/*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <kern/zalloc.h>
#include <kern/misc_protos.h>
-#include <ppc/proc_reg.h>
-
#include <vm/vm_fault.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_external.h>
#include <vm/memory_object.h>
#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
-
-#include <sys/kdebug.h>
+#include <vm/vm_shared_region.h>
#define VM_FAULT_CLASSIFY 0
-/* Zero-filled pages are marked "m->zero_fill" and put on the
- * special zero-fill inactive queue only if they belong to
- * an object at least this big.
- */
-#define VM_ZF_OBJECT_SIZE_THRESHOLD (0x200000)
-
#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
int vm_object_pagein_throttle = 16;
+/*
+ * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
+ * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
+ * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
+ * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
+ * keep the UI active so that the user has a chance to kill the offending task before the system
+ * completely hangs.
+ *
+ * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
+ * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
+ * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
+ * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
+ */
+
+boolean_t thread_is_io_throttled(void);
+
+uint64_t vm_hard_throttle_threshold;
+
+extern unsigned int dp_pages_free, dp_pages_reserve;
+
+#define NEED_TO_HARD_THROTTLE_THIS_TASK() (((dp_pages_free + dp_pages_reserve < 2000) && \
+ (get_task_resident_size(current_task()) > vm_hard_throttle_threshold) && \
+ (current_task() != kernel_task) && VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) || \
+ (vm_page_free_count < vm_page_throttle_limit && thread_is_io_throttled() && \
+ (get_task_resident_size(current_task()) > vm_hard_throttle_threshold)))
+
+
+#define HARD_THROTTLE_DELAY 20000 /* 20000 us == 20 ms */
+#define SOFT_THROTTLE_DELAY 2000 /* 2000 us == 2 ms */
+
+
extern int cs_debug;
#if MACH_KDB
extern struct db_watchpoint *db_watchpoint_list;
#endif /* MACH_KDB */
+boolean_t current_thread_aborted(void);
/* Forward declarations of internal routines. */
extern kern_return_t vm_fault_wire_fast(
extern void vm_fault_classify_init(void);
#endif
+unsigned long vm_pmap_enter_blocked = 0;
unsigned long vm_cs_validates = 0;
unsigned long vm_cs_revalidates = 0;
unsigned long vm_cs_query_modified = 0;
unsigned long vm_cs_validated_dirtied = 0;
-
+unsigned long vm_cs_bitmap_validated = 0;
#if CONFIG_ENFORCE_SIGNED_CODE
-#if SECURE_KERNEL
-const int cs_enforcement_disable=0;
+int cs_enforcement_disable=0;
#else
-int cs_enforcement_disable=1;
-#endif
+static const int cs_enforcement_disable=1;
#endif
/*
{
#if !SECURE_KERNEL
#if CONFIG_ENFORCE_SIGNED_CODE
- PE_parse_boot_argn("cs_enforcement_disable", &cs_enforcement_disable, sizeof (cs_enforcement_disable));
+ PE_parse_boot_argn("cs_enforcement_disable", &cs_enforcement_disable,
+ sizeof (cs_enforcement_disable));
#endif
PE_parse_boot_argn("cs_debug", &cs_debug, sizeof (cs_debug));
#endif
+
+ /*
+ * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
+ * computed as a percentage of available memory, and the percentage used is scaled inversely with
+ * the amount of memory. The pertange runs between 10% and 35%. We use 35% for small memory systems
+ * and reduce the value down to 10% for very large memory configurations. This helps give us a
+ * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
+ * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
+ */
+
+ vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
}
/*
/*
* default sizes given VM_BEHAVIOR_DEFAULT reference behavior
*/
-int vm_default_ahead = 0;
-int vm_default_behind = MAX_UPL_TRANSFER;
+#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
+#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
+ /* we use it to size an array on the stack */
+
+int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
}
+int vm_page_deactivate_behind_count = 0;
+
/*
* vm_page_deactivate_behind
*
vm_object_offset_t offset,
vm_behavior_t behavior)
{
- vm_page_t m = NULL;
+ int n;
+ int pages_in_run = 0;
+ int max_pages_in_run = 0;
int sequential_run;
int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ vm_object_offset_t run_offset = 0;
+ vm_object_offset_t pg_offset = 0;
+ vm_page_t m;
+ vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
+ pages_in_run = 0;
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
#endif
case VM_BEHAVIOR_RANDOM:
break;
case VM_BEHAVIOR_SEQUENTIAL:
- if (sequential_run >= (int)PAGE_SIZE)
- m = vm_page_lookup(object, offset - PAGE_SIZE_64);
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
break;
case VM_BEHAVIOR_RSEQNTL:
- if (sequential_run >= (int)PAGE_SIZE)
- m = vm_page_lookup(object, offset + PAGE_SIZE_64);
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
break;
case VM_BEHAVIOR_DEFAULT:
default:
* long enough on an object with default access behavior
* to consider it for deactivation
*/
- if ((uint64_t)sequential_run >= behind) {
+ if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
+ /*
+ * the comparisons between offset and behind are done
+ * in this kind of odd fashion in order to prevent wrap around
+ * at the end points
+ */
if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
- if (offset >= behind)
- m = vm_page_lookup(object, offset - behind);
+ if (offset >= behind) {
+ run_offset = 0 - behind;
+ pg_offset = PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
} else {
- if (offset < -behind)
- m = vm_page_lookup(object, offset + behind);
+ if (offset < -behind) {
+ run_offset = behind;
+ pg_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
}
}
break;
}
}
- if (m) {
- if (!m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
- pmap_clear_reference(m->phys_page);
- m->deactivated = TRUE;
+ for (n = 0; n < max_pages_in_run; n++) {
+ m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
+
+ if (m && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
+ page_run[pages_in_run++] = m;
+ pmap_clear_reference(m->phys_page);
+ }
+ }
+ if (pages_in_run) {
+ vm_page_lockspin_queues();
+
+ for (n = 0; n < pages_in_run; n++) {
+
+ m = page_run[n];
+
+ vm_page_deactivate_internal(m, FALSE);
+
+ vm_page_deactivate_behind_count++;
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
#endif
- return TRUE;
}
+ vm_page_unlock_queues();
+
+ return TRUE;
}
return FALSE;
}
+static int
+vm_page_throttled(void)
+{
+ clock_sec_t elapsed_sec;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ thread_t thread = current_thread();
+
+ if (thread->options & TH_OPT_VMPRIV)
+ return (0);
+
+ thread->t_page_creation_count++;
+
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK())
+ return (HARD_THROTTLE_DELAY);
+
+ if (vm_page_free_count < vm_page_throttle_limit &&
+ thread->t_page_creation_count > vm_page_creation_throttle) {
+
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+
+ elapsed_sec = tv_sec - thread->t_page_creation_time;
+
+ if (elapsed_sec <= 6 || (thread->t_page_creation_count / elapsed_sec) >= (vm_page_creation_throttle / 6)) {
+
+ if (elapsed_sec >= 60) {
+ /*
+ * we'll reset our stats to give a well behaved app
+ * that was unlucky enough to accumulate a bunch of pages
+ * over a long period of time a chance to get out of
+ * the throttled state... we reset the counter and timestamp
+ * so that if it stays under the rate limit for the next second
+ * it will be back in our good graces... if it exceeds it, it
+ * will remain in the throttled state
+ */
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = (vm_page_creation_throttle / 6) * 5;
+ }
+ ++vm_page_throttle_count;
+
+ return (SOFT_THROTTLE_DELAY);
+ }
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = 0;
+ }
+ return (0);
+}
+
+
/*
* check for various conditions that would
* prevent us from creating a ZF page...
