/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*/
#include <mach_rt.h>
-#include <mach_kdb.h>
#include <mach_kdp.h>
#include <mach_ldebug.h>
#include <gprof.h>
#include <kern/kern_types.h>
#include <kern/startup.h>
+#include <kern/timer_queue.h>
#include <kern/processor.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/machine.h>
#include <kern/pms.h>
#include <kern/misc_protos.h>
+#include <kern/etimer.h>
+#include <kern/kalloc.h>
+#include <kern/queue.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <profiling/profile-mk.h>
-#include <i386/mp.h>
-#include <i386/mp_events.h>
-#include <i386/mp_slave_boot.h>
-#include <i386/lapic.h>
-#include <i386/ipl.h>
-#include <i386/fpu.h>
-#include <i386/cpuid.h>
#include <i386/proc_reg.h>
-#include <i386/machine_cpu.h>
-#include <i386/misc_protos.h>
-#include <i386/mtrr.h>
-#include <i386/vmx/vmx_cpu.h>
-#include <i386/postcode.h>
-#include <i386/perfmon.h>
#include <i386/cpu_threads.h>
#include <i386/mp_desc.h>
+#include <i386/misc_protos.h>
#include <i386/trap.h>
+#include <i386/postcode.h>
#include <i386/machine_routines.h>
+#include <i386/mp.h>
+#include <i386/mp_events.h>
+#include <i386/lapic.h>
+#include <i386/cpuid.h>
+#include <i386/fpu.h>
+#include <i386/machine_cpu.h>
#include <i386/pmCPU.h>
+#if CONFIG_MCA
#include <i386/machine_check.h>
+#endif
+#include <i386/acpi.h>
#include <chud/chud_xnu.h>
#include <chud/chud_xnu_private.h>
#include <sys/kdebug.h>
-#if MACH_KDB
-#include <i386/db_machdep.h>
-#include <ddb/db_aout.h>
-#include <ddb/db_access.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_variables.h>
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_expr.h>
-#endif
#if MP_DEBUG
#define PAUSE delay(1000000)
#define PAUSE
#endif /* MP_DEBUG */
-#define FULL_SLAVE_INIT (NULL)
-#define FAST_SLAVE_INIT ((void *)(uintptr_t)1)
+/* Debugging/test trace events: */
+#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
+#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
+#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
+#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
+#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
-void slave_boot_init(void);
+#define ABS(v) (((v) > 0)?(v):-(v))
-#if MACH_KDB
-static void mp_kdb_wait(void);
-volatile boolean_t mp_kdb_trap = FALSE;
-volatile long mp_kdb_ncpus = 0;
-#endif
+void slave_boot_init(void);
+void i386_cpu_IPI(int cpu);
-static void mp_kdp_wait(boolean_t flush);
+static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
static void mp_rendezvous_action(void);
static void mp_broadcast_action(void);
static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
-static int cpu_signal_handler(x86_saved_state_t *regs);
static int NMIInterruptHandler(x86_saved_state_t *regs);
-boolean_t smp_initialized = FALSE;
+boolean_t smp_initialized = FALSE;
+uint32_t TSC_sync_margin = 0xFFF;
volatile boolean_t force_immediate_debugger_NMI = FALSE;
volatile boolean_t pmap_tlb_flush_timeout = FALSE;
-
decl_simple_lock_data(,mp_kdp_lock);
-decl_mutex_data(static, mp_cpu_boot_lock);
+decl_lck_mtx_data(static, mp_cpu_boot_lock);
+lck_mtx_ext_t mp_cpu_boot_lock_ext;
/* Variables needed for MP rendezvous. */
decl_simple_lock_data(,mp_rv_lock);
-static void (*mp_rv_setup_func)(void *arg);
-static void (*mp_rv_action_func)(void *arg);
-static void (*mp_rv_teardown_func)(void *arg);
-static void *mp_rv_func_arg;
-static int mp_rv_ncpus;
+static void (*mp_rv_setup_func)(void *arg);
+static void (*mp_rv_action_func)(void *arg);
+static void (*mp_rv_teardown_func)(void *arg);
+static void *mp_rv_func_arg;
+static volatile int mp_rv_ncpus;
/* Cache-aligned barriers: */
static volatile long mp_rv_entry __attribute__((aligned(64)));
static volatile long mp_rv_exit __attribute__((aligned(64)));
static volatile long mp_rv_complete __attribute__((aligned(64)));
+volatile uint64_t debugger_entry_time;
+volatile uint64_t debugger_exit_time;
+#if MACH_KDP
+#include <kdp/kdp.h>
+extern int kdp_snapshot;
+static struct _kdp_xcpu_call_func {
+ kdp_x86_xcpu_func_t func;
+ void *arg0, *arg1;
+ volatile long ret;
+ volatile uint16_t cpu;
+} kdp_xcpu_call_func = {
+ .cpu = KDP_XCPU_NONE
+};
+
+#endif
+
/* Variables needed for MP broadcast. */
static void (*mp_bc_action_func)(void *arg);
static void *mp_bc_func_arg;
static int mp_bc_ncpus;
static volatile long mp_bc_count;
-decl_mutex_data(static, mp_bc_lock);
+decl_lck_mtx_data(static, mp_bc_lock);
+lck_mtx_ext_t mp_bc_lock_ext;
static volatile int debugger_cpu = -1;
+volatile long NMIPI_acks = 0;
+static void mp_cpus_call_init(void);
+static void mp_cpus_call_cpu_init(void);
static void mp_cpus_call_action(void);
+static void mp_call_PM(void);
+
+char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
+
+/* PAL-related routines */
+boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
+ int ipi_vector, i386_intr_func_t ipi_handler);
+void i386_start_cpu(int lapic_id, int cpu_num);
+void i386_send_NMI(int cpu);
#if GPROF
/*
#define GPROF_INIT()
#endif /* GPROF */
+static lck_grp_t smp_lck_grp;
+static lck_grp_attr_t smp_lck_grp_attr;
+
+#define NUM_CPU_WARM_CALLS 20
+struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
+queue_head_t cpu_warm_call_list;
+decl_simple_lock_data(static, cpu_warm_lock);
+
+typedef struct cpu_warm_data {
+ timer_call_t cwd_call;
+ uint64_t cwd_deadline;
+ int cwd_result;
+} *cpu_warm_data_t;
+
+static void cpu_prewarm_init(void);
+static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
+static void _cpu_warm_setup(void *arg);
+static timer_call_t grab_warm_timer_call(void);
+static void free_warm_timer_call(timer_call_t call);
+
void
smp_init(void)
{
simple_lock_init(&mp_kdp_lock, 0);
simple_lock_init(&mp_rv_lock, 0);
- mutex_init(&mp_cpu_boot_lock, 0);
- mutex_init(&mp_bc_lock, 0);
+ lck_grp_attr_setdefault(&smp_lck_grp_attr);
+ lck_grp_init(&smp_lck_grp, "i386_smp", &smp_lck_grp_attr);
+ lck_mtx_init_ext(&mp_cpu_boot_lock, &mp_cpu_boot_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
+ lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
console_init();
- /* Local APIC? */
- if (!lapic_probe())
+ if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
+ LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler))
return;
- lapic_init();
- lapic_configure();
- lapic_set_intr_func(LAPIC_NMI_INTERRUPT, NMIInterruptHandler);
- lapic_set_intr_func(LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler);
-
cpu_thread_init();
GPROF_INIT();
DBGLOG_CPU_INIT(master_cpu);
- slave_boot_init();
+ mp_cpus_call_init();
+ mp_cpus_call_cpu_init();
+ if (PE_parse_boot_argn("TSC_sync_margin",
+ &TSC_sync_margin, sizeof(TSC_sync_margin))) {
+ kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin);
+ } else if (cpuid_vmm_present()) {
+ kprintf("TSC sync margin disabled\n");
+ TSC_sync_margin = 0;
+ }
smp_initialized = TRUE;
+ cpu_prewarm_init();
+
return;
}
+typedef struct {
+ int target_cpu;
+ int target_lapic;
+ int starter_cpu;
+} processor_start_info_t;
+static processor_start_info_t start_info __attribute__((aligned(64)));
+
+/*
+ * Cache-alignment is to avoid cross-cpu false-sharing interference.
