/*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*/
#include <platforms.h>
-#include <mach_kdb.h>
#include <mach/mach_types.h>
#include <kern/misc_protos.h>
#include <kern/spl.h>
#include <kern/assert.h>
+#include <kern/etimer.h>
#include <mach/vm_prot.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h> /* for kernel_map */
-#include <i386/ipl.h>
#include <architecture/i386/pio.h>
-#include <i386/misc_protos.h>
-#include <i386/proc_reg.h>
#include <i386/machine_cpu.h>
-#include <i386/mp.h>
#include <i386/cpuid.h>
-#include <i386/cpu_data.h>
#include <i386/cpu_threads.h>
-#include <i386/perfmon.h>
+#include <i386/mp.h>
#include <i386/machine_routines.h>
+#include <i386/pal_routines.h>
+#include <i386/proc_reg.h>
+#include <i386/misc_protos.h>
#include <pexpert/pexpert.h>
#include <machine/limits.h>
#include <machine/commpage.h>
#include <sys/kdebug.h>
#include <i386/tsc.h>
-#include <i386/hpet.h>
-#include <i386/rtclock.h>
-
-#define NSEC_PER_HZ (NSEC_PER_SEC / 100) /* nsec per tick */
+#include <i386/rtclock_protos.h>
#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
int rtclock_init(void);
-uint64_t rtc_decrementer_min;
-
-void rtclock_intr(x86_saved_state_t *regs);
-static uint64_t maxDec; /* longest interval our hardware timer can handle (nsec) */
-
-/* XXX this should really be in a header somewhere */
-extern clock_timer_func_t rtclock_timer_expire;
+uint64_t tsc_rebase_abs_time = 0;
static void rtc_set_timescale(uint64_t cycles);
static uint64_t rtc_export_speed(uint64_t cycles);
-extern void _rtc_nanotime_store(
- uint64_t tsc,
- uint64_t nsec,
- uint32_t scale,
- uint32_t shift,
- rtc_nanotime_t *dst);
-
-extern uint64_t _rtc_nanotime_read(
- rtc_nanotime_t *rntp,
- int slow );
-
-rtc_nanotime_t rtc_nanotime_info = {0,0,0,0,1,0};
-
+void
+rtc_timer_start(void)
+{
+ /*
+ * Force a complete re-evaluation of timer deadlines.
+ */
+ etimer_resync_deadlines();
+}
/*
* tsc_to_nanoseconds:
static inline uint64_t
_tsc_to_nanoseconds(uint64_t value)
{
+#if defined(__i386__)
asm volatile("movl %%edx,%%esi ;"
"mull %%ecx ;"
"movl %%edx,%%edi ;"
"mull %%ecx ;"
"addl %%edi,%%eax ;"
"adcl $0,%%edx "
- : "+A" (value) : "c" (rtc_nanotime_info.scale) : "esi", "edi");
+ : "+A" (value)
+ : "c" (pal_rtc_nanotime_info.scale)
+ : "esi", "edi");
+#elif defined(__x86_64__)
+ asm volatile("mul %%rcx;"
+ "shrq $32, %%rax;"
+ "shlq $32, %%rdx;"
+ "orq %%rdx, %%rax;"
+ : "=a"(value)
+ : "a"(value), "c"(pal_rtc_nanotime_info.scale)
+ : "rdx", "cc" );
+#else
+#error Unsupported architecture
+#endif
return (value);
}
-static uint32_t
-deadline_to_decrementer(
- uint64_t deadline,
- uint64_t now)
+static inline uint32_t
+_absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs)
{
- uint64_t delta;
-
- if (deadline <= now)
- return rtc_decrementer_min;
- else {
- delta = deadline - now;
- return MIN(MAX(rtc_decrementer_min,delta),maxDec);
- }
+ uint32_t remain;
+#if defined(__i386__)
+ asm volatile(
+ "divl %3"
+ : "=a" (*secs), "=d" (remain)
+ : "A" (abstime), "r" (NSEC_PER_SEC));
+ asm volatile(
+ "divl %3"
+ : "=a" (*microsecs)
+ : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
+#elif defined(__x86_64__)
+ *secs = abstime / (uint64_t)NSEC_PER_SEC;
+ remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC);
+ *microsecs = remain / NSEC_PER_USEC;
+#else
+#error Unsupported architecture
+#endif
+ return remain;
}
-void
-rtc_lapic_start_ticking(void)
+static inline void
+_absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs)
{
- x86_lcpu_t *lcpu = x86_lcpu();
-
- /*
- * Force a complete re-evaluation of timer deadlines.
- */
- lcpu->rtcPop = EndOfAllTime;
- etimer_resync_deadlines();
+#if defined(__i386__)
+ asm volatile(
+ "divl %3"
+ : "=a" (*secs), "=d" (*nanosecs)
+ : "A" (abstime), "r" (NSEC_PER_SEC));
+#elif defined(__x86_64__)
+ *secs = abstime / (uint64_t)NSEC_PER_SEC;
+ *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC);
+#else
+#error Unsupported architecture
+#endif
}
/*
* be guaranteed by the caller.
