--- /dev/null
+/*
+ * Copyright (c) 2007-2011 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+
+#include <mach_debug.h>
+#include <mach_kdp.h>
+#include <debug.h>
+
+#include <mach/vm_types.h>
+#include <mach/vm_param.h>
+#include <kern/misc_protos.h>
+#include <kern/assert.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_page.h>
+#include <vm/pmap.h>
+
+#include <arm64/proc_reg.h>
+#include <arm64/lowglobals.h>
+#include <arm/cpu_data_internal.h>
+#include <arm/misc_protos.h>
+#include <pexpert/arm64/boot.h>
+
+#include <libkern/kernel_mach_header.h>
+#include <libkern/section_keywords.h>
+
+#if KASAN
+extern vm_offset_t shadow_pbase;
+extern vm_offset_t shadow_ptop;
+extern vm_offset_t physmap_vbase;
+extern vm_offset_t physmap_vtop;
+#endif
+
+/*
+ * Denotes the end of xnu.
+ */
+extern void *last_kernel_symbol;
+
+/*
+ * KASLR parameters
+ */
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_base;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_top;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kext_base;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kext_top;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_stext;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_etext;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slide;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slid_base;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_kernel_slid_top;
+
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_stext;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_etext;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_sdata;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_edata;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_sinfo;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_prelink_einfo;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_slinkedit;
+SECURITY_READ_ONLY_LATE(vm_offset_t) vm_elinkedit;
+
+/* Used by <mach/arm/vm_param.h> */
+SECURITY_READ_ONLY_LATE(unsigned long) gVirtBase;
+SECURITY_READ_ONLY_LATE(unsigned long) gPhysBase;
+SECURITY_READ_ONLY_LATE(unsigned long) gPhysSize;
+
+
+/*
+ * NOTE: mem_size is bogus on large memory machines.
+ * We will pin it to 0x80000000 if there is more than 2 GB
+ * This is left only for compatibility and max_mem should be used.
+ */
+vm_offset_t mem_size; /* Size of actual physical memory present
+ * minus any performance buffer and possibly
+ * limited by mem_limit in bytes */
+uint64_t mem_actual; /* The "One True" physical memory size
+ * actually, it's the highest physical
+ * address + 1 */
+uint64_t max_mem; /* Size of physical memory (bytes), adjusted
+ * by maxmem */
+uint64_t sane_size; /* Memory size to use for defaults
+ * calculations */
+/* This no longer appears to be used; kill it? */
+addr64_t vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Highest kernel
+ * virtual address known
+ * to the VM system */
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segTEXTB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXT;
+
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segDATACONSTB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATACONST;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segTEXTEXECB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXTEXEC;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segDATAB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATA;
+
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segLINKB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLINK;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segKLDB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeKLD;
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segLASTB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLAST;
+
+SECURITY_READ_ONLY_LATE(vm_offset_t) segPRELINKTEXTB;
+SECURITY_READ_ONLY_LATE(unsigned long) segSizePRELINKTEXT;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKTEXTEXECB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKTEXTEXEC;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKDATACONSTB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKDATACONST;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segPRELINKDATAB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKDATA;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKLLVMCOVB = 0;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLLVMCOV = 0;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segPLKLINKEDITB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLINKEDIT;
+
+SECURITY_READ_ONLY_LATE(static vm_offset_t) segPRELINKINFOB;
+SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKINFO;
+
+SECURITY_READ_ONLY_LATE(static boolean_t) use_contiguous_hint = TRUE;
+
+SECURITY_READ_ONLY_LATE(unsigned) PAGE_SHIFT_CONST;
+
+SECURITY_READ_ONLY_LATE(vm_offset_t) end_kern;
+SECURITY_READ_ONLY_LATE(vm_offset_t) etext;
+SECURITY_READ_ONLY_LATE(vm_offset_t) sdata;
+SECURITY_READ_ONLY_LATE(vm_offset_t) edata;
+
+vm_offset_t alloc_ptpage(boolean_t map_static);
+SECURITY_READ_ONLY_LATE(vm_offset_t) ropage_next;
+
+/*
+ * Bootstrap the system enough to run with virtual memory.
+ * Map the kernel's code and data, and allocate the system page table.
+ * Page_size must already be set.
+ *
+ * Parameters:
+ * first_avail: first available physical page -
+ * after kernel page tables
+ * avail_start: PA of first physical page
+ * avail_end: PA of last physical page
+ */
+SECURITY_READ_ONLY_LATE(vm_offset_t) first_avail;
+SECURITY_READ_ONLY_LATE(vm_offset_t) static_memory_end;
+SECURITY_READ_ONLY_LATE(pmap_paddr_t) avail_start;
+SECURITY_READ_ONLY_LATE(pmap_paddr_t) avail_end;
+
+#define MEM_SIZE_MAX 0x100000000ULL
+
+#if defined(KERNEL_INTEGRITY_KTRR)
+#if __ARM64_TWO_LEVEL_PMAP__
+/* We could support this configuration, but it adds memory overhead. */
+#error This configuration is not supported
+#endif
+#endif
+
+/*
+ * This rounds the given address up to the nearest boundary for a PTE contiguous
+ * hint.
+ */
+static vm_offset_t
+round_up_pte_hint_address(vm_offset_t address)
+{
+ vm_offset_t hint_size = ARM_PTE_SIZE << ARM_PTE_HINT_ENTRIES_SHIFT;
+ return ((address + (hint_size - 1)) & ~(hint_size - 1));
+}
+
+/* allocate a page for a page table: we support static and dynamic mappings.
+ *
+ * returns a virtual address for the allocated page
+ *
+ * for static mappings, we allocate from the region ropagetable_begin to ro_pagetable_end-1,
+ * which is defined in the DATA_CONST segment and will be protected RNX when vm_prot_finalize runs.
+ *
+ * for dynamic mappings, we allocate from avail_start, which should remain RWNX.
+ */
+
+vm_offset_t alloc_ptpage(boolean_t map_static) {
+ vm_offset_t vaddr;
+
+#if !(defined(KERNEL_INTEGRITY_KTRR))
+ map_static = FALSE;
+#endif
+
+ if (!ropage_next) {
+ ropage_next = (vm_offset_t)&ropagetable_begin;
+ }
+
+ if (map_static) {
+ assert(ropage_next < (vm_offset_t)&ropagetable_end);
+
+ vaddr = ropage_next;
+ ropage_next += ARM_PGBYTES;
+
+ return vaddr;
+ } else {
+ vaddr = phystokv(avail_start);
+ avail_start += ARM_PGBYTES;
+
+ return vaddr;
+ }
+}
+
+#if DEBUG
+
+void dump_kva_l2(vm_offset_t tt_base, tt_entry_t *tt, int indent, uint64_t *rosz_out, uint64_t *rwsz_out);
+
+void dump_kva_l2(vm_offset_t tt_base, tt_entry_t *tt, int indent, uint64_t *rosz_out, uint64_t *rwsz_out) {
+ unsigned int i;
+ boolean_t cur_ro, prev_ro = 0;
+ int start_entry = -1;
+ tt_entry_t cur, prev = 0;
+ pmap_paddr_t robegin = kvtophys((vm_offset_t)&ropagetable_begin);
+ pmap_paddr_t roend = kvtophys((vm_offset_t)&ropagetable_end);
+ boolean_t tt_static = kvtophys((vm_offset_t)tt) >= robegin &&
+ kvtophys((vm_offset_t)tt) < roend;
+
+ for(i=0; i<TTE_PGENTRIES; i++) {
+ int tte_type = tt[i] & ARM_TTE_TYPE_MASK;
+ cur = tt[i] & ARM_TTE_TABLE_MASK;
+
+ if (tt_static) {
+ /* addresses mapped by this entry are static if it is a block mapping,
+ * or the table was allocated from the RO page table region */
+ cur_ro = (tte_type == ARM_TTE_TYPE_BLOCK) || (cur >= robegin && cur < roend);
+ } else {
+ cur_ro = 0;
+ }
+
+ if ((cur == 0 && prev != 0) || (cur_ro != prev_ro && prev != 0)) { // falling edge
+ uintptr_t start,end,sz;
+
+ start = (uintptr_t)start_entry << ARM_TT_L2_SHIFT;
+ start += tt_base;
+ end = ((uintptr_t)i << ARM_TT_L2_SHIFT) - 1;
+ end += tt_base;
+
+ sz = end - start + 1;
+ printf("%*s0x%08x_%08x-0x%08x_%08x %s (%luMB)\n",
+ indent*4, "",
+ (uint32_t)(start >> 32),(uint32_t)start,
+ (uint32_t)(end >> 32),(uint32_t)end,
+ prev_ro ? "Static " : "Dynamic",
+ (sz >> 20));
+
+ if (prev_ro) {
+ *rosz_out += sz;
+ } else {
+ *rwsz_out += sz;
+ }
+ }
+
+ if ((prev == 0 && cur != 0) || cur_ro != prev_ro) { // rising edge: set start
+ start_entry = i;
+ }
+
+ prev = cur;
+ prev_ro = cur_ro;
+ }
+}
+
+void dump_kva_space() {
+ uint64_t tot_rosz=0, tot_rwsz=0;
+ int ro_ptpages, rw_ptpages;
+ pmap_paddr_t robegin = kvtophys((vm_offset_t)&ropagetable_begin);
+ pmap_paddr_t roend = kvtophys((vm_offset_t)&ropagetable_end);
+ boolean_t root_static = kvtophys((vm_offset_t)cpu_tte) >= robegin &&
+ kvtophys((vm_offset_t)cpu_tte) < roend;
+ uint64_t kva_base = ~((1ULL << (64 - T1SZ_BOOT)) - 1);
+
+ printf("Root page table: %s\n", root_static ? "Static" : "Dynamic");
+
+#if !__ARM64_TWO_LEVEL_PMAP__
+ for(unsigned int i=0; i<TTE_PGENTRIES; i++) {
+ pmap_paddr_t cur;
+ boolean_t cur_ro;
+ uintptr_t start,end;
+ uint64_t rosz = 0, rwsz = 0;
+
+ if ((cpu_tte[i] & ARM_TTE_VALID) == 0)
+ continue;
+
+ cur = cpu_tte[i] & ARM_TTE_TABLE_MASK;
+ start = (uint64_t)i << ARM_TT_L1_SHIFT;
+ start = start + kva_base;
+ end = start + (ARM_TT_L1_SIZE - 1);
+ cur_ro = cur >= robegin && cur < roend;
+
+ printf("0x%08x_%08x-0x%08x_%08x %s\n",
+ (uint32_t)(start >> 32),(uint32_t)start,
+ (uint32_t)(end >> 32),(uint32_t)end,
+ cur_ro ? "Static " : "Dynamic");
+
+ dump_kva_l2(start, (tt_entry_t*)phystokv(cur), 1, &rosz, &rwsz);
+ tot_rosz += rosz;
+ tot_rwsz += rwsz;
+ }
+#else
+ dump_kva_l2(kva_base, cpu_tte, 0, &tot_rosz, &tot_rwsz);
+#endif /* !_ARM64_TWO_LEVEL_PMAP__ */
+
+ printf("L2 Address space mapped: Static %lluMB Dynamic %lluMB Total %lluMB\n",
+ tot_rosz >> 20,
+ tot_rwsz >> 20,
+ (tot_rosz >> 20) + (tot_rwsz >> 20));
+
+ ro_ptpages = (int)((ropage_next - (vm_offset_t)&ropagetable_begin) >> ARM_PGSHIFT);
+ rw_ptpages = (int)(lowGlo.lgStaticSize >> ARM_PGSHIFT);
+ printf("Pages used: static %d dynamic %d\n", ro_ptpages, rw_ptpages);
+}
+
+#endif /* DEBUG */
+
+#if defined(KERNEL_INTEGRITY_KTRR)
+extern void bootstrap_instructions;
+
+/*
+ * arm_replace_identity_map takes the V=P map that we construct in start.s
+ * and repurposes it in order to have it map only the page we need in order
+ * to turn on the MMU. This prevents us from running into issues where
+ * KTRR will cause us to fault on executable block mappings that cross the
+ * KTRR boundary.
+ */
+static void arm_replace_identity_map(boot_args * args)
+{
+ vm_offset_t addr;
+ pmap_paddr_t paddr;
+
+#if !__ARM64_TWO_LEVEL_PMAP__
+ pmap_paddr_t l1_ptp_phys = 0;
+ tt_entry_t *l1_ptp_virt = NULL;
+ tt_entry_t *tte1 = NULL;
+#endif
+ pmap_paddr_t l2_ptp_phys = 0;
+ tt_entry_t *l2_ptp_virt = NULL;
+ tt_entry_t *tte2 = NULL;
+ pmap_paddr_t l3_ptp_phys = 0;
+ pt_entry_t *l3_ptp_virt = NULL;
+ pt_entry_t *ptep = NULL;
+
+ addr = ((vm_offset_t)&bootstrap_instructions) & ~ARM_PGMASK;
+ paddr = kvtophys(addr);
+
+ /*
+ * The V=P page tables (at the time this comment was written) start
+ * after the last bit of kernel data, and consist of 1 to 2 pages.