static vm_fault_return_t
vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state)
{
- if (object->shadow_severed) {
+ int throttle_delay;
+
+ if (object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
/*
- * the shadow chain was severed
- * just have to return an error at this point
+ * Either:
+ * 1. the shadow chain was severed,
+ * 2. the purgeable object is volatile or empty and is marked
+ * to fault on access while volatile.
+ * Just have to return an error at this point
*/
if (m != VM_PAGE_NULL)
VM_PAGE_FREE(m);
return (VM_FAULT_RETRY);
}
}
- if (VM_PAGE_ZFILL_THROTTLED()) {
+ if ((throttle_delay = vm_page_throttled())) {
/*
* we're throttling zero-fills...
* treat this as if we couldn't grab a page
VM_PAGE_FREE(m);
vm_fault_cleanup(object, first_m);
+ VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+
+ delay(throttle_delay);
+
+ if (current_thread_aborted()) {
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_INTERRUPTED;
+ }
thread_interrupt_level(interruptible_state);
return (VM_FAULT_MEMORY_SHORTAGE);
m->cs_validated = FALSE;
m->cs_tainted = FALSE;
- if (no_zero_fill == TRUE)
- my_fault = DBG_NZF_PAGE_FAULT;
- else {
+ if (no_zero_fill == TRUE) {
+ my_fault = DBG_NZF_PAGE_FAULT;
+ } else {
vm_page_zero_fill(m);
VM_STAT_INCR(zero_fill_count);
assert(m->object != kernel_object);
//assert(m->pageq.next == NULL && m->pageq.prev == NULL);
- if (!IP_VALID(memory_manager_default) &&
+ if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) &&
(m->object->purgable == VM_PURGABLE_DENY ||
m->object->purgable == VM_PURGABLE_NONVOLATILE ||
m->object->purgable == VM_PURGABLE_VOLATILE )) {
- vm_page_lock_queues();
+
+ vm_page_lockspin_queues();
+
+ assert(!VM_PAGE_WIRED(m));
+
+ VM_PAGE_QUEUES_REMOVE(m);
queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
m->throttled = TRUE;
vm_page_unlock_queues();
} else {
- if (m->object->size > VM_ZF_OBJECT_SIZE_THRESHOLD) {
+ if (current_thread()->t_page_creation_count > vm_page_creation_throttle) {
m->zero_fill = TRUE;
- OSAddAtomic(1, (SInt32 *)&vm_zf_count);
+ VM_ZF_COUNT_INCR();
}
}
return (my_fault);
* be destroyed when this guarantee is no longer required.
* The "result_page" is also left busy. It is not removed
* from the pageout queues.
+ * Special Case:
+ * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
+ * fault succeeded but there's no VM page (i.e. the VM object
+ * does not actually hold VM pages, but device memory or
+ * large pages). The object is still locked and we still hold a
+ * paging_in_progress reference.
*/
+unsigned int vm_fault_page_blocked_access = 0;
vm_fault_return_t
vm_fault_page(
uint32_t try_failed_count;
int interruptible; /* how may fault be interrupted? */
memory_object_t pager;
+ vm_fault_return_t retval;
/*
* MACH page map - an optional optimization where a bit map is maintained
/*
* Recovery actions
*/
-#define PREPARE_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- vm_page_lock_queues(); \
- MACRO_END
-
-#define DO_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- PAGE_WAKEUP_DONE(m); \
- if (!m->active && !m->inactive && !m->throttled)\
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
- MACRO_END
-
#define RELEASE_PAGE(m) \
MACRO_BEGIN \
- PREPARE_RELEASE_PAGE(m); \
- DO_RELEASE_PAGE(m); \
+ PAGE_WAKEUP_DONE(m); \
+ if (!m->active && !m->inactive && !m->throttled) { \
+ vm_page_lockspin_queues(); \
+ if (!m->active && !m->inactive && !m->throttled) \
+ vm_page_activate(m); \
+ vm_page_unlock_queues(); \
+ } \
MACRO_END
#if TRACEFAULTPAGE
XPR(XPR_VM_FAULT,
"vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
- (integer_t)object, offset, fault_type, *protection, 0);
+ object, offset, fault_type, *protection, 0);
/*
* default type of fault
return (VM_FAULT_MEMORY_ERROR);
}
+ if (!object->pager_created && object->phys_contiguous) {
+ /*
+ * A physically-contiguous object without a pager:
+ * must be a "large page" object. We do not deal
+ * with VM pages for this object.
+ */
+ m = VM_PAGE_NULL;
+ goto phys_contig_object;
+ }
+
+ if (object->blocked_access) {
+ /*
+ * Access to this VM object has been blocked.
+ * Replace our "paging_in_progress" reference with
+ * a "activity_in_progress" reference and wait for
+ * access to be unblocked.
+ */
+ vm_object_activity_begin(object);
+ vm_object_paging_end(object);
+ while (object->blocked_access) {
+ vm_object_sleep(object,
+ VM_OBJECT_EVENT_UNBLOCKED,
+ THREAD_UNINT);
+ }
+ vm_fault_page_blocked_access++;
+ vm_object_paging_begin(object);
+ vm_object_activity_end(object);
+ }
+
/*
* See whether the page at 'offset' is resident
*/
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
- wait_result = PAGE_SLEEP(object, m, interruptible);
- XPR(XPR_VM_FAULT,
- "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
- counter(c_vm_fault_page_block_busy_kernel++);
+ if (m->list_req_pending) {
+ /*
+ * "list_req_pending" means that the
+ * page has been marked for a page-in
+ * or page-out operation but hasn't been
+ * grabbed yet.
+ * Since whoever marked it
+ * "list_req_pending" might now be
+ * making its way through other layers
+ * of code and possibly blocked on locks
+ * that we might be holding, we can't
+ * just block on a "busy" and
+ * "list_req_pending" page or we might
+ * deadlock with that other thread.
+ *
+ * [ For pages backed by a file on an
+ * HFS volume, we might deadlock with
+ * the HFS truncate lock, for example:
+ * A: starts a pageout or pagein
+ * operation and marks a page "busy",
+ * "list_req_pending" and either
+ * "pageout", "cleaning" or "absent".
+ * A: makes its way through the
+ * memory object (vnode) code.
