+/*-
+ ***********************************************************************
+ * *
+ * Copyright (c) David L. Mills 1993-2001 *
+ * *
+ * Permission to use, copy, modify, and distribute this software and *
+ * its documentation for any purpose and without fee is hereby *
+ * granted, provided that the above copyright notice appears in all *
+ * copies and that both the copyright notice and this permission *
+ * notice appear in supporting documentation, and that the name *
+ * University of Delaware not be used in advertising or publicity *
+ * pertaining to distribution of the software without specific, *
+ * written prior permission. The University of Delaware makes no *
+ * representations about the suitability this software for any *
+ * purpose. It is provided "as is" without express or implied *
+ * warranty. *
+ * *
+ **********************************************************************/
+
+
+/*
+ * Adapted from the original sources for FreeBSD and timecounters by:
+ * Poul-Henning Kamp <phk@FreeBSD.org>.
+ *
+ * The 32bit version of the "LP" macros seems a bit past its "sell by"
+ * date so I have retained only the 64bit version and included it directly
+ * in this file.
+ *
+ * Only minor changes done to interface with the timecounters over in
+ * sys/kern/kern_clock.c. Some of the comments below may be (even more)
+ * confusing and/or plain wrong in that context.
+ */
+
+/*
+ * Copyright (c) 2017 Apple Computer, Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+
+#include <sys/cdefs.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/eventhandler.h>
+#include <sys/kernel.h>
+#include <sys/priv.h>
+#include <sys/proc.h>
+#include <sys/lock.h>
+#include <sys/time.h>
+#include <sys/timex.h>
+#include <kern/clock.h>
+#include <sys/sysctl.h>
+#include <sys/sysproto.h>
+#include <sys/kauth.h>
+#include <kern/thread_call.h>
+#include <kern/timer_call.h>
+#include <machine/machine_routines.h>
+#if CONFIG_MACF
+#include <security/mac_framework.h>
+#endif
+#include <IOKit/IOBSD.h>
+
+typedef int64_t l_fp;
+#define L_ADD(v, u) ((v) += (u))
+#define L_SUB(v, u) ((v) -= (u))
+#define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
+#define L_NEG(v) ((v) = -(v))
+#define L_RSHIFT(v, n) \
+ do { \
+ if ((v) < 0) \
+ (v) = -(-(v) >> (n)); \
+ else \
+ (v) = (v) >> (n); \
+ } while (0)
+#define L_MPY(v, a) ((v) *= (a))
+#define L_CLR(v) ((v) = 0)
+#define L_ISNEG(v) ((v) < 0)
+#define L_LINT(v, a) \
+ do { \
+ if ((a) > 0) \
+ ((v) = (int64_t)(a) << 32); \
+ else \
+ ((v) = -((int64_t)(-(a)) << 32)); \
+ } while (0)
+#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
+
+/*
+ * Generic NTP kernel interface
+ *
+ * These routines constitute the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs. The ntp_gettime() routine
+ * provides the time, maximum error (synch distance) and estimated error
+ * (dispersion) to client user application programs. The ntp_adjtime()
+ * routine is used by the NTP daemon to adjust the calendar clock to an
+ * externally derived time. The time offset and related variables set by
+ * this routine are used by other routines in this module to adjust the
+ * phase and frequency of the clock discipline loop which controls the
+ * system clock.
+ *
+ * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
+ * defined), the time at each tick interrupt is derived directly from
+ * the kernel time variable. When the kernel time is reckoned in
+ * microseconds, (NTP_NANO undefined), the time is derived from the
+ * kernel time variable together with a variable representing the
+ * leftover nanoseconds at the last tick interrupt. In either case, the
+ * current nanosecond time is reckoned from these values plus an
+ * interpolated value derived by the clock routines in another
+ * architecture-specific module. The interpolation can use either a
+ * dedicated counter or a processor cycle counter (PCC) implemented in
+ * some architectures.