+ */
+static volatile long tsc_entry_barrier __attribute__((aligned(64)));
+static volatile long tsc_exit_barrier __attribute__((aligned(64)));
+static volatile uint64_t tsc_target __attribute__((aligned(64)));
+
/*
* Poll a CPU to see when it has marked itself as running.
*/
static void
mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay)
{
- while (iters-- > 0) {
+ while (iters-- > 0) {
if (cpu_datap(slot_num)->cpu_running)
- break;
+ break;
delay(usecdelay);
}
}
-kern_return_t
-intel_startCPU(
- int slot_num)
-{
-
- int i = 1000;
- int lapic = cpu_to_lapic[slot_num];
-
- assert(lapic != -1);
-
- DBGLOG_CPU_INIT(slot_num);
-
- DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
- DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) IdlePTD);
-
- /*
- * Initialize (or re-initialize) the descriptor tables for this cpu.
- * Propagate processor mode to slave.
- */
- if (cpu_mode_is64bit())
- cpu_desc_init64(cpu_datap(slot_num), FALSE);
- else
- cpu_desc_init(cpu_datap(slot_num), FALSE);
-
- /* Serialize use of the slave boot stack. */
- mutex_lock(&mp_cpu_boot_lock);
-
- mp_disable_preemption();
- if (slot_num == get_cpu_number()) {
- mp_enable_preemption();
- mutex_unlock(&mp_cpu_boot_lock);
- return KERN_SUCCESS;
- }
-
- LAPIC_WRITE(ICRD, lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_INIT);
- delay(10000);
-
- LAPIC_WRITE(ICRD, lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12));
- delay(200);
-
- LAPIC_WRITE(ICRD, lapic << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_ICR_DM_STARTUP|(MP_BOOT>>12));
- delay(200);
-
-#ifdef POSTCODE_DELAY
- /* Wait much longer if postcodes are displayed for a delay period. */
- i *= 10000;
-#endif
- mp_wait_for_cpu_up(slot_num, i, 10000);
-
- mp_enable_preemption();
- mutex_unlock(&mp_cpu_boot_lock);
-
- if (!cpu_datap(slot_num)->cpu_running) {
- kprintf("Failed to start CPU %02d\n", slot_num);
- printf("Failed to start CPU %02d, rebooting...\n", slot_num);
- delay(1000000);
- cpu_shutdown();
- return KERN_SUCCESS;
- } else {
- kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
- return KERN_SUCCESS;
- }
-}
-
/*
* Quickly bring a CPU back online which has been halted.
*/
kern_return_t
intel_startCPU_fast(int slot_num)
{
- kern_return_t rc;
+ kern_return_t rc;
/*
* Try to perform a fast restart
* longer than a full restart would require so it should be more
* than long enough.
*/
+
mp_wait_for_cpu_up(slot_num, 30000, 1);
mp_enable_preemption();
*/
if (cpu_datap(slot_num)->cpu_running)
return(KERN_SUCCESS);
- else
+ else
return(KERN_FAILURE);
}
-extern char slave_boot_base[];
-extern char slave_boot_end[];
-extern void slave_pstart(void);
+static void
+started_cpu(void)
+{
+ /* Here on the started cpu with cpu_running set TRUE */
+
+ if (TSC_sync_margin &&
+ start_info.target_cpu == cpu_number()) {
+ /*
+ * I've just started-up, synchronize again with the starter cpu
+ * and then snap my TSC.
+ */
+ tsc_target = 0;
+ atomic_decl(&tsc_entry_barrier, 1);
+ while (tsc_entry_barrier != 0)
+ ; /* spin for starter and target at barrier */
+ tsc_target = rdtsc64();
+ atomic_decl(&tsc_exit_barrier, 1);
+ }
+}
-void
-slave_boot_init(void)
+static void
+start_cpu(void *arg)
{
- DBG("V(slave_boot_base)=%p P(slave_boot_base)=%p MP_BOOT=%p sz=0x%x\n",
- slave_boot_base,
- kvtophys((vm_offset_t) slave_boot_base),
- MP_BOOT,
- slave_boot_end-slave_boot_base);
+ int i = 1000;
+ processor_start_info_t *psip = (processor_start_info_t *) arg;
- /*
- * Copy the boot entry code to the real-mode vector area MP_BOOT.
- * This is in page 1 which has been reserved for this purpose by
- * machine_startup() from the boot processor.
- * The slave boot code is responsible for switching to protected
- * mode and then jumping to the common startup, _start().
- */
- bcopy_phys(kvtophys((vm_offset_t) slave_boot_base),
- (addr64_t) MP_BOOT,
- slave_boot_end-slave_boot_base);
+ /* Ignore this if the current processor is not the starter */
+ if (cpu_number() != psip->starter_cpu)
+ return;
+
+ i386_start_cpu(psip->target_lapic, psip->target_cpu);
+
+#ifdef POSTCODE_DELAY
+ /* Wait much longer if postcodes are displayed for a delay period. */
+ i *= 10000;
+#endif
+ mp_wait_for_cpu_up(psip->target_cpu, i*100, 100);
+ if (TSC_sync_margin &&
+ cpu_datap(psip->target_cpu)->cpu_running) {
+ /*
+ * Compare the TSC from the started processor with ours.
+ * Report and log/panic if it diverges by more than
+ * TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin
+ * can be overriden by boot-arg (with 0 meaning no checking).