*/
static inline void
-rtc_nanotime_set_commpage(rtc_nanotime_t *rntp)
+rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp)
{
commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
}
* Intialize the nanotime info from the base time.
*/
static inline void
-_rtc_nanotime_init(rtc_nanotime_t *rntp, uint64_t base)
+_rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
{
uint64_t tsc = rdtsc64();
- _rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
+ _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
}
static void
rtc_nanotime_init(uint64_t base)
{
- rtc_nanotime_t *rntp = &rtc_nanotime_info;
-
- _rtc_nanotime_init(rntp, base);
- rtc_nanotime_set_commpage(rntp);
+ _rtc_nanotime_init(&pal_rtc_nanotime_info, base);
+ rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
}
/*
{
spl_t s = splclock();
- rtc_nanotime_set_commpage(&rtc_nanotime_info);
-
+ rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
splx(s);
}
#if CONFIG_EMBEDDED
if (gPEClockFrequencyInfo.timebase_frequency_hz > SLOW_TSC_THRESHOLD)
- return _rtc_nanotime_read( &rtc_nanotime_info, 1 ); /* slow processor */
+ return _rtc_nanotime_read(&rtc_nanotime_info, 1); /* slow processor */
else
#endif
- return _rtc_nanotime_read( &rtc_nanotime_info, 0 ); /* assume fast processor */
+ return _rtc_nanotime_read(&pal_rtc_nanotime_info, 0); /* assume fast processor */
}
/*
void
rtc_clock_napped(uint64_t base, uint64_t tsc_base)
{
- rtc_nanotime_t *rntp = &rtc_nanotime_info;
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
uint64_t oldnsecs;
uint64_t newnsecs;
uint64_t tsc;
* is later than the time using the old base values.
*/
if (oldnsecs < newnsecs) {
- _rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
+ _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
rtc_nanotime_set_commpage(rntp);
+ trace_set_timebases(tsc_base, base);
}
}
+/*
+ * Invoked from power management to correct the SFLM TSC entry drift problem:
+ * a small delta is added to the tsc_base. This is equivalent to nudgin time
+ * backwards. We require this to be on the order of a TSC quantum which won't
+ * cause callers of mach_absolute_time() to see time going backwards!
+ */
+void
+rtc_clock_adjust(uint64_t tsc_base_delta)
+{
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
+
+ assert(!ml_get_interrupts_enabled());
+ assert(tsc_base_delta < 100ULL); /* i.e. it's small */
+ _rtc_nanotime_adjust(tsc_base_delta, rntp);
+ rtc_nanotime_set_commpage(rntp);
+}
+
void
rtc_clock_stepping(__unused uint32_t new_frequency,
__unused uint32_t old_frequency)
/*
* rtc_sleep_wakeup:
*
- * Invoked from power manageent when we have awoken from a sleep (S3)
+ * Invoked from power management when we have awoken from a sleep (S3)
* and the TSC has been reset. The nanotime data is updated based on
* the passed in value.
*
rtc_sleep_wakeup(
uint64_t base)
{
+ /* Set fixed configuration for lapic timers */
+ rtc_timer->config();
+
/*
* Reset nanotime.
* The timestamp counter will have been reset
gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
- /*
- * Compute the longest interval we can represent.
- */
- maxDec = tmrCvt(0x7fffffffULL, busFCvtt2n);
- kprintf("maxDec: %lld\n", maxDec);
-
- /* Minimum interval is 1usec */
- rtc_decrementer_min = deadline_to_decrementer(NSEC_PER_USEC, 0ULL);
- /* Point LAPIC interrupts to hardclock() */
- lapic_set_timer_func((i386_intr_func_t) rtclock_intr);
-
+ rtc_timer_init();
clock_timebase_init();
ml_init_lock_timeout();
+ ml_init_delay_spin_threshold();
}
- rtc_lapic_start_ticking();
+ /* Set fixed configuration for lapic timers */
+ rtc_timer->config();
+ rtc_timer_start();
return (1);
}
static void
rtc_set_timescale(uint64_t cycles)
{
- rtc_nanotime_info.scale = ((uint64_t)NSEC_PER_SEC << 32) / cycles;
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
+ rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
+#if CONFIG_EMBEDDED
if (cycles <= SLOW_TSC_THRESHOLD)
- rtc_nanotime_info.shift = cycles;
+ rntp->shift = (uint32_t)cycles;
else
- rtc_nanotime_info.shift = 32;
+#endif
+ rntp->shift = 32;
+
+ if (tsc_rebase_abs_time == 0)
+ tsc_rebase_abs_time = mach_absolute_time();
rtc_nanotime_init(0);
}
void
clock_get_system_microtime(