+ *
+ */
+/*
+ * Phase/frequency-lock loop (PLL/FLL) definitions
+ *
+ * The nanosecond clock discipline uses two variable types, time
+ * variables and frequency variables. Both types are represented as 64-
+ * bit fixed-point quantities with the decimal point between two 32-bit
+ * halves. On a 32-bit machine, each half is represented as a single
+ * word and mathematical operations are done using multiple-precision
+ * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
+ * used.
+ *
+ * A time variable is a signed 64-bit fixed-point number in ns and
+ * fraction. It represents the remaining time offset to be amortized
+ * over succeeding tick interrupts. The maximum time offset is about
+ * 0.5 s and the resolution is about 2.3e-10 ns.
+ *
+ * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
+ * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |s s s| ns |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * | fraction |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ *
+ * A frequency variable is a signed 64-bit fixed-point number in ns/s
+ * and fraction. It represents the ns and fraction to be added to the
+ * kernel time variable at each second. The maximum frequency offset is
+ * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
+ *
+ * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
+ * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * |s s s s s s s s s s s s s| ns/s |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ * | fraction |
+ * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ */
+
+#define SHIFT_PLL 4
+#define SHIFT_FLL 2
+
+static int time_state = TIME_OK;
+int time_status = STA_UNSYNC;
+static long time_tai;
+static long time_constant;
+static long time_precision = 1;
+static long time_maxerror = MAXPHASE / 1000;
+static unsigned long last_time_maxerror_update;
+long time_esterror = MAXPHASE / 1000;
+static long time_reftime;
+static l_fp time_offset;
+static l_fp time_freq;
+static int64_t time_adjtime;
+static int updated;
+
+static lck_spin_t * ntp_lock;
+static lck_grp_t * ntp_lock_grp;
+static lck_attr_t * ntp_lock_attr;
+static lck_grp_attr_t *ntp_lock_grp_attr;
+
+#define NTP_LOCK(enable) \
+ enable = ml_set_interrupts_enabled(FALSE); \
+ lck_spin_lock(ntp_lock);
+
+#define NTP_UNLOCK(enable) \
+ lck_spin_unlock(ntp_lock);\
+ ml_set_interrupts_enabled(enable);
+
+#define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(ntp_lock, LCK_ASSERT_OWNED)
+
+static timer_call_data_t ntp_loop_update;
+static uint64_t ntp_loop_deadline;
+static uint32_t ntp_loop_active;
+static uint32_t ntp_loop_period;
+#define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/
+
+void ntp_init(void);
+static void hardupdate(long offset);
+static void ntp_gettime1(struct ntptimeval *ntvp);
+static bool ntp_is_time_error(int tsl);
+
+static void ntp_loop_update_call(void);
+static void refresh_ntp_loop(void);
+static void start_ntp_loop(void);
+
+static bool
+ntp_is_time_error(int tsl)
+{
+
+ if (tsl & (STA_UNSYNC | STA_CLOCKERR))
+ return (true);
+
+ return (false);
+}
+
+static void
+ntp_gettime1(struct ntptimeval *ntvp)
+{
+ struct timespec atv;
+
+ NTP_ASSERT_LOCKED();
+
+ nanotime(&atv);
+ ntvp->time.tv_sec = atv.tv_sec;
+ ntvp->time.tv_nsec = atv.tv_nsec;
+ if ((unsigned long)atv.tv_sec > last_time_maxerror_update) {
+ time_maxerror += (MAXFREQ / 1000)*(atv.tv_sec-last_time_maxerror_update);
+ last_time_maxerror_update = atv.tv_sec;
+ }
+ ntvp->maxerror = time_maxerror;
+ ntvp->esterror = time_esterror;
