/*
- * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
* External memory management interface control functions.
*/
-#include <advisory_pageout.h>
-
/*
* Interface dependencies:
*/
-#include <mach/std_types.h> /* For pointer_t */
+#include <mach/std_types.h> /* For pointer_t */
#include <mach/mach_types.h>
#include <mach/mig.h>
/*
* Implementation dependencies:
*/
-#include <string.h> /* For memcpy() */
+#include <string.h> /* For memcpy() */
-#include <kern/xpr.h>
#include <kern/host.h>
-#include <kern/thread.h> /* For current_thread() */
+#include <kern/thread.h> /* For current_thread() */
#include <kern/ipc_mig.h>
#include <kern/misc_protos.h>
#include <vm/memory_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
-#include <vm/pmap.h> /* For pmap_clear_modify */
-#include <vm/vm_kern.h> /* For kernel_map, vm_move */
-#include <vm/vm_map.h> /* For vm_map_pageable */
+#include <vm/pmap.h> /* For pmap_clear_modify */
+#include <vm/vm_kern.h> /* For kernel_map, vm_move */
+#include <vm/vm_map.h> /* For vm_map_pageable */
+#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
+#include <vm/vm_shared_region.h>
-#if MACH_PAGEMAP
#include <vm/vm_external.h>
-#endif /* MACH_PAGEMAP */
#include <vm/vm_protos.h>
-
-memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL;
-vm_size_t memory_manager_default_cluster = 0;
-decl_mutex_data(, memory_manager_default_lock)
+memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL;
+LCK_MTX_EARLY_DECLARE(memory_manager_default_lock, &vm_object_lck_grp);
/*
* 2. Page is precious and should_return is RETURN_ALL.
* 3. Should_return is RETURN_ANYTHING.
*
- * As a side effect, m->dirty will be made consistent
+ * As a side effect, m->vmp_dirty will be made consistent
* with pmap_is_modified(m), if should_return is not
* MEMORY_OBJECT_RETURN_NONE.
*/
-#define memory_object_should_return_page(m, should_return) \
+#define memory_object_should_return_page(m, should_return) \
(should_return != MEMORY_OBJECT_RETURN_NONE && \
- (((m)->dirty || ((m)->dirty = pmap_is_modified((m)->phys_page))) || \
- ((m)->precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \
+ (((m)->vmp_dirty || ((m)->vmp_dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m)))) || \
+ ((m)->vmp_precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \
(should_return) == MEMORY_OBJECT_RETURN_ANYTHING))
-typedef int memory_object_lock_result_t;
+typedef int memory_object_lock_result_t;
-#define MEMORY_OBJECT_LOCK_RESULT_DONE 0
-#define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1
-#define MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN 2
-#define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 3
+#define MEMORY_OBJECT_LOCK_RESULT_DONE 0
+#define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1
+#define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2
+#define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3
memory_object_lock_result_t memory_object_lock_page(
- vm_page_t m,
- memory_object_return_t should_return,
- boolean_t should_flush,
- vm_prot_t prot);
+ vm_page_t m,
+ memory_object_return_t should_return,
+ boolean_t should_flush,
+ vm_prot_t prot);
/*
* Routine: memory_object_lock_page
*/
memory_object_lock_result_t
memory_object_lock_page(
- vm_page_t m,
- memory_object_return_t should_return,
- boolean_t should_flush,
- vm_prot_t prot)
+ vm_page_t m,
+ memory_object_return_t should_return,
+ boolean_t should_flush,
+ vm_prot_t prot)
{
- XPR(XPR_MEMORY_OBJECT,
- "m_o_lock_page, page 0x%X rtn %d flush %d prot %d\n",
- (integer_t)m, should_return, should_flush, prot, 0);
-
- /*
- * If we cannot change access to the page,
- * either because a mapping is in progress
- * (busy page) or because a mapping has been
- * wired, then give up.
- */
+ if (m->vmp_busy || m->vmp_cleaning) {
+ return MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK;
+ }
- if (m->busy || m->cleaning)
- return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK);
+ if (m->vmp_laundry) {
+ vm_pageout_steal_laundry(m, FALSE);
+ }
/*
* Don't worry about pages for which the kernel
* does not have any data.
*/
-
- if (m->absent || m->error || m->restart) {
- if(m->error && should_flush) {
- /* dump the page, pager wants us to */
- /* clean it up and there is no */
- /* relevant data to return */
- if(m->wire_count == 0) {
- VM_PAGE_FREE(m);
- return(MEMORY_OBJECT_LOCK_RESULT_DONE);
- }
- } else {
- return(MEMORY_OBJECT_LOCK_RESULT_DONE);
+ if (m->vmp_absent || m->vmp_error || m->vmp_restart) {
+ if (m->vmp_error && should_flush && !VM_PAGE_WIRED(m)) {
+ /*
+ * dump the page, pager wants us to
+ * clean it up and there is no
+ * relevant data to return
+ */
+ return MEMORY_OBJECT_LOCK_RESULT_MUST_FREE;
}
+ return MEMORY_OBJECT_LOCK_RESULT_DONE;
}
+ assert(!m->vmp_fictitious);
- assert(!m->fictitious);
-
- if (m->wire_count != 0) {
+ if (VM_PAGE_WIRED(m)) {
/*
- * If no change would take place
- * anyway, return successfully.
- *
- * No change means:
- * Not flushing AND
- * No change to page lock [2 checks] AND
- * Should not return page
- *
- * XXX This doesn't handle sending a copy of a wired
- * XXX page to the pager, but that will require some
- * XXX significant surgery.
+ * The page is wired... just clean or return the page if needed.
+ * Wired pages don't get flushed or disconnected from the pmap.