+ */
+ uint64_t tsc_starter;
+ int64_t tsc_delta;
+ atomic_decl(&tsc_entry_barrier, 1);
+ while (tsc_entry_barrier != 0)
+ ; /* spin for both processors at barrier */
+ tsc_starter = rdtsc64();
+ atomic_decl(&tsc_exit_barrier, 1);
+ while (tsc_exit_barrier != 0)
+ ; /* spin for target to store its TSC */
+ tsc_delta = tsc_target - tsc_starter;
+ kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n",
+ psip->target_cpu, tsc_target, tsc_delta, tsc_delta);
+ if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) {
+#if DEBUG
+ panic(
+#else
+ printf(
+#endif
+ "Unsynchronized TSC for cpu %d: "
+ "0x%016llx, delta 0x%llx\n",
+ psip->target_cpu, tsc_target, tsc_delta);
+ }
+ }
+}
+
+kern_return_t
+intel_startCPU(
+ int slot_num)
+{
+ int lapic = cpu_to_lapic[slot_num];
+ boolean_t istate;
+
+ assert(lapic != -1);
+
+ DBGLOG_CPU_INIT(slot_num);
+
+ DBG("intel_startCPU(%d) lapic_id=%d\n", slot_num, lapic);
+ DBG("IdlePTD(%p): 0x%x\n", &IdlePTD, (int) (uintptr_t)IdlePTD);
/*
- * Zero a stack area above the boot code.
+ * Initialize (or re-initialize) the descriptor tables for this cpu.
+ * Propagate processor mode to slave.
*/
- DBG("bzero_phys 0x%x sz 0x%x\n",MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
- bzero_phys((addr64_t)MP_BOOTSTACK+MP_BOOT-0x400, 0x400);
+ if (cpu_mode_is64bit())
+ cpu_desc_init64(cpu_datap(slot_num));
+ else
+ cpu_desc_init(cpu_datap(slot_num));
+
+ /* Serialize use of the slave boot stack, etc. */
+ lck_mtx_lock(&mp_cpu_boot_lock);
+
+ istate = ml_set_interrupts_enabled(FALSE);
+ if (slot_num == get_cpu_number()) {
+ ml_set_interrupts_enabled(istate);
+ lck_mtx_unlock(&mp_cpu_boot_lock);
+ return KERN_SUCCESS;
+ }
+
+ start_info.starter_cpu = cpu_number();
+ start_info.target_cpu = slot_num;
+ start_info.target_lapic = lapic;
+ tsc_entry_barrier = 2;
+ tsc_exit_barrier = 2;
/*
- * Set the location at the base of the stack to point to the
- * common startup entry.
+ * Perform the processor startup sequence with all running
+ * processors rendezvous'ed. This is required during periods when
+ * the cache-disable bit is set for MTRR/PAT initialization.
*/
- DBG("writing 0x%x at phys 0x%x\n",
- kvtophys((vm_offset_t) &slave_pstart), MP_MACH_START+MP_BOOT);
- ml_phys_write_word(MP_MACH_START+MP_BOOT,
- (unsigned int)kvtophys((vm_offset_t) &slave_pstart));
-
- /* Flush caches */
- __asm__("wbinvd");
+ mp_rendezvous_no_intrs(start_cpu, (void *) &start_info);
+
+ start_info.target_cpu = 0;
+
+ ml_set_interrupts_enabled(istate);
+ lck_mtx_unlock(&mp_cpu_boot_lock);
+
+ if (!cpu_datap(slot_num)->cpu_running) {
+ kprintf("Failed to start CPU %02d\n", slot_num);
+ printf("Failed to start CPU %02d, rebooting...\n", slot_num);
+ delay(1000000);
+ halt_cpu();
+ return KERN_SUCCESS;
+ } else {
+ kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
+ return KERN_SUCCESS;
+ }
}
#if MP_DEBUG
{
int my_cpu;
volatile int *my_word;
-#if MACH_KDB && MACH_ASSERT
- int i=100;
-#endif /* MACH_KDB && MACH_ASSERT */
- mp_disable_preemption();
+ SCHED_STATS_IPI(current_processor());
my_cpu = cpu_number();
- my_word = ¤t_cpu_datap()->cpu_signals;
+ my_word = &cpu_data_ptr[my_cpu]->cpu_signals;
+ /* Store the initial set of signals for diagnostics. New
+ * signals could arrive while these are being processed
+ * so it's no more than a hint.
+ */
+
+ cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word;
do {
-#if MACH_KDB && MACH_ASSERT
- if (i-- <= 0)
- Debugger("cpu_signal_handler: signals did not clear");
-#endif /* MACH_KDB && MACH_ASSERT */
#if MACH_KDP
if (i_bit(MP_KDP, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_KDP);
* current thread's stack (if any) is synchronized with the
* context at the moment of the interrupt, to facilitate
* access through the debugger.
- * XXX 64-bit state?