+ * B: starts from the memory object
+ * side, via a write() on a file, for
+ * example.
+ * B: grabs some filesystem locks.
+ * B: attempts to grab the same page for
+ * its I/O.
+ * B: blocks here because the page is
+ * "busy".
+ * A: attempts to grab the filesystem
+ * lock we're holding.
+ * And we have a deadlock... ]
+ *
+ * Since the page hasn't been claimed
+ * by the other thread yet, it's fair
+ * for us to grab here.
+ */
+ if (m->absent) {
+ /*
+ * The page needs to be paged
+ * in. We can do it here but we
+ * need to get rid of "m", the
+ * place holder page inserted by
+ * another thread who is also
+ * trying to page it in. When
+ * that thread resumes, it will
+ * either wait for our page to
+ * arrive or it will find it
+ * already there.
+ */
+ VM_PAGE_FREE(m);
- if (wait_result != THREAD_AWAKENED) {
- vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
+ /*
+ * Retry the fault. We'll find
+ * that the page is not resident
+ * and initiate a page-in again.
+ */
+ continue;
+ }
+ if (m->pageout || m->cleaning) {
+ /*
+ * This page has been selected
+ * for a page-out but we want
+ * to bring it in. Let's just
+ * cancel the page-out...
+ */
+ vm_pageout_queue_steal(m, FALSE);
+ /*
+ * ... and clear "busy" and
+ * wake up any waiters...
+ */
+ PAGE_WAKEUP_DONE(m);
+ /*
+ * ... and continue with the
+ * "fault" handling.
+ */
+ }
+ } else {
+ wait_result = PAGE_SLEEP(object, m, interruptible);
+ XPR(XPR_VM_FAULT,
+ "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
+ object, offset,
+ m, 0, 0);
+ counter(c_vm_fault_page_block_busy_kernel++);
- if (wait_result == THREAD_RESTART)
- return (VM_FAULT_RETRY);
- else
- return (VM_FAULT_INTERRUPTED);
+ if (wait_result != THREAD_AWAKENED) {
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ if (wait_result == THREAD_RESTART)
+ return (VM_FAULT_RETRY);
+ else
+ return (VM_FAULT_INTERRUPTED);
+ }
+ continue;
}
- continue;
}
if (m->phys_page == vm_page_guard_addr) {
XPR(XPR_VM_FAULT,
"vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m,
- (integer_t)first_object, 0);
+ object, offset,
+ m,
+ first_object, 0);
if (object != first_object) {
/*
*/
my_fault = vm_fault_zero_page(m, no_zero_fill);
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
+ m->absent = TRUE;
+
break;
} else {
if (must_be_resident)
}
XPR(XPR_VM_FAULT,
"vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
- (integer_t)object, offset,
- (integer_t)next_object,
- offset+object->shadow_offset,0);
+ object, offset,
+ next_object,
+ offset+object->vo_shadow_offset,0);
- offset += object->shadow_offset;
- fault_info->lo_offset += object->shadow_offset;
- fault_info->hi_offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
+ fault_info->lo_offset += object->vo_shadow_offset;
+ fault_info->hi_offset += object->vo_shadow_offset;
access_required = VM_PROT_READ;
vm_object_lock(next_object);
#endif
XPR(XPR_VM_FAULT,
"vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
+ object, offset,
+ m, 0, 0);
/*
* take an extra ref so that object won't die
*/
return (VM_FAULT_RETRY);
}
}
- if (type_of_fault == NULL && m->speculative) {
+ if (type_of_fault == NULL && m->speculative &&
+ !(fault_info != NULL && fault_info->stealth)) {
/*
* If we were passed a non-NULL pointer for
* "type_of_fault", than we came from
* take it off the speculative queue, we'll
* let the caller of vm_fault_page deal
* with getting it onto the correct queue
+ *
+ * If the caller specified in fault_info that
+ * it wants a "stealth" fault, we also leave
+ * the page in the speculative queue.
*/
vm_page_lockspin_queues();
VM_PAGE_QUEUES_REMOVE(m);
#endif
XPR(XPR_VM_FAULT,
"vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset, (integer_t)m, 0, 0);
+ object, offset, m, 0, 0);
assert(!m->busy);
assert(!m->absent);
XPR(XPR_VM_FAULT,
"vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
- (integer_t)object, offset, 0, 0, 0);
+ object, offset, 0, 0, 0);
/*
* take an extra ref so object won't die
vm_object_lock(object);
assert(object->ref_count > 0);
- if (object->paging_in_progress > vm_object_pagein_throttle) {
- vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible);
+ if (object->paging_in_progress >= vm_object_pagein_throttle) {
+ vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
vm_object_unlock(object);
wait_result = thread_block(THREAD_CONTINUE_NULL);
XPR(XPR_VM_FAULT,
"vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
- (integer_t)object, offset, (integer_t)m,
+ object, offset, m,
access_required | wants_copy_flag, 0);
/*
return ((rc == MACH_SEND_INTERRUPTED) ?
VM_FAULT_INTERRUPTED :
VM_FAULT_MEMORY_ERROR);
+ } else {
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+ current_thread()->t_page_creation_time = tv_sec;
+ current_thread()->t_page_creation_count = 0;
}
- if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) {
+ if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
vm_fault_cleanup(object, first_m);
thread_interrupt_level(interruptible_state);
* page fault against the object's new backing
* store (different memory object).
*/
- break;
+ phys_contig_object:
+ goto done;
}
/*
* potentially a pagein fault
XPR(XPR_VM_FAULT,
"vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)object->shadow, 0);
+ object, offset, m,
+ object->shadow, 0);
next_object = object->shadow;
}
my_fault = vm_fault_zero_page(m, no_zero_fill);
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
+ m->absent = TRUE;
break;
} else {
if ((object != first_object) || must_be_resident)
vm_object_paging_end(object);
- offset += object->shadow_offset;
- fault_info->lo_offset += object->shadow_offset;
- fault_info->hi_offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
+ fault_info->lo_offset += object->vo_shadow_offset;
+ fault_info->hi_offset += object->vo_shadow_offset;
access_required = VM_PROT_READ;
vm_object_lock(next_object);
dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
#endif
#if EXTRA_ASSERTIONS
- if (m != VM_PAGE_NULL) {
- assert(m->busy && !m->absent);
- assert((first_m == VM_PAGE_NULL) ||
- (first_m->busy && !first_m->absent &&
- !first_m->active && !first_m->inactive));
- }
+ assert(m->busy && !m->absent);
+ assert((first_m == VM_PAGE_NULL) ||
+ (first_m->busy && !first_m->absent &&
+ !first_m->active && !first_m->inactive));
#endif /* EXTRA_ASSERTIONS */
/*
* If we found a page, we must have decrypted it before we
* get here...
*/
- if (m != VM_PAGE_NULL) {
- ASSERT_PAGE_DECRYPTED(m);
- }
+ ASSERT_PAGE_DECRYPTED(m);
XPR(XPR_VM_FAULT,
"vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)first_object, (integer_t)first_m);
+ object, offset, m,
+ first_object, first_m);
/*
* If the page is being written, but isn't
* we have to copy it into a new page owned
* by the top-level object.