*/
- if (!should_flush &&
- (m->page_lock == prot || prot == VM_PROT_NO_CHANGE) &&
- ! memory_object_should_return_page(m, should_return)) {
-
- /*
- * Restart page unlock requests,
- * even though no change took place.
- * [Memory managers may be expecting
- * to see new requests.]
- */
- m->unlock_request = VM_PROT_NONE;
- PAGE_WAKEUP(m);
-
- return(MEMORY_OBJECT_LOCK_RESULT_DONE);
+ if (memory_object_should_return_page(m, should_return)) {
+ return MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN;
}
- return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK);
+ return MEMORY_OBJECT_LOCK_RESULT_DONE;
}
- /*
- * If the page is to be flushed, allow
- * that to be done as part of the protection.
- */
-
- if (should_flush)
- prot = VM_PROT_ALL;
-
- /*
- * Set the page lock.
- *
- * If we are decreasing permission, do it now;
- * let the fault handler take care of increases
- * (pmap_page_protect may not increase protection).
- */
-
- if (prot != VM_PROT_NO_CHANGE) {
- if ((m->page_lock ^ prot) & prot) {
- pmap_page_protect(m->phys_page, VM_PROT_ALL & ~prot);
- }
-#if 0
- /* code associated with the vestigial
- * memory_object_data_unlock
+ if (should_flush) {
+ /*
+ * must do the pmap_disconnect before determining the
+ * need to return the page... otherwise it's possible
+ * for the page to go from the clean to the dirty state
+ * after we've made our decision
*/
- m->page_lock = prot;
- m->lock_supplied = TRUE;
- if (prot != VM_PROT_NONE)
- m->unusual = TRUE;
- else
- m->unusual = FALSE;
-
+ if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) {
+ SET_PAGE_DIRTY(m, FALSE);
+ }
+ } else {
/*
- * Restart any past unlock requests, even if no
- * change resulted. If the manager explicitly
- * requested no protection change, then it is assumed
- * to be remembering past requests.
+ * If we are decreasing permission, do it now;
+ * let the fault handler take care of increases
+ * (pmap_page_protect may not increase protection).
*/
-
- m->unlock_request = VM_PROT_NONE;
-#endif /* 0 */
- PAGE_WAKEUP(m);
+ if (prot != VM_PROT_NO_CHANGE) {
+ pmap_page_protect(VM_PAGE_GET_PHYS_PAGE(m), VM_PROT_ALL & ~prot);
+ }
}
-
/*
- * Handle page returning.
+ * Handle returning dirty or precious pages
*/
-
if (memory_object_should_return_page(m, should_return)) {
-
/*
- * If we weren't planning
- * to flush the page anyway,
- * we may need to remove the
- * page from the pageout
- * system and from physical
- * maps now.
+ * we use to do a pmap_disconnect here in support
+ * of memory_object_lock_request, but that routine
+ * no longer requires this... in any event, in
+ * our world, it would turn into a big noop since
+ * we don't lock the page in any way and as soon
+ * as we drop the object lock, the page can be
+ * faulted back into an address space
+ *
+ * if (!should_flush)
+ * pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
*/
-
- vm_page_lock_queues();
- VM_PAGE_QUEUES_REMOVE(m);
- vm_page_unlock_queues();
-
- if (!should_flush)
- pmap_disconnect(m->phys_page);
-
- if (m->dirty)
- return(MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN);
- else
- return(MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN);
+ return MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN;
}
/*
- * Handle flushing
+ * Handle flushing clean pages
*/
-
if (should_flush) {
- VM_PAGE_FREE(m);
- } else {
- /*
- * XXX Make clean but not flush a paging hint,
- * and deactivate the pages. This is a hack
- * because it overloads flush/clean with
- * implementation-dependent meaning. This only
- * happens to pages that are already clean.
- */
-
- if (vm_page_deactivate_hint &&
- (should_return != MEMORY_OBJECT_RETURN_NONE)) {
- vm_page_lock_queues();
- vm_page_deactivate(m);
- vm_page_unlock_queues();
- }
+ return MEMORY_OBJECT_LOCK_RESULT_MUST_FREE;
}
- return(MEMORY_OBJECT_LOCK_RESULT_DONE);
+ /*
+ * we use to deactivate clean pages at this point,
+ * but we do not believe that an msync should change
+ * the 'age' of a page in the cache... here is the
+ * original comment and code concerning this...
+ *
+ * XXX Make clean but not flush a paging hint,
+ * and deactivate the pages. This is a hack
+ * because it overloads flush/clean with
+ * implementation-dependent meaning. This only
+ * happens to pages that are already clean.
+ *
+ * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE))
+ * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE);
+ */
+
+ return MEMORY_OBJECT_LOCK_RESULT_DONE;
}
-#define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, action, po, ro, ioerr, iosync) \
-MACRO_BEGIN \
- \
- register int upl_flags; \
- \
- vm_object_unlock(object); \
- \
- if (iosync) \
- upl_flags = UPL_MSYNC | UPL_IOSYNC; \
- else \
- upl_flags = UPL_MSYNC; \
- \
- (void) memory_object_data_return(object->pager, \
- po, \
- data_cnt, \
- ro, \
- ioerr, \
- (action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN), \
- !should_flush, \
- upl_flags); \
- \
- vm_object_lock(object); \
-MACRO_END
+
/*
* Routine: memory_object_lock_request [user interface]
* forms specified by "prot");
* 2) return data to the manager (if "should_return"
* is RETURN_DIRTY and the page is dirty, or
- * "should_return" is RETURN_ALL and the page
+ * "should_return" is RETURN_ALL and the page
* is either dirty or precious); and,
* 3) flush the cached copy (if "should_flush"
* is asserted).
kern_return_t
memory_object_lock_request(
- memory_object_control_t control,
- memory_object_offset_t offset,
- memory_object_size_t size,
- memory_object_offset_t * resid_offset,
- int * io_errno,
- memory_object_return_t should_return,
- int flags,
- vm_prot_t prot)
+ memory_object_control_t control,
+ memory_object_offset_t offset,
+ memory_object_size_t size,
+ memory_object_offset_t * resid_offset,
+ int * io_errno,
+ memory_object_return_t should_return,
+ int flags,
+ vm_prot_t prot)
{
- vm_object_t object;
- __unused boolean_t should_flush;
-
- should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
-
- XPR(XPR_MEMORY_OBJECT,
- "m_o_lock_request, control 0x%X off 0x%X size 0x%X flags %X prot %X\n",
- (integer_t)control, offset, size,
- (((should_return&1)<<1)|should_flush), prot);
+ vm_object_t object;
/*
* Check for bogus arguments.