*/
- sync_iss_to_iks(saved_state32(regs));
- mp_kdp_wait(TRUE);
+ sync_iss_to_iks(regs);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ mp_kdp_wait(TRUE, FALSE);
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
} else
#endif /* MACH_KDP */
if (i_bit(MP_TLB_FLUSH, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_AST);
i_bit_clear(MP_AST, my_word);
ast_check(cpu_to_processor(my_cpu));
-#if MACH_KDB
- } else if (i_bit(MP_KDB, my_word)) {
-
- i_bit_clear(MP_KDB, my_word);
- current_cpu_datap()->cpu_kdb_is_slave++;
- mp_kdb_wait();
- current_cpu_datap()->cpu_kdb_is_slave--;
-#endif /* MACH_KDB */
} else if (i_bit(MP_RENDEZVOUS, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
i_bit_clear(MP_RENDEZVOUS, my_word);
DBGLOG(cpu_handle,my_cpu,MP_CALL);
i_bit_clear(MP_CALL, my_word);
mp_cpus_call_action();
+ } else if (i_bit(MP_CALL_PM, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CALL_PM);
+ i_bit_clear(MP_CALL_PM, my_word);
+ mp_call_PM();
}
} while (*my_word);
- mp_enable_preemption();
-
return 0;
}
NMIInterruptHandler(x86_saved_state_t *regs)
{
void *stackptr;
-
+
+ if (panic_active() && !panicDebugging) {
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ for(;;)
+ cpu_pause();
+ }
+
+ atomic_incl(&NMIPI_acks, 1);
sync_iss_to_iks_unconditionally(regs);
+#if defined (__i386__)
__asm__ volatile("movl %%ebp, %0" : "=m" (stackptr));
+#elif defined (__x86_64__)
+ __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr));
+#endif
if (cpu_number() == debugger_cpu)
goto NMExit;
- if (pmap_tlb_flush_timeout == TRUE && current_cpu_datap()->cpu_tlb_invalid) {
+ if (spinlock_timed_out) {
+ char pstr[192];
+ snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n", cpu_number(), spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
+ panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
+ } else if (pmap_tlb_flush_timeout == TRUE) {
char pstr[128];
- snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor\n", cpu_number());
- panic_i386_backtrace(stackptr, 10, &pstr[0], TRUE, regs);
- panic_io_port_read();
- mca_check_save();
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
- for(;;) {
- cpu_pause();
- }
+ snprintf(&pstr[0], sizeof(pstr), "Panic(CPU %d): Unresponsive processor (this CPU did not acknowledge interrupts) TLB state:0x%x\n", cpu_number(), current_cpu_datap()->cpu_tlb_invalid);
+ panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs);
}
- mp_kdp_wait(FALSE);
+
+#if MACH_KDP
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ current_cpu_datap()->cpu_NMI_acknowledged = TRUE;
+ mp_kdp_wait(FALSE, pmap_tlb_flush_timeout || spinlock_timed_out || panic_active());
+ if (pmsafe_debug && !kdp_snapshot)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+#endif
NMExit:
return 1;
}
-#ifdef MP_DEBUG
-int max_lock_loops = 1000000;
-int trappedalready = 0; /* (BRINGUP */
-#endif /* MP_DEBUG */
-
-static void
-i386_cpu_IPI(int cpu)
-{
- boolean_t state;
-
-#ifdef MP_DEBUG
- if(cpu_datap(cpu)->cpu_signals & 6) { /* (BRINGUP) */
- kprintf("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
- }
-#endif /* MP_DEBUG */
-
-#if MACH_KDB
-#ifdef MP_DEBUG
- if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) { /* (BRINGUP) */
- if(kdb_cpu != cpu_number()) {
- trappedalready = 1;
- panic("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n",
- cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
- }
- }
-#endif /* MP_DEBUG */
-#endif
-
- /* Wait for previous interrupt to be delivered... */
-#ifdef MP_DEBUG
- int pending_busy_count = 0;
- while (LAPIC_READ(ICR) & LAPIC_ICR_DS_PENDING) {
- if (++pending_busy_count > max_lock_loops)
- panic("i386_cpu_IPI() deadlock\n");
-#else
- while (LAPIC_READ(ICR) & LAPIC_ICR_DS_PENDING) {
-#endif /* MP_DEBUG */
- cpu_pause();
- }
-
- state = ml_set_interrupts_enabled(FALSE);
- LAPIC_WRITE(ICRD, cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT);
- LAPIC_WRITE(ICR, LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED);
- (void) ml_set_interrupts_enabled(state);
-}
/*
* cpu_interrupt is really just to be used by the scheduler to
void
cpu_interrupt(int cpu)
{
+ boolean_t did_IPI = FALSE;
+
if (smp_initialized
&& pmCPUExitIdle(cpu_datap(cpu))) {
i386_cpu_IPI(cpu);
+ did_IPI = TRUE;
}
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, did_IPI, 0, 0, 0);
}
/*
void
cpu_NMI_interrupt(int cpu)
{
- boolean_t state;
-
if (smp_initialized) {
- state = ml_set_interrupts_enabled(FALSE);
-/* Program the interrupt command register */
- LAPIC_WRITE(ICRD, cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT);
-/* The vector is ignored in this case--the target CPU will enter on the
- * NMI vector.
- */
- LAPIC_WRITE(ICR, LAPIC_VECTOR(INTERPROCESSOR)|LAPIC_ICR_DM_NMI);
- (void) ml_set_interrupts_enabled(state);
+ i386_send_NMI(cpu);
+ }
+}
+
+static void (* volatile mp_PM_func)(void) = NULL;
+
+static void
+mp_call_PM(void)
+{
+ assert(!ml_get_interrupts_enabled());
+
+ if (mp_PM_func != NULL)
+ mp_PM_func();
+}
+
+void
+cpu_PM_interrupt(int cpu)
+{
+ assert(!ml_get_interrupts_enabled());
+
+ if (mp_PM_func != NULL) {
+ if (cpu == cpu_number())
+ mp_PM_func();
+ else
+ i386_signal_cpu(cpu, MP_CALL_PM, ASYNC);
}
}
+void
+PM_interrupt_register(void (*fn)(void))
+{
+ mp_PM_func = fn;
+}
+
void
i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode)
{
return;
if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(0xef800020 | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
DBGLOG(cpu_signal, cpu, event);
}
}
if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(0xef800020 | DBG_FUNC_END, cpu, 0, 0, 0, 0);
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
}
/*
unsigned int cpu;
unsigned int my_cpu = cpu_number();
- assert(hw_lock_held(&x86_topo_lock));
+ assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
unsigned int cpu;
unsigned int ncpus = 0;
- assert(hw_lock_held(&x86_topo_lock));
+ assert(hw_lock_held((hw_lock_t)&x86_topo_lock));
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu_datap(cpu)->cpu_running)
handle_pending_TLB_flushes();
cpu_pause();
}
+
/* action function */
if (mp_rv_action_func != NULL)
mp_rv_action_func(mp_rv_func_arg);
+
/* spin on exit rendezvous */
atomic_incl(&mp_rv_exit, 1);
while (mp_rv_exit < mp_rv_ncpus) {
arg);
}
-void
-handle_pending_TLB_flushes(void)
+
+typedef struct {
+ queue_chain_t link; /* queue linkage */
+ void (*func)(void *,void *); /* routine to call */
+ void *arg0; /* routine's 1st arg */
+ void *arg1; /* routine's 2nd arg */
+ volatile long *countp; /* completion counter */
+} mp_call_t;
+
+
+typedef struct {
+ queue_head_t queue;
+ decl_simple_lock_data(, lock);
+} mp_call_queue_t;
+#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
+static mp_call_queue_t mp_cpus_call_freelist;
+static mp_call_queue_t mp_cpus_call_head[MAX_CPUS];
+
+static inline boolean_t
+mp_call_head_lock(mp_call_queue_t *cqp)
+{
+ boolean_t intrs_enabled;
+
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ simple_lock(&cqp->lock);
+
+ return intrs_enabled;
+}
+
+static inline boolean_t
+mp_call_head_is_locked(mp_call_queue_t *cqp)
+{
+ return !ml_get_interrupts_enabled() &&
+ hw_lock_held((hw_lock_t)&cqp->lock);
+}
+
+static inline void
+mp_call_head_unlock(mp_call_queue_t *cqp, boolean_t intrs_enabled)
+{
+ simple_unlock(&cqp->lock);
+ ml_set_interrupts_enabled(intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_alloc(void)
+{
+ mp_call_t *callp = NULL;
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ intrs_enabled = mp_call_head_lock(cqp);
+ if (!queue_empty(&cqp->queue))
+ queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ mp_call_head_unlock(cqp, intrs_enabled);
+
+ return callp;
+}
+
+static inline void
+mp_call_free(mp_call_t *callp)
+{
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ intrs_enabled = mp_call_head_lock(cqp);
+ queue_enter_first(&cqp->queue, callp, typeof(callp), link);
+ mp_call_head_unlock(cqp, intrs_enabled);
+}
+
+static inline mp_call_t *
+mp_call_dequeue_locked(mp_call_queue_t *cqp)
{
- volatile int *my_word = ¤t_cpu_datap()->cpu_signals;
+ mp_call_t *callp = NULL;
- if (i_bit(MP_TLB_FLUSH, my_word)) {
- DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
- i_bit_clear(MP_TLB_FLUSH, my_word);
- pmap_update_interrupt();
+ assert(mp_call_head_is_locked(cqp));
+ if (!queue_empty(&cqp->queue))
+ queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ return callp;
+}
+
+static inline void
+mp_call_enqueue_locked(
+ mp_call_queue_t *cqp,
+ mp_call_t *callp)
+{
+ queue_enter(&cqp->queue, callp, typeof(callp), link);
+}
+
+/* Called on the boot processor to initialize global structures */
+static void
+mp_cpus_call_init(void)
+{
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+
+ DBG("mp_cpus_call_init()\n");
+ simple_lock_init(&cqp->lock, 0);
+ queue_init(&cqp->queue);
+}
+
+/*
+ * Called by each processor to add call buffers to the free list
+ * and to initialize the per-cpu call queue.
+ * Also called but ignored on slave processors on re-start/wake.
+ */
+static void
+mp_cpus_call_cpu_init(void)
+{
+ int i;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu_number()];
+ mp_call_t *callp;
+
+ if (cqp->queue.next != NULL)
+ return; /* restart/wake case: called already */
+
+ simple_lock_init(&cqp->lock, 0);
+ queue_init(&cqp->queue);
+ for (i = 0; i < MP_CPUS_CALL_BUFS_PER_CPU; i++) {
+ callp = (mp_call_t *) kalloc(sizeof(mp_call_t));
+ mp_call_free(callp);
}
+
+ DBG("mp_cpus_call_init() done on cpu %d\n", cpu_number());
}
/*
* This is called from cpu_signal_handler() to process an MP_CALL signal.
+ * And also from i386_deactivate_cpu() when a cpu is being taken offline.
*/
static void
mp_cpus_call_action(void)
{
- if (mp_rv_action_func != NULL)
- mp_rv_action_func(mp_rv_func_arg);
- atomic_incl(&mp_rv_complete, 1);
+ mp_call_queue_t *cqp;
+ boolean_t intrs_enabled;
+ mp_call_t *callp;
+ mp_call_t call;
+
+ assert(!ml_get_interrupts_enabled());
+ cqp = &mp_cpus_call_head[cpu_number()];
+ intrs_enabled = mp_call_head_lock(cqp);
+ while ((callp = mp_call_dequeue_locked(cqp)) != NULL) {
+ /* Copy call request to the stack to free buffer */
+ call = *callp;
+ mp_call_free(callp);
+ if (call.func != NULL) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_ACTION,
+ call.func, call.arg0, call.arg1, call.countp, 0);
+ call.func(call.arg0, call.arg1);
+ (void) mp_call_head_lock(cqp);
+ }
+ if (call.countp != NULL)
+ atomic_incl(call.countp, 1);
+ }
+ mp_call_head_unlock(cqp, intrs_enabled);
}
/*
* mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
- * If the mode is SYNC, the function is called serially on the target cpus
- * in logical cpu order. If the mode is ASYNC, the function is called in
- * parallel over the specified cpus.
+ * Possible modes are:
+ * SYNC: function is called serially on target cpus in logical cpu order
+ * waiting for each call to be acknowledged before proceeding
+ * ASYNC: function call is queued to the specified cpus
+ * waiting for all calls to complete in parallel before returning
+ * NOSYNC: function calls are queued
+ * but we return before confirmation of calls completing.
* The action function may be NULL.
* The cpu mask may include the local cpu. Offline cpus are ignored.
- * Return does not occur until the function has completed on all cpus.
- * The return value is the number of cpus on which the function was called.
+ * The return value is the number of cpus on which the call was made or queued.
*/
cpu_t
mp_cpus_call(
mp_sync_t mode,
void (*action_func)(void *),
void *arg)
+{
+ return mp_cpus_call1(
+ cpus,
+ mode,
+ (void (*)(void *,void *))action_func,
+ arg,
+ NULL,
+ NULL,
+ NULL);
+}
+
+static void
+mp_cpus_call_wait(boolean_t intrs_enabled,
+ long mp_cpus_signals,
+ volatile long *mp_cpus_calls)
+{
+ mp_call_queue_t *cqp;
+
+ cqp = &mp_cpus_call_head[cpu_number()];
+
+ while (*mp_cpus_calls < mp_cpus_signals) {
+ if (!intrs_enabled) {
+ /* Sniffing w/o locking */
+ if (!queue_empty(&cqp->queue))
+ mp_cpus_call_action();
+ handle_pending_TLB_flushes();
+ }
+ cpu_pause();
+ }
+}
+
+cpu_t
+mp_cpus_call1(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *, void *),
+ void *arg0,
+ void *arg1,
+ cpumask_t *cpus_calledp,
+ cpumask_t *cpus_notcalledp)
{
cpu_t cpu;
- boolean_t intrs_enabled = ml_get_interrupts_enabled();
+ boolean_t intrs_enabled = FALSE;
boolean_t call_self = FALSE;
+ cpumask_t cpus_called = 0;
+ cpumask_t cpus_notcalled = 0;
+ long mp_cpus_signals = 0;
+ volatile long mp_cpus_calls = 0;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_START,
+ cpus, mode, VM_KERNEL_UNSLIDE(action_func), arg0, arg1);
if (!smp_initialized) {
if ((cpus & CPUMASK_SELF) == 0)
- return 0;
+ goto out;
if (action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
+ intrs_enabled = ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
ml_set_interrupts_enabled(intrs_enabled);
}
- return 1;
+ call_self = TRUE;
+ goto out;
}
-
- /* obtain rendezvous lock */
- simple_lock(&mp_rv_lock);
- /* Use the rendezvous data structures for this call */
- mp_rv_action_func = action_func;
- mp_rv_func_arg = arg;
- mp_rv_ncpus = 0;
- mp_rv_complete = 0;
-
- simple_lock(&x86_topo_lock);
+ /*
+ * Queue the call for each non-local requested cpu.
+ * The topo lock is not taken. Instead we sniff the cpu_running state
+ * and then re-check it after taking the call lock. A cpu being taken
+ * offline runs the action function after clearing the cpu_running.
+ */
for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
!cpu_datap(cpu)->cpu_running)
* we defer our call until we have signalled all others.