*/
- if ((object != first_object) && (m != VM_PAGE_NULL)) {
+ if (object != first_object) {
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
}
XPR(XPR_VM_FAULT,
"vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, (integer_t)copy_m, 0);
+ object, offset,
+ m, copy_m, 0);
vm_page_copy(m, copy_m);
*/
try_failed_count = 0;
- while ((copy_object = first_object->copy) != VM_OBJECT_NULL && (m != VM_PAGE_NULL)) {
+ while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
vm_object_offset_t copy_offset;
vm_page_t copy_m;
/*
* Does the page exist in the copy?
*/
- copy_offset = first_offset - copy_object->shadow_offset;
+ copy_offset = first_offset - copy_object->vo_shadow_offset;
- if (copy_object->size <= copy_offset)
+ if (copy_object->vo_size <= copy_offset)
/*
* Copy object doesn't cover this page -- do nothing.
*/
break;
}
+
+done:
*result_page = m;
*top_page = first_m;
XPR(XPR_VM_FAULT,
"vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0);
+ object, offset, m, first_m, 0);
if (m != VM_PAGE_NULL) {
+ retval = VM_FAULT_SUCCESS;
if (my_fault == DBG_PAGEIN_FAULT) {
VM_STAT_INCR(pageins);
if (m->object->internal) {
DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
+ my_fault = DBG_PAGEIND_FAULT;
} else {
DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
+ my_fault = DBG_PAGEINV_FAULT;
}
/*
}
if (type_of_fault)
*type_of_fault = my_fault;
- } else
- vm_object_unlock(object);
+ } else {
+ retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
+ assert(first_m == VM_PAGE_NULL);
+ assert(object == first_object);
+ }
thread_interrupt_level(interruptible_state);
#if TRACEFAULTPAGE
dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
#endif
- return (VM_FAULT_SUCCESS);
+ return retval;
backoff:
thread_interrupt_level(interruptible_state);
pmap_t pmap,
vm_map_offset_t vaddr,
vm_prot_t prot,
+ vm_prot_t fault_type,
boolean_t wired,
boolean_t change_wiring,
boolean_t no_cache,
+ boolean_t cs_bypass,
int *type_of_fault)
{
- unsigned int cache_attr;
- kern_return_t kr;
+ kern_return_t kr, pe_result;
boolean_t previously_pmapped = m->pmapped;
-
+ boolean_t must_disconnect = 0;
+ boolean_t map_is_switched, map_is_switch_protected;
+
vm_object_lock_assert_held(m->object);
#if DEBUG
- mutex_assert(&vm_page_queue_lock, MA_NOTOWNED);
+ lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
#endif /* DEBUG */
if (m->phys_page == vm_page_guard_addr) {
return KERN_SUCCESS;
}
- cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
+ if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
- if (m->pmapped == FALSE) {
+ vm_object_lock_assert_exclusive(m->object);
+
+ } else if ((fault_type & VM_PROT_WRITE) == 0) {
/*
- * This is the first time this page is being
- * mapped in an address space (pmapped == FALSE).
- *
- * Part of that page may still be in the data cache
- * and not flushed to memory. In case we end up
- * accessing that page via the instruction cache,
- * we need to ensure that the 2 caches are in sync.
+ * This is not a "write" fault, so we
+ * might not have taken the object lock
+ * exclusively and we might not be able
+ * to update the "wpmapped" bit in
+ * vm_fault_enter().
+ * Let's just grant read access to
+ * the page for now and we'll
+ * soft-fault again if we need write
+ * access later...
*/
- pmap_sync_page_data_phys(m->phys_page);
+ prot &= ~VM_PROT_WRITE;
+ }
+ if (m->pmapped == FALSE) {
if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) {
/*
if (m->object->internal) {
DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
+ *type_of_fault = DBG_PAGEIND_FAULT;
} else {
DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
+ *type_of_fault = DBG_PAGEINV_FAULT;
}
current_task()->pageins++;
-
- *type_of_fault = DBG_PAGEIN_FAULT;
}
VM_PAGE_CONSUME_CLUSTERED(m);
- } else if (cache_attr != VM_WIMG_DEFAULT)
- pmap_sync_page_attributes_phys(m->phys_page);
+ }
if (*type_of_fault != DBG_COW_FAULT) {
DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
}
}
+ /* Validate code signature if necessary. */
if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
vm_object_lock_assert_exclusive(m->object);
vm_cs_revalidates++;
}
- /* VM map is locked, so 1 ref will remain on VM object */
+ /* VM map is locked, so 1 ref will remain on VM object -
+ * so no harm if vm_page_validate_cs drops the object lock */
vm_page_validate_cs(m);
}
- if (m->cs_tainted /* always invalidate a tainted page */
-#if CONFIG_ENFORCE_SIGNED_CODE
- /*
- * Code Signing enforcement invalidates an executable page that
- * has no code directory, and thus could not be validated.
- */
- || ((prot & VM_PROT_EXECUTE) && !m->cs_validated )
-#endif
- ) {
- /*
- * CODE SIGNING:
- * This page has been tainted and can not be trusted.
- * Let's notify the current process and let it take any
- * necessary precautions before we enter the tainted page
- * into its address space.
- */
- kr = KERN_SUCCESS;
-#if CONFIG_ENFORCE_SIGNED_CODE
- if (!cs_enforcement_disable) {
-#endif
- if (cs_invalid_page((addr64_t) vaddr)) {
- /* reject the tainted page: abort the page fault */
- kr = KERN_MEMORY_ERROR;
- cs_enter_tainted_rejected++;
- } else {
- /* proceed with the tainted page */
- kr = KERN_SUCCESS;
- cs_enter_tainted_accepted++;
- }
-#if CONFIG_ENFORCE_SIGNED_CODE
+#define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
+
+ map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
+ (pmap == vm_map_pmap(current_thread()->map)));
+ map_is_switch_protected = current_thread()->map->switch_protect;
+
+ /* If the map is switched, and is switch-protected, we must protect
+ * some pages from being write-faulted: immutable pages because by
+ * definition they may not be written, and executable pages because that
+ * would provide a way to inject unsigned code.
+ * If the page is immutable, we can simply return. However, we can't
+ * immediately determine whether a page is executable anywhere. But,
+ * we can disconnect it everywhere and remove the executable protection
+ * from the current map. We do that below right before we do the
+ * PMAP_ENTER.
+ */
+ if(!cs_enforcement_disable && map_is_switched &&
+ map_is_switch_protected && page_immutable(m, prot) &&
+ (prot & VM_PROT_WRITE))
+ {
+ return KERN_CODESIGN_ERROR;
+ }
+
+ /* A page could be tainted, or pose a risk of being tainted later.
+ * Check whether the receiving process wants it, and make it feel
+ * the consequences (that hapens in cs_invalid_page()).
+ * For CS Enforcement, two other conditions will
+ * cause that page to be tainted as well:
+ * - pmapping an unsigned page executable - this means unsigned code;
+ * - writeable mapping of a validated page - the content of that page
+ * can be changed without the kernel noticing, therefore unsigned
+ * code can be created
+ */
+ if (m->cs_tainted ||
+ (( !cs_enforcement_disable && !cs_bypass ) &&
+ (/* The page is unsigned and wants to be executable */
+ (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
+ /* The page should be immutable, but is in danger of being modified
+ * This is the case where we want policy from the code directory -
+ * is the page immutable or not? For now we have to assume that
+ * code pages will be immutable, data pages not.
+ * We'll assume a page is a code page if it has a code directory
+ * and we fault for execution.
+ * That is good enough since if we faulted the code page for
+ * writing in another map before, it is wpmapped; if we fault
+ * it for writing in this map later it will also be faulted for executing
+ * at the same time; and if we fault for writing in another map
+ * later, we will disconnect it from this pmap so we'll notice
+ * the change.
+ */
+ (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
+ ))
+ )
+ {
+ /* We will have a tainted page. Have to handle the special case
+ * of a switched map now. If the map is not switched, standard
+ * procedure applies - call cs_invalid_page().
+ * If the map is switched, the real owner is invalid already.
+ * There is no point in invalidating the switching process since
+ * it will not be executing from the map. So we don't call
+ * cs_invalid_page() in that case. */
+ boolean_t reject_page;
+ if(map_is_switched) {
+ assert(pmap==vm_map_pmap(current_thread()->map));
+ assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
+ reject_page = FALSE;
+ } else {
+ reject_page = cs_invalid_page((addr64_t) vaddr);
+ }
+
+ if (reject_page) {
+ /* reject the tainted page: abort the page fault */
+ kr = KERN_CODESIGN_ERROR;
+ cs_enter_tainted_rejected++;
+ } else {
+ /* proceed with the tainted page */
+ kr = KERN_SUCCESS;
+ /* Page might have been tainted before or not; now it
+ * definitively is. If the page wasn't tainted, we must
+ * disconnect it from all pmaps later. */
+ must_disconnect = !m->cs_tainted;
+ m->cs_tainted = TRUE;
+ cs_enter_tainted_accepted++;
}
-#endif
if (cs_debug || kr != KERN_SUCCESS) {
printf("CODESIGNING: vm_fault_enter(0x%llx): "
"page %p obj %p off 0x%llx *** INVALID PAGE ***\n",
(long long)vaddr, m, m->object, m->offset);
}
+
} else {
/* proceed with the valid page */
kr = KERN_SUCCESS;
}
+ /* If we have a KERN_SUCCESS from the previous checks, we either have
+ * a good page, or a tainted page that has been accepted by the process.
+ * In both cases the page will be entered into the pmap.
+ * If the page is writeable, we need to disconnect it from other pmaps
+ * now so those processes can take note.
+ */
if (kr == KERN_SUCCESS) {
/*
* NOTE: we may only hold the vm_object lock SHARED
* that's needed for an AtomicCompareAndSwap
*/
m->pmapped = TRUE;
- if (prot & VM_PROT_WRITE) {
- vm_object_lock_assert_exclusive(m->object);
- m->wpmapped = TRUE;
+ if(vm_page_is_slideable(m)) {
+ boolean_t was_busy = m->busy;
+ m->busy = TRUE;
+ kr = vm_page_slide(m, 0);
+ assert(m->busy);
+ if(!was_busy) {
+ PAGE_WAKEUP_DONE(m);
+ }
+ if (kr != KERN_SUCCESS) {
+ /*
+ * This page has not been slid correctly,
+ * do not do the pmap_enter() !
+ * Let vm_fault_enter() return the error
+ * so the caller can fail the fault.
+ */
+ goto after_the_pmap_enter;
+ }
}
- PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired);
+ if (fault_type & VM_PROT_WRITE) {
+
+ if (m->wpmapped == FALSE) {
+ vm_object_lock_assert_exclusive(m->object);
+
+ m->wpmapped = TRUE;
+ }
+ if (must_disconnect) {
+ /*
+ * We can only get here
+ * because of the CSE logic
+ */
+ assert(cs_enforcement_disable == FALSE);
+ pmap_disconnect(m->phys_page);
+ /*
+ * If we are faulting for a write, we can clear
+ * the execute bit - that will ensure the page is
+ * checked again before being executable, which
+ * protects against a map switch.
+ * This only happens the first time the page
+ * gets tainted, so we won't get stuck here
+ * to make an already writeable page executable.
+ */
+ if (!cs_bypass){
+ prot &= ~VM_PROT_EXECUTE;
+ }
+ }
+ }
+
+ /* Prevent a deadlock by not
+ * holding the object lock if we need to wait for a page in
+ * pmap_enter() - <rdar://problem/7138958> */
+ PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, 0,
+ wired, PMAP_OPTIONS_NOWAIT, pe_result);
+
+ if(pe_result == KERN_RESOURCE_SHORTAGE) {
+ /* The nonblocking version of pmap_enter did not succeed.
+ * Use the blocking version instead. Requires marking
+ * the page busy and unlocking the object */
+ boolean_t was_busy = m->busy;
+ m->busy = TRUE;
+ vm_object_unlock(m->object);
+
+ PMAP_ENTER(pmap, vaddr, m, prot, 0, wired);
+
+ /* Take the object lock again. */
+ vm_object_lock(m->object);
+
+ /* If the page was busy, someone else will wake it up.
+ * Otherwise, we have to do it now. */
+ assert(m->busy);
+ if(!was_busy) {
+ PAGE_WAKEUP_DONE(m);
+ }
+ vm_pmap_enter_blocked++;
+ }
}
+after_the_pmap_enter:
/*
* Hold queues lock to manipulate
* the page queues. Change wiring
vm_page_wire(m);
}
} else {
- vm_page_unwire(m);
+ vm_page_unwire(m, TRUE);
}
vm_page_unlock_queues();
} else {
if (kr != KERN_SUCCESS) {
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_deactivate(m);
vm_page_unlock_queues();
} else {
- if (((!m->active && !m->inactive) || no_cache) && !m->wire_count && !m->throttled) {
+ if (((!m->active && !m->inactive) || no_cache) && !VM_PAGE_WIRED(m) && !m->throttled) {
+
+ if ( vm_page_local_q && !no_cache && (*type_of_fault == DBG_COW_FAULT || *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
+ struct vpl *lq;
+ uint32_t lid;
+
+ /*
+ * we got a local queue to stuff this new page on...
+ * its safe to manipulate local and local_id at this point
+ * since we're behind an exclusive object lock and the
+ * page is not on any global queue.
