/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
- */
-/*
- * File: ppc/cpu.c
- *
- * cpu specific routines
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
+#include <mach/mach_types.h>
+#include <mach/machine.h>
+#include <mach/processor_info.h>
+
+#include <kern/kalloc.h>
+#include <kern/kern_types.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/thread.h>
+#include <kern/sched_prim.h>
#include <kern/processor.h>
-#include <mach/machine.h>
-#include <mach/processor_info.h>
-#include <mach/mach_types.h>
+#include <kern/pms.h>
+
+#include <vm/pmap.h>
+#include <IOKit/IOHibernatePrivate.h>
+
#include <ppc/proc_reg.h>
#include <ppc/misc_protos.h>
+#include <ppc/fpu_protos.h>
#include <ppc/machine_routines.h>
-#include <ppc/machine_cpu.h>
+#include <ppc/cpu_internal.h>
#include <ppc/exception.h>
#include <ppc/asm.h>
#include <ppc/hw_perfmon.h>
#include <ppc/mappings.h>
#include <ppc/Diagnostics.h>
#include <ppc/trap.h>
+#include <ppc/machine_cpu.h>
+#include <ppc/rtclock.h>
-/* TODO: BOGUS TO BE REMOVED */
-int real_ncpus = 1;
+decl_mutex_data(static,ppt_lock);
-int wncpu = NCPUS;
-resethandler_t resethandler_target;
+unsigned int real_ncpus = 1;
+unsigned int max_ncpus = MAX_CPUS;
-#define MMCR0_SUPPORT_MASK 0xf83f1fff
-#define MMCR1_SUPPORT_MASK 0xffc00000
-#define MMCR2_SUPPORT_MASK 0x80000000
+decl_simple_lock_data(static,rht_lock);
-extern int debugger_pending[NCPUS];
-extern int debugger_is_slave[NCPUS];
-extern int debugger_holdoff[NCPUS];
-extern int debugger_sync;
+static unsigned int rht_state = 0;
+#define RHT_WAIT 0x01
+#define RHT_BUSY 0x02
+
+decl_simple_lock_data(static,SignalReadyLock);
struct SIGtimebase {
- boolean_t avail;
- boolean_t ready;
- boolean_t done;
+ volatile boolean_t avail;
+ volatile boolean_t ready;
+ volatile boolean_t done;
uint64_t abstime;
};
-struct per_proc_info *pper_proc_info = per_proc_info;
-
-extern struct SIGtimebase syncClkSpot;
-
-void cpu_sync_timebase(void);
-
-kern_return_t
-cpu_control(
- int slot_num,
- processor_info_t info,
- unsigned int count)
-{
- cpu_type_t cpu_type;
- cpu_subtype_t cpu_subtype;
- processor_pm_regs_t perf_regs;
- processor_control_cmd_t cmd;
- boolean_t oldlevel;
+perfCallback perfCpuSigHook; /* Pointer to CHUD cpu signal hook routine */
- cpu_type = machine_slot[slot_num].cpu_type;
- cpu_subtype = machine_slot[slot_num].cpu_subtype;
- cmd = (processor_control_cmd_t) info;
+extern uint32_t debugger_sync;
- if (count < PROCESSOR_CONTROL_CMD_COUNT)
- return(KERN_FAILURE);
+/*
+ * Forward definitions
+ */
- if ( cpu_type != cmd->cmd_cpu_type ||
- cpu_subtype != cmd->cmd_cpu_subtype)
- return(KERN_FAILURE);
+void cpu_sync_timebase(
+ void);
- if (perfmon_acquire_facility(current_task()) != KERN_SUCCESS) {
- return(KERN_RESOURCE_SHORTAGE); /* cpu performance facility in use by another task */
- }
+void cpu_timebase_signal_handler(
+ struct per_proc_info *proc_info,
+ struct SIGtimebase *timebaseAddr);
- switch (cmd->cmd_op)
- {
- case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */
- switch (cpu_subtype)
- {
- case CPU_SUBTYPE_POWERPC_750:
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
- {
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtpmc1(0x0);
- mtpmc2(0x0);
- mtpmc3(0x0);
- mtpmc4(0x0);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- default:
- return(KERN_FAILURE);
- } /* cpu_subtype */
- case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */
- switch (cpu_subtype)
- {
- case CPU_SUBTYPE_POWERPC_750:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_750))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtpmc1(PERFMON_PMC1(perf_regs));
- mtpmc2(PERFMON_PMC2(perf_regs));
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- mtpmc3(PERFMON_PMC3(perf_regs));
- mtpmc4(PERFMON_PMC4(perf_regs));
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtpmc1(PERFMON_PMC1(perf_regs));
- mtpmc2(PERFMON_PMC2(perf_regs));
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- mtpmc3(PERFMON_PMC3(perf_regs));
- mtpmc4(PERFMON_PMC4(perf_regs));
- mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- default:
- return(KERN_FAILURE);
- } /* switch cpu_subtype */
- case PROCESSOR_PM_SET_MMCR:
- switch (cpu_subtype)
- {
- case CPU_SUBTYPE_POWERPC_750:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_750))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- default:
- return(KERN_FAILURE);
- } /* cpu_subtype */
- default:
- return(KERN_FAILURE);
- } /* switch cmd_op */
+/*
+ * Routine: cpu_bootstrap
+ * Function:
+ */
+void
+cpu_bootstrap(
+ void)
+{
+ simple_lock_init(&rht_lock,0);
+ simple_lock_init(&SignalReadyLock,0);
+ mutex_init(&ppt_lock,0);
}
-kern_return_t
-cpu_info_count(
- processor_flavor_t flavor,
- unsigned int *count)
+
+/*
+ * Routine: cpu_init
+ * Function:
+ */
+void
+cpu_init(
+ void)
{
- cpu_subtype_t cpu_subtype;
+ struct per_proc_info *proc_info;
+
+ proc_info = getPerProc();
/*
- * For now, we just assume that all CPUs are of the same type
+ * Restore the TBR.