+ * Grab references to those pages, and allocate an L3 page.
+ */
+#if !__ARM64_TWO_LEVEL_PMAP__
+ l1_ptp_phys = args->topOfKernelData;
+ l1_ptp_virt = (tt_entry_t *)phystokv(l1_ptp_phys);
+ tte1 = &l1_ptp_virt[(((paddr) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)];
+
+ l2_ptp_phys = l1_ptp_phys + ARM_PGBYTES;
+#else
+ l2_ptp_phys = args->topOfKernelData;
+#endif
+ l2_ptp_virt = (tt_entry_t *)phystokv(l2_ptp_phys);
+ tte2 = &l2_ptp_virt[(((paddr) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)];
+
+ l3_ptp_virt = (pt_entry_t *)alloc_ptpage(FALSE);
+ l3_ptp_phys = kvtophys((vm_offset_t)l3_ptp_virt);
+ ptep = &l3_ptp_virt[(((paddr) & ARM_TT_L3_INDEX_MASK) >> ARM_TT_L3_SHIFT)];
+
+ /*
+ * Replace the large V=P mapping with a mapping that provides only the
+ * mappings needed to turn on the MMU.
+ */
+#if !__ARM64_TWO_LEVEL_PMAP__
+ bzero(l1_ptp_virt, ARM_PGBYTES);
+ *tte1 = ARM_TTE_BOOT_TABLE | (l2_ptp_phys & ARM_TTE_TABLE_MASK);
+#endif
+ bzero(l2_ptp_virt, ARM_PGBYTES);
+ *tte2 = ARM_TTE_BOOT_TABLE | (l3_ptp_phys & ARM_TTE_TABLE_MASK);
+
+ *ptep = (paddr & ARM_PTE_MASK) |
+ ARM_PTE_TYPE_VALID |
+ ARM_PTE_SH(SH_OUTER_MEMORY) |
+ ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK) |
+ ARM_PTE_AF |
+ ARM_PTE_AP(AP_RONA) |
+ ARM_PTE_NX;
+}
+#endif /* defined(KERNEL_INTEGRITY_KTRR)*/
+
+/*
+ * arm_vm_page_granular_helper updates protections at the L3 level. It will (if
+ * neccessary) allocate a page for the L3 table and update the corresponding L2
+ * entry. Then, it will iterate over the L3 table, updating protections as necessary.
+ * This expects to be invoked on a L2 entry or sub L2 entry granularity, so this should
+ * not be invoked from a context that does not do L2 iteration separately (basically,
+ * don't call this except from arm_vm_page_granular_prot).
+ */
+static void
+arm_vm_page_granular_helper(vm_offset_t start, vm_offset_t _end, vm_offset_t va,
+ int pte_prot_APX, int pte_prot_XN, int forceCoarse,
+ pt_entry_t **deferred_pte, pt_entry_t *deferred_ptmp)
+{
+ if (va & ARM_TT_L2_OFFMASK) { /* ragged edge hanging over a ARM_TT_L2_SIZE boundary */
+#if __ARM64_TWO_LEVEL_PMAP__
+ tt_entry_t *tte2;
+#else
+ tt_entry_t *tte1, *tte2;
+#endif
+ tt_entry_t tmplate;
+ pmap_paddr_t pa;
+ pt_entry_t *ppte, *recursive_pte = NULL, ptmp, recursive_ptmp = 0;
+ addr64_t ppte_phys;
+ unsigned i;
+
+ va &= ~ARM_TT_L2_OFFMASK;
+ pa = va - gVirtBase + gPhysBase;
+
+#if __ARM64_TWO_LEVEL_PMAP__
+ tte2 = &cpu_tte[(((va) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)];
+#else
+ tte1 = &cpu_tte[(((va) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)];
+ tte2 = &((tt_entry_t*) phystokv((*tte1) & ARM_TTE_TABLE_MASK))[(((va) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)];
+#endif
+
+ tmplate = *tte2;
+
+ if (ARM_TTE_TYPE_TABLE == (tmplate & ARM_TTE_TYPE_MASK)) {
+ /* pick up the existing page table. */
+ ppte = (pt_entry_t *)phystokv((tmplate & ARM_TTE_TABLE_MASK));
+ } else {
+ // TTE must be reincarnated COARSE.
+ ppte = (pt_entry_t*)alloc_ptpage(TRUE);
+ ppte_phys = kvtophys((vm_offset_t)ppte);
+
+ pmap_init_pte_static_page(kernel_pmap, ppte, pa);
+
+ *tte2 = pa_to_tte(ppte_phys) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID;
+ }
+
+ /* Apply the desired protections to the specified page range */
+ for (i = 0; i <= (ARM_TT_L3_INDEX_MASK>>ARM_TT_L3_SHIFT); i++) {
+ if ((start <= va) && (va < _end)) {
+
+ ptmp = pa | ARM_PTE_AF | ARM_PTE_SH(SH_OUTER_MEMORY) | ARM_PTE_TYPE;
+ ptmp = ptmp | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT);
+ ptmp = ptmp | ARM_PTE_AP(pte_prot_APX);
+ ptmp = ptmp | ARM_PTE_NX;
+
+ if (pte_prot_XN) {
+ ptmp = ptmp | ARM_PTE_PNX;
+ }
+
+ /*
+ * If we can, apply the contiguous hint to this range. The hint is
+ * applicable if we are not trying to create per-page mappings and
+ * if the current address falls within a hint-sized range that will
+ * be fully covered by this mapping request.
+ */
+ if ((va >= round_up_pte_hint_address(start)) && (round_up_pte_hint_address(va + 1) < _end) &&
+ !forceCoarse && use_contiguous_hint) {
+ ptmp |= ARM_PTE_HINT;
+ }
+
+ if ((pt_entry_t*)(phystokv(pa)) == ppte) {
+ assert(recursive_pte == NULL);
+ /* This assert should be reenabled as part of rdar://problem/30149465 */
+ assert(!forceCoarse);
+ recursive_pte = &ppte[i];
+ recursive_ptmp = ptmp;
+ } else if ((deferred_pte != NULL) && (&ppte[i] == &recursive_pte[1])) {
+ assert(*deferred_pte == NULL);
+ assert(deferred_ptmp != NULL);
+ *deferred_pte = &ppte[i];
+ *deferred_ptmp = ptmp;
+ } else {
+ ppte[i] = ptmp;
+ }
+ }
+
+ va += ARM_PGBYTES;
+ pa += ARM_PGBYTES;
+ }
+ if (recursive_pte != NULL)
+ *recursive_pte = recursive_ptmp;
+ }
+}
+
+/*
+ * arm_vm_page_granular_prot updates protections by iterating over the L2 entries and
+ * changing them. If a particular chunk necessitates L3 entries (for reasons of
+ * alignment or length, or an explicit request that the entry be fully expanded), we
+ * hand off to arm_vm_page_granular_helper to deal with the L3 chunk of the logic.
+ *
+ * Note that counterintuitively a forceCoarse request is a request to expand the entries
+ * out to L3, i.e. to make *finer* grained mappings. That comes from historical arm32
+ * nomenclature in which the 4K granule is "coarse" vs. the 1K "fine" granule (which we
+ * don't use).
+ */
+static void
+arm_vm_page_granular_prot(vm_offset_t start, unsigned long size,
+ int tte_prot_XN, int pte_prot_APX, int pte_prot_XN, int forceCoarse)
+{
+ pt_entry_t *deferred_pte = NULL, deferred_ptmp = 0;
+ vm_offset_t _end = start + size;
+ vm_offset_t align_start = (start + ARM_TT_L2_OFFMASK) & ~ARM_TT_L2_OFFMASK;
+
+ if (size == 0x0UL)
+ return;
+
+ if (align_start > _end) {
+ arm_vm_page_granular_helper(start, _end, start, pte_prot_APX, pte_prot_XN, forceCoarse, NULL, NULL);
+ return;
+ }
+
+ arm_vm_page_granular_helper(start, align_start, start, pte_prot_APX, pte_prot_XN, forceCoarse, &deferred_pte, &deferred_ptmp);
+
+ while ((_end - align_start) >= ARM_TT_L2_SIZE) {
+ if (forceCoarse)
+ arm_vm_page_granular_helper(align_start, align_start+ARM_TT_L2_SIZE, align_start + 1,
+ pte_prot_APX, pte_prot_XN, forceCoarse, NULL, NULL);
+ else {
+#if __ARM64_TWO_LEVEL_PMAP__
+ tt_entry_t *tte2;
+#else
+ tt_entry_t *tte1, *tte2;
+#endif
+ tt_entry_t tmplate;
+
+#if __ARM64_TWO_LEVEL_PMAP__
+ tte2 = &cpu_tte[((align_start & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)];
+#else
+ tte1 = &cpu_tte[((align_start & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT)];
+ tte2 = &((tt_entry_t*) phystokv((*tte1) & ARM_TTE_TABLE_MASK))[((align_start & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT)];
+#endif
+
+ tmplate = *tte2;
+
+ tmplate = (tmplate & ~ARM_TTE_BLOCK_APMASK) | ARM_TTE_BLOCK_AP(pte_prot_APX);
+ tmplate = tmplate | ARM_TTE_BLOCK_NX;
+ if (tte_prot_XN)
+ tmplate = tmplate | ARM_TTE_BLOCK_PNX;
+
+ *tte2 = tmplate;
+ }
+ align_start += ARM_TT_L2_SIZE;
+ }
+
+ if (align_start < _end)
+ arm_vm_page_granular_helper(align_start, _end, _end, pte_prot_APX, pte_prot_XN, forceCoarse, &deferred_pte, &deferred_ptmp);
+
+ if (deferred_pte != NULL)
+ *deferred_pte = deferred_ptmp;
+}
+
+static inline void
+arm_vm_page_granular_RNX(vm_offset_t start, unsigned long size, int forceCoarse)
+{
+ arm_vm_page_granular_prot(start, size, 1, AP_RONA, 1, forceCoarse);
+}
+
+static inline void
+arm_vm_page_granular_ROX(vm_offset_t start, unsigned long size, int forceCoarse)
+{
+ arm_vm_page_granular_prot(start, size, 0, AP_RONA, 0, forceCoarse);
+}
+
+static inline void
+arm_vm_page_granular_RWNX(vm_offset_t start, unsigned long size, int forceCoarse)
+{
+ arm_vm_page_granular_prot(start, size, 1, AP_RWNA, 1, forceCoarse);
+}
+
+static inline void
+arm_vm_page_granular_RWX(vm_offset_t start, unsigned long size, int forceCoarse)
+{
+ arm_vm_page_granular_prot(start, size, 0, AP_RWNA, 0, forceCoarse);
+}
+
+void
+arm_vm_prot_init(boot_args * args)
+{
+ /*
+ * Enforce W^X protections on sections that have been identified so far. This will be
+ * further refined for each KEXT's TEXT and DATA segments in readPrelinkedExtensions()
+ */
+ bool use_small_page_mappings = FALSE;
+
+ /*
+ * First off, we'll create mappings for any physical memory preceeding the kernel TEXT.
+ * This is memory that we want to give to the VM; this will be accomplished through an
+ * ml_static_mfree call in arm_vm_prot_finalize. This allows the pmap/vm bootstrap
+ * routines to assume they will have a physically contiguous chunk of memory to deal
+ * with during bootstrap, while reclaiming this memory later.
+ */
+ arm_vm_page_granular_RWNX(gVirtBase, segPRELINKTEXTB - gVirtBase, use_small_page_mappings); // Memory for the VM
+
+ /* Map coalesced kext TEXT segment RWNX for now */
+ arm_vm_page_granular_RWNX(segPRELINKTEXTB, segSizePRELINKTEXT, FALSE); // Refined in OSKext::readPrelinkedExtensions
+
+ /* Map coalesced kext DATA_CONST segment RWNX (could be empty) */
+ arm_vm_page_granular_RWNX(segPLKDATACONSTB, segSizePLKDATACONST, FALSE); // Refined in OSKext::readPrelinkedExtensions
+
+ /* Map coalesced kext TEXT_EXEC segment RWX (could be empty) */
+ arm_vm_page_granular_ROX(segPLKTEXTEXECB, segSizePLKTEXTEXEC, FALSE); // Refined in OSKext::readPrelinkedExtensions
+
+ /* if new segments not present, set space between PRELINK_TEXT and xnu TEXT to RWNX
+ * otherwise we no longer expecting any space between the coalesced kext read only segments and xnu rosegments
+ */
+ if (!segSizePLKDATACONST && !segSizePLKTEXTEXEC) {
+ arm_vm_page_granular_RWNX(segPRELINKTEXTB + segSizePRELINKTEXT, segTEXTB - (segPRELINKTEXTB + segSizePRELINKTEXT), FALSE);
+ } else {
+ /*
+ * If we have the new segments, we should still protect the gap between kext
+ * read-only pages and kernel read-only pages, in the event that this gap
+ * exists.
+ */
+ if ((segPLKDATACONSTB + segSizePLKDATACONST) < segTEXTB) {
+ arm_vm_page_granular_RWNX(segPLKDATACONSTB + segSizePLKDATACONST, segTEXTB - (segPLKDATACONSTB + segSizePLKDATACONST), FALSE);
+ }
+ }
+
+ /*
+ * Protection on kernel text is loose here to allow shenanigans early on. These
+ * protections are tightened in arm_vm_prot_finalize(). This is necessary because
+ * we currently patch LowResetVectorBase in cpu.c.
+ *
+ * TEXT segment contains mach headers and other non-executable data. This will become RONX later.
+ */
+ arm_vm_page_granular_RNX(segTEXTB, segSizeTEXT, FALSE);
+
+ /* Can DATACONST start out and stay RNX?
+ * NO, stuff in this segment gets modified during startup (viz. mac_policy_init()/mac_policy_list)
+ * Make RNX in prot_finalize
+ */
+ arm_vm_page_granular_RWNX(segDATACONSTB, segSizeDATACONST, FALSE);
+
+ /* TEXTEXEC contains read only executable code: becomes ROX in prot_finalize */
+ arm_vm_page_granular_RWX(segTEXTEXECB, segSizeTEXTEXEC, FALSE);
+
+
+ /* DATA segment will remain RWNX */
+ arm_vm_page_granular_RWNX(segDATAB, segSizeDATA, FALSE);
+
+ arm_vm_page_granular_ROX(segKLDB, segSizeKLD, FALSE);
+ arm_vm_page_granular_RWNX(segLINKB, segSizeLINK, FALSE);
+ arm_vm_page_granular_ROX(segLASTB, segSizeLAST, FALSE); // __LAST may be empty, but we cannot assume this
+
+ arm_vm_page_granular_RWNX(segPRELINKDATAB, segSizePRELINKDATA, FALSE); // Prelink __DATA for kexts (RW data)
+
+ if (segSizePLKLLVMCOV > 0)
+ arm_vm_page_granular_RWNX(segPLKLLVMCOVB, segSizePLKLLVMCOV, FALSE); // LLVM code coverage data
+
+ arm_vm_page_granular_RWNX(segPLKLINKEDITB, segSizePLKLINKEDIT, use_small_page_mappings); // Coalesced kext LINKEDIT segment
+
+ arm_vm_page_granular_RWNX(segPRELINKINFOB, segSizePRELINKINFO, FALSE); /* PreLinkInfoDictionary */
+ arm_vm_page_granular_RWNX(end_kern, phystokv(args->topOfKernelData) - end_kern, use_small_page_mappings); /* Device Tree, RAM Disk (if present), bootArgs */
+
+ /*
+ * This is offset by 4 pages to make room for the boot page tables; we could probably
+ * include them in the overall mapping, but we'll be paranoid for now.
+ */
+ vm_offset_t extra = 0;
+#if KASAN
+ /* add the KASAN stolen memory to the physmap */
+ extra = shadow_ptop - shadow_pbase;
+
+ /* record the extent of the physmap */
+ physmap_vbase = phystokv(args->topOfKernelData) + ARM_PGBYTES * 4;
+ physmap_vtop = static_memory_end;
+#endif
+ arm_vm_page_granular_RNX(phystokv(args->topOfKernelData), ARM_PGBYTES * 4, FALSE); // Boot page tables; they should not be mutable.
+ arm_vm_page_granular_RWNX(phystokv(args->topOfKernelData) + ARM_PGBYTES * 4,
+ extra + static_memory_end - ((phystokv(args->topOfKernelData) + ARM_PGBYTES * 4)), use_small_page_mappings); // rest of physmem
+}
+
+void
+arm_vm_prot_finalize(boot_args * args)
+{
+#pragma unused(args)
+ /*
+ * At this point, we are far enough along in the boot process that it will be
+ * safe to free up all of the memory preceeding the kernel. It may in fact
+ * be safe to do this earlier.
+ *
+ * This keeps the memory in the V-to-P mapping, but advertises it to the VM
+ * as usable.
+ */
+
+ /*
+ * if old style PRELINK segment exists, free memory before it, and after it before XNU text
+ * otherwise we're dealing with a new style kernel cache, so we should just free the
+ * memory before PRELINK_TEXT segment, since the rest of the KEXT read only data segments
+ * should be immediately followed by XNU's TEXT segment
+ */
+
+ ml_static_mfree(gVirtBase, segPRELINKTEXTB - gVirtBase);
+
+ if (!segSizePLKDATACONST && !segSizePLKTEXTEXEC) {
+ /* If new segments not present, PRELINK_TEXT is not dynamically sized, free DRAM between it and xnu TEXT */
+ ml_static_mfree(segPRELINKTEXTB + segSizePRELINKTEXT, segTEXTB - (segPRELINKTEXTB + segSizePRELINKTEXT));
+ }
+
+ /*
+ * LowResetVectorBase patching should be done by now, so tighten executable
+ * protections.
+ */
+ arm_vm_page_granular_ROX(segTEXTEXECB, segSizeTEXTEXEC, FALSE);
+
+ /* tighten permissions on kext read only data and code */
+ if (segSizePLKDATACONST && segSizePLKTEXTEXEC) {
+ arm_vm_page_granular_RNX(segPRELINKTEXTB, segSizePRELINKTEXT, FALSE);
+ arm_vm_page_granular_ROX(segPLKTEXTEXECB, segSizePLKTEXTEXEC, FALSE);
+ arm_vm_page_granular_RNX(segPLKDATACONSTB, segSizePLKDATACONST, FALSE);
+ }
+
+#if defined(KERNEL_INTEGRITY_KTRR)
+ /*
+ * __LAST,__pinst should no longer be executable.
+ */
+ arm_vm_page_granular_RNX(segLASTB, segSizeLAST, FALSE);
+
+ /*
+ * Must wait until all other region permissions are set before locking down DATA_CONST
+ * as the kernel static page tables live in DATA_CONST on KTRR enabled systems
+ * and will become immutable.
+ */
+#endif
+ arm_vm_page_granular_RNX(segDATACONSTB, segSizeDATACONST, FALSE);
+
+#ifndef __ARM_L1_PTW__
+ FlushPoC_Dcache();
+#endif
+ flush_mmu_tlb();
+}
+
+#define TBI_USER 0x1
+#define TBI_KERNEL 0x2
+
+boolean_t user_tbi = TRUE;
+
+/*
+ * TBI (top-byte ignore) is an ARMv8 feature for ignoring the top 8 bits of
+ * address accesses. It can be enabled separately for TTBR0 (user) and
+ * TTBR1 (kernel). We enable it by default for user only, but allow both
+ * to be controlled by the 'tbi' boot-arg.
+ */
+static void
+set_tbi(void)
+{
+ uint64_t old_tcr, new_tcr;
+ int tbi = 0;
+
+ if (PE_parse_boot_argn("tbi", &tbi, sizeof(tbi)))
+ user_tbi = ((tbi & TBI_USER) == TBI_USER);
+ old_tcr = new_tcr = get_tcr();
+ new_tcr |= (user_tbi) ? TCR_TBI0_TOPBYTE_IGNORED : 0;
+ new_tcr |= (tbi & TBI_KERNEL) ? TCR_TBI1_TOPBYTE_IGNORED : 0;
+
+ if (old_tcr != new_tcr) {
+ set_tcr(new_tcr);
+ sysreg_restore.tcr_el1 = new_tcr;
+ }
+}
+
+void
+arm_vm_init(uint64_t memory_size, boot_args * args)
+{
+#if !__ARM64_TWO_LEVEL_PMAP__
+ vm_map_address_t va_l1, va_l1_end;
+ pmap_paddr_t pa_l1;
+ tt_entry_t *cpu_l1_tte;
+#else
+ /*
+ * If we are using two level page tables, rather than the
+ * 3 level page tables that xnu defaults to for ARM64,
+ * then a great deal of the code in this path becomes
+ * redundant. As a result, most of the logic having to
+ * do with L1 pages will be excluded from such
+ * configurations in this function.
+ */
+#endif
+ vm_map_address_t va_l2, va_l2_end;
+ pmap_paddr_t pa_l2;
+ tt_entry_t *cpu_l2_tte;
+ pmap_paddr_t boot_ttep;
+ tt_entry_t *boot_tte;
+ uint64_t mem_segments;
+ vm_offset_t ptpage_vaddr;
+
+
+ /*
+ * Get the virtual and physical memory base from boot_args.
+ */
+ gVirtBase = args->virtBase;
+ gPhysBase = args->physBase;
+ gPhysSize = args->memSize;
+ mem_size = args->memSize;
+ if ((memory_size != 0) && (mem_size > memory_size))
+ mem_size = memory_size;
+ if (mem_size > MEM_SIZE_MAX )
+ mem_size = MEM_SIZE_MAX;
+ static_memory_end = gVirtBase + mem_size;
+
+ boot_ttep = args->topOfKernelData;
+ boot_tte = (tt_entry_t *) phystokv(boot_ttep);
+
+ /*
+ * Four pages:
+ * TTBR0 L1, TTBR0 L2 - 1:1 bootstrap mapping.
+ * TTBR1 L1, TTBR1 L2 - kernel mapping
+ */
+ avail_start = boot_ttep + 4*ARM_PGBYTES;
+
+#if defined(KERNEL_INTEGRITY_KTRR)
+ arm_replace_identity_map(args);
+#endif
+
+ /* Initialize invalid tte page */
+ invalid_tte = (tt_entry_t *)alloc_ptpage(TRUE);
+ invalid_ttep = kvtophys((vm_offset_t)invalid_tte);
+ bzero(invalid_tte, ARM_PGBYTES);
+
+ /*
+ * Initialize l1 page table page
+ */
+#if __ARM64_TWO_LEVEL_PMAP__
+ /*
+ * If we're using a two level page table, we still need to
+ * set the cpu_ttep to avail_start, as this will be the root
+ * of our page table regardless of how many levels we are
+ * using.
+ */
+#endif
+ cpu_tte = (tt_entry_t *)alloc_ptpage(TRUE);
+ cpu_ttep = kvtophys((vm_offset_t)cpu_tte);
+ bzero(cpu_tte, ARM_PGBYTES);
+
+ avail_end = gPhysBase + mem_size;
+
+ /*
+ * Initialize l1 and l2 page table pages :
+ * map physical memory at the kernel base virtual address
+ * cover the kernel dynamic address range section
+ *
+ * the so called physical aperture should be statically mapped
+ */
+
+#if !__ARM64_TWO_LEVEL_PMAP__
+ pa_l1 = gPhysBase;
+ va_l1 = gVirtBase;
+ va_l1_end = gVirtBase + mem_size;
+#if KASAN
+ /* add the KASAN stolen memory to the physmap */
+ va_l1_end = gVirtBase + (shadow_ptop - gPhysBase);
+#endif
+ cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT);
+
+ while (va_l1 < va_l1_end) {
+ tt_entry_t *new_tte = (tt_entry_t *)alloc_ptpage(TRUE);
+ /* Allocate a page and setup L1 Table TTE in L1 */
+ *cpu_l1_tte = (kvtophys((vm_offset_t)new_tte) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID;
+ bzero((void *)new_tte, ARM_PGBYTES);
+
+ va_l2 = va_l1;
+
+ if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) {
+ /* If this is the last L1 entry, it must cover the last mapping. */
+ va_l2_end = va_l1_end;
+ } else {
+ va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end);
+ }
+
+ pa_l2 = pa_l1;
+ cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l1 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#else
+ va_l2 = gVirtBase;
+ va_l2_end = gVirtBase + mem_size;
+ pa_l2 = gPhysBase;
+ cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+
+#if KASAN
+ /* add the KASAN stolen memory to the physmap */
+ va_l2_end = gVirtBase + (shadow_ptop - gPhysBase);
+#endif
+
+#endif
+
+ while (va_l2 < va_l2_end) {
+ /* Set up L2 Block TTE in L2 */
+ *cpu_l2_tte = (pa_l2 & ARM_TTE_BLOCK_L2_MASK) | ARM_TTE_TYPE_BLOCK
+ | ARM_TTE_VALID | ARM_TTE_BLOCK_AF
+ | ARM_TTE_BLOCK_AP(AP_RWNA) | ARM_TTE_BLOCK_SH(SH_OUTER_MEMORY)
+ | ARM_TTE_BLOCK_ATTRINDX(CACHE_ATTRINDX_WRITEBACK);
+ va_l2 += ARM_TT_L2_SIZE;
+ pa_l2 += ARM_TT_L2_SIZE;
+ cpu_l2_tte++;
+ }
+#if !__ARM64_TWO_LEVEL_PMAP__
+ cpu_l1_tte++;
+ va_l1 = va_l2;
+ pa_l1 = pa_l2;
+ }
+#endif
+
+ /*
+ * Now retrieve addresses for end, edata, and etext from MACH-O headers
+ */
+ segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_TEXT", &segSizePRELINKTEXT);
+ segPLKDATACONSTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_DATA_CONST", &segSizePLKDATACONST);
+ segPLKTEXTEXECB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_TEXT_EXEC", &segSizePLKTEXTEXEC);
+ segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__TEXT", &segSizeTEXT);
+ segDATACONSTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__DATA_CONST", &segSizeDATACONST);
+ segTEXTEXECB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__TEXT_EXEC", &segSizeTEXTEXEC);
+ segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__DATA", &segSizeDATA);
+ segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__LINKEDIT", &segSizeLINK);
+ segKLDB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__KLD", &segSizeKLD);
+ segPRELINKDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_DATA", &segSizePRELINKDATA);
+ segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PRELINK_INFO", &segSizePRELINKINFO);
+ segPLKLLVMCOVB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_LLVM_COV", &segSizePLKLLVMCOV);
+ segPLKLINKEDITB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__PLK_LINKEDIT", &segSizePLKLINKEDIT);
+ segLASTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, "__LAST", &segSizeLAST);
+
+ (void) PE_parse_boot_argn("use_contiguous_hint", &use_contiguous_hint, sizeof(use_contiguous_hint));
+ assert(segSizePRELINKTEXT < 0x03000000); /* 23355738 */
+
+ /* if one of the new segments is present, the other one better be as well */
+ if (segSizePLKDATACONST || segSizePLKTEXTEXEC) {
+ assert(segSizePLKDATACONST && segSizePLKTEXTEXEC);
+ }
+
+ etext = (vm_offset_t) segTEXTB + segSizeTEXT;
+ sdata = (vm_offset_t) segDATAB;
+ edata = (vm_offset_t) segDATAB + segSizeDATA;
+ end_kern = round_page(getlastaddr()); /* Force end to next page */
+
+ vm_set_page_size();
+
+ vm_kernel_base = segTEXTB;
+ vm_kernel_top = (vm_offset_t) &last_kernel_symbol;
+ vm_kext_base = segPRELINKTEXTB;
+ vm_kext_top = vm_kext_base + segSizePRELINKTEXT;
+
+ vm_prelink_stext = segPRELINKTEXTB;
+ if (!segSizePLKTEXTEXEC && !segSizePLKDATACONST) {
+ vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT;
+ } else {
+ vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT + segSizePLKDATACONST + segSizePLKTEXTEXEC;
+ }
+ vm_prelink_sinfo = segPRELINKINFOB;
+ vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO;
+ vm_slinkedit = segLINKB;
+ vm_elinkedit = segLINKB + segSizeLINK;
+
+ vm_prelink_sdata = segPRELINKDATAB;
+ vm_prelink_edata = segPRELINKDATAB + segSizePRELINKDATA;
+
+ arm_vm_prot_init(args);
+
+
+ /*
+ * Initialize the page tables for the low globals:
+ * cover this address range:
+ * LOW_GLOBAL_BASE_ADDRESS + 2MB
+ */
+#if __ARM64_TWO_LEVEL_PMAP__
+ va_l2 = LOW_GLOBAL_BASE_ADDRESS;
+ cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#else
+ va_l1 = va_l2 = LOW_GLOBAL_BASE_ADDRESS;
+ cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT);
+ cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#endif
+ ptpage_vaddr = alloc_ptpage(TRUE);
+ *cpu_l2_tte = (kvtophys(ptpage_vaddr) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN;
+ bzero((void *)ptpage_vaddr, ARM_PGBYTES);
+
+ /*
+ * Initialize l2 page table pages :
+ * cover this address range:
+ * KERNEL_DYNAMIC_ADDR - VM_MAX_KERNEL_ADDRESS
+ */
+#if !__ARM64_TWO_LEVEL_PMAP__
+ va_l1 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL;
+ va_l1_end = VM_MAX_KERNEL_ADDRESS;
+ cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT);
+
+ while (va_l1 < va_l1_end) {
+ if (*cpu_l1_tte == ARM_TTE_EMPTY) {
+ /* Allocate a page and setup L1 Table TTE in L1 */
+ ptpage_vaddr = alloc_ptpage(TRUE);
+ *cpu_l1_tte = (kvtophys(ptpage_vaddr) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN;
+ bzero((void *)ptpage_vaddr, ARM_PGBYTES);
+ }
+
+ if ((va_l1 + ARM_TT_L1_SIZE) < va_l1) {
+ /* If this is the last L1 entry, it must cover the last mapping. */
+ break;
+ }
+
+ va_l1 += ARM_TT_L1_SIZE;
+ cpu_l1_tte++;
+ }
+#endif
+
+#if KASAN
+ kasan_init();
+#endif
+
+ set_mmu_ttb(invalid_ttep & TTBR_BADDR_MASK);
+ set_mmu_ttb_alternate(cpu_ttep & TTBR_BADDR_MASK);
+ set_tbi();
+ flush_mmu_tlb();
+
+ /*
+ * TODO: We're hardcoding the expected virtual TEXT base here;
+ * that gives us an ugly dependency on a linker argument in
+ * the make files. Clean this up, so we don't hardcode it
+ * twice; this is nothing but trouble.
+ */
+ sane_size = mem_size - (avail_start - gPhysBase);
+ max_mem = mem_size;
+ vm_kernel_slid_base = segPRELINKTEXTB;
+ vm_kernel_slid_top = vm_prelink_einfo;
+ vm_kernel_slide = segTEXTB-0xfffffff007004000;
+ vm_kernel_stext = segTEXTB;
+ assert(segDATACONSTB == segTEXTB + segSizeTEXT);
+ assert(segTEXTEXECB == segDATACONSTB + segSizeDATACONST);
+ vm_kernel_etext = segTEXTB + segSizeTEXT + segSizeDATACONST + segSizeTEXTEXEC;
+
+ pmap_bootstrap((gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL);
+
+ /*
+ * Initialize l3 page table pages :
+ * cover this address range:
+ * 2MB + FrameBuffer size + 10MB for each 256MB segment
+ */
+
+ mem_segments = (mem_size + 0x0FFFFFFF) >> 28;
+
+#if !__ARM64_TWO_LEVEL_PMAP__
+ va_l1 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL;
+ va_l1_end = va_l1 + ((2 + (mem_segments * 10)) << 20);
+ va_l1_end += round_page(args->Video.v_height * args->Video.v_rowBytes);
+ va_l1_end = (va_l1_end + 0x00000000007FFFFFULL) & 0xFFFFFFFFFF800000ULL;
+
+ cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT);
+
+ while (va_l1 < va_l1_end) {
+
+ va_l2 = va_l1;
+
+ if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) {
+ /* If this is the last L1 entry, it must cover the last mapping. */
+ va_l2_end = va_l1_end;
+ } else {
+ va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end);
+ }
+
+ cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#else
+ va_l2 = (gVirtBase+MEM_SIZE_MAX+ ~0xFFFFFFFFFF800000ULL) & 0xFFFFFFFFFF800000ULL;
+ va_l2_end = va_l2 + ((2 + (mem_segments * 10)) << 20);
+ va_l2_end += round_page(args->Video.v_height * args->Video.v_rowBytes);
+ va_l2_end = (va_l2_end + 0x00000000007FFFFFULL) & 0xFFFFFFFFFF800000ULL;
+ cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#endif
+
+ while (va_l2 < va_l2_end) {
+ pt_entry_t * ptp;
+ pmap_paddr_t ptp_phys;
+
+ /* Allocate a page and setup L3 Table TTE in L2 */
+ ptp = (pt_entry_t *) alloc_ptpage(FALSE);
+ ptp_phys = (pmap_paddr_t)kvtophys((vm_offset_t)ptp);
+
+ pmap_init_pte_page(kernel_pmap, ptp, va_l2, 3, TRUE);
+
+ *cpu_l2_tte = (pa_to_tte (ptp_phys)) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN;
+
+ va_l2 += ARM_TT_L2_SIZE;
+ cpu_l2_tte++;
+ };
+#if !__ARM64_TWO_LEVEL_PMAP__
+ va_l1 = va_l2_end;
+ cpu_l1_tte++;
+ }
+#endif
+
+ /*
+ * Initialize l3 page table pages :
+ * cover this address range:
+ * (VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK) - VM_MAX_KERNEL_ADDRESS
+ */
+#if !__ARM64_TWO_LEVEL_PMAP__
+ va_l1 = VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK;
+ va_l1_end = VM_MAX_KERNEL_ADDRESS;
+
+ cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT);
+
+ while (va_l1 < va_l1_end) {
+
+ va_l2 = va_l1;
+
+ if (((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE) < va_l1) {
+ /* If this is the last L1 entry, it must cover the last mapping. */
+ va_l2_end = va_l1_end;
+ } else {
+ va_l2_end = MIN((va_l1 & ~ARM_TT_L1_OFFMASK)+ARM_TT_L1_SIZE, va_l1_end);
+ }
+
+ cpu_l2_tte = ((tt_entry_t *) phystokv(((*cpu_l1_tte) & ARM_TTE_TABLE_MASK))) + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#else
+ va_l2 = VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK;
+ va_l2_end = VM_MAX_KERNEL_ADDRESS;
+ cpu_l2_tte = cpu_tte + ((va_l2 & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT);
+#endif
+
+ while (va_l2 < va_l2_end) {
+ pt_entry_t * ptp;
+ pmap_paddr_t ptp_phys;
+
+ /* Allocate a page and setup L3 Table TTE in L2 */
+ ptp = (pt_entry_t *) alloc_ptpage(FALSE);
+ ptp_phys = (pmap_paddr_t)kvtophys((vm_offset_t)ptp);
+
+ pmap_init_pte_page(kernel_pmap, ptp, va_l2, 3, TRUE);
+
+ *cpu_l2_tte = (pa_to_tte (ptp_phys)) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN;
+
+ va_l2 += ARM_TT_L2_SIZE;
+ cpu_l2_tte++;
+ };
+#if !__ARM64_TWO_LEVEL_PMAP__
+ va_l1 = va_l2_end;
+ cpu_l1_tte++;
+ }
+#endif
+
+#if __ARM64_PMAP_SUBPAGE_L1__ && __ARM_16K_PG__
+ /*
+ * In this configuration, the bootstrap mappings (arm_vm_init) and
+ * the heap mappings occupy separate L1 regions. Explicitly set up
+ * the heap L1 allocations here.
+ */
+ va_l1 = VM_MIN_KERNEL_ADDRESS & ~ARM_TT_L1_OFFMASK;
+ cpu_l1_tte = cpu_tte + ((va_l1 & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT);
+
+ while ((va_l1 >= (VM_MIN_KERNEL_ADDRESS & ~ARM_TT_L1_OFFMASK)) && (va_l1 < VM_MAX_KERNEL_ADDRESS)) {
+ /*
+ * If the L1 entry has not yet been allocated, allocate it
+ * now and treat it as a heap table.
+ */
+ if (*cpu_l1_tte == ARM_TTE_EMPTY) {
+ tt_entry_t *new_tte = (tt_entry_t*)alloc_ptpage(FALSE);
+ bzero(new_tte, ARM_PGBYTES);
+ *cpu_l1_tte = (kvtophys((vm_offset_t)new_tte) & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID | ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN;
+ }
+
+ cpu_l1_tte++;
+ va_l1 += ARM_TT_L1_SIZE;
+ }
+#endif
+
+ /*
+ * Adjust avail_start so that the range that the VM owns
+ * starts on a PAGE_SIZE aligned boundary.
+ */
+ avail_start = (avail_start + PAGE_MASK) & ~PAGE_MASK;
+
+
+ first_avail = avail_start;
+ patch_low_glo_static_region(args->topOfKernelData, avail_start - args->topOfKernelData);
+}
+