+ *
+ * we'll use the current cpu number to select the queue
+ * note that we don't need to disable preemption... we're
+ * going to behind the local queue's lock to do the real
+ * work
+ */
+ lid = cpu_number();
+
+ lq = &vm_page_local_q[lid].vpl_un.vpl;
+
+ VPL_LOCK(&lq->vpl_lock);
+
+ queue_enter(&lq->vpl_queue, m, vm_page_t, pageq);
+ m->local = TRUE;
+ m->local_id = lid;
+ lq->vpl_count++;
+
+ VPL_UNLOCK(&lq->vpl_lock);
+
+ if (lq->vpl_count > vm_page_local_q_soft_limit) {
+ /*
+ * we're beyond the soft limit for the local queue
+ * vm_page_reactivate_local will 'try' to take
+ * the global page queue lock... if it can't that's
+ * ok... we'll let the queue continue to grow up
+ * to the hard limit... at that point we'll wait
+ * for the lock... once we've got the lock, we'll
+ * transfer all of the pages from the local queue
+ * to the global active queue
+ */
+ vm_page_reactivate_local(lid, FALSE, FALSE);
+ }
+ return kr;
+ }
+
vm_page_lockspin_queues();
/*
* test again now that we hold the page queue lock
*/
- if (((!m->active && !m->inactive) || no_cache) && !m->wire_count) {
+ if (((!m->active && !m->inactive) || no_cache) && !VM_PAGE_WIRED(m)) {
/*
* If this is a no_cache mapping and the page has never been
if (no_cache && (!previously_pmapped || m->no_cache)) {
m->no_cache = TRUE;
- if (m->active || m->inactive)
- VM_PAGE_QUEUES_REMOVE(m);
-
if (!m->speculative)
- vm_page_speculate(m, TRUE);
+ vm_page_speculate(m, FALSE);
} else if (!m->active && !m->inactive)
vm_page_activate(m);
boolean_t need_collapse = FALSE;
int object_lock_type = 0;
int cur_object_lock_type;
+ vm_object_t top_object = VM_OBJECT_NULL;
+ int throttle_delay;
KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
(int)((uint64_t)vaddr >> 32),
(int)vaddr,
- 0,
+ (map == kernel_map),
0,
0);
return (KERN_FAILURE);
}
+
interruptible_state = thread_interrupt_level(interruptible);
VM_STAT_INCR(faults);
}
pmap = real_map->pmap;
fault_info.interruptible = interruptible;
+ fault_info.stealth = FALSE;
+ fault_info.io_sync = FALSE;
+ fault_info.mark_zf_absent = FALSE;
/*
* If the page is wired, we must fault for the current protection
cur_offset = offset;
while (TRUE) {
+ if (!cur_object->pager_created &&
+ cur_object->phys_contiguous) /* superpage */
+ break;
+
+ if (cur_object->blocked_access) {
+ /*
+ * Access to this VM object has been blocked.
+ * Let the slow path handle it.
+ */
+ break;
+ }
+
m = vm_page_lookup(cur_object, cur_offset);
if (m != VM_PAGE_NULL) {
*/
break;
}
+ if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) {
+ if (object != cur_object)
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+ vm_object_unlock(cur_object);
+ kr = KERN_MEMORY_ERROR;
+ goto done;
+ }
+
if (m->encrypted) {
/*
* ENCRYPTED SWAP:
}
ASSERT_PAGE_DECRYPTED(m);
+ if(vm_page_is_slideable(m)) {
+ /*
+ * We might need to slide this page, and so,
+ * we want to hold the VM object exclusively.
+ */
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
+
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ vm_object_unlock(object);
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ vm_map_unlock_read(map);
+ goto RetryFault;
+ }
+ }
+
if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m)) {
+upgrade_for_validation:
/*
* We might need to validate this page
* against its code signature, so we
*/
if (object == cur_object && object->copy == VM_OBJECT_NULL) {
- if ((fault_type & VM_PROT_WRITE) == 0) {
- /*
- * This is not a "write" fault, so we
- * might not have taken the object lock
- * exclusively and we might not be able
- * to update the "wpmapped" bit in
- * vm_fault_enter().
- * Let's just grant read access to
- * the page for now and we'll
- * soft-fault again if we need write
- * access later...
- */
- prot &= ~VM_PROT_WRITE;
- }
+
goto FastPmapEnter;
}
if ((fault_type & VM_PROT_WRITE) == 0) {
- prot &= ~VM_PROT_WRITE;
-
- /*
- * Set up to map the page...
- * mark the page busy, drop
- * unneeded object lock
- */
if (object != cur_object) {
- /*
- * don't need the original object anymore
+ /*
+ * We still need to hold the top object
+ * lock here to prevent a race between
+ * a read fault (taking only "shared"
+ * locks) and a write fault (taking
+ * an "exclusive" lock on the top
+ * object.
+ * Otherwise, as soon as we release the
+ * top lock, the write fault could
+ * proceed and actually complete before
+ * the read fault, and the copied page's
+ * translation could then be overwritten
+ * by the read fault's translation for
+ * the original page.
+ *
+ * Let's just record what the top object
+ * is and we'll release it later.
*/
- vm_object_unlock(object);
+ top_object = object;
/*
* switch to the object that has the new page
* cur_object == NULL or it's been unlocked
* no paging references on either object or cur_object
*/
-#if MACH_KDB
- if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0)
- prot &= ~VM_PROT_WRITE;
-#endif
if (caller_pmap) {
kr = vm_fault_enter(m,
caller_pmap,
caller_pmap_addr,
prot,
+ fault_type,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
&type_of_fault);
} else {
kr = vm_fault_enter(m,
pmap,
vaddr,
prot,
+ fault_type,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
&type_of_fault);
}
+ if (top_object != VM_OBJECT_NULL) {
+ /*
+ * It's safe to drop the top object
+ * now that we've done our
+ * vm_fault_enter(). Any other fault
+ * in progress for that virtual
+ * address will either find our page
+ * and translation or put in a new page
+ * and translation.
+ */
+ vm_object_unlock(top_object);
+ top_object = VM_OBJECT_NULL;
+ }
+
if (need_collapse == TRUE)
vm_object_collapse(object, offset, TRUE);
-
- if (type_of_fault == DBG_PAGEIN_FAULT) {
+
+ if (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT) {
/*
* evaluate access pattern and update state
* vm_fault_deactivate_behind depends on the
}
/*
* COPY ON WRITE FAULT
- *
+ */
+ assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
+
+ if ((throttle_delay = vm_page_throttled())) {
+ /*
+ * drop all of our locks...
+ * wait until the free queue is
+ * pumped back up and then
+ * redrive the fault
+ */
+ if (object != cur_object)
+ vm_object_unlock(cur_object);
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+
+ delay(throttle_delay);
+
+ if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
+ THREAD_UNINT :
+ THREAD_ABORTSAFE))
+ goto RetryFault;
+ kr = KERN_ABORTED;
+ goto done;
+ }
+ /*
* If objects match, then
* object->copy must not be NULL (else control
* would be in previous code block), and we
*/
break;
}
- assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
-
+
/*
* This is now a shadow based copy on write
* fault -- it requires a copy up the shadow
* chain.
- *
+ */
+
+ if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
+ VM_FAULT_NEED_CS_VALIDATION(NULL, m)) {
+ goto upgrade_for_validation;
+ }
+
+ /*
* Allocate a page in the original top level
* object. Give up if allocate fails. Also
* need to remember current page, as it's the
* Zero fill fault. Page gets
* inserted into the original object.
*/
- if (cur_object->shadow_severed) {
-
+ if (cur_object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object))
+ {
if (object != cur_object)
vm_object_unlock(cur_object);
vm_object_unlock(object);
kr = KERN_MEMORY_ERROR;
goto done;
}
- if (VM_PAGE_ZFILL_THROTTLED()) {
+ if ((throttle_delay = vm_page_throttled())) {
/*
* drop all of our locks...
* wait until the free queue is
if (real_map != map)
vm_map_unlock(real_map);
- if (vm_page_wait((change_wiring) ?
+ VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+
+ delay(throttle_delay);
+
+ if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
THREAD_UNINT :
THREAD_ABORTSAFE))
goto RetryFault;
-
kr = KERN_ABORTED;
goto done;
}
/*
* On to the next level in the shadow chain
*/
- cur_offset += cur_object->shadow_offset;
+ cur_offset += cur_object->vo_shadow_offset;
new_object = cur_object->shadow;
/*
* if kr == VM_FAULT_SUCCESS, then the paging reference
* is still held along with the ref_count on the original object
*
- * if m != NULL, then the object it belongs to
- * is returned locked with a paging reference
+ * the object is returned locked with a paging reference
*
* if top_page != NULL, then it's BUSY and the
* object it belongs to has a paging reference
* but is returned unlocked
*/
- if (kr != VM_FAULT_SUCCESS) {
+ if (kr != VM_FAULT_SUCCESS &&
+ kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
/*
* we didn't succeed, lose the object reference immediately.
*/
else
kr = KERN_MEMORY_ERROR;
goto done;
+ default:
+ panic("vm_fault: unexpected error 0x%x from "
+ "vm_fault_page()\n", kr);
}
}
m = result_page;
#define RELEASE_PAGE(m) \
MACRO_BEGIN \
PAGE_WAKEUP_DONE(m); \
- vm_page_lockspin_queues(); \
- if (!m->active && !m->inactive && !m->throttled)\
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
+ if (!m->active && !m->inactive && !m->throttled) { \
+ vm_page_lockspin_queues(); \
+ if (!m->active && !m->inactive && !m->throttled) \
+ vm_page_activate(m); \
+ vm_page_unlock_queues(); \
+ } \
MACRO_END
/*
if (m != VM_PAGE_NULL) {
old_copy_object = m->object->copy;
vm_object_unlock(m->object);
- } else
+ } else {
old_copy_object = VM_OBJECT_NULL;
+ vm_object_unlock(object);
+ }
/*
* no object locks are held at this point
caller_pmap,
caller_pmap_addr,
prot,
+ fault_type,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
&type_of_fault);
} else {
kr = vm_fault_enter(m,
pmap,
vaddr,
prot,
+ fault_type,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
&type_of_fault);
}
if (kr != KERN_SUCCESS) {
/* to execute, we return with a protection failure. */
if ((fault_type & VM_PROT_EXECUTE) &&
- (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) {
+ (!pmap_eligible_for_execute((ppnum_t)(object->vo_shadow_offset >> 12)))) {
vm_map_verify_done(map, &version);
(entry->object.vm_object != NULL) &&
(entry->object.vm_object == object)) {
+ int superpage = (!object->pager_created && object->phys_contiguous)? VM_MEM_SUPERPAGE : 0;
if (caller_pmap) {
/*
* Set up a block mapped area
*/
+ assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
pmap_map_block(caller_pmap,
(addr64_t)(caller_pmap_addr - ldelta),
- (((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) +
- entry->offset + (laddr - entry->vme_start) - ldelta) >> 12,
- ((ldelta + hdelta) >> 12), prot,
- (VM_WIMG_MASK & (int)object->wimg_bits), 0);
+ (ppnum_t)((((vm_map_offset_t) (entry->object.vm_object->vo_shadow_offset)) +
+ entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
+ (uint32_t)((ldelta + hdelta) >> 12), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
} else {
/*
* Set up a block mapped area
*/
+ assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
pmap_map_block(real_map->pmap,
(addr64_t)(vaddr - ldelta),
- (((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) +
- entry->offset + (laddr - entry->vme_start) - ldelta) >> 12,
- ((ldelta + hdelta) >> 12), prot,
- (VM_WIMG_MASK & (int)object->wimg_bits), 0);
+ (ppnum_t)((((vm_map_offset_t)(entry->object.vm_object->vo_shadow_offset)) +
+ entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
+ (uint32_t)((ldelta + hdelta) >> 12), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
}
}
}
fault_info.lo_offset = entry->offset;
fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset;
fault_info.no_cache = entry->no_cache;
+ fault_info.stealth = TRUE;
+ fault_info.io_sync = FALSE;
+ fault_info.cs_bypass = FALSE;
+ fault_info.mark_zf_absent = FALSE;
/*
* Since the pages are wired down, we must be able to
vm_object_t result_object;
vm_fault_return_t result;
- fault_info.cluster_size = end_addr - va;
+ if (end_addr - va > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info.cluster_size = (vm_size_t) (end_addr - va);
+ assert(fault_info.cluster_size == end_addr - va);
+ }
do {
prot = VM_PROT_NONE;
result_object = result_page->object;
- if ((pmap) && (result_page->phys_page != vm_page_guard_addr)) {
- pmap_change_wiring(pmap,
- pmap_addr + (va - entry->vme_start), FALSE);
- }
if (deallocate) {
assert(result_page->phys_page !=
vm_page_fictitious_addr);
pmap_disconnect(result_page->phys_page);
VM_PAGE_FREE(result_page);
} else {
- vm_page_lockspin_queues();
- vm_page_unwire(result_page);
- vm_page_unlock_queues();
+ if ((pmap) && (result_page->phys_page != vm_page_guard_addr))
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+
+
+ if (VM_PAGE_WIRED(result_page)) {
+ vm_page_lockspin_queues();
+ vm_page_unwire(result_page, TRUE);
+ vm_page_unlock_queues();
+ }
+ if(entry->zero_wired_pages) {
+ pmap_zero_page(result_page->phys_page);
+ entry->zero_wired_pages = FALSE;
+ }
+
PAGE_WAKEUP_DONE(result_page);