*/
- cpu_subtype = machine_slot[0].cpu_subtype;
- switch (flavor) {
- case PROCESSOR_PM_REGS_INFO:
- switch (cpu_subtype) {
- case CPU_SUBTYPE_POWERPC_750:
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
- return(KERN_SUCCESS);
-
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
- return(KERN_SUCCESS);
+ if (proc_info->save_tbu != 0 || proc_info->save_tbl != 0) {
+ mttb(0);
+ mttbu(proc_info->save_tbu);
+ mttb(proc_info->save_tbl);
+ }
- default:
- *count = 0;
- return(KERN_INVALID_ARGUMENT);
- } /* switch cpu_subtype */
+ proc_info->rtcPop = EndOfAllTime; /* forget any existing decrementer setting */
+ etimer_resync_deadlines(); /* Now that the time base is sort of correct, request the next timer pop */
- case PROCESSOR_TEMPERATURE:
- *count = PROCESSOR_TEMPERATURE_COUNT;
- return (KERN_SUCCESS);
+ proc_info->cpu_type = CPU_TYPE_POWERPC;
+ proc_info->cpu_subtype = (cpu_subtype_t)proc_info->pf.rptdProc;
+ proc_info->cpu_threadtype = CPU_THREADTYPE_NONE;
+ proc_info->running = TRUE;
- default:
- *count = 0;
- return(KERN_INVALID_ARGUMENT);
-
- }
}
-kern_return_t
-cpu_info(
- processor_flavor_t flavor,
- int slot_num,
- processor_info_t info,
- unsigned int *count)
+/*
+ * Routine: cpu_machine_init
+ * Function:
+ */
+void
+cpu_machine_init(
+ void)
{
- cpu_subtype_t cpu_subtype;
- processor_pm_regs_t perf_regs;
- boolean_t oldlevel;
- unsigned int temp[2];
-
- cpu_subtype = machine_slot[slot_num].cpu_subtype;
+ struct per_proc_info *proc_info;
+ volatile struct per_proc_info *mproc_info;
- switch (flavor) {
- case PROCESSOR_PM_REGS_INFO:
- perf_regs = (processor_pm_regs_t) info;
+ proc_info = getPerProc();
+ mproc_info = PerProcTable[master_cpu].ppe_vaddr;
- switch (cpu_subtype) {
- case CPU_SUBTYPE_POWERPC_750:
+ if (proc_info != mproc_info) {
+ simple_lock(&rht_lock);
+ if (rht_state & RHT_WAIT)
+ thread_wakeup(&rht_state);
+ rht_state &= ~(RHT_BUSY|RHT_WAIT);
+ simple_unlock(&rht_lock);
+ }
- if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750)
- return(KERN_FAILURE);
-
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- PERFMON_MMCR0(perf_regs) = mfmmcr0();
- PERFMON_PMC1(perf_regs) = mfpmc1();
- PERFMON_PMC2(perf_regs) = mfpmc2();
- PERFMON_MMCR1(perf_regs) = mfmmcr1();
- PERFMON_PMC3(perf_regs) = mfpmc3();
- PERFMON_PMC4(perf_regs) = mfpmc4();
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
- return(KERN_SUCCESS);
+ PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone));
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
+ if (proc_info->hibernate) {
+ uint32_t tbu, tbl;
- if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400)
- return(KERN_FAILURE);
-
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- PERFMON_MMCR0(perf_regs) = mfmmcr0();
- PERFMON_PMC1(perf_regs) = mfpmc1();
- PERFMON_PMC2(perf_regs) = mfpmc2();
- PERFMON_MMCR1(perf_regs) = mfmmcr1();
- PERFMON_PMC3(perf_regs) = mfpmc3();
- PERFMON_PMC4(perf_regs) = mfpmc4();
- PERFMON_MMCR2(perf_regs) = mfmmcr2();
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
- return(KERN_SUCCESS);
+ do {
+ tbu = mftbu();
+ tbl = mftb();
+ } while (mftbu() != tbu);
- default:
- return(KERN_FAILURE);
- } /* switch cpu_subtype */
+ proc_info->hibernate = 0;
+ hibernate_machine_init();
- case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */
+ // hibernate_machine_init() could take minutes and we don't want timeouts
+ // to fire as soon as scheduling starts. Reset timebase so it appears
+ // no time has elapsed, as it would for regular sleep.
+ mttb(0);
+ mttbu(tbu);
+ mttb(tbl);
+ }
- disable_preemption(); /* Don't move me now */
-
- if(slot_num == cpu_number()) { /* Is this for the local CPU? */
- *info = ml_read_temp(); /* Get the temperature */
- }
- else { /* For another CPU */
- temp[0] = -1; /* Set sync flag */
- eieio();
- sync();
- temp[1] = -1; /* Set invalid temperature */
- (void)cpu_signal(slot_num, SIGPcpureq, CPRQtemp ,(unsigned int)&temp); /* Ask him to take his temperature */
- (void)hw_cpu_sync(temp, LockTimeOut); /* Wait for the other processor to get its temperature */
- *info = temp[1]; /* Pass it back */
- }
-
- enable_preemption(); /* Ok to move now */
- return(KERN_SUCCESS);
+ if (proc_info != mproc_info) {
+ while (!((mproc_info->cpu_flags) & SignalReady))
+ continue;
+ cpu_sync_timebase();
+ }
- default:
- return(KERN_INVALID_ARGUMENT);
-
- } /* flavor */
+ ml_init_interrupt();
+ if (proc_info != mproc_info)
+ simple_lock(&SignalReadyLock);
+ proc_info->cpu_flags |= BootDone|SignalReady;
+ if (proc_info != mproc_info) {
+ if (proc_info->ppXFlags & SignalReadyWait) {
+ (void)hw_atomic_and(&proc_info->ppXFlags, ~SignalReadyWait);
+ thread_wakeup(&proc_info->cpu_flags);
+ }
+ simple_unlock(&SignalReadyLock);
+ pmsPark(); /* Timers should be cool now, park the power management stepper */
+ }
}
-void
-cpu_init(
- void)
+
+/*
+ * Routine: cpu_per_proc_alloc
+ * Function:
+ */
+struct per_proc_info *
+cpu_per_proc_alloc(
+ void)
{
- int cpu;
+ struct per_proc_info *proc_info = NULL;
+ void *interrupt_stack = NULL;
+ void *debugger_stack = NULL;
+
+ if ((proc_info = (struct per_proc_info*)kalloc(sizeof(struct per_proc_info))) == (struct per_proc_info*)0)
+ return (struct per_proc_info *)NULL;
+ if ((interrupt_stack = kalloc(INTSTACK_SIZE)) == 0) {
+ kfree(proc_info, sizeof(struct per_proc_info));
+ return (struct per_proc_info *)NULL;
+ }
+
+ if ((debugger_stack = kalloc(KERNEL_STACK_SIZE)) == 0) {
+ kfree(proc_info, sizeof(struct per_proc_info));
+ kfree(interrupt_stack, INTSTACK_SIZE);
+ return (struct per_proc_info *)NULL;
+ }
- cpu = cpu_number();
+ bzero((void *)proc_info, sizeof(struct per_proc_info));
- machine_slot[cpu].running = TRUE;
- machine_slot[cpu].cpu_type = CPU_TYPE_POWERPC;
- machine_slot[cpu].cpu_subtype = (cpu_subtype_t)per_proc_info[cpu].pf.rptdProc;
+ /* Set physical address of the second page */
+ proc_info->pp2ndPage = (addr64_t)pmap_find_phys(kernel_pmap,
+ ((addr64_t)(unsigned int)proc_info) + 0x1000)
+ << PAGE_SHIFT;
+ proc_info->next_savearea = (uint64_t)save_get_init();
+ proc_info->pf = BootProcInfo.pf;
+ proc_info->istackptr = (vm_offset_t)interrupt_stack + INTSTACK_SIZE - FM_SIZE;
+ proc_info->intstack_top_ss = proc_info->istackptr;
+ proc_info->debstackptr = (vm_offset_t)debugger_stack + KERNEL_STACK_SIZE - FM_SIZE;
+ proc_info->debstack_top_ss = proc_info->debstackptr;
+
+ return proc_info;
}
+
+/*
+ * Routine: cpu_per_proc_free
+ * Function:
+ */
void
-cpu_machine_init(
- void)
+cpu_per_proc_free(
+ struct per_proc_info *proc_info
+)
{
- struct per_proc_info *tproc_info;
- volatile struct per_proc_info *mproc_info;
- int cpu;
-
- /* TODO: realese mutex lock reset_handler_lock */
-
- cpu = cpu_number();
- tproc_info = &per_proc_info[cpu];
- mproc_info = &per_proc_info[master_cpu];
- PE_cpu_machine_init(tproc_info->cpu_id, !(tproc_info->cpu_flags & BootDone));
- if (cpu != master_cpu) {
- while (!((mproc_info->cpu_flags) & SignalReady))
- continue;
- cpu_sync_timebase();
- }
- ml_init_interrupt();
- tproc_info->cpu_flags |= BootDone|SignalReady;
+ if (proc_info->cpu_number == master_cpu)
+ return;
+ kfree((void *)(proc_info->intstack_top_ss - INTSTACK_SIZE + FM_SIZE), INTSTACK_SIZE);
+ kfree((void *)(proc_info->debstack_top_ss - KERNEL_STACK_SIZE + FM_SIZE), KERNEL_STACK_SIZE);
+ kfree((void *)proc_info, sizeof(struct per_proc_info)); /* Release the per_proc */
}
+
+/*
+ * Routine: cpu_per_proc_register
+ * Function:
+ */
kern_return_t
-cpu_register(
- int *target_cpu
+cpu_per_proc_register(
+ struct per_proc_info *proc_info
)
{
- int cpu;
-
- /*
- * TODO:
- * - Run cpu_register() in exclusion mode
- */
+ int cpu;
- *target_cpu = -1;
- for(cpu=0; cpu < wncpu; cpu++) {
- if(!machine_slot[cpu].is_cpu) {
- machine_slot[cpu].is_cpu = TRUE;
- *target_cpu = cpu;
- break;
- }
- }
- if (*target_cpu != -1) {
- real_ncpus++;
- return KERN_SUCCESS;
- } else
+ mutex_lock(&ppt_lock);
+ if (real_ncpus >= max_ncpus) {
+ mutex_unlock(&ppt_lock);
return KERN_FAILURE;
+ }
+ cpu = real_ncpus;
+ proc_info->cpu_number = cpu;
+ PerProcTable[cpu].ppe_vaddr = proc_info;
+ PerProcTable[cpu].ppe_paddr = (addr64_t)pmap_find_phys(kernel_pmap, (addr64_t)(unsigned int)proc_info) << PAGE_SHIFT;
+ eieio();
+ real_ncpus++;
+ mutex_unlock(&ppt_lock);
+ return KERN_SUCCESS;
}
+
+/*
+ * Routine: cpu_start
+ * Function:
+ */
kern_return_t
cpu_start(
int cpu)
{
struct per_proc_info *proc_info;
- kern_return_t ret;
- mapping *mp;
-
- extern vm_offset_t intstack;
- extern vm_offset_t debstack;
+ kern_return_t ret;
+ mapping_t *mp;
- proc_info = &per_proc_info[cpu];
+ proc_info = PerProcTable[cpu].ppe_vaddr;
if (cpu == cpu_number()) {
PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone));
return KERN_SUCCESS;
} else {
- extern void _start_cpu(void);
-
- proc_info->cpu_number = cpu;
proc_info->cpu_flags &= BootDone;
- proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE;
- proc_info->intstack_top_ss = proc_info->istackptr;
-#if MACH_KDP || MACH_KDB
- proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE;
- proc_info->debstack_top_ss = proc_info->debstackptr;
-#endif /* MACH_KDP || MACH_KDB */
proc_info->interrupts_enabled = 0;
- proc_info->need_ast = (unsigned int)&need_ast[cpu];
- proc_info->FPU_owner = 0;
- proc_info->VMX_owner = 0;
- mp = (mapping *)(&proc_info->ppCIOmp);
- mp->mpFlags = 0x01000000 | mpSpecial | 1;
+ proc_info->pending_ast = AST_NONE;
+ proc_info->istackptr = proc_info->intstack_top_ss;
+ proc_info->rtcPop = EndOfAllTime;
+ proc_info->FPU_owner = NULL;
+ proc_info->VMX_owner = NULL;
+ proc_info->pms.pmsStamp = 0; /* Dummy transition time */
+ proc_info->pms.pmsPop = EndOfAllTime; /* Set the pop way into the future */
+ proc_info->pms.pmsState = pmsParked; /* Park the stepper */
+ proc_info->pms.pmsCSetCmd = pmsCInit; /* Set dummy initial hardware state */
+ mp = (mapping_t *)(&proc_info->ppUMWmp);
+ mp->mpFlags = 0x01000000 | mpLinkage | mpPerm | 1;
mp->mpSpace = invalSpace;
if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
- /* TODO: get mutex lock reset_handler_lock */
+ simple_lock(&rht_lock);
+ while (rht_state & RHT_BUSY) {
+ rht_state |= RHT_WAIT;
+ thread_sleep_usimple_lock((event_t)&rht_state,
+ &rht_lock, THREAD_UNINT);
+ }
+ rht_state |= RHT_BUSY;
+ simple_unlock(&rht_lock);
- resethandler_target.type = RESET_HANDLER_START;
- resethandler_target.call_paddr = (vm_offset_t)_start_cpu; /* Note: these routines are always V=R */
- resethandler_target.arg__paddr = (vm_offset_t)proc_info; /* Note: these routines are always V=R */
-
ml_phys_write((vm_offset_t)&ResetHandler + 0,
- resethandler_target.type);
+ RESET_HANDLER_START);
ml_phys_write((vm_offset_t)&ResetHandler + 4,
- resethandler_target.call_paddr);
+ (vm_offset_t)_start_cpu);
ml_phys_write((vm_offset_t)&ResetHandler + 8,
- resethandler_target.arg__paddr);
-
+ (vm_offset_t)&PerProcTable[cpu]);
}
/*
* Note: we pass the current time to the other processor here. He will load it
* that all processors are the same. This is just to get close.
*/
- ml_get_timebase((unsigned long long *)&proc_info->ruptStamp); /* Pass our current time to the other guy */
+ ml_get_timebase((unsigned long long *)&proc_info->ruptStamp);
__asm__ volatile("sync"); /* Commit to storage */
__asm__ volatile("isync"); /* Wait a second */
- ret = PE_cpu_start(proc_info->cpu_id,
- proc_info->start_paddr, (vm_offset_t)proc_info);
-
- if (ret != KERN_SUCCESS &&
- proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
+ ret = PE_cpu_start(proc_info->cpu_id,
+ proc_info->start_paddr, (vm_offset_t)proc_info);
+
+ if (ret != KERN_SUCCESS) {
+ if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
+ simple_lock(&rht_lock);
+ if (rht_state & RHT_WAIT)
+ thread_wakeup(&rht_state);
+ rht_state &= ~(RHT_BUSY|RHT_WAIT);
+ simple_unlock(&rht_lock);
+ };
+ } else {
+ simple_lock(&SignalReadyLock);
+ if (!((*(volatile short *)&proc_info->cpu_flags) & SignalReady)) {
+ (void)hw_atomic_or(&proc_info->ppXFlags, SignalReadyWait);
+ thread_sleep_simple_lock((event_t)&proc_info->cpu_flags,
+ &SignalReadyLock, THREAD_UNINT);
+ }
+ simple_unlock(&SignalReadyLock);
- /* TODO: realese mutex lock reset_handler_lock */
}
return(ret);
}
}
-perfTrap perfCpuSigHook = 0; /* Pointer to CHUD cpu signal hook routine */
-
/*
- * Here is where we implement the receiver of the signaling protocol.
- * We wait for the signal status area to be passed to us. Then we snarf
- * up the status, the sender, and the 3 potential parms. Next we release
- * the lock and signal the other guy.
+ * Routine: cpu_exit_wait
+ * Function:
*/
-
-void
-cpu_signal_handler(
- void)
+void
+cpu_exit_wait(
+ int cpu)
{
+ struct per_proc_info *tpproc;
+
+ if ( cpu != master_cpu) {
+ tpproc = PerProcTable[cpu].ppe_vaddr;
+ while (!((*(volatile short *)&tpproc->cpu_flags) & SleepState)) {};
+ }
+}
- unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype;
- unsigned int *parmAddr;
- struct per_proc_info *pproc; /* Area for my per_proc address */
- int cpu;
- struct SIGtimebase *timebaseAddr;
- natural_t tbu, tbu2, tbl;
-
- cpu = cpu_number(); /* Get the CPU number */
- pproc = &per_proc_info[cpu]; /* Point to our block */
/*
- * Since we've been signaled, wait about 31 ms for the signal lock to pass
+ * Routine: cpu_doshutdown
+ * Function:
*/
- if(!hw_lock_mbits(&pproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass),
- (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) {
- panic("cpu_signal_handler: Lock pass timed out\n");
- }
-
- holdStat = pproc->MPsigpStat; /* Snarf stat word */
- holdParm0 = pproc->MPsigpParm0; /* Snarf parameter */
- holdParm1 = pproc->MPsigpParm1; /* Snarf parameter */
- holdParm2 = pproc->MPsigpParm2; /* Snarf parameter */
-
- __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */
+void
+cpu_doshutdown(
+ void)
+{
+ enable_preemption();
+ processor_offline(current_processor());
+}
- pproc->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */
- switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */
+/*
+ * Routine: cpu_sleep
+ * Function:
+ */
+void
+cpu_sleep(
+ void)
+{
+ struct per_proc_info *proc_info;
+ unsigned int i;
+ unsigned int wait_ncpus_sleep, ncpus_sleep;
+ facility_context *fowner;
- case MPsigpIdle: /* Was function cancelled? */
- return; /* Yup... */
-
- case MPsigpSigp: /* Signal Processor message? */
-
- switch (holdParm0) { /* Decode SIGP message order */
+ proc_info = getPerProc();
- case SIGPast: /* Should we do an AST? */
- pproc->hwCtr.numSIGPast++; /* Count this one */
-#if 0
- kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number());
-#endif
- ast_check(cpu_to_processor(cpu));
- return; /* All done... */
-
- case SIGPcpureq: /* CPU specific function? */
-
- pproc->hwCtr.numSIGPcpureq++; /* Count this one */
- switch (holdParm1) { /* Select specific function */
-
- case CPRQtemp: /* Get the temperature */
- parmAddr = (unsigned int *)holdParm2; /* Get the destination address */
- parmAddr[1] = ml_read_temp(); /* Get the core temperature */
- eieio(); /* Force order */
- sync(); /* Force to memory */
- parmAddr[0] = 0; /* Show we're done */
- return;
-
- case CPRQtimebase:
+ proc_info->running = FALSE;
- timebaseAddr = (struct SIGtimebase *)holdParm2;
-
- if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
- pproc->time_base_enable(pproc->cpu_id, FALSE);
+ fowner = proc_info->FPU_owner; /* Cache this */
+ if(fowner) /* If anyone owns FPU, save it */
+ fpu_save(fowner);
+ proc_info->FPU_owner = NULL; /* Set no fpu owner now */
- timebaseAddr->abstime = 0; /* Touch to force into cache */
- sync();
-
- do {
- asm volatile(" mftbu %0" : "=r" (tbu));
- asm volatile(" mftb %0" : "=r" (tbl));
- asm volatile(" mftbu %0" : "=r" (tbu2));
- } while (tbu != tbu2);
-
- timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl;
- sync(); /* Force order */
-
- timebaseAddr->avail = TRUE;
+ fowner = proc_info->VMX_owner; /* Cache this */
+ if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */
+ proc_info->VMX_owner = NULL; /* Set no vector owner now */
- while (*(volatile int *)&(syncClkSpot.ready) == FALSE);
+ if (proc_info->cpu_number == master_cpu) {
+ proc_info->cpu_flags &= BootDone;
+ proc_info->interrupts_enabled = 0;
+ proc_info->pending_ast = AST_NONE;
- if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
- pproc->time_base_enable(pproc->cpu_id, TRUE);
+ if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
+ ml_phys_write((vm_offset_t)&ResetHandler + 0,
+ RESET_HANDLER_START);
+ ml_phys_write((vm_offset_t)&ResetHandler + 4,
+ (vm_offset_t)_start_cpu);
+ ml_phys_write((vm_offset_t)&ResetHandler + 8,
+ (vm_offset_t)&PerProcTable[master_cpu]);
- timebaseAddr->done = TRUE;
+ __asm__ volatile("sync");
+ __asm__ volatile("isync");
+ }
- return;
+ wait_ncpus_sleep = real_ncpus-1;
+ ncpus_sleep = 0;
+ while (wait_ncpus_sleep != ncpus_sleep) {
+ ncpus_sleep = 0;
+ for(i=1; i < real_ncpus ; i++) {
+ if ((*(volatile short *)&(PerProcTable[i].ppe_vaddr->cpu_flags)) & SleepState)
+ ncpus_sleep++;
+ }
+ }
- case CPRQsegload:
- return;
-
- case CPRQchud:
- parmAddr = (unsigned int *)holdParm2; /* Get the destination address */
- if(perfCpuSigHook) {
- struct savearea *ssp = current_act()->mact.pcb;
- if(ssp) {
- (perfCpuSigHook)(parmAddr[1] /* request */, ssp, 0, 0);
- }
- }
- parmAddr[1] = 0;
- parmAddr[0] = 0; /* Show we're done */
- return;
-
- case CPRQscom:
- fwSCOM((scomcomm *)holdParm2); /* Do the function */
- return;
+ }
- default:
- panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1);
- return;
- }
-
-
- case SIGPdebug: /* Enter the debugger? */
+ /*
+ * Save the TBR before stopping.
+ */
+ do {
+ proc_info->save_tbu = mftbu();
+ proc_info->save_tbl = mftb();
+ } while (mftbu() != proc_info->save_tbu);
- pproc->hwCtr.numSIGPdebug++; /* Count this one */
- debugger_is_slave[cpu]++; /* Bump up the count to show we're here */
- hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */
- __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */
- return; /* All done now... */
-
- case SIGPwake: /* Wake up CPU */
- pproc->hwCtr.numSIGPwake++; /* Count this one */
- return; /* No need to do anything, the interrupt does it all... */
-
- default:
- panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0);
- return;
-
- }
-
- default:
- panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8);
- return;
-
- }
- panic("cpu_signal_handler: we should never get here\n");
+ PE_cpu_machine_quiesce(proc_info->cpu_id);
}
+
/*
+ * Routine: cpu_signal
+ * Function:
* Here is where we send a message to another processor. So far we only have two:
* SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is
* currently disabled). SIGPdebug is used to enter the debugger.
* If we time out, we return failure to our caller. It is their responsibility to
* recover.
*/
-
kern_return_t
cpu_signal(
int target,
unsigned int p2)
{
- unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype;
- struct per_proc_info *tpproc, *mpproc; /* Area for per_proc addresses */
- int cpu;
- int busybitset =0;
+ unsigned int holdStat;
+ struct per_proc_info *tpproc, *mpproc;
+ int busybitset=0;
#if DEBUG
- if(target > NCPUS) panic("cpu_signal: invalid target CPU - %08X\n", target);
+ if(((unsigned int)target) >= MAX_CPUS) panic("cpu_signal: invalid target CPU - %08X\n", target);
#endif
- cpu = cpu_number(); /* Get our CPU number */
- if(target == cpu) return KERN_FAILURE; /* Don't play with ourselves */
- if(!machine_slot[target].running) return KERN_FAILURE; /* These guys are too young */
+ mpproc = getPerProc(); /* Point to our block */
+ tpproc = PerProcTable[target].ppe_vaddr; /* Point to the target's block */
+ if(mpproc == tpproc) return KERN_FAILURE; /* Cannot signal ourselves */
- mpproc = &per_proc_info[cpu]; /* Point to our block */
- tpproc = &per_proc_info[target]; /* Point to the target's block */
+ if(!tpproc->running) return KERN_FAILURE;
if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE;
return KERN_FAILURE; /* Timed out, take your ball and go home... */
}
- holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | cpu; /* Set up the signal status word */
+ holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | mpproc->cpu_number; /* Set up the signal status word */
tpproc->MPsigpParm0 = signal; /* Set message order */
tpproc->MPsigpParm1 = p1; /* Set additional parm */
tpproc->MPsigpParm2 = p2; /* Set additional parm */
return KERN_SUCCESS; /* All is goodness and rainbows... */
}
-void
-cpu_doshutdown(
- void)
-{
- enable_preemption();
- processor_offline(current_processor());
-}
-void
-cpu_sleep(
- void)
+/*
+ * Routine: cpu_signal_handler
+ * Function:
+ * Here is where we implement the receiver of the signaling protocol.
+ * We wait for the signal status area to be passed to us. Then we snarf
+ * up the status, the sender, and the 3 potential parms. Next we release
+ * the lock and signal the other guy.
+ */
+void
+cpu_signal_handler(void)
{
+ unsigned int holdStat, holdParm0, holdParm1, holdParm2;
+ unsigned int *parmAddr;
struct per_proc_info *proc_info;
- unsigned int cpu, i;
- unsigned int wait_ncpus_sleep, ncpus_sleep;
- facility_context *fowner;
- extern vm_offset_t intstack;
- extern vm_offset_t debstack;
- extern void _restart_cpu(void);
-
- cpu = cpu_number();
-
- proc_info = &per_proc_info[cpu];
-
- fowner = proc_info->FPU_owner; /* Cache this */
- if(fowner) fpu_save(fowner); /* If anyone owns FPU, save it */
- proc_info->FPU_owner = 0; /* Set no fpu owner now */
-
- fowner = proc_info->VMX_owner; /* Cache this */
- if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */
- proc_info->VMX_owner = 0; /* Set no vector owner now */
+ int cpu;
+ broadcastFunc xfunc;
+ cpu = cpu_number(); /* Get the CPU number */
- if (proc_info->cpu_number == 0) {
- proc_info->cpu_flags &= BootDone;
- proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE;
- proc_info->intstack_top_ss = proc_info->istackptr;
-#if MACH_KDP || MACH_KDB
- proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE;
- proc_info->debstack_top_ss = proc_info->debstackptr;
-#endif /* MACH_KDP || MACH_KDB */
- proc_info->interrupts_enabled = 0;
+ proc_info = getPerProc();
- if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
- extern void _start_cpu(void);
+/*
+ * Since we've been signaled, wait about 31 ms for the signal lock to pass
+ */
+ if(!hw_lock_mbits(&proc_info->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass),
+ (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) {
+ panic("cpu_signal_handler: Lock pass timed out\n");
+ }
- resethandler_target.type = RESET_HANDLER_START;
- resethandler_target.call_paddr = (vm_offset_t)_start_cpu; /* Note: these routines are always V=R */
- resethandler_target.arg__paddr = (vm_offset_t)proc_info; /* Note: these routines are always V=R */
+ holdStat = proc_info->MPsigpStat; /* Snarf stat word */
+ holdParm0 = proc_info->MPsigpParm0; /* Snarf parameter */
+ holdParm1 = proc_info->MPsigpParm1; /* Snarf parameter */
+ holdParm2 = proc_info->MPsigpParm2; /* Snarf parameter */
- ml_phys_write((vm_offset_t)&ResetHandler + 0,
- resethandler_target.type);
- ml_phys_write((vm_offset_t)&ResetHandler + 4,
- resethandler_target.call_paddr);
- ml_phys_write((vm_offset_t)&ResetHandler + 8,
- resethandler_target.arg__paddr);
-
- __asm__ volatile("sync");
- __asm__ volatile("isync");
- }
-
- wait_ncpus_sleep = real_ncpus-1;
- ncpus_sleep = 0;
- while (wait_ncpus_sleep != ncpus_sleep) {
- ncpus_sleep = 0;
- for(i=1; i < real_ncpus ; i++) {
- if ((*(volatile short *)&per_proc_info[i].cpu_flags) & SleepState)
- ncpus_sleep++;
- }
- }
- }
-
- PE_cpu_machine_quiesce(proc_info->cpu_id);
-}
-
-void
-cpu_sync_timebase(
- void)
-{
- natural_t tbu, tbl;
- boolean_t intr;
-
- intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */
+ __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */
- /* Note that syncClkSpot is in a cache aligned area */
- syncClkSpot.avail = FALSE;
- syncClkSpot.ready = FALSE;
- syncClkSpot.done = FALSE;
+ proc_info->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */
- while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase,
- (unsigned int)&syncClkSpot) != KERN_SUCCESS)
- continue;
+ switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */
- while (*(volatile int *)&(syncClkSpot.avail) == FALSE)
- continue;
+ case MPsigpIdle: /* Was function cancelled? */
+ return; /* Yup... */
+
+ case MPsigpSigp: /* Signal Processor message? */
+
+ switch (holdParm0) { /* Decode SIGP message order */
- isync();
+ case SIGPast: /* Should we do an AST? */
+ proc_info->hwCtr.numSIGPast++; /* Count this one */
+#if 0
+ kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number());
+#endif
+ ast_check((processor_t)proc_info->processor);
+ return; /* All done... */
+
+ case SIGPcpureq: /* CPU specific function? */
+
+ proc_info->hwCtr.numSIGPcpureq++; /* Count this one */
+ switch (holdParm1) { /* Select specific function */
+
+ case CPRQtimebase:
- /*
- * We do the following to keep the compiler from generating extra stuff
- * in tb set part
- */
- tbu = syncClkSpot.abstime >> 32;
- tbl = (uint32_t)syncClkSpot.abstime;
+ cpu_timebase_signal_handler(proc_info, (struct SIGtimebase *)holdParm2);
+ return;
- mttb(0);
- mttbu(tbu);
- mttb(tbl);
+ case CPRQsegload:
+ return;
+
+ case CPRQchud:
+ parmAddr = (unsigned int *)holdParm2; /* Get the destination address */
+ if(perfCpuSigHook) {
+ struct savearea *ssp = current_thread()->machine.pcb;
+ if(ssp) {
+ (perfCpuSigHook)(parmAddr[1] /* request */, ssp, 0, 0);
+ }
+ }
+ parmAddr[1] = 0;
+ parmAddr[0] = 0; /* Show we're done */
+ return;
+
+ case CPRQscom:
+ if(((scomcomm *)holdParm2)->scomfunc) { /* Are we writing */
+ ((scomcomm *)holdParm2)->scomstat = ml_scom_write(((scomcomm *)holdParm2)->scomreg, ((scomcomm *)holdParm2)->scomdata); /* Write scom */
+ }
+ else { /* No, reading... */
+ ((scomcomm *)holdParm2)->scomstat = ml_scom_read(((scomcomm *)holdParm2)->scomreg, &((scomcomm *)holdParm2)->scomdata); /* Read scom */
+ }
+ return;
+
+ case CPRQsps:
+ {
+ ml_set_processor_speed_slave(holdParm2);
+ return;
+ }
+ default:
+ panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1);
+ return;
+ }
+
+
+ case SIGPdebug: /* Enter the debugger? */
+
+ proc_info->hwCtr.numSIGPdebug++; /* Count this one */
+ proc_info->debugger_is_slave++; /* Bump up the count to show we're here */
+ (void)hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */
+ __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */
+ return; /* All done now... */
+
+ case SIGPwake: /* Wake up CPU */
+ proc_info->hwCtr.numSIGPwake++; /* Count this one */
+ return; /* No need to do anything, the interrupt does it all... */
+
+ case SIGPcall: /* Call function on CPU */
+ proc_info->hwCtr.numSIGPcall++; /* Count this one */
+ xfunc = (broadcastFunc)holdParm1; /* Do this since I can't seem to figure C out */
+ xfunc(holdParm2); /* Call the passed function */
+ return; /* Done... */
+
+ default:
+ panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0);
+ return;
+
+ }
+
+ default:
+ panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8);
+ return;
+
+ }
+ panic("cpu_signal_handler: we should never get here\n");
+}
+
+
+/*
+ * Routine: cpu_sync_timebase
+ * Function:
+ */
+void
+cpu_sync_timebase(
+ void)
+{
+ natural_t tbu, tbl;
+ boolean_t intr;
+ struct SIGtimebase syncClkSpot;
+
+ intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */
+
+ syncClkSpot.avail = FALSE;
+ syncClkSpot.ready = FALSE;
+ syncClkSpot.done = FALSE;
+
+ while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase,
+ (unsigned int)&syncClkSpot) != KERN_SUCCESS)
+ continue;
+
+ while (syncClkSpot.avail == FALSE)
+ continue;
+
+ isync();
+
+ /*
+ * We do the following to keep the compiler from generating extra stuff
+ * in tb set part
+ */
+ tbu = syncClkSpot.abstime >> 32;
+ tbl = (uint32_t)syncClkSpot.abstime;
+
+ mttb(0);
+ mttbu(tbu);
+ mttb(tbl);
syncClkSpot.ready = TRUE;
- while (*(volatile int *)&(syncClkSpot.done) == FALSE)
+ while (syncClkSpot.done == FALSE)
continue;
+ etimer_resync_deadlines(); /* Start the timer */
(void)ml_set_interrupts_enabled(intr);
}
+
+
+/*
+ * Routine: cpu_timebase_signal_handler
+ * Function:
+ */
+void
+cpu_timebase_signal_handler(
+ struct per_proc_info *proc_info,
+ struct SIGtimebase *timebaseAddr)
+{
+ unsigned int tbu, tbu2, tbl;
+
+ if(proc_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
+ proc_info->time_base_enable(proc_info->cpu_id, FALSE);
+
+ timebaseAddr->abstime = 0; /* Touch to force into cache */
+ sync();
+
+ do {
+ asm volatile(" mftbu %0" : "=r" (tbu));
+ asm volatile(" mftb %0" : "=r" (tbl));
+ asm volatile(" mftbu %0" : "=r" (tbu2));
+ } while (tbu != tbu2);
+
+ timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl;
+ sync(); /* Force order */
+
+ timebaseAddr->avail = TRUE;
+
+ while (timebaseAddr->ready == FALSE)
+ continue;
+
+ if(proc_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
+ proc_info->time_base_enable(proc_info->cpu_id, TRUE);
+
+ timebaseAddr->done = TRUE;
+}
+
+
+/*
+ * Routine: cpu_control
+ * Function:
+ */
+kern_return_t
+cpu_control(
+ int slot_num,
+ processor_info_t info,
+ unsigned int count)
+{
+ struct per_proc_info *proc_info;
+ cpu_type_t tcpu_type;
+ cpu_subtype_t tcpu_subtype;
+ processor_pm_regs_t perf_regs;
+ processor_control_cmd_t cmd;
+ boolean_t oldlevel;
+#define MMCR0_SUPPORT_MASK 0xf83f1fff
+#define MMCR1_SUPPORT_MASK 0xffc00000
+#define MMCR2_SUPPORT_MASK 0x80000000
+
+ proc_info = PerProcTable[slot_num].ppe_vaddr;
+ tcpu_type = proc_info->cpu_type;
+ tcpu_subtype = proc_info->cpu_subtype;
+ cmd = (processor_control_cmd_t) info;
+
+ if (count < PROCESSOR_CONTROL_CMD_COUNT)
+ return(KERN_FAILURE);
+
+ if ( tcpu_type != cmd->cmd_cpu_type ||
+ tcpu_subtype != cmd->cmd_cpu_subtype)
+ return(KERN_FAILURE);
+
+ if (perfmon_acquire_facility(current_task()) != KERN_SUCCESS) {
+ return(KERN_RESOURCE_SHORTAGE); /* cpu performance facility in use by another task */
+ }
+
+ switch (cmd->cmd_op)
+ {
+ case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */
+ switch (tcpu_subtype)
+ {
+ case CPU_SUBTYPE_POWERPC_750:
+ case CPU_SUBTYPE_POWERPC_7400:
+ case CPU_SUBTYPE_POWERPC_7450:
+ {
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ mtpmc1(0x0);
+ mtpmc2(0x0);
+ mtpmc3(0x0);
+ mtpmc4(0x0);
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+ return(KERN_SUCCESS);
+ }
+ default:
+ return(KERN_FAILURE);
+ } /* tcpu_subtype */
+ case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */
+ switch (tcpu_subtype)
+ {
+ case CPU_SUBTYPE_POWERPC_750:
+ if (count < (PROCESSOR_CONTROL_CMD_COUNT +
+ PROCESSOR_PM_REGS_COUNT_POWERPC_750))
+ return(KERN_FAILURE);
+ else
+ {
+ perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
+ mtpmc1(PERFMON_PMC1(perf_regs));
+ mtpmc2(PERFMON_PMC2(perf_regs));
+ mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
+ mtpmc3(PERFMON_PMC3(perf_regs));
+ mtpmc4(PERFMON_PMC4(perf_regs));
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+ return(KERN_SUCCESS);
+ }
+ case CPU_SUBTYPE_POWERPC_7400:
+ case CPU_SUBTYPE_POWERPC_7450:
+ if (count < (PROCESSOR_CONTROL_CMD_COUNT +
+ PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
+ return(KERN_FAILURE);
+ else
+ {
+ perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
+ mtpmc1(PERFMON_PMC1(perf_regs));
+ mtpmc2(PERFMON_PMC2(perf_regs));
+ mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
+ mtpmc3(PERFMON_PMC3(perf_regs));
+ mtpmc4(PERFMON_PMC4(perf_regs));
+ mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+ return(KERN_SUCCESS);
+ }
+ default:
+ return(KERN_FAILURE);
+ } /* switch tcpu_subtype */
+ case PROCESSOR_PM_SET_MMCR:
+ switch (tcpu_subtype)
+ {
+ case CPU_SUBTYPE_POWERPC_750:
+ if (count < (PROCESSOR_CONTROL_CMD_COUNT +
+ PROCESSOR_PM_REGS_COUNT_POWERPC_750))
+ return(KERN_FAILURE);
+ else
+ {
+ perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
+ mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+ return(KERN_SUCCESS);
+ }
+ case CPU_SUBTYPE_POWERPC_7400:
+ case CPU_SUBTYPE_POWERPC_7450:
+ if (count < (PROCESSOR_CONTROL_CMD_COUNT +
+ PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
+ return(KERN_FAILURE);
+ else
+ {
+ perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
+ mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
+ mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+ return(KERN_SUCCESS);
+ }
+ default:
+ return(KERN_FAILURE);
+ } /* tcpu_subtype */
+ default:
+ return(KERN_FAILURE);
+ } /* switch cmd_op */
+}
+
+
+/*
+ * Routine: cpu_info_count
+ * Function:
+ */
+kern_return_t
+cpu_info_count(
+ processor_flavor_t flavor,
+ unsigned int *count)
+{
+ cpu_subtype_t tcpu_subtype;
+
+ /*
+ * For now, we just assume that all CPUs are of the same type
+ */
+ tcpu_subtype = PerProcTable[master_cpu].ppe_vaddr->cpu_subtype;
+ switch (flavor) {
+ case PROCESSOR_PM_REGS_INFO:
+ switch (tcpu_subtype) {
+ case CPU_SUBTYPE_POWERPC_750:
+
+ *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
+ return(KERN_SUCCESS);
+
+ case CPU_SUBTYPE_POWERPC_7400:
+ case CPU_SUBTYPE_POWERPC_7450:
+
+ *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
+ return(KERN_SUCCESS);
+
+ default:
+ *count = 0;
+ return(KERN_INVALID_ARGUMENT);
+ } /* switch tcpu_subtype */
+
+ case PROCESSOR_TEMPERATURE:
+ *count = PROCESSOR_TEMPERATURE_COUNT;
+ return (KERN_SUCCESS);
+
+ default:
+ *count = 0;
+ return(KERN_INVALID_ARGUMENT);
+
+ }
+}
+
+
+/*
+ * Routine: cpu_info
+ * Function:
+ */
+kern_return_t
+cpu_info(
+ processor_flavor_t flavor,
+ int slot_num,
+ processor_info_t info,
+ unsigned int *count)
+{
+ cpu_subtype_t tcpu_subtype;
+ processor_pm_regs_t perf_regs;
+ boolean_t oldlevel;
+
+ tcpu_subtype = PerProcTable[slot_num].ppe_vaddr->cpu_subtype;
+
+ switch (flavor) {
+ case PROCESSOR_PM_REGS_INFO:
+
+ perf_regs = (processor_pm_regs_t) info;
+
+ switch (tcpu_subtype) {
+ case CPU_SUBTYPE_POWERPC_750:
+
+ if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750)
+ return(KERN_FAILURE);
+
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ PERFMON_MMCR0(perf_regs) = mfmmcr0();
+ PERFMON_PMC1(perf_regs) = mfpmc1();
+ PERFMON_PMC2(perf_regs) = mfpmc2();
+ PERFMON_MMCR1(perf_regs) = mfmmcr1();
+ PERFMON_PMC3(perf_regs) = mfpmc3();
+ PERFMON_PMC4(perf_regs) = mfpmc4();
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+
+ *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
+ return(KERN_SUCCESS);
+
+ case CPU_SUBTYPE_POWERPC_7400:
+ case CPU_SUBTYPE_POWERPC_7450:
+
+ if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400)
+ return(KERN_FAILURE);
+
+ oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
+ PERFMON_MMCR0(perf_regs) = mfmmcr0();
+ PERFMON_PMC1(perf_regs) = mfpmc1();
+ PERFMON_PMC2(perf_regs) = mfpmc2();
+ PERFMON_MMCR1(perf_regs) = mfmmcr1();
+ PERFMON_PMC3(perf_regs) = mfpmc3();
+ PERFMON_PMC4(perf_regs) = mfpmc4();
+ PERFMON_MMCR2(perf_regs) = mfmmcr2();
+ ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
+
+ *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
+ return(KERN_SUCCESS);
+
+ default:
+ return(KERN_FAILURE);
+ } /* switch tcpu_subtype */
+
+ case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */
+
+ *info = -1; /* Get the temperature */
+ return(KERN_FAILURE);
+
+ default:
+ return(KERN_INVALID_ARGUMENT);
+
+ } /* flavor */
+}
+
+
+/*
+ * Routine: cpu_to_processor
+ * Function:
+ */
+processor_t
+cpu_to_processor(
+ int cpu)
+{
+ return ((processor_t)PerProcTable[cpu].ppe_vaddr->processor);
+}
+
+
+/*
+ * Routine: slot_type
+ * Function:
+ */
+cpu_type_t
+slot_type(
+ int slot_num)
+{
+ return (PerProcTable[slot_num].ppe_vaddr->cpu_type);
+}
+
+
+/*
+ * Routine: slot_subtype
+ * Function:
+ */
+cpu_subtype_t
+slot_subtype(
+ int slot_num)
+{
+ return (PerProcTable[slot_num].ppe_vaddr->cpu_subtype);
+}
+
+
+/*
+ * Routine: slot_threadtype
+ * Function:
+ */
+cpu_threadtype_t
+slot_threadtype(
+ int slot_num)
+{
+ return (PerProcTable[slot_num].ppe_vaddr->cpu_threadtype);
+}
+
+
+/*
+ * Routine: cpu_type
+ * Function:
+ */
+cpu_type_t
+cpu_type(void)
+{
+ return (getPerProc()->cpu_type);
+}
+
+
+/*
+ * Routine: cpu_subtype
+ * Function:
+ */
+cpu_subtype_t
+cpu_subtype(void)
+{
+ return (getPerProc()->cpu_subtype);
+}
+
+
+/*
+ * Routine: cpu_threadtype
+ * Function:
+ */
+cpu_threadtype_t
+cpu_threadtype(void)
+{
+ return (getPerProc()->cpu_threadtype);
+}
+
+/*
+ * Call a function on all running processors
+ *
+ * Note that the synch paramter is used to wait until all functions are complete.
+ * It is not passed to the other processor and must be known by the called function.
+ * The called function must do a thread_wakeup on the synch if it decrements the
+ * synch count to 0.
+ *
+ * We start by initializing the synchronizer to the number of possible cpus.
+ * The we signal each popssible processor.
+ * If the signal fails, we count it. We also skip our own.
+ * When we are finished signaling, we adjust the syncronizer count down buy the number of failed signals.
+ * Because the signaled processors are also decrementing the synchronizer count, the adjustment may result in a 0
+ * If this happens, all other processors are finished with the function.
+ * If so, we clear the wait and continue
+ * Otherwise, we block waiting for the other processor(s) to finish.
+ *
+ * Meanwhile, the other processors are decrementing the synchronizer when they are done
+ * If it goes to zero, thread_wakeup is called to run the broadcaster
+ *
+ * Note that because we account for the broadcaster in the synchronization count, we will not get any
+ * premature wakeup calls.
+ *
+ * Also note that when we do the adjustment of the synchronization count, it the result is 0, it means that
+ * all of the other processors are finished. Otherwise, we know that there is at least one more.
+ * When that thread decrements the synchronizer to zero, it will do a thread_wake.
+ *
+ */
+
+int32_t
+cpu_broadcast(uint32_t *synch, broadcastFunc func, uint32_t parm)
+{
+ int failsig;
+ unsigned int cpu, ocpu;
+
+ cpu = cpu_number(); /* Who are we? */
+ failsig = 0; /* Clear called processor count */
+
+ if(real_ncpus > 1) { /* Are we just a uni? */
+
+ *synch = real_ncpus; /* Set how many we are going to try */
+ assert_wait((event_t)synch, THREAD_UNINT); /* If more than one processor, we may have to wait */
+
+ for(ocpu = 0; ocpu < real_ncpus; ocpu++) { /* Tell everyone to call */
+
+ if(ocpu == cpu) continue; /* If we talk to ourselves, people will wonder... */
+
+ if(KERN_SUCCESS != cpu_signal(ocpu, SIGPcall, (uint32_t)func, parm)) { /* Call the function on the other processor */
+ failsig++; /* Count failed signals */
+ }
+ }
+
+ if (hw_atomic_sub(synch, failsig + 1) == 0)
+ clear_wait(current_thread(), THREAD_AWAKENED); /* Clear wait if we never signalled or all of the others finished */
+ else
+ thread_block(THREAD_CONTINUE_NULL); /* Wait for everyone to get into step... */
+ }
+
+ return (real_ncpus - failsig - 1); /* Return the number of guys actually signalled... */
+}