--- /dev/null
+#include <sys/types.h>
+#include <sys/event.h>
+#include <sys/time.h>
+#include <assert.h>
+#include <errno.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <mach/mach.h>
+#include <mach/task.h>
+
+#include <TargetConditionals.h>
+#include <darwintest.h>
+
+#ifndef NOTE_MACHTIME
+#define NOTE_MACHTIME 0x00000100
+#endif
+
+static mach_timebase_info_data_t timebase_info;
+
+static uint64_t nanos_to_abs(uint64_t nanos) { return nanos * timebase_info.denom / timebase_info.numer; }
+static uint64_t abs_to_nanos(uint64_t abs) { return abs * timebase_info.numer / timebase_info.denom; }
+
+static int kq, passed, failed;
+
+static struct timespec failure_timeout = { .tv_sec = 10, .tv_nsec = 0 };
+
+/*
+ * Wait for given kevent, which should return in 'expected' usecs.
+ */
+static int
+do_simple_kevent(struct kevent64_s *kev, uint64_t expected)
+{
+ int ret;
+ int64_t elapsed_usecs;
+ uint64_t delta_usecs;
+ struct timespec timeout;
+ struct timeval before, after;
+
+ /* time out after 1 sec extra delay */
+ timeout.tv_sec = (expected / USEC_PER_SEC) + 1;
+ timeout.tv_nsec = (expected % USEC_PER_SEC) * 1000;
+
+ T_SETUPBEGIN;
+
+ /* measure time for the kevent */
+ gettimeofday(&before, NULL);
+ ret = kevent64(kq, kev, 1, kev, 1, 0, &timeout);
+ gettimeofday(&after, NULL);
+
+ if (ret < 1 || (kev->flags & EV_ERROR)) {
+ T_LOG("%s() failure: kevent returned %d, error %d\n", __func__, ret,
+ (ret == -1 ? errno : (int) kev->data));
+ return 0;
+ }
+
+ T_SETUPEND;
+
+ /* did it work? */
+ elapsed_usecs = (after.tv_sec - before.tv_sec) * (int64_t)USEC_PER_SEC +
+ (after.tv_usec - before.tv_usec);
+ delta_usecs = (uint64_t)llabs(elapsed_usecs - ((int64_t)expected));
+
+ /* failure if we're 30% off, or 50 mics late */
+ if (delta_usecs > (30 * expected / 100.0) && delta_usecs > 50) {
+ T_LOG("\tfailure: expected %lld usec, measured %lld usec.\n",
+ expected, elapsed_usecs);
+ return 0;
+ } else {
+ T_LOG("\tsuccess, measured %lld usec.\n", elapsed_usecs);
+ return 1;
+ }
+}
+
+static void
+test_absolute_kevent(int time, int scale)
+{
+ struct timeval tv;
+ struct kevent64_s kev;
+ uint64_t nowus, expected, timescale = 0;
+ int ret;
+ int64_t deadline;
+
+ gettimeofday(&tv, NULL);
+ nowus = (uint64_t)tv.tv_sec * USEC_PER_SEC + (uint64_t)tv.tv_usec;
+
+ T_SETUPBEGIN;
+
+ switch (scale) {
+ case NOTE_MACHTIME:
+ T_LOG("Testing %d MATUs absolute timer...\n", time);
+ break;
+ case NOTE_SECONDS:
+ T_LOG("Testing %d sec absolute timer...\n", time);
+ timescale = USEC_PER_SEC;
+ break;
+ case NOTE_USECONDS:
+ T_LOG("Testing %d usec absolute timer...\n", time);
+ timescale = 1;
+ break;
+ case 0:
+ T_LOG("Testing %d msec absolute timer...\n", time);
+ timescale = 1000;
+ break;
+ default:
+ T_FAIL("Failure: scale 0x%x not recognized.\n", scale);
+ return;
+ }
+
+ T_SETUPEND;
+
+ if (scale == NOTE_MACHTIME) {
+ expected = abs_to_nanos((uint64_t)time) / NSEC_PER_USEC;
+ deadline = (int64_t)mach_absolute_time() + time;
+ } else {
+ expected = (uint64_t)time * timescale;
+ deadline = (int64_t)(nowus / timescale) + time;
+ }
+
+ /* deadlines in the past should fire immediately */
+ if (time < 0)
+ expected = 0;
+
+ EV_SET64(&kev, 1, EVFILT_TIMER, EV_ADD,
+ NOTE_ABSOLUTE | scale, deadline, 0,0,0);
+ ret = do_simple_kevent(&kev, expected);
+
+ if (ret) {
+ passed++;
+ T_PASS("%s time:%d, scale:0x%x", __func__, time, scale);
+ } else {
+ failed++;
+ T_FAIL("%s time:%d, scale:0x%x", __func__, time, scale);
+ }
+}
+
+static void
+test_oneshot_kevent(int time, int scale)
+{
+ int ret;
+ uint64_t expected = 0;
+ struct kevent64_s kev;
+
+ T_SETUPBEGIN;
+
+ switch (scale) {
+ case NOTE_MACHTIME:
+ T_LOG("Testing %d MATUs interval timer...\n", time);
+ expected = abs_to_nanos((uint64_t)time) / NSEC_PER_USEC;
+ break;
+ case NOTE_SECONDS:
+ T_LOG("Testing %d sec interval timer...\n", time);
+ expected = (uint64_t)time * USEC_PER_SEC;
+ break;
+ case NOTE_USECONDS:
+ T_LOG("Testing %d usec interval timer...\n", time);
+ expected = (uint64_t)time;
+ break;
+ case NOTE_NSECONDS:
+ T_LOG("Testing %d nsec interval timer...\n", time);
+ expected = (uint64_t)time / 1000;
+ break;
+ case 0:
+ T_LOG("Testing %d msec interval timer...\n", time);
+ expected = (uint64_t)time * 1000;
+ break;
+ default:
+ T_FAIL("Failure: scale 0x%x not recognized.\n", scale);
+ return;
+ }
+
+ T_SETUPEND;
+
+ /* deadlines in the past should fire immediately */
+ if (time < 0)
+ expected = 0;
+
+ EV_SET64(&kev, 2, EVFILT_TIMER, EV_ADD | EV_ONESHOT, scale, time,
+ 0, 0, 0);
+ ret = do_simple_kevent(&kev, expected);
+
+ if (ret) {
+ passed++;
+ T_PASS("%s time:%d, scale:0x%x", __func__, time, scale);
+ } else {
+ failed++;
+ T_FAIL("%s time:%d, scale:0x%x", __func__, time, scale);
+ }
+}
+
+/* Test that the timer goes ding multiple times */
+static void
+test_interval_kevent(int usec)
+{
+ struct kevent64_s kev;
+ int ret;
+
+ T_SETUPBEGIN;
+
+ uint64_t test_duration_us = USEC_PER_SEC; /* 1 second */
+ uint64_t expected_pops;
+
+ if (usec < 0)
+ expected_pops = 1; /* TODO: test 'and only once' */
+ else
+ expected_pops = test_duration_us / (uint64_t)usec;
+
+ T_LOG("Testing interval kevent at %d usec intervals (%lld pops/second)...\n",
+ usec, expected_pops);
+
+ EV_SET64(&kev, 3, EVFILT_TIMER, EV_ADD, NOTE_USECONDS, usec, 0, 0, 0);
+ ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
+ if (ret != 0 || (kev.flags & EV_ERROR)) {
+ T_FAIL("%s() setup failure: kevent64 returned %d\n", __func__, ret);
+ failed++;
+ return;
+ }
+
+ T_SETUPEND;
+
+ struct timeval before, after;
+ uint64_t elapsed_usecs;
+
+ gettimeofday(&before, NULL);
+
+ uint64_t pops = 0;
+
+ for (uint32_t i = 0; i < expected_pops; i++) {
+ ret = kevent64(kq, NULL, 0, &kev, 1, 0, &failure_timeout);
+ if (ret != 1) {
+ T_FAIL("%s() failure: kevent64 returned %d\n", __func__, ret);
+ failed++;
+ return;
+ }
+
+ //T_LOG("\t ding: %lld\n", kev.data);
+
+ pops += (uint64_t)kev.data;
+ gettimeofday(&after, NULL);
+ elapsed_usecs = (uint64_t)((after.tv_sec - before.tv_sec) * (int64_t)USEC_PER_SEC +
+ (after.tv_usec - before.tv_usec));
+
+ if (elapsed_usecs > test_duration_us)
+ break;
+ }
+
+ /* check how many times the timer fired: within 5%? */
+ if (pops > expected_pops + (expected_pops / 20) ||
+ pops < expected_pops - (expected_pops / 20)) {
+ T_FAIL("%s() usec:%d (saw %lld of %lld expected pops)", __func__, usec, pops, expected_pops);
+ failed++;
+ } else {
+ T_PASS("%s() usec:%d (saw %lld pops)", __func__, usec, pops);
+ passed++;
+ }
+
+ EV_SET64(&kev, 3, EVFILT_TIMER, EV_DELETE, 0, 0, 0, 0, 0);
+ ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
+ if (ret != 0) {
+ T_LOG("\tfailed to stop repeating timer: %d\n", ret);
+ }
+}
+
+/* Test that the repeating timer repeats even while not polling in kqueue */
+static void
+test_repeating_kevent(int usec)
+{
+ struct kevent64_s kev;
+ int ret;
+
+ T_SETUPBEGIN;
+
+ uint64_t test_duration_us = USEC_PER_SEC; /* 1 second */
+
+ uint64_t expected_pops = test_duration_us / (uint64_t)usec;
+ T_LOG("Testing repeating kevent at %d usec intervals (%lld pops/second)...\n",
+ usec, expected_pops);
+
+ EV_SET64(&kev, 4, EVFILT_TIMER, EV_ADD, NOTE_USECONDS, usec, 0, 0, 0);
+ ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
+ if (ret != 0) {
+ T_FAIL("%s() setup failure: kevent64 returned %d\n", __func__, ret);
+ failed++;
+ return;
+ }
+
+ usleep((useconds_t)test_duration_us);
+
+ ret = kevent64(kq, NULL, 0, &kev, 1, 0, &failure_timeout);
+ if (ret != 1 || (kev.flags & EV_ERROR)) {
+ T_FAIL("%s() setup failure: kevent64 returned %d\n", __func__, ret);
+ failed++;
+ return;
+ }
+
+ T_SETUPEND;
+
+ uint64_t pops = (uint64_t) kev.data;
+
+ /* check how many times the timer fired: within 5%? */
+ if (pops > expected_pops + (expected_pops / 20) ||
+ pops < expected_pops - (expected_pops / 20)) {
+ T_FAIL("%s() usec:%d (saw %lld of %lld expected pops)", __func__, usec, pops, expected_pops);
+ failed++;
+ } else {
+ T_PASS("%s() usec:%d (saw %lld pops)", __func__, usec, pops);
+ passed++;
+ }
+
+ EV_SET64(&kev, 4, EVFILT_TIMER, EV_DELETE, 0, 0, 0, 0, 0);
+ ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
+ if (ret != 0) {
+ T_LOG("\tfailed to stop repeating timer: %d\n", ret);
+ }
+}
+
+
+static void
+test_updated_kevent(int first, int second)
+{
+ struct kevent64_s kev;
+ int ret;
+
+ T_LOG("Testing update from %d to %d msecs...\n", first, second);
+
+ T_SETUPBEGIN;
+
+ EV_SET64(&kev, 4, EVFILT_TIMER, EV_ADD|EV_ONESHOT, 0, first, 0, 0, 0);
+ ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL);
+ if (ret != 0) {
+ T_FAIL("%s() failure: initial kevent returned %d\n", __func__, ret);
+ failed++;
+ return;
+ }
+
+ T_SETUPEND;
+
+ EV_SET64(&kev, 4, EVFILT_TIMER, EV_ONESHOT, 0, second, 0, 0, 0);
+
+ uint64_t expected_us = (uint64_t)second * 1000;
+
+ if (second < 0)
+ expected_us = 0;
+
+ ret = do_simple_kevent(&kev, expected_us);
+
+ if (ret) {
+ passed++;
+ T_PASS("%s() %d, %d", __func__, first, second);
+ } else {
+ failed++;
+ T_FAIL("%s() %d, %d", __func__, first, second);
+ }
+}
+
+static void
+disable_timer_coalescing(void)
+{
+ struct task_qos_policy qosinfo;
+ kern_return_t kr;
+
+ T_SETUPBEGIN;
+
+ qosinfo.task_latency_qos_tier = LATENCY_QOS_TIER_0;
+ qosinfo.task_throughput_qos_tier = THROUGHPUT_QOS_TIER_0;
+
+ kr = task_policy_set(mach_task_self(), TASK_OVERRIDE_QOS_POLICY, (task_policy_t)&qosinfo,
+ TASK_QOS_POLICY_COUNT);
+ if (kr != KERN_SUCCESS) {
+ T_FAIL("task_policy_set(... TASK_OVERRIDE_QOS_POLICY ...) failed: %d (%s)", kr, mach_error_string(kr));
+ }
+
+ T_SETUPEND;
+}
+
+T_DECL(kqueue_timer_tests,
+ "Tests assorted kqueue operations for timer-related events")
+{
+ /*
+ * Since we're trying to test timers here, disable timer coalescing
+ * to improve the accuracy of timer fires for this process.
+ */
+ disable_timer_coalescing();
+
+ mach_timebase_info(&timebase_info);
+
+ kq = kqueue();
+ assert(kq > 0);
+ passed = 0;
+ failed = 0;
+
+ test_absolute_kevent(100, 0);
+ test_absolute_kevent(200, 0);
+ test_absolute_kevent(300, 0);
+ test_absolute_kevent(1000, 0);
+ T_MAYFAIL;
+ test_absolute_kevent(500, NOTE_USECONDS);
+ T_MAYFAIL;
+ test_absolute_kevent(100, NOTE_USECONDS);
+ T_MAYFAIL;
+ test_absolute_kevent(2, NOTE_SECONDS);
+ T_MAYFAIL;
+ test_absolute_kevent(-1000, 0);
+
+ T_MAYFAIL;
+ test_absolute_kevent((int)nanos_to_abs(10 * NSEC_PER_MSEC), NOTE_MACHTIME);
+
+ test_oneshot_kevent(1, NOTE_SECONDS);
+ T_MAYFAIL;
+ test_oneshot_kevent(10, 0);
+ T_MAYFAIL;
+ test_oneshot_kevent(200, NOTE_USECONDS);
+ T_MAYFAIL;
+ test_oneshot_kevent(300000, NOTE_NSECONDS);
+ T_MAYFAIL;
+ test_oneshot_kevent(-1, NOTE_SECONDS);
+
+ T_MAYFAIL;
+ test_oneshot_kevent((int)nanos_to_abs(10 * NSEC_PER_MSEC), NOTE_MACHTIME);
+
+ test_interval_kevent(250 * 1000);
+ T_MAYFAIL;
+ test_interval_kevent(5 * 1000);
+ T_MAYFAIL;
+ test_interval_kevent(200);
+ T_MAYFAIL;
+ test_interval_kevent(50);
+
+ test_interval_kevent(-1000);
+
+ test_repeating_kevent(10000); /* 10ms */
+
+ test_updated_kevent(1000, 2000);
+ test_updated_kevent(2000, 1000);
+ test_updated_kevent(1000, -1);
+
+}