}
vm_fault_cleanup(result_object, top_page);
#define RELEASE_PAGE(m) { \
PAGE_WAKEUP_DONE(m); \
vm_page_lockspin_queues(); \
- vm_page_unwire(m); \
+ vm_page_unwire(m, TRUE); \
vm_page_unlock_queues(); \
}
pmap,
pmap_addr,
prot,
+ prot,
TRUE,
FALSE,
FALSE,
+ FALSE,
&type_of_fault);
done:
vm_object_lock(object);
PAGE_WAKEUP_DONE(page);
- vm_page_lockspin_queues();
- if (!page->active && !page->inactive && !page->throttled)
- vm_page_activate(page);
- vm_page_unlock_queues();
+ if (!page->active && !page->inactive && !page->throttled) {
+ vm_page_lockspin_queues();
+ if (!page->active && !page->inactive && !page->throttled)
+ vm_page_activate(page);
+ vm_page_unlock_queues();
+ }
vm_fault_cleanup(object, top_page);
}
object = page->object;
vm_object_lock(object);
vm_page_lockspin_queues();
- vm_page_unwire(page);
+ vm_page_unwire(page, TRUE);
vm_page_unlock_queues();
vm_object_paging_end(object);
vm_object_unlock(object);
vm_map_size_t amount_left;
vm_object_t old_copy_object;
kern_return_t error = 0;
+ vm_fault_return_t result;
vm_map_size_t part_size;
struct vm_object_fault_info fault_info_src;
fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
fault_info_src.no_cache = FALSE;
+ fault_info_src.stealth = TRUE;
+ fault_info_src.io_sync = FALSE;
+ fault_info_src.cs_bypass = FALSE;
+ fault_info_src.mark_zf_absent = FALSE;
fault_info_dst.interruptible = interruptible;
fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
fault_info_dst.no_cache = FALSE;
+ fault_info_dst.stealth = TRUE;
+ fault_info_dst.io_sync = FALSE;
+ fault_info_dst.cs_bypass = FALSE;
+ fault_info_dst.mark_zf_absent = FALSE;
do { /* while (amount_left > 0) */
/*
vm_object_lock(dst_object);
vm_object_paging_begin(dst_object);
- fault_info_dst.cluster_size = amount_left;
+ if (amount_left > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info_dst.cluster_size = (vm_size_t) amount_left;
+ assert(fault_info_dst.cluster_size == amount_left);
+ }
XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
- switch (vm_fault_page(dst_object,
- vm_object_trunc_page(dst_offset),
- VM_PROT_WRITE|VM_PROT_READ,
- FALSE,
- &dst_prot, &dst_page, &dst_top_page,
- (int *)0,
- &error,
- dst_map->no_zero_fill,
- FALSE, &fault_info_dst)) {
+ result = vm_fault_page(dst_object,
+ vm_object_trunc_page(dst_offset),
+ VM_PROT_WRITE|VM_PROT_READ,
+ FALSE,
+ &dst_prot, &dst_page, &dst_top_page,
+ (int *)0,
+ &error,
+ dst_map->no_zero_fill,
+ FALSE, &fault_info_dst);
+ switch (result) {
case VM_FAULT_SUCCESS:
break;
case VM_FAULT_RETRY:
/* fall thru */
case VM_FAULT_INTERRUPTED:
RETURN(MACH_SEND_INTERRUPTED);
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail the copy */
+ vm_object_paging_end(dst_object);
+ vm_object_unlock(dst_object);
+ /*FALLTHROUGH*/
case VM_FAULT_MEMORY_ERROR:
if (error)
return (error);
else
return(KERN_MEMORY_ERROR);
+ default:
+ panic("vm_fault_copy: unexpected error 0x%x from "
+ "vm_fault_page()\n", result);
}
assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
src_prot = VM_PROT_READ;
vm_object_paging_begin(src_object);
- fault_info_src.cluster_size = amount_left;
+ if (amount_left > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info_src.cluster_size = (vm_size_t) amount_left;
+ assert(fault_info_src.cluster_size == amount_left);
+ }
XPR(XPR_VM_FAULT,
"vm_fault_copy(2) -> vm_fault_page\n",
0,0,0,0,0);
- switch (vm_fault_page(
- src_object,
- vm_object_trunc_page(src_offset),
- VM_PROT_READ, FALSE,
- &src_prot,
- &result_page, &src_top_page,
- (int *)0, &error, FALSE,
- FALSE, &fault_info_src)) {
-
+ result = vm_fault_page(
+ src_object,
+ vm_object_trunc_page(src_offset),
+ VM_PROT_READ, FALSE,
+ &src_prot,
+ &result_page, &src_top_page,
+ (int *)0, &error, FALSE,
+ FALSE, &fault_info_src);
+
+ switch (result) {
case VM_FAULT_SUCCESS:
break;
case VM_FAULT_RETRY:
case VM_FAULT_INTERRUPTED:
vm_fault_copy_dst_cleanup(dst_page);
RETURN(MACH_SEND_INTERRUPTED);
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail */
+ vm_object_paging_end(src_object);
+ vm_object_unlock(src_object);
+ /*FALLTHROUGH*/
case VM_FAULT_MEMORY_ERROR:
vm_fault_copy_dst_cleanup(dst_page);
if (error)
return (error);
else
return(KERN_MEMORY_ERROR);
+ default:
+ panic("vm_fault_copy(2): unexpected "
+ "error 0x%x from "
+ "vm_fault_page()\n", result);
}
}
if (result_page == VM_PAGE_NULL) {
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
vm_page_part_zero_fill(dst_page,
- dst_po, part_size);
+ (vm_offset_t) dst_po,
+ (vm_size_t) part_size);
} else {
- vm_page_part_copy(result_page, src_po,
- dst_page, dst_po, part_size);
+ assert((vm_offset_t) src_po == src_po);
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
+ vm_page_part_copy(result_page,
+ (vm_offset_t) src_po,
+ dst_page,
+ (vm_offset_t) dst_po,
+ (vm_size_t)part_size);
if(!dst_page->dirty){
vm_object_lock(dst_object);
dst_page->dirty = TRUE;
break;
}
- offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
object = object->shadow;
level++;
continue;
assert(object->pager_ready);
pager = object->pager;
-
+ assert(object->paging_in_progress);
kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
if (kr != KERN_SUCCESS) {
blobs = NULL;
return;
}
+#if CHECK_CS_VALIDATION_BITMAP
+ if ( vnode_pager_cs_check_validation_bitmap( page->object->pager, trunc_page(page->offset + page->object->paging_offset), CS_BITMAP_CHECK ) == KERN_SUCCESS) {
+ page->cs_validated = TRUE;
+ page->cs_tainted = FALSE;
+ vm_cs_bitmap_validated++;
+ return;
+ }
+#endif
vm_object_lock_assert_exclusive(page->object);
object = page->object;
/* validate the mapped page */
vm_page_validate_cs_mapped(page, (const void *) kaddr);
+#if CHECK_CS_VALIDATION_BITMAP
+ if ( page->cs_validated == TRUE && page->cs_tainted == FALSE ) {
+ vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page( offset + object->paging_offset), CS_BITMAP_SET );
+ }
+#endif
assert(page->busy);
assert(object == page->object);
vm_object_lock_assert_exclusive(object);