*/
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE)
- return (KERN_INVALID_ARGUMENT);
+ if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) {
+ return KERN_INVALID_ARGUMENT;
+ }
size = round_page_64(size);
*/
vm_object_lock(object);
vm_object_paging_begin(object);
+
+ if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) {
+ if ((should_return != MEMORY_OBJECT_RETURN_NONE) || offset || object->copy) {
+ flags &= ~MEMORY_OBJECT_DATA_FLUSH_ALL;
+ flags |= MEMORY_OBJECT_DATA_FLUSH;
+ }
+ }
offset -= object->paging_offset;
- (void)vm_object_update(object,
- offset, size, resid_offset, io_errno, should_return, flags, prot);
+ if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) {
+ vm_object_reap_pages(object, REAP_DATA_FLUSH);
+ } else {
+ (void)vm_object_update(object, offset, size, resid_offset,
+ io_errno, should_return, flags, prot);
+ }
vm_object_paging_end(object);
vm_object_unlock(object);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
/*
* being the name.
* If the decision is made to proceed the name field flag is set to
* false and the reference count is decremented. If the RESPECT_CACHE
- * flag is set and the reference count has gone to zero, the
+ * flag is set and the reference count has gone to zero, the
* memory_object is checked to see if it is cacheable otherwise when
* the reference count is zero, it is simply terminated.
*/
kern_return_t
memory_object_release_name(
- memory_object_control_t control,
- int flags)
+ memory_object_control_t control,
+ int flags)
{
- vm_object_t object;
+ vm_object_t object;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
return vm_object_release_name(object, flags);
}
*/
kern_return_t
memory_object_destroy(
- memory_object_control_t control,
- kern_return_t reason)
+ memory_object_control_t control,
+ kern_return_t reason)
{
- vm_object_t object;
+ vm_object_t object;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- return (vm_object_destroy(object, reason));
+ return vm_object_destroy(object, reason);
}
/*
boolean_t
vm_object_sync(
- vm_object_t object,
- vm_object_offset_t offset,
- vm_object_size_t size,
- boolean_t should_flush,
- boolean_t should_return,
- boolean_t should_iosync)
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_object_size_t size,
+ boolean_t should_flush,
+ boolean_t should_return,
+ boolean_t should_iosync)
{
- boolean_t rv;
+ boolean_t rv;
int flags;
- XPR(XPR_VM_OBJECT,
- "vm_o_sync, object 0x%X, offset 0x%X size 0x%x flush %d rtn %d\n",
- (integer_t)object, offset, size, should_flush, should_return);
-
/*
* Lock the object, and acquire a paging reference to
* prevent the memory_object and control ports from
vm_object_lock(object);
vm_object_paging_begin(object);
- if (should_flush)
- flags = MEMORY_OBJECT_DATA_FLUSH;
- else
- flags = 0;
+ if (should_flush) {
+ flags = MEMORY_OBJECT_DATA_FLUSH;
+ /*
+ * This flush is from an msync(), not a truncate(), so the
+ * contents of the file are not affected.
+ * MEMORY_OBECT_DATA_NO_CHANGE lets vm_object_update() know
+ * that the data is not changed and that there's no need to
+ * push the old contents to a copy object.
+ */
+ flags |= MEMORY_OBJECT_DATA_NO_CHANGE;
+ } else {
+ flags = 0;
+ }
- if (should_iosync)
- flags |= MEMORY_OBJECT_IO_SYNC;
+ if (should_iosync) {
+ flags |= MEMORY_OBJECT_IO_SYNC;
+ }
rv = vm_object_update(object, offset, (vm_object_size_t)size, NULL, NULL,
- (should_return) ?
- MEMORY_OBJECT_RETURN_ALL :
- MEMORY_OBJECT_RETURN_NONE,
- flags,
- VM_PROT_NO_CHANGE);
+ (should_return) ?
+ MEMORY_OBJECT_RETURN_ALL :
+ MEMORY_OBJECT_RETURN_NONE,
+ flags,
+ VM_PROT_NO_CHANGE);
vm_object_paging_end(object);
+#define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \
+MACRO_BEGIN \
+ \
+ int upl_flags; \
+ memory_object_t pager; \
+ \
+ if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \
+ vm_object_paging_begin(object); \
+ vm_object_unlock(object); \
+ \
+ if (iosync) \
+ upl_flags = UPL_MSYNC | UPL_IOSYNC; \
+ else \
+ upl_flags = UPL_MSYNC; \
+ \
+ (void) memory_object_data_return(pager, \
+ po, \
+ (memory_object_cluster_size_t)data_cnt, \
+ ro, \
+ ioerr, \
+ FALSE, \
+ FALSE, \
+ upl_flags); \
+ \
+ vm_object_lock(object); \
+ vm_object_paging_end(object); \
+ } \
+MACRO_END
+
+extern struct vnode *
+vnode_pager_lookup_vnode(memory_object_t);
static int
vm_object_update_extent(
- vm_object_t object,
- vm_object_offset_t offset,
- vm_object_offset_t offset_end,
- vm_object_offset_t *offset_resid,
- int *io_errno,
- boolean_t should_flush,
- memory_object_return_t should_return,
- boolean_t should_iosync,
- vm_prot_t prot)
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_object_offset_t offset_end,
+ vm_object_offset_t *offset_resid,
+ int *io_errno,
+ boolean_t should_flush,
+ memory_object_return_t should_return,
+ boolean_t should_iosync,
+ vm_prot_t prot)
{
- vm_page_t m;
- int retval = 0;
- vm_size_t data_cnt = 0;
- vm_object_offset_t paging_offset = 0;
- vm_object_offset_t last_offset = offset;
- memory_object_lock_result_t page_lock_result;
- memory_object_lock_result_t pageout_action;
-
- pageout_action = MEMORY_OBJECT_LOCK_RESULT_DONE;
+ vm_page_t m;
+ int retval = 0;
+ vm_object_offset_t paging_offset = 0;
+ vm_object_offset_t next_offset = offset;
+ memory_object_lock_result_t page_lock_result;
+ memory_object_cluster_size_t data_cnt = 0;
+ struct vm_page_delayed_work dw_array;
+ struct vm_page_delayed_work *dwp, *dwp_start;
+ bool dwp_finish_ctx = TRUE;
+ int dw_count;
+ int dw_limit;
+ int dirty_count;
+
+ dwp_start = dwp = NULL;
+ dw_count = 0;
+ dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
+ dwp_start = vm_page_delayed_work_get_ctx();
+ if (dwp_start == NULL) {
+ dwp_start = &dw_array;
+ dw_limit = 1;
+ dwp_finish_ctx = FALSE;
+ }
+ dwp = dwp_start;
- for (;
- offset < offset_end && object->resident_page_count;
- offset += PAGE_SIZE_64) {
+ dirty_count = 0;
- /*
- * Limit the number of pages to be cleaned at once.
+ for (;
+ offset < offset_end && object->resident_page_count;
+ offset += PAGE_SIZE_64) {
+ /*
+ * Limit the number of pages to be cleaned at once to a contiguous
+ * run, or at most MAX_UPL_TRANSFER_BYTES
*/
- if (data_cnt >= PAGE_SIZE * MAX_UPL_TRANSFER) {
- LIST_REQ_PAGEOUT_PAGES(object, data_cnt,
- pageout_action, paging_offset, offset_resid, io_errno, should_iosync);
- data_cnt = 0;
+ if (data_cnt) {
+ if ((data_cnt >= MAX_UPL_TRANSFER_BYTES) || (next_offset != offset)) {
+ if (dw_count) {
+ vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
+ dwp = dwp_start;
+ dw_count = 0;
+ }
+ LIST_REQ_PAGEOUT_PAGES(object, data_cnt,
+ paging_offset, offset_resid, io_errno, should_iosync);
+ data_cnt = 0;
+ }
}
-
while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
- page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot);
-
- XPR(XPR_MEMORY_OBJECT,
- "m_o_update: lock_page, obj 0x%X offset 0x%X result %d\n",
- (integer_t)object, offset, page_lock_result, 0, 0);
-
- switch (page_lock_result)
- {
- case MEMORY_OBJECT_LOCK_RESULT_DONE:
- /*
- * End of a cluster of dirty pages.
- */
- if (data_cnt) {
- LIST_REQ_PAGEOUT_PAGES(object,
- data_cnt, pageout_action,
- paging_offset, offset_resid, io_errno, should_iosync);
- data_cnt = 0;
- continue;
- }
- break;
-
- case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK:
- /*
- * Since it is necessary to block,
- * clean any dirty pages now.
- */
- if (data_cnt) {
- LIST_REQ_PAGEOUT_PAGES(object,
- data_cnt, pageout_action,
- paging_offset, offset_resid, io_errno, should_iosync);
- data_cnt = 0;
- continue;
- }
- PAGE_SLEEP(object, m, THREAD_UNINT);
- continue;
-
- case MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN:
- case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN:
- /*
- * The clean and return cases are similar.
- *
- * if this would form a discontiguous block,
- * clean the old pages and start anew.
- *
- * Mark the page busy since we will unlock the
- * object if we issue the LIST_REQ_PAGEOUT
- */
- m->busy = TRUE;
- if (data_cnt &&
- ((last_offset != offset) || (pageout_action != page_lock_result))) {
- LIST_REQ_PAGEOUT_PAGES(object,
- data_cnt, pageout_action,
- paging_offset, offset_resid, io_errno, should_iosync);
- data_cnt = 0;
- }
- m->busy = FALSE;
-
- if (m->cleaning) {
- PAGE_SLEEP(object, m, THREAD_UNINT);
- continue;
- }
- if (data_cnt == 0) {
- pageout_action = page_lock_result;
- paging_offset = offset;
- }
- data_cnt += PAGE_SIZE;
- last_offset = offset + PAGE_SIZE_64;
-
- vm_page_lock_queues();
- /*
- * Clean
- */
- m->list_req_pending = TRUE;
- m->cleaning = TRUE;
-
- if (should_flush) {
- /*
- * and add additional state
- * for the flush
- */
- m->busy = TRUE;
- m->pageout = TRUE;
- vm_page_wire(m);
- }
- vm_page_unlock_queues();
-
- retval = 1;
- break;
+ dwp->dw_mask = 0;
+
+ page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot);
+
+ if (data_cnt && page_lock_result != MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN) {
+ /*
+ * End of a run of dirty/precious pages.
+ */
+ if (dw_count) {
+ vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
+ dwp = dwp_start;
+ dw_count = 0;
+ }
+ LIST_REQ_PAGEOUT_PAGES(object, data_cnt,
+ paging_offset, offset_resid, io_errno, should_iosync);
+ /*
+ * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will
+ * allow the state of page 'm' to change... we need to re-lookup
+ * the current offset
+ */
+ data_cnt = 0;
+ continue;
+ }
+
+ switch (page_lock_result) {
+ case MEMORY_OBJECT_LOCK_RESULT_DONE:
+ break;
+
+ case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE:
+ if (m->vmp_dirty == TRUE) {
+ dirty_count++;
+ }
+ dwp->dw_mask |= DW_vm_page_free;
+ break;
+
+ case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK:
+ PAGE_SLEEP(object, m, THREAD_UNINT);
+ continue;
+
+ case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN:
+ if (data_cnt == 0) {
+ paging_offset = offset;
+ }
+
+ data_cnt += PAGE_SIZE;
+ next_offset = offset + PAGE_SIZE_64;
+
+ /*
+ * wired pages shouldn't be flushed and
+ * since they aren't on any queue,
+ * no need to remove them
+ */
+ if (!VM_PAGE_WIRED(m)) {
+ if (should_flush) {
+ /*
+ * add additional state for the flush
+ */
+ m->vmp_free_when_done = TRUE;
+ }
+ /*
+ * we use to remove the page from the queues at this
+ * point, but we do not believe that an msync
+ * should cause the 'age' of a page to be changed
+ *
+ * else
+ * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE;
+ */
+ }
+ retval = 1;
+ break;
+ }
+ if (dwp->dw_mask) {
+ VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
+
+ if (dw_count >= dw_limit) {
+ vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
+ dwp = dwp_start;
+ dw_count = 0;
+ }
}
break;
}
}
+
+ if (object->pager) {
+ task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_INVALIDATED, vnode_pager_lookup_vnode(object->pager));
+ }
/*
* We have completed the scan for applicable pages.
* Clean any pages that have been saved.
*/
+ if (dw_count) {
+ vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
+ }
+
if (data_cnt) {
- LIST_REQ_PAGEOUT_PAGES(object,
- data_cnt, pageout_action, paging_offset, offset_resid, io_errno, should_iosync);
+ LIST_REQ_PAGEOUT_PAGES(object, data_cnt,
+ paging_offset, offset_resid, io_errno, should_iosync);
+ }
+
+ if (dwp_start && dwp_finish_ctx) {
+ vm_page_delayed_work_finish_ctx(dwp_start);
+ dwp_start = dwp = NULL;
}
- return (retval);
+
+ return retval;
}
*/
kern_return_t
vm_object_update(
- register vm_object_t object,
- register vm_object_offset_t offset,
- register vm_object_size_t size,
- register vm_object_offset_t *resid_offset,
- int *io_errno,
- memory_object_return_t should_return,
- int flags,
- vm_prot_t protection)
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_object_size_t size,
+ vm_object_offset_t *resid_offset,
+ int *io_errno,
+ memory_object_return_t should_return,
+ int flags,
+ vm_prot_t protection)
{
- vm_object_t copy_object;
- boolean_t data_returned = FALSE;
- boolean_t update_cow;
- boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE;
- boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE;
- int num_of_extents;
- int n;
-#define MAX_EXTENTS 8
-#define EXTENT_SIZE (1024 * 1024 * 256)
-#define RESIDENT_LIMIT (1024 * 32)
+ vm_object_t copy_object = VM_OBJECT_NULL;
+ boolean_t data_returned = FALSE;
+ boolean_t update_cow;
+ boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE;
+ boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE;
+ vm_fault_return_t result;
+ int num_of_extents;
+ int n;
+#define MAX_EXTENTS 8
+#define EXTENT_SIZE (1024 * 1024 * 256)
+#define RESIDENT_LIMIT (1024 * 32)
struct extent {
- vm_object_offset_t e_base;
- vm_object_offset_t e_min;
- vm_object_offset_t e_max;
+ vm_object_offset_t e_base;
+ vm_object_offset_t e_min;
+ vm_object_offset_t e_max;
} extents[MAX_EXTENTS];
/*
* XXX coalescing implications before doing so.
*/
- update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH)
- && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) &&
- !(flags & MEMORY_OBJECT_DATA_PURGE)))
- || (flags & MEMORY_OBJECT_COPY_SYNC);
-
-
- if((((copy_object = object->copy) != NULL) && update_cow) ||
- (flags & MEMORY_OBJECT_DATA_SYNC)) {
- vm_map_size_t i;
- vm_map_size_t copy_size;
- vm_map_offset_t copy_offset;
- vm_prot_t prot;
- vm_page_t page;
- vm_page_t top_page;
- kern_return_t error = 0;
-
- if(copy_object != NULL) {
- /* translate offset with respect to shadow's offset */
- copy_offset = (offset >= copy_object->shadow_offset)?
- (vm_map_offset_t)(offset - copy_object->shadow_offset) :
- (vm_map_offset_t) 0;
- if(copy_offset > copy_object->size)
- copy_offset = copy_object->size;
-
- /* clip size with respect to shadow offset */
- if (offset >= copy_object->shadow_offset) {
- copy_size = size;
- } else if (size >= copy_object->shadow_offset - offset) {
- copy_size = size -
- (copy_object->shadow_offset - offset);
- } else {
- copy_size = 0;
- }
-
- if (copy_offset + copy_size > copy_object->size) {
- if (copy_object->size >= copy_offset) {
- copy_size = copy_object->size - copy_offset;
- } else {
- copy_size = 0;
- }
- }
-
- copy_size+=copy_offset;
-
- vm_object_unlock(object);
- vm_object_lock(copy_object);
+ update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH)
+ && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) &&
+ !(flags & MEMORY_OBJECT_DATA_PURGE)))
+ || (flags & MEMORY_OBJECT_COPY_SYNC);
+
+ if (update_cow || (flags & (MEMORY_OBJECT_DATA_PURGE | MEMORY_OBJECT_DATA_SYNC))) {
+ int collisions = 0;
+
+ while ((copy_object = object->copy) != VM_OBJECT_NULL) {
+ /*
+ * need to do a try here since we're swimming upstream
+ * against the normal lock ordering... however, we need
+ * to hold the object stable until we gain control of the
+ * copy object so we have to be careful how we approach this
+ */
+ if (vm_object_lock_try(copy_object)) {
+ /*
+ * we 'won' the lock on the copy object...
+ * no need to hold the object lock any longer...
+ * take a real reference on the copy object because
+ * we're going to call vm_fault_page on it which may
+ * under certain conditions drop the lock and the paging
+ * reference we're about to take... the reference
+ * will keep the copy object from going away if that happens
+ */
+ vm_object_unlock(object);
+ vm_object_reference_locked(copy_object);
+ break;
+ }
+ vm_object_unlock(object);
+
+ collisions++;
+ mutex_pause(collisions);
+
+ vm_object_lock(object);
+ }
+ }
+ if ((copy_object != VM_OBJECT_NULL && update_cow) || (flags & MEMORY_OBJECT_DATA_SYNC)) {
+ vm_object_offset_t i;
+ vm_object_size_t copy_size;
+ vm_object_offset_t copy_offset;
+ vm_prot_t prot;
+ vm_page_t page;
+ vm_page_t top_page;
+ kern_return_t error = 0;
+ struct vm_object_fault_info fault_info = {};
+
+ if (copy_object != VM_OBJECT_NULL) {
+ /*
+ * translate offset with respect to shadow's offset
+ */
+ copy_offset = (offset >= copy_object->vo_shadow_offset) ?
+ (offset - copy_object->vo_shadow_offset) : 0;
+
+ if (copy_offset > copy_object->vo_size) {
+ copy_offset = copy_object->vo_size;
+ }
+
+ /*
+ * clip size with respect to shadow offset
+ */
+ if (offset >= copy_object->vo_shadow_offset) {
+ copy_size = size;
+ } else if (size >= copy_object->vo_shadow_offset - offset) {
+ copy_size = (size - (copy_object->vo_shadow_offset - offset));
+ } else {
+ copy_size = 0;
+ }
+
+ if (copy_offset + copy_size > copy_object->vo_size) {
+ if (copy_object->vo_size >= copy_offset) {
+ copy_size = copy_object->vo_size - copy_offset;
+ } else {
+ copy_size = 0;
+ }
+ }
+ copy_size += copy_offset;
} else {
copy_object = object;
copy_size = offset + size;
copy_offset = offset;
}
+ fault_info.interruptible = THREAD_UNINT;
+ fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
+ fault_info.lo_offset = copy_offset;
+ fault_info.hi_offset = copy_size;
+ fault_info.stealth = TRUE;
+ assert(fault_info.cs_bypass == FALSE);
+ assert(fault_info.pmap_cs_associated == FALSE);
vm_object_paging_begin(copy_object);
- for (i=copy_offset; i<copy_size; i+=PAGE_SIZE) {
- RETRY_COW_OF_LOCK_REQUEST:
- prot = VM_PROT_WRITE|VM_PROT_READ;
- switch (vm_fault_page(copy_object, i,
- VM_PROT_WRITE|VM_PROT_READ,
- FALSE,
- THREAD_UNINT,
- copy_offset,
- copy_offset+copy_size,
- VM_BEHAVIOR_SEQUENTIAL,
- &prot,
- &page,
- &top_page,
- (int *)0,
- &error,
- FALSE,
- FALSE, NULL, 0)) {
+ for (i = copy_offset; i < copy_size; i += PAGE_SIZE) {
+RETRY_COW_OF_LOCK_REQUEST:
+ fault_info.cluster_size = (vm_size_t) (copy_size - i);
+ assert(fault_info.cluster_size == copy_size - i);
+
+ prot = VM_PROT_WRITE | VM_PROT_READ;
+ page = VM_PAGE_NULL;
+ result = vm_fault_page(copy_object, i,
+ VM_PROT_WRITE | VM_PROT_READ,
+ FALSE,
+ FALSE, /* page not looked up */
+ &prot,
+ &page,
+ &top_page,
+ (int *)0,
+ &error,
+ FALSE,
+ FALSE, &fault_info);
+
+ switch (result) {
case VM_FAULT_SUCCESS:
- if(top_page) {
+ if (top_page) {
vm_fault_cleanup(
- page->object, top_page);
- PAGE_WAKEUP_DONE(page);
- vm_page_lock_queues();
- if (!page->active && !page->inactive)
- vm_page_activate(page);
- vm_page_unlock_queues();
+ VM_PAGE_OBJECT(page), top_page);
vm_object_lock(copy_object);
vm_object_paging_begin(copy_object);
- } else {
- PAGE_WAKEUP_DONE(page);
- vm_page_lock_queues();
- if (!page->active && !page->inactive)
- vm_page_activate(page);
+ }
+ if ((!VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) {
+ vm_page_lockspin_queues();
+
+ if ((!VM_PAGE_NON_SPECULATIVE_PAGEABLE(page))) {
+ vm_page_deactivate(page);
+ }
vm_page_unlock_queues();
}
+ PAGE_WAKEUP_DONE(page);
break;
case VM_FAULT_RETRY:
- prot = VM_PROT_WRITE|VM_PROT_READ;
+ prot = VM_PROT_WRITE | VM_PROT_READ;
vm_object_lock(copy_object);
vm_object_paging_begin(copy_object);
goto RETRY_COW_OF_LOCK_REQUEST;
case VM_FAULT_INTERRUPTED:
- prot = VM_PROT_WRITE|VM_PROT_READ;
+ prot = VM_PROT_WRITE | VM_PROT_READ;
vm_object_lock(copy_object);
vm_object_paging_begin(copy_object);
goto RETRY_COW_OF_LOCK_REQUEST;
case VM_FAULT_MEMORY_SHORTAGE:
VM_PAGE_WAIT();
- prot = VM_PROT_WRITE|VM_PROT_READ;
- vm_object_lock(copy_object);
- vm_object_paging_begin(copy_object);
- goto RETRY_COW_OF_LOCK_REQUEST;
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- prot = VM_PROT_WRITE|VM_PROT_READ;
+ prot = VM_PROT_WRITE | VM_PROT_READ;
vm_object_lock(copy_object);
vm_object_paging_begin(copy_object);
goto RETRY_COW_OF_LOCK_REQUEST;
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail */
+ vm_object_paging_end(copy_object);
+ vm_object_unlock(copy_object);
+ OS_FALLTHROUGH;
case VM_FAULT_MEMORY_ERROR:
+ if (object != copy_object) {
+ vm_object_deallocate(copy_object);
+ }
vm_object_lock(object);
goto BYPASS_COW_COPYIN;
+ default:
+ panic("vm_object_update: unexpected error 0x%x"
+ " from vm_fault_page()\n", result);
}
-
}
vm_object_paging_end(copy_object);
- if(copy_object != object) {
+ }
+ if ((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) {
+ if (copy_object != VM_OBJECT_NULL && copy_object != object) {
vm_object_unlock(copy_object);
+ vm_object_deallocate(copy_object);
vm_object_lock(object);
}
+ return KERN_SUCCESS;
}
- if((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) {
- return KERN_SUCCESS;
- }
- if(((copy_object = object->copy) != NULL) &&
- (flags & MEMORY_OBJECT_DATA_PURGE)) {
- copy_object->shadow_severed = TRUE;
- copy_object->shadowed = FALSE;
- copy_object->shadow = NULL;
- /* delete the ref the COW was holding on the target object */
- vm_object_deallocate(object);
+ if (copy_object != VM_OBJECT_NULL && copy_object != object) {
+ if ((flags & MEMORY_OBJECT_DATA_PURGE)) {
+ vm_object_lock_assert_exclusive(copy_object);
+ copy_object->shadow_severed = TRUE;
+ copy_object->shadowed = FALSE;
+ copy_object->shadow = NULL;
+ /*
+ * delete the ref the COW was holding on the target object
+ */
+ vm_object_deallocate(object);
+ }
+ vm_object_unlock(copy_object);
+ vm_object_deallocate(copy_object);
+ vm_object_lock(object);
}
BYPASS_COW_COPYIN:
* the page which means the resident queue can change which
* means we can't walk the queue as we process the pages
* we also want to do the processing in offset order to allow
- * 'runs' of pages to be collected if we're being told to
+ * 'runs' of pages to be collected if we're being told to
* flush to disk... the resident page queue is NOT ordered.
- *
+ *
* a temporary solution (until we figure out how to deal with
* large address spaces more generically) is to pre-flight
* the resident page queue (if it's small enough) and develop
* is not a theoretical problem
*/
- if ((object->resident_page_count < RESIDENT_LIMIT) &&
- (atop_64(size) > (unsigned)(object->resident_page_count/(8 * MAX_EXTENTS)))) {
- vm_page_t next;
- vm_object_offset_t start;
- vm_object_offset_t end;
- vm_object_size_t e_mask;
+ if ((object->resident_page_count < RESIDENT_LIMIT) &&
+ (atop_64(size) > (unsigned)(object->resident_page_count / (8 * MAX_EXTENTS)))) {
+ vm_page_t next;
+ vm_object_offset_t start;
+ vm_object_offset_t end;
+ vm_object_size_t e_mask;
vm_page_t m;
start = offset;
num_of_extents = 0;
e_mask = ~((vm_object_size_t)(EXTENT_SIZE - 1));
- m = (vm_page_t) queue_first(&object->memq);
+ m = (vm_page_t) vm_page_queue_first(&object->memq);
- while (!queue_end(&object->memq, (queue_entry_t) m)) {
- next = (vm_page_t) queue_next(&m->listq);
+ while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) m)) {
+ next = (vm_page_t) vm_page_queue_next(&m->vmp_listq);
- if ((m->offset >= start) && (m->offset < end)) {
- /*
+ if ((m->vmp_offset >= start) && (m->vmp_offset < end)) {
+ /*
* this is a page we're interested in
* try to fit it into a current extent
*/
- for (n = 0; n < num_of_extents; n++) {
- if ((m->offset & e_mask) == extents[n].e_base) {
- /*
+ for (n = 0; n < num_of_extents; n++) {
+ if ((m->vmp_offset & e_mask) == extents[n].e_base) {
+ /*
* use (PAGE_SIZE - 1) to determine the
* max offset so that we don't wrap if
* we're at the last page of the space
*/
- if (m->offset < extents[n].e_min)
- extents[n].e_min = m->offset;
- else if ((m->offset + (PAGE_SIZE - 1)) > extents[n].e_max)
- extents[n].e_max = m->offset + (PAGE_SIZE - 1);
- break;
+ if (m->vmp_offset < extents[n].e_min) {
+ extents[n].e_min = m->vmp_offset;
+ } else if ((m->vmp_offset + (PAGE_SIZE - 1)) > extents[n].e_max) {
+ extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1);
+ }
+ break;
}
}
if (n == num_of_extents) {
- /*
+ /*
* didn't find a current extent that can encompass
* this page
*/
- if (n < MAX_EXTENTS) {
- /*
- * if we still have room,
+ if (n < MAX_EXTENTS) {
+ /*
+ * if we still have room,
* create a new extent
*/
- extents[n].e_base = m->offset & e_mask;
- extents[n].e_min = m->offset;
- extents[n].e_max = m->offset + (PAGE_SIZE - 1);
+ extents[n].e_base = m->vmp_offset & e_mask;
+ extents[n].e_min = m->vmp_offset;
+ extents[n].e_max = m->vmp_offset + (PAGE_SIZE - 1);
num_of_extents++;
} else {
/*
* no room to create a new extent...
* fall back to a single extent based
- * on the min and max page offsets
+ * on the min and max page offsets
* we find in the range we're interested in...
* first, look through the extent list and
* develop the overall min and max for the
* pages we've looked at up to this point
- */
- for (n = 1; n < num_of_extents; n++) {
- if (extents[n].e_min < extents[0].e_min)
- extents[0].e_min = extents[n].e_min;
- if (extents[n].e_max > extents[0].e_max)
- extents[0].e_max = extents[n].e_max;
+ */
+ for (n = 1; n < num_of_extents; n++) {
+ if (extents[n].e_min < extents[0].e_min) {
+ extents[0].e_min = extents[n].e_min;
+ }
+ if (extents[n].e_max > extents[0].e_max) {
+ extents[0].e_max = extents[n].e_max;
+ }
}
/*
* now setup to run through the remaining pages
m = next;
}
} else {
- extents[0].e_min = offset;
+ extents[0].e_min = offset;
extents[0].e_max = offset + (size - 1);
num_of_extents = 1;
}
for (n = 0; n < num_of_extents; n++) {
- if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno,
- should_flush, should_return, should_iosync, protection))
- data_returned = TRUE;
- }
- return (data_returned);
-}
-
-
-/*
- * Routine: memory_object_synchronize_completed [user interface]
- *
- * Tell kernel that previously synchronized data
- * (memory_object_synchronize) has been queue or placed on the
- * backing storage.
- *
- * Note: there may be multiple synchronize requests for a given
- * memory object outstanding but they will not overlap.
- */
-
-kern_return_t
-memory_object_synchronize_completed(
- memory_object_control_t control,
- memory_object_offset_t offset,
- vm_offset_t length)
-{
- vm_object_t object;
- msync_req_t msr;
-
- object = memory_object_control_to_vm_object(control);
-
- XPR(XPR_MEMORY_OBJECT,
- "m_o_sync_completed, object 0x%X, offset 0x%X length 0x%X\n",
- (integer_t)object, offset, length, 0, 0);
-
- /*
- * Look for bogus arguments
- */
-
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
-
- vm_object_lock(object);
-
-/*
- * search for sync request structure
- */
- queue_iterate(&object->msr_q, msr, msync_req_t, msr_q) {
- if (msr->offset == offset && msr->length == length) {
- queue_remove(&object->msr_q, msr, msync_req_t, msr_q);
- break;
+ if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno,
+ should_flush, should_return, should_iosync, protection)) {
+ data_returned = TRUE;
}
- }/* queue_iterate */
-
- if (queue_end(&object->msr_q, (queue_entry_t)msr)) {
- vm_object_unlock(object);
- return KERN_INVALID_ARGUMENT;
}
+ return data_returned;
+}
- msr_lock(msr);
- vm_object_unlock(object);
- msr->flag = VM_MSYNC_DONE;
- msr_unlock(msr);
- thread_wakeup((event_t) msr);
-
- return KERN_SUCCESS;
-}/* memory_object_synchronize_completed */
static kern_return_t
vm_object_set_attributes_common(
- vm_object_t object,
- boolean_t may_cache,
- memory_object_copy_strategy_t copy_strategy,
- boolean_t temporary,
- memory_object_cluster_size_t cluster_size,
- boolean_t silent_overwrite,
- boolean_t advisory_pageout)
+ vm_object_t object,
+ boolean_t may_cache,
+ memory_object_copy_strategy_t copy_strategy)
{
- boolean_t object_became_ready;
-
- XPR(XPR_MEMORY_OBJECT,
- "m_o_set_attr_com, object 0x%X flg %x strat %d\n",
- (integer_t)object, (may_cache&1)|((temporary&1)<1), copy_strategy, 0, 0);
+ boolean_t object_became_ready;
- if (object == VM_OBJECT_NULL)
- return(KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
/*
* Verify the attributes of importance
*/
- switch(copy_strategy) {
- case MEMORY_OBJECT_COPY_NONE:
- case MEMORY_OBJECT_COPY_DELAY:
- break;
- default:
- return(KERN_INVALID_ARGUMENT);
+ switch (copy_strategy) {
+ case MEMORY_OBJECT_COPY_NONE:
+ case MEMORY_OBJECT_COPY_DELAY:
+ break;
+ default:
+ return KERN_INVALID_ARGUMENT;
}
-#if !ADVISORY_PAGEOUT
- if (silent_overwrite || advisory_pageout)
- return(KERN_INVALID_ARGUMENT);
-
-#endif /* !ADVISORY_PAGEOUT */
- if (may_cache)
+ if (may_cache) {
may_cache = TRUE;
- if (temporary)
- temporary = TRUE;
- if (cluster_size != 0) {
- int pages_per_cluster;
- pages_per_cluster = atop_32(cluster_size);
- /*
- * Cluster size must be integral multiple of page size,
- * and be a power of 2 number of pages.
- */
- if ((cluster_size & (PAGE_SIZE-1)) ||
- ((pages_per_cluster-1) & pages_per_cluster))
- return KERN_INVALID_ARGUMENT;
}
vm_object_lock(object);
object_became_ready = !object->pager_ready;
object->copy_strategy = copy_strategy;
object->can_persist = may_cache;
- object->temporary = temporary;
- object->silent_overwrite = silent_overwrite;
- object->advisory_pageout = advisory_pageout;
- if (cