_act)
{
pcb_t pcb = THREAD_TO_PCB(thr_act);
struct x86_fx_thread_state *ifps = pcb->ifps;
assert((get_cr0() & CR0_TS) == 0);
/* registers are in FPU */
ifps->fp_valid = TRUE;
- fpu_store_registers(ifps, thread_is_64bit(thr_act));
+ fpu_store_registers(ifps, thread_is_64bit_addr(thr_act));
}
}
void
fp_load(
- thread_t thr_act)
+ thread_t thr_act)
{
pcb_t pcb = THREAD_TO_PCB(thr_act);
struct x86_fx_thread_state *ifps = pcb->ifps;
assert(ifps);
-#if DEBUG
+#if DEBUG
if (ifps->fp_valid != FALSE && ifps->fp_valid != TRUE) {
panic("fp_load() invalid fp_valid: %u, fp_save_layout: %u\n",
- ifps->fp_valid, ifps->fp_save_layout);
+ ifps->fp_valid, ifps->fp_save_layout);
}
#endif
} else {
fpu_load_registers(ifps);
}
- ifps->fp_valid = FALSE; /* in FPU */
+ ifps->fp_valid = FALSE; /* in FPU */
}
/*
void
fpSSEexterrflt(void)
{
- thread_t thr_act = current_thread();
+ thread_t thr_act = current_thread();
struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
- if (get_interrupt_level())
+ if (get_interrupt_level()) {
panic("SSE exception at interrupt context\n");
- if (current_task() == kernel_task)
+ }
+ if (current_task() == kernel_task) {
panic("SSE exception in kernel thread context\n");
+ }
/*
* Save the FPU state and turn off the FPU.
* Locking not needed on pcb->ifps,
* since thread is running.
*/
+ const uint32_t mask = (ifps->fx_MXCSR >> 7) &
+ (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE);
+ const uint32_t xcpt = ~mask & (ifps->fx_MXCSR &
+ (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE));
+ fpxlog(EXC_I386_SSEEXTERR, ifps->fx_MXCSR, ifps->fx_MXCSR, xcpt);
i386_exception(EXC_ARITHMETIC,
- EXC_I386_SSEEXTERR,
- ifps->fx_MXCSR);
+ EXC_I386_SSEEXTERR,
+ ifps->fx_MXCSR);
/*NOTREACHED*/
}
static void
fpu_savearea_promote_avx512(thread_t thread)
{
- struct x86_avx_thread_state *ifps;
- struct x86_avx512_thread_state *ifps512;
- pcb_t pcb = THREAD_TO_PCB(thread);
+ struct x86_avx_thread_state *ifps = NULL;
+ struct x86_avx512_thread_state *ifps512 = NULL;
+ pcb_t pcb = THREAD_TO_PCB(thread);
+ boolean_t do_avx512_alloc = FALSE;
DBG("fpu_upgrade_savearea(%p)\n", thread);
- ifps512 = fp_state_alloc(AVX512);
- simple_lock(&pcb->lock);
+
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
+
ifps = pcb->ifps;
if (ifps == NULL) {
- /* nothing to be done */
+ pcb->xstate = AVX512;
simple_unlock(&pcb->lock);
- fp_state_free(ifps512, AVX512);
- xsetbv(0, AVX512_XMASK);
- DBG("fpu_upgrade_savearea() NULL ifps\n");
+ if (thread != current_thread()) {
+ /* nothing to be done */
+
+ return;
+ }
+ fpnoextflt();
return;
}
+
+ if (pcb->xstate != AVX512) {
+ do_avx512_alloc = TRUE;
+ }
+ simple_unlock(&pcb->lock);
+
+ if (do_avx512_alloc == TRUE) {
+ ifps512 = fp_state_alloc(AVX512);
+ }
+
+ simple_lock(&pcb->lock, LCK_GRP_NULL);
if (thread == current_thread()) {
- boolean_t intr;
+ boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
clear_fpu();
xsetbv(0, AVX512_XMASK);
-
+ current_cpu_datap()->cpu_xstate = AVX512;
(void)ml_set_interrupts_enabled(intr);
}
assert(ifps->fp.fp_valid);
/* Allocate an AVX512 savearea and copy AVX state into it */
- bcopy(ifps, ifps512, fp_state_size[AVX]);
- pcb->ifps = ifps512;
- pcb->xstate = AVX512;
- fp_state_free(ifps, AVX);
-
+ if (pcb->xstate != AVX512) {
+ bcopy(ifps, ifps512, fp_state_size[AVX]);
+ pcb->ifps = ifps512;
+ pcb->xstate = AVX512;
+ ifps512 = NULL;
+ } else {
+ ifps = NULL;
+ }
+ /* The PCB lock is redundant in some scenarios given the higher level
+ * thread mutex, but its pre-emption disablement is relied upon here
+ */
simple_unlock(&pcb->lock);
+
+ if (ifps) {
+ fp_state_free(ifps, AVX);
+ }
+ if (ifps512) {
+ fp_state_free(ifps, AVX512);
+ }
}
/*
boolean_t
fpu_thread_promote_avx512(thread_t thread)
{
- task_t task = current_task();
+ task_t task = current_task();
- if (thread != current_thread())
+ if (thread != current_thread()) {
return FALSE;
- if (!ml_fpu_avx512_enabled())
+ }
+ if (!ml_fpu_avx512_enabled()) {
return FALSE;
+ }
fpu_savearea_promote_avx512(thread);
* return directly via thread_exception_return().
* Otherwise simply return.
*/
+#define MAX_X86_INSN_LENGTH (16)
void
fpUDflt(user_addr_t rip)
{
- uint8_t instruction_prefix;
- boolean_t is_AVX512_instruction = FALSE;
-
+ uint8_t instruction_prefix;
+ boolean_t is_AVX512_instruction = FALSE;
+ user_addr_t original_rip = rip;
do {
- if (copyin(rip, (char *) &instruction_prefix, 1))
+ /* TODO: as an optimisation, copy up to the lesser of the
+ * next page boundary or maximal prefix length in one pass
+ * rather than issue multiple copyins
+ */
+ if (copyin(rip, (char *) &instruction_prefix, 1)) {
return;
+ }
DBG("fpUDflt(0x%016llx) prefix: 0x%x\n",
- rip, instruction_prefix);
+ rip, instruction_prefix);
+ /* TODO: determine more specifically which prefixes
+ * are sane possibilities for AVX512 insns
+ */
switch (instruction_prefix) {
- case 0x2E: /* CS segment override */
- case 0x36: /* SS segment override */
- case 0x3E: /* DS segment override */
- case 0x26: /* ES segment override */
- case 0x64: /* FS segment override */
- case 0x65: /* GS segment override */
- case 0x67: /* address-size override */
+ case 0x2E: /* CS segment override */
+ case 0x36: /* SS segment override */
+ case 0x3E: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ case 0x66: /* Operand-size override */
+ case 0x67: /* address-size override */
/* Skip optional prefixes */
rip++;
+ if ((rip - original_rip) > MAX_X86_INSN_LENGTH) {
+ return;
+ }
break;
- case 0x62: /* EVEX */
- case 0xC5: /* VEX 2-byte */
- case 0xC4: /* VEX 3-byte */
+ case 0x62: /* EVEX */
+ case 0xC5: /* VEX 2-byte */
+ case 0xC4: /* VEX 3-byte */
is_AVX512_instruction = TRUE;
break;
- default:
+ default:
return;
}
} while (!is_AVX512_instruction);
/* Here if we detect attempted execution of an AVX512 instruction */
/*
- * Fail if this machine doesn't support AVX512 or
- * the current thread is (strangely) already in AVX512 mode.
+ * Fail if this machine doesn't support AVX512
*/
- if (fpu_capability != AVX512 ||
- current_xstate() == AVX512)
+ if (fpu_capability != AVX512) {
return;
+ }
assert(xgetbv(XCR0) == AVX_XMASK);
#endif /* !defined(RC_HIDE_XNU_J137) */
void
-fp_setvalid(boolean_t value) {
- thread_t thr_act = current_thread();
+fp_setvalid(boolean_t value)
+{
+ thread_t thr_act = current_thread();
struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
if (ifps) {
- ifps->fp_valid = value;
+ ifps->fp_valid = value;
if (value == TRUE) {
boolean_t istate = ml_set_interrupts_enabled(FALSE);
- clear_fpu();
+ clear_fpu();
ml_set_interrupts_enabled(istate);
}
}
}
boolean_t
-ml_fpu_avx_enabled(void) {
- return (fpu_capability >= AVX);
+ml_fpu_avx_enabled(void)
+{
+ return fpu_capability >= AVX;
}
#if !defined(RC_HIDE_XNU_J137)
boolean_t
-ml_fpu_avx512_enabled(void) {
- return (fpu_capability == AVX512);
+ml_fpu_avx512_enabled(void)
+{
+ return fpu_capability == AVX512;
}
#endif
static xstate_t
task_xstate(task_t task)
{
- if (task == TASK_NULL)
+ if (task == TASK_NULL) {
return fpu_default;
- else
+ } else {
return task->xstate;
+ }
}
static xstate_t
thread_xstate(thread_t thread)
{
xstate_t xs = THREAD_TO_PCB(thread)->xstate;
- if (xs == UNDEFINED)
+ if (xs == UNDEFINED) {
return task_xstate(thread->task);
- else
+ } else {
return xs;
+ }
}
xstate_t
fpu_switch_addrmode(thread_t thread, boolean_t is_64bit)
{
struct x86_fx_thread_state *ifps = thread->machine.ifps;
+ mp_disable_preemption();
if (ifps && ifps->fp_valid) {
if (thread_xstate(thread) == FP) {
ifps->fp_save_layout = is_64bit ? XSAVE64 : XSAVE32;
}
}
+ mp_enable_preemption();
+}
+
+static inline uint32_t
+fpsimd_pop(uintptr_t ins, int sz)
+{
+ uint32_t rv = 0;
+
+
+ while (sz >= 16) {
+ uint32_t rv1, rv2;
+ uint64_t *ins64 = (uint64_t *) ins;
+ uint64_t *ins642 = (uint64_t *) (ins + 8);
+ rv1 = __builtin_popcountll(*ins64);
+ rv2 = __builtin_popcountll(*ins642);
+ rv += rv1 + rv2;
+ sz -= 16;
+ ins += 16;
+ }
+
+ while (sz >= 4) {
+ uint32_t *ins32 = (uint32_t *) ins;
+ rv += __builtin_popcount(*ins32);
+ sz -= 4;
+ ins += 4;
+ }
+
+ while (sz > 0) {
+ char *ins8 = (char *)ins;
+ rv += __builtin_popcount(*ins8);
+ sz--;
+ ins++;
+ }
+ return rv;
+}
+
+uint32_t
+thread_fpsimd_hash(thread_t ft)
+{
+ if (fpsimd_fault_popc == 0) {
+ return 0;
+ }
+
+ uint32_t prv = 0;
+ boolean_t istate = ml_set_interrupts_enabled(FALSE);
+ struct x86_fx_thread_state *pifps = THREAD_TO_PCB(ft)->ifps;
+
+ if (pifps) {
+ if (pifps->fp_valid) {
+ prv = fpsimd_pop((uintptr_t) &pifps->fx_XMM_reg[0][0],
+ sizeof(pifps->fx_XMM_reg));
+ } else {
+ uintptr_t cr0 = get_cr0();
+ clear_ts();
+ fp_save(ft);
+ prv = fpsimd_pop((uintptr_t) &pifps->fx_XMM_reg[0][0],
+ sizeof(pifps->fx_XMM_reg));
+ pifps->fp_valid = FALSE;
+ if (cr0 & CR0_TS) {
+ set_cr0(cr0);
+ }
+ }
+ }
+ ml_set_interrupts_enabled(istate);
+ return prv;
}