+ ntvp->tai = time_tai;
+ ntvp->time_state = time_state;
+
+ if (ntp_is_time_error(time_status))
+ ntvp->time_state = TIME_ERROR;
+}
+
+int
+ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval)
+{
+ struct ntptimeval ntv;
+ int error;
+ boolean_t enable;
+
+ NTP_LOCK(enable);
+ ntp_gettime1(&ntv);
+ NTP_UNLOCK(enable);
+
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_ntptimeval user_ntv;
+ user_ntv.time.tv_sec = ntv.time.tv_sec;
+ user_ntv.time.tv_nsec = ntv.time.tv_nsec;
+ user_ntv.maxerror = ntv.maxerror;
+ user_ntv.esterror = ntv.esterror;
+ user_ntv.tai = ntv.tai;
+ user_ntv.time_state = ntv.time_state;
+ error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
+ } else {
+ struct user32_ntptimeval user_ntv;
+ user_ntv.time.tv_sec = ntv.time.tv_sec;
+ user_ntv.time.tv_nsec = ntv.time.tv_nsec;
+ user_ntv.maxerror = ntv.maxerror;
+ user_ntv.esterror = ntv.esterror;
+ user_ntv.tai = ntv.tai;
+ user_ntv.time_state = ntv.time_state;
+ error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
+ }
+
+ if (error)
+ return error;
+
+ return ntv.time_state;
+}
+
+int
+ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, __unused int32_t *retval)
+{
+ struct timex ntv;
+ long freq;
+ int modes;
+ int error, ret = 0;
+ clock_sec_t sec;
+ clock_usec_t microsecs;
+ boolean_t enable;
+
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timex user_ntv;
+ error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
+ ntv.modes = user_ntv.modes;
+ ntv.offset = user_ntv.offset;
+ ntv.freq = user_ntv.freq;
+ ntv.maxerror = user_ntv.maxerror;
+ ntv.esterror = user_ntv.esterror;
+ ntv.status = user_ntv.status;
+ ntv.constant = user_ntv.constant;
+ ntv.precision = user_ntv.precision;
+ ntv.tolerance = user_ntv.tolerance;
+
+ } else {
+ struct user32_timex user_ntv;
+ error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
+ ntv.modes = user_ntv.modes;
+ ntv.offset = user_ntv.offset;
+ ntv.freq = user_ntv.freq;
+ ntv.maxerror = user_ntv.maxerror;
+ ntv.esterror = user_ntv.esterror;
+ ntv.status = user_ntv.status;
+ ntv.constant = user_ntv.constant;
+ ntv.precision = user_ntv.precision;
+ ntv.tolerance = user_ntv.tolerance;
+ }
+ if (error)
+ return (error);
+
+ /*
+ * Update selected clock variables - only the superuser can
+ * change anything. Note that there is no error checking here on
+ * the assumption the superuser should know what it is doing.
+ * Note that either the time constant or TAI offset are loaded
+ * from the ntv.constant member, depending on the mode bits. If
+ * the STA_PLL bit in the status word is cleared, the state and
+ * status words are reset to the initial values at boot.
+ */
+ modes = ntv.modes;
+ if (modes) {
+ /* Check that this task is entitled to set the time or it is root */
+ if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
+#if CONFIG_MACF
+ error = mac_system_check_settime(kauth_cred_get());
+ if (error)
+ return (error);
+#endif
+ if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
+ return (error);
+
+ }
+ }
+
+ NTP_LOCK(enable);
+
+ if (modes & MOD_MAXERROR) {
+ clock_gettimeofday(&sec, µsecs);
+ time_maxerror = ntv.maxerror;
+ last_time_maxerror_update = sec;
+ }
+ if (modes & MOD_ESTERROR)
+ time_esterror = ntv.esterror;
+ if (modes & MOD_STATUS) {
+ if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
+ time_state = TIME_OK;
+ time_status = STA_UNSYNC;
+ }
+ time_status &= STA_RONLY;
+ time_status |= ntv.status & ~STA_RONLY;
+ /*
+ * Nor PPS or leaps seconds are supported.
+ * Filter out unsupported bits.
+ */
+ time_status &= STA_SUPPORTED;
+ }
+ if (modes & MOD_TIMECONST) {
+ if (ntv.constant < 0)
+ time_constant = 0;
+ else if (ntv.constant > MAXTC)
+ time_constant = MAXTC;
+ else
+ time_constant = ntv.constant;
+ }
+ if (modes & MOD_TAI) {
+ if (ntv.constant > 0)
+ time_tai = ntv.constant;
+ }
+ if (modes & MOD_NANO)
+ time_status |= STA_NANO;
+ if (modes & MOD_MICRO)
+ time_status &= ~STA_NANO;
+ if (modes & MOD_CLKB)
+ time_status |= STA_CLK;
+ if (modes & MOD_CLKA)
+ time_status &= ~STA_CLK;
+ if (modes & MOD_FREQUENCY) {
+ freq = (ntv.freq * 1000LL) >> 16;
+ if (freq > MAXFREQ)
+ L_LINT(time_freq, MAXFREQ);
+ else if (freq < -MAXFREQ)
+ L_LINT(time_freq, -MAXFREQ);
+ else {
+ /*
+ * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
+ * time_freq is [ns/s * 2^32]
+ */
+ time_freq = ntv.freq * 1000LL * 65536LL;
+ }
+ }
+ if (modes & MOD_OFFSET) {
+ if (time_status & STA_NANO)
+ hardupdate(ntv.offset);
+ else
+ hardupdate(ntv.offset * 1000);
+ }
+
+ ret = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
+
+ /*
+ * Retrieve all clock variables. Note that the TAI offset is
+ * returned only by ntp_gettime();
+ */
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timex user_ntv;
+
+ if (time_status & STA_NANO)
+ user_ntv.offset = L_GINT(time_offset);
+ else
+ user_ntv.offset = L_GINT(time_offset) / 1000;
+ user_ntv.freq = L_GINT((time_freq / 1000LL) << 16);
+ user_ntv.maxerror = time_maxerror;
+ user_ntv.esterror = time_esterror;
+ user_ntv.status = time_status;
+ user_ntv.constant = time_constant;
+ if (time_status & STA_NANO)
+ user_ntv.precision = time_precision;
+ else
+ user_ntv.precision = time_precision / 1000;
+ user_ntv.tolerance = MAXFREQ * SCALE_PPM;
+
+ /* unlock before copyout */
+ NTP_UNLOCK(enable);
+
+ error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
+
+ }
+ else{
+ struct user32_timex user_ntv;
+
+ if (time_status & STA_NANO)
+ user_ntv.offset = L_GINT(time_offset);
+ else
+ user_ntv.offset = L_GINT(time_offset) / 1000;
+ user_ntv.freq = L_GINT((time_freq / 1000LL) << 16);
+ user_ntv.maxerror = time_maxerror;
+ user_ntv.esterror = time_esterror;
+ user_ntv.status = time_status;
+ user_ntv.constant = time_constant;
+ if (time_status & STA_NANO)
+ user_ntv.precision = time_precision;
+ else
+ user_ntv.precision = time_precision / 1000;
+ user_ntv.tolerance = MAXFREQ * SCALE_PPM;
+
+ /* unlock before copyout */
+ NTP_UNLOCK(enable);
+
+ error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
+ }
+
+ if (modes)
+ start_ntp_loop();
+
+ if (error == 0)
+ *retval = ret;
+
+ return (error);
+}
+
+int64_t
+ntp_get_freq(void){
+ return time_freq;
+}
+
+/*
+ * Compute the adjustment to add to the next second.
+ */
+void
+ntp_update_second(int64_t *adjustment, clock_sec_t secs)
+{
+ int tickrate;
+ l_fp time_adj;
+ l_fp ftemp, old_time_adjtime, old_offset;
+
+ NTP_ASSERT_LOCKED();
+
+ if (secs > last_time_maxerror_update) {
+ time_maxerror += (MAXFREQ / 1000)*(secs-last_time_maxerror_update);
+ last_time_maxerror_update = secs;
+ }
+
+ old_offset = time_offset;
+ old_time_adjtime = time_adjtime;
+
+ ftemp = time_offset;
+ L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
+ time_adj = ftemp;
+ L_SUB(time_offset, ftemp);
+ L_ADD(time_adj, time_freq);
+
+ /*
+ * Apply any correction from adjtime. If more than one second
+ * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
+ * until the last second is slewed the final < 500 usecs.
+ */
+ if (time_adjtime != 0) {
+ if (time_adjtime > 1000000)
+ tickrate = 5000;
+ else if (time_adjtime < -1000000)
+ tickrate = -5000;
+ else if (time_adjtime > 500)
+ tickrate = 500;
+ else if (time_adjtime < -500)
+ tickrate = -500;
+ else
+ tickrate = time_adjtime;
+ time_adjtime -= tickrate;
+ L_LINT(ftemp, tickrate * 1000);
+ L_ADD(time_adj, ftemp);
+ }
+
+ if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) {
+ updated = 1;
+ }
+ else{
+ updated = 0;
+ }
+
+ *adjustment = time_adj;
+}
+
+/*
+ * hardupdate() - local clock update
+ *
+ * This routine is called by ntp_adjtime() when an offset is provided
+ * to update the local clock phase and frequency.
+ * The implementation is of an adaptive-parameter, hybrid
+ * phase/frequency-lock loop (PLL/FLL). The routine computes new
+ * time and frequency offset estimates for each call.
+ * Presumably, calls to ntp_adjtime() occur only when the caller
+ * believes the local clock is valid within some bound (+-128 ms with
+ * NTP).
+ *
+ * For uncompensated quartz crystal oscillators and nominal update
+ * intervals less than 256 s, operation should be in phase-lock mode,
+ * where the loop is disciplined to phase. For update intervals greater
+ * than 1024 s, operation should be in frequency-lock mode, where the
+ * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
+ * is selected by the STA_MODE status bit.
+ */
+static void
+hardupdate(offset)
+ long offset;
+{
+ long mtemp = 0;
+ long time_monitor;
+ clock_sec_t time_uptime;
+ l_fp ftemp;
+
+ NTP_ASSERT_LOCKED();
+
+ if (!(time_status & STA_PLL))
+ return;
+
+ if (offset > MAXPHASE)
+ time_monitor = MAXPHASE;
+ else if (offset < -MAXPHASE)
+ time_monitor = -MAXPHASE;
+ else
+ time_monitor = offset;
+ L_LINT(time_offset, time_monitor);
+
+ clock_get_calendar_uptime(&time_uptime);
+
+ if (time_status & STA_FREQHOLD || time_reftime == 0) {
+ time_reftime = time_uptime;
+ }
+
+ mtemp = time_uptime - time_reftime;
+ L_LINT(ftemp, time_monitor);
+ L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
+ L_MPY(ftemp, mtemp);
+ L_ADD(time_freq, ftemp);
+ time_status &= ~STA_MODE;
+ if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
+ MAXSEC)) {
+ L_LINT(ftemp, (time_monitor << 4) / mtemp);
+ L_RSHIFT(ftemp, SHIFT_FLL + 4);
+ L_ADD(time_freq, ftemp);
+ time_status |= STA_MODE;
+ }
+ time_reftime = time_uptime;
+
+ if (L_GINT(time_freq) > MAXFREQ)
+ L_LINT(time_freq, MAXFREQ);
+ else if (L_GINT(time_freq) < -MAXFREQ)
+ L_LINT(time_freq, -MAXFREQ);
+}
+
+
+static int
+kern_adjtime(struct timeval *delta)
+{
+ struct timeval atv;
+ int64_t ltr, ltw;
+ boolean_t enable;
+
+ if (delta == NULL)
+ return (EINVAL);
+
+ ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec;
+
+ NTP_LOCK(enable);
+ ltr = time_adjtime;
+ time_adjtime = ltw;
+ NTP_UNLOCK(enable);
+
+ atv.tv_sec = ltr / (int64_t)USEC_PER_SEC;
+ atv.tv_usec = ltr % (int64_t)USEC_PER_SEC;
+ if (atv.tv_usec < 0) {
+ atv.tv_usec += (suseconds_t)USEC_PER_SEC;
+ atv.tv_sec--;
+ }
+
+ *delta = atv;
+
+ start_ntp_loop();
+
+ return (0);
+}
+
+int
+adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
+{
+
+ struct timeval atv;
+ int error;
+
+ /* Check that this task is entitled to set the time or it is root */
+ if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
+
+#if CONFIG_MACF
+ error = mac_system_check_settime(kauth_cred_get());
+ if (error)
+ return (error);
+#endif
+ if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
+ return (error);
+ }
+
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timeval user_atv;
+ error = copyin(uap->delta, &user_atv, sizeof(user_atv));
+ atv.tv_sec = user_atv.tv_sec;
+ atv.tv_usec = user_atv.tv_usec;
+ } else {
+ struct user32_timeval user_atv;
+ error = copyin(uap->delta, &user_atv, sizeof(user_atv));
+ atv.tv_sec = user_atv.tv_sec;
+ atv.tv_usec = user_atv.tv_usec;
+ }
+ if (error)
+ return (error);
+
+ kern_adjtime(&atv);
+
+ if (uap->olddelta) {
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timeval user_atv;
+ user_atv.tv_sec = atv.tv_sec;
+ user_atv.tv_usec = atv.tv_usec;
+ error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
+ } else {
+ struct user32_timeval user_atv;
+ user_atv.tv_sec = atv.tv_sec;
+ user_atv.tv_usec = atv.tv_usec;
+ error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
+ }
+ }
+
+ return (error);
+
+}
+
+static void
+ntp_loop_update_call(void)
+{
+ boolean_t enable;
+
+ NTP_LOCK(enable);
+
+ /*
+ * Update the scale factor used by clock_calend.
+ * NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment.
+ */
+ clock_update_calendar();
+
+ refresh_ntp_loop();
+
+ NTP_UNLOCK(enable);
+}
+
+static void
+refresh_ntp_loop(void)
+{
+
+ NTP_ASSERT_LOCKED();
+ if (--ntp_loop_active == 0) {
+ /*
+ * Activate the timer only if the next second adjustment might change.
+ * ntp_update_second checks it and sets updated accordingly.
+ */
+ if (updated) {
+ clock_deadline_for_periodic_event(ntp_loop_period, mach_absolute_time(), &ntp_loop_deadline);
+
+ if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL))
+ ntp_loop_active++;
+ }
+ }
+
+}
+
+/*
+ * This function triggers a timer that each second will calculate the adjustment to
+ * provide to clock_calendar to scale the time (used by gettimeofday-family syscalls).
+ * The periodic timer will stop when the adjustment will reach a stable value.
+ */
+static void
+start_ntp_loop(void)
+{
+ boolean_t enable;
+
+ NTP_LOCK(enable);
+
+ ntp_loop_deadline = mach_absolute_time() + ntp_loop_period;
+
+ if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) {
+ ntp_loop_active++;
+ }
+
+ NTP_UNLOCK(enable);
+}
+
+
+static void
+init_ntp_loop(void)
+{
+ uint64_t abstime;
+
+ ntp_loop_active = 0;
+ nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, &abstime);
+ ntp_loop_period = (uint32_t)abstime;
+ timer_call_setup(&ntp_loop_update, (timer_call_func_t)ntp_loop_update_call, NULL);
+}
+
+void
+ntp_init(void)
+{
+
+ L_CLR(time_offset);
+ L_CLR(time_freq);
+
+ ntp_lock_grp_attr = lck_grp_attr_alloc_init();
+ ntp_lock_grp = lck_grp_alloc_init("ntp_lock", ntp_lock_grp_attr);
+ ntp_lock_attr = lck_attr_alloc_init();
+ ntp_lock = lck_spin_alloc_init(ntp_lock_grp, ntp_lock_attr);
+
+ updated = 0;
+
+ init_ntp_loop();
+}
+
+SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);