- uint32_t *secs,
- uint32_t *microsecs)
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
uint64_t now = rtc_nanotime_read();
- uint32_t remain;
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (remain)
- : "A" (now), "r" (NSEC_PER_SEC));
- asm volatile(
- "divl %3"
- : "=a" (*microsecs)
- : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
+ _absolutetime_to_microtime(now, secs, microsecs);
}
void
clock_get_system_nanotime(
- uint32_t *secs,
- uint32_t *nanosecs)
+ clock_sec_t *secs,
+ clock_nsec_t *nanosecs)
{
uint64_t now = rtc_nanotime_read();
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (*nanosecs)
- : "A" (now), "r" (NSEC_PER_SEC));
+ _absolutetime_to_nanotime(now, secs, nanosecs);
}
void
uint64_t abstime,
uint64_t epoch,
uint64_t offset,
- uint32_t *secs,
- uint32_t *microsecs)
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
- uint64_t now = abstime;
+ uint64_t now = abstime + offset;
uint32_t remain;
- now += offset;
+ remain = _absolutetime_to_microtime(now, secs, microsecs);
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (remain)
- : "A" (now), "r" (NSEC_PER_SEC));
- asm volatile(
- "divl %3"
- : "=a" (*microsecs)
- : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
-
- *secs += epoch;
+ *secs += (clock_sec_t)epoch;
commpage_set_timestamp(abstime - remain, *secs);
}
info->numer = info->denom = 1;
}
-void
-clock_set_timer_func(
- clock_timer_func_t func)
-{
- if (rtclock_timer_expire == NULL)
- rtclock_timer_expire = func;
-}
-
/*
* Real-time clock device interrupt.
*/
{
uint64_t rip;
boolean_t user_mode = FALSE;
- uint64_t abstime;
- uint32_t latency;
- x86_lcpu_t *lcpu = x86_lcpu();
assert(get_preemption_level() > 0);
assert(!ml_get_interrupts_enabled());
- abstime = rtc_nanotime_read();
- latency = (uint32_t)(abstime - lcpu->rtcDeadline);
- if (abstime < lcpu->rtcDeadline)
- latency = 1;
-
if (is_saved_state64(tregs) == TRUE) {
x86_saved_state64_t *regs;
regs = saved_state64(tregs);
- user_mode = TRUE;
+ if (regs->isf.cs & 0x03)
+ user_mode = TRUE;
rip = regs->isf.rip;
} else {
x86_saved_state32_t *regs;
rip = regs->eip;
}
- /* Log the interrupt service latency (-ve value expected by tool) */
- KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_EXCP_DECI, 0) | DBG_FUNC_NONE,
- -latency, (uint32_t)rip, user_mode, 0, 0);
-
/* call the generic etimer */
etimer_intr(user_mode, rip);
}
+
/*
* Request timer pop from the hardware
*/
-int
+uint64_t
setPop(
uint64_t time)
{
- uint64_t now;
- uint32_t decr;
- uint64_t count;
-
- now = rtc_nanotime_read(); /* The time in nanoseconds */
- decr = deadline_to_decrementer(time, now);
+ uint64_t now;
+ uint64_t pop;
+
+ /* 0 and EndOfAllTime are special-cases for "clear the timer" */
+ if (time == 0 || time == EndOfAllTime ) {
+ time = EndOfAllTime;
+ now = 0;
+ pop = rtc_timer->set(0, 0);
+ } else {
+ now = rtc_nanotime_read(); /* The time in nanoseconds */
+ pop = rtc_timer->set(time, now);
+ }
- count = tmrCvt(decr, busFCvtn2t);
- lapic_set_timer(TRUE, one_shot, divide_by_1, (uint32_t) count);
+ /* Record requested and actual deadlines set */
+ x86_lcpu()->rtcDeadline = time;
+ x86_lcpu()->rtcPop = pop;
- return decr; /* Pass back what we set */
+ return pop - now;
}
-
uint64_t
mach_absolute_time(void)
{
void
absolutetime_to_microtime(
uint64_t abstime,
- uint32_t *secs,
- uint32_t *microsecs)
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
- uint32_t remain;
-
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (remain)
- : "A" (abstime), "r" (NSEC_PER_SEC));
- asm volatile(
- "divl %3"
- : "=a" (*microsecs)
- : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
+ _absolutetime_to_microtime(abstime, secs, microsecs);
}
void
absolutetime_to_nanotime(
uint64_t abstime,
- uint32_t *secs,
- uint32_t *nanosecs)
+ clock_sec_t *secs,
+ clock_nsec_t *nanosecs)
{
- asm volatile(
- "divl %3"
- : "=a" (*secs), "=d" (*nanosecs)
- : "A" (abstime), "r" (NSEC_PER_SEC));
+ _absolutetime_to_nanotime(abstime, secs, nanosecs);
}
void
nanotime_to_absolutetime(
- uint32_t secs,
- uint32_t nanosecs,
+ clock_sec_t secs,
+ clock_nsec_t nanosecs,
uint64_t *result)
{
*result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;