*/
call_self = TRUE;
+ cpus_called |= cpu_to_cpumask(cpu);
if (mode == SYNC && action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
- ml_set_interrupts_enabled(intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ VM_KERNEL_UNSLIDE(action_func),
+ arg0, arg1, 0, 0);
+ action_func(arg0, arg1);
}
} else {
/*
- * Bump count of other cpus called and signal this cpu.
- * Note: we signal asynchronously regardless of mode
- * because we wait on mp_rv_complete either here
- * (if mode == SYNC) or later (if mode == ASYNC).
- * While spinning, poll for TLB flushes if interrupts
- * are disabled.
+ * Here to queue a call to cpu and IPI.
+ * Spinning for request buffer unless NOSYNC.
*/
- mp_rv_ncpus++;
- i386_signal_cpu(cpu, MP_CALL, ASYNC);
- if (mode == SYNC) {
- simple_unlock(&x86_topo_lock);
- while (mp_rv_complete < mp_rv_ncpus) {
- if (!intrs_enabled)
+ mp_call_t *callp = NULL;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
+
+ queue_call:
+ if (callp == NULL)
+ callp = mp_call_alloc();
+ intrs_enabled = mp_call_head_lock(cqp);
+ if (!cpu_datap(cpu)->cpu_running) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ continue;
+ }
+ if (mode == NOSYNC) {
+ if (callp == NULL) {
+ cpus_notcalled |= cpu_to_cpumask(cpu);
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ continue;
+ }
+ callp->countp = NULL;
+ } else {
+ if (callp == NULL) {
+ mp_call_head_unlock(cqp, intrs_enabled);
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_NOBUF,
+ cpu, 0, 0, 0, 0);
+ if (!intrs_enabled) {
+ /* Sniffing w/o locking */
+ if (!queue_empty(&cqp->queue))
+ mp_cpus_call_action();
handle_pending_TLB_flushes();
+ }
cpu_pause();
+ goto queue_call;
}
- simple_lock(&x86_topo_lock);
+ callp->countp = &mp_cpus_calls;
+ }
+ callp->func = action_func;
+ callp->arg0 = arg0;
+ callp->arg1 = arg1;
+ mp_call_enqueue_locked(cqp, callp);
+ mp_cpus_signals++;
+ cpus_called |= cpu_to_cpumask(cpu);
+ i386_signal_cpu(cpu, MP_CALL, ASYNC);
+ mp_call_head_unlock(cqp, intrs_enabled);
+ if (mode == SYNC) {
+ mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
}
}
}
- simple_unlock(&x86_topo_lock);
- /*
- * If calls are being made asynchronously,
- * make the local call now if needed, and then
- * wait for all other cpus to finish their calls.
- */
- if (mode == ASYNC) {
- if (call_self && action_func != NULL) {
- (void) ml_set_interrupts_enabled(FALSE);
- action_func(arg);
+ /* Call locally if mode not SYNC */
+ if (mode != SYNC && call_self ) {
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL_LOCAL,
+ VM_KERNEL_UNSLIDE(action_func), arg0, arg1, 0, 0);
+ if (action_func != NULL) {
+ ml_set_interrupts_enabled(FALSE);
+ action_func(arg0, arg1);
ml_set_interrupts_enabled(intrs_enabled);
}
- while (mp_rv_complete < mp_rv_ncpus) {
- if (!intrs_enabled)
- handle_pending_TLB_flushes();
- cpu_pause();
- }
}
-
- /* Determine the number of cpus called */
- cpu = mp_rv_ncpus + (call_self ? 1 : 0);
- simple_unlock(&mp_rv_lock);
+ /* For ASYNC, now wait for all signaled cpus to complete their calls */
+ if (mode == ASYNC) {
+ mp_cpus_call_wait(intrs_enabled, mp_cpus_signals, &mp_cpus_calls);
+ }
+
+out:
+ cpu = (cpu_t) mp_cpus_signals + (call_self ? 1 : 0);
+
+ if (cpus_calledp)
+ *cpus_calledp = cpus_called;
+ if (cpus_notcalledp)
+ *cpus_notcalledp = cpus_notcalled;
+
+ KERNEL_DEBUG_CONSTANT(
+ TRACE_MP_CPUS_CALL | DBG_FUNC_END,
+ cpu, cpus_called, cpus_notcalled, 0, 0);
return cpu;
}
+
static void
mp_broadcast_action(void)
{
mp_bc_action_func(mp_bc_func_arg);
/* if we're the last one through, wake up the instigator */
- if (atomic_decl_and_test((volatile long *)&mp_bc_count, 1))
- thread_wakeup(((event_t)(unsigned int *) &mp_bc_count));
+ if (atomic_decl_and_test(&mp_bc_count, 1))
+ thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
}
/*
}
/* obtain broadcast lock */
- mutex_lock(&mp_bc_lock);
+ lck_mtx_lock(&mp_bc_lock);
/* set static function pointers */
mp_bc_action_func = action_func;
mp_bc_func_arg = arg;
- assert_wait(&mp_bc_count, THREAD_UNINT);
+ assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
/*
* signal other processors, which will call mp_broadcast_action()
clear_wait(current_thread(), THREAD_AWAKENED);
/* release lock */
- mutex_unlock(&mp_bc_lock);
+ lck_mtx_unlock(&mp_bc_lock);
}
void
simple_lock(&x86_topo_lock);
cdp->cpu_running = TRUE;
+ started_cpu();
simple_unlock(&x86_topo_lock);
+ flush_tlb_raw();
}
+extern void etimer_timer_expire(void *arg);
+
void
i386_deactivate_cpu(void)
{
cdp->cpu_running = FALSE;
simple_unlock(&x86_topo_lock);
+ timer_queue_shutdown(&cdp->rtclock_timer.queue);
+ cdp->rtclock_timer.deadline = EndOfAllTime;
+ mp_cpus_call(cpu_to_cpumask(master_cpu), ASYNC, etimer_timer_expire, NULL);
+
/*
* In case a rendezvous/braodcast/call was initiated to this cpu
* before we cleared cpu_running, we must perform any actions due.
mp_kdp_enter(void)
{
unsigned int cpu;
- unsigned int ncpus;
+ unsigned int ncpus = 0;
unsigned int my_cpu;
uint64_t tsc_timeout;
* stopping others.
*/
mp_kdp_state = ml_set_interrupts_enabled(FALSE);
+ my_cpu = cpu_number();
+
+ if (my_cpu == (unsigned) debugger_cpu) {
+ kprintf("\n\nRECURSIVE DEBUGGER ENTRY DETECTED\n\n");
+ kdp_reset();
+ return;
+ }
+
+ cpu_datap(my_cpu)->debugger_entry_time = mach_absolute_time();
simple_lock(&mp_kdp_lock);
- if (pmsafe_debug)
+ if (pmsafe_debug && !kdp_snapshot)
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
while (mp_kdp_trap) {
simple_unlock(&mp_kdp_lock);
DBG("mp_kdp_enter() race lost\n");
- mp_kdp_wait(TRUE);
+#if MACH_KDP
+ mp_kdp_wait(TRUE, FALSE);
+#endif
simple_lock(&mp_kdp_lock);
}
- my_cpu = cpu_number();
debugger_cpu = my_cpu;
+ ncpus = 1;
mp_kdp_ncpus = 1; /* self */
mp_kdp_trap = TRUE;
+ debugger_entry_time = cpu_datap(my_cpu)->debugger_entry_time;
simple_unlock(&mp_kdp_lock);
/*
*/
DBG("mp_kdp_enter() signaling other processors\n");
if (force_immediate_debugger_NMI == FALSE) {
- for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
ncpus++;
* "unsafe-to-interrupt" points such as the trampolines,
* but neither do we want to lose state by waiting too long.
*/
- tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000);
+ tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000 * 10ULL);
+
+ if (virtualized)
+ tsc_timeout = ~0ULL;
while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
/*
}
DBG("mp_kdp_enter() %u processors done %s\n",
- mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+ (int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
postcode(MP_KDP_ENTER);
}
retval = TRUE;
return retval;
}
-
+
+long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
+ void *arg0, void *arg1)
+{
+ if (lcpu > (real_ncpus - 1))
+ return -1;
+
+ if (func == NULL)
+ return -1;
+
+ kdp_xcpu_call_func.func = func;
+ kdp_xcpu_call_func.ret = -1;
+ kdp_xcpu_call_func.arg0 = arg0;
+ kdp_xcpu_call_func.arg1 = arg1;
+ kdp_xcpu_call_func.cpu = lcpu;
+ DBG("Invoking function %p on CPU %d\n", func, (int32_t)lcpu);
+ while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE)
+ cpu_pause();
+ return kdp_xcpu_call_func.ret;
+}
+
+static void
+kdp_x86_xcpu_poll(void)
+{
+ if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) {
+ kdp_xcpu_call_func.ret =
+ kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0,
+ kdp_xcpu_call_func.arg1,
+ cpu_number());
+ kdp_xcpu_call_func.cpu = KDP_XCPU_NONE;
+ }
+}
static void
-mp_kdp_wait(boolean_t flush)
+mp_kdp_wait(boolean_t flush, boolean_t isNMI)
{
DBG("mp_kdp_wait()\n");
/* If an I/O port has been specified as a debugging aid, issue a read */
panic_io_port_read();
+#if CONFIG_MCA
/* If we've trapped due to a machine-check, save MCA registers */
mca_check_save();
-
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+#endif
atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
- while (mp_kdp_trap) {
+ while (mp_kdp_trap || (isNMI == TRUE)) {
/*
* A TLB shootdown request may be pending--this would result
* in the requesting processor waiting in PMAP_UPDATE_TLBS()
*/
if (flush)
handle_pending_TLB_flushes();
+
+ kdp_x86_xcpu_poll();
cpu_pause();
}
- if (pmsafe_debug)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
-
atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
DBG("mp_kdp_wait() done\n");
}
DBG("mp_kdp_exit()\n");
debugger_cpu = -1;
atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
+
+ debugger_exit_time = mach_absolute_time();
+
mp_kdp_trap = FALSE;
__asm__ volatile("mfence");
cpu_pause();
}
- if (pmsafe_debug)
+ if (pmsafe_debug && !kdp_snapshot)
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ debugger_exit_time = mach_absolute_time();
+
DBG("mp_kdp_exit() done\n");
(void) ml_set_interrupts_enabled(mp_kdp_state);
postcode(0);
}
#endif /* MACH_KDP */
+boolean_t
+mp_recent_debugger_activity() {
+ uint64_t abstime = mach_absolute_time();
+ return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
+ ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance));
+}
+
/*ARGSUSED*/
void
init_ast_check(
cause_ast_check(
processor_t processor)
{
- int cpu = PROCESSOR_DATA(processor, slot_num);
+ int cpu = processor->cpu_id;
if (cpu != cpu_number()) {
i386_signal_cpu(cpu, MP_AST, ASYNC);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), cpu, 1, 0, 0, 0);
}
}
-#if MACH_KDB
-/*
- * invoke kdb on slave processors
- */
-
void
-remote_kdb(void)
+slave_machine_init(void *param)
{
- unsigned int my_cpu = cpu_number();
- unsigned int cpu;
- int kdb_ncpus;
- uint64_t tsc_timeout = 0;
-
- mp_kdb_trap = TRUE;
- mp_kdb_ncpus = 1;
- for (kdb_ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
- continue;
- kdb_ncpus++;
- i386_signal_cpu(cpu, MP_KDB, ASYNC);
- }
- DBG("remote_kdb() waiting for (%d) processors to suspend\n",kdb_ncpus);
-
- tsc_timeout = rdtsc64() + (kdb_ncpus * 100 * 1000 * 1000);
+ /*
+ * Here in process context, but with interrupts disabled.
+ */
+ DBG("slave_machine_init() CPU%d\n", get_cpu_number());
- while (mp_kdb_ncpus != kdb_ncpus && rdtsc64() < tsc_timeout) {
- /*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
+ if (param == FULL_SLAVE_INIT) {
+ /*
+ * Cold start
*/
- handle_pending_TLB_flushes();
-
- cpu_pause();
+ clock_init();
+ cpu_machine_init(); /* Interrupts enabled hereafter */
+ mp_cpus_call_cpu_init();
}
- DBG("mp_kdp_enter() %d processors done %s\n",
- mp_kdb_ncpus, (mp_kdb_ncpus == kdb_ncpus) ? "OK" : "timed out");
}
-static void
-mp_kdb_wait(void)
+#undef cpu_number
+int cpu_number(void)
{
- DBG("mp_kdb_wait()\n");
-
- /* If an I/O port has been specified as a debugging aid, issue a read */
- panic_io_port_read();
-
- atomic_incl(&mp_kdb_ncpus, 1);
- while (mp_kdb_trap) {
- /*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
- */
- handle_pending_TLB_flushes();
-
- cpu_pause();
- }
- atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
- DBG("mp_kdb_wait() done\n");
+ return get_cpu_number();
}
-/*
- * Clear kdb interrupt
- */
-
-void
-clear_kdb_intr(void)
+static void
+cpu_prewarm_init()
{
- mp_disable_preemption();
- i_bit_clear(MP_KDB, ¤t_cpu_datap()->cpu_signals);
- mp_enable_preemption();
+ int i;
+
+ simple_lock_init(&cpu_warm_lock, 0);
+ queue_init(&cpu_warm_call_list);
+ for (i = 0; i < NUM_CPU_WARM_CALLS; i++) {
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)&cpu_warm_call_arr[i]);
+ }
}
-void
-mp_kdb_exit(void)
+static timer_call_t
+grab_warm_timer_call()
{
- DBG("mp_kdb_exit()\n");
- atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
- mp_kdb_trap = FALSE;
- __asm__ volatile("mfence");
-
- while (mp_kdb_ncpus > 0) {
- /*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
- */
- handle_pending_TLB_flushes();
+ spl_t x;
+ timer_call_t call = NULL;
- cpu_pause();
+ x = splsched();
+ simple_lock(&cpu_warm_lock);
+ if (!queue_empty(&cpu_warm_call_list)) {
+ call = (timer_call_t) dequeue_head(&cpu_warm_call_list);
}
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
- DBG("mp_kdb_exit() done\n");
+ return call;
}
-#endif /* MACH_KDB */
-
static void
-do_init_slave(boolean_t fast_restart)
+free_warm_timer_call(timer_call_t call)
{
- void *init_param = FULL_SLAVE_INIT;
-
- postcode(I386_INIT_SLAVE);
-
- if (!fast_restart) {
- /* Ensure that caching and write-through are enabled */
- set_cr0(get_cr0() & ~(CR0_NW|CR0_CD));
-
- DBG("i386_init_slave() CPU%d: phys (%d) active.\n",
- get_cpu_number(), get_cpu_phys_number());
-
- assert(!ml_get_interrupts_enabled());
+ spl_t x;
- cpu_mode_init(current_cpu_datap());
-
- mca_cpu_init();
-
- lapic_configure();
- LAPIC_DUMP();
- LAPIC_CPU_MAP_DUMP();
-
- init_fpu();
-
- mtrr_update_cpu();
- } else
- init_param = FAST_SLAVE_INIT;
-
- /* resume VT operation */
- vmx_resume();
-
- if (!fast_restart)
- pat_init();
-
- cpu_thread_init(); /* not strictly necessary */
-
- cpu_init(); /* Sets cpu_running which starter cpu waits for */
-
- slave_main(init_param);
-
- panic("do_init_slave() returned from slave_main()");
+ x = splsched();
+ simple_lock(&cpu_warm_lock);
+ enqueue_head(&cpu_warm_call_list, (queue_entry_t)call);
+ simple_unlock(&cpu_warm_lock);
+ splx(x);
}
/*
- * i386_init_slave() is called from pstart.
- * We're in the cpu's interrupt stack with interrupts disabled.
- * At this point we are in legacy mode. We need to switch on IA32e
- * if the mode is set to 64-bits.
+ * Runs in timer call context (interrupts disabled).
*/
-void
-i386_init_slave(void)
+static void
+cpu_warm_timer_call_func(
+ call_entry_param_t p0,
+ __unused call_entry_param_t p1)
{
- do_init_slave(FALSE);
+ free_warm_timer_call((timer_call_t)p0);
+ return;
}
/*
- * i386_init_slave_fast() is called from pmCPUHalt.
- * We're running on the idle thread and need to fix up
- * some accounting and get it so that the scheduler sees this
- * CPU again.
+ * Runs with interrupts disabled on the CPU we wish to warm (i.e. CPU 0).
*/
-void
-i386_init_slave_fast(void)
-{
- do_init_slave(TRUE);
-}
-
-void
-slave_machine_init(void *param)
+static void
+_cpu_warm_setup(
+ void *arg)
{
- /*
- * Here in process context, but with interrupts disabled.
- */
- DBG("slave_machine_init() CPU%d\n", get_cpu_number());
+ cpu_warm_data_t cwdp = (cpu_warm_data_t)arg;
- if (param == FULL_SLAVE_INIT) {
- /*
- * Cold start
- */
- clock_init();
+ timer_call_enter(cwdp->cwd_call, cwdp->cwd_deadline, TIMER_CALL_CRITICAL | TIMER_CALL_LOCAL);
+ cwdp->cwd_result = 0;
- cpu_machine_init(); /* Interrupts enabled hereafter */
- }
+ return;
}
-#undef cpu_number()
-int cpu_number(void)
+/*
+ * Not safe to call with interrupts disabled.
+ */
+kern_return_t
+ml_interrupt_prewarm(
+ uint64_t deadline)
{
- return get_cpu_number();
-}
-
-#if MACH_KDB
-#include <ddb/db_output.h>
-
-#define TRAP_DEBUG 0 /* Must match interrupt.s and spl.s */
+ struct cpu_warm_data cwd;
+ timer_call_t call;
+ cpu_t ct;
+ if (ml_get_interrupts_enabled() == FALSE) {
+ panic("%s: Interrupts disabled?\n", __FUNCTION__);
+ }
-#if TRAP_DEBUG
-#define MTRAPS 100
-struct mp_trap_hist_struct {
- unsigned char type;
- unsigned char data[5];
-} trap_hist[MTRAPS], *cur_trap_hist = trap_hist,
- *max_trap_hist = &trap_hist[MTRAPS];
+ /*
+ * If the platform doesn't need our help, say that we succeeded.
+ */
+ if (!ml_get_interrupt_prewake_applicable()) {
+ return KERN_SUCCESS;
+ }
-void db_trap_hist(void);
+ /*
+ * Grab a timer call to use.
+ */
+ call = grab_warm_timer_call();
+ if (call == NULL) {
+ return KERN_RESOURCE_SHORTAGE;
+ }
-/*
- * SPL:
- * 1: new spl
- * 2: old spl
- * 3: new tpr
- * 4: old tpr
- * INT:
- * 1: int vec
- * 2: old spl
- * 3: new spl
- * 4: post eoi tpr
- * 5: exit tpr
- */
+ timer_call_setup(call, cpu_warm_timer_call_func, call);
+ cwd.cwd_call = call;
+ cwd.cwd_deadline = deadline;
+ cwd.cwd_result = 0;
-void
-db_trap_hist(void)
-{
- int i,j;
- for(i=0;i<MTRAPS;i++)
- if (trap_hist[i].type == 1 || trap_hist[i].type == 2) {
- db_printf("%s%s",
- (&trap_hist[i]>=cur_trap_hist)?"*":" ",
- (trap_hist[i].type == 1)?"SPL":"INT");
- for(j=0;j<5;j++)
- db_printf(" %02x", trap_hist[i].data[j]);
- db_printf("\n");
- }
-
+ /*
+ * For now, non-local interrupts happen on the master processor.
+ */
+ ct = mp_cpus_call(cpu_to_cpumask(master_cpu), SYNC, _cpu_warm_setup, &cwd);
+ if (ct == 0) {
+ free_warm_timer_call(call);
+ return KERN_FAILURE;
+ } else {
+ return cwd.cwd_result;
+ }
}
-#endif /* TRAP_DEBUG */
-#endif /* MACH_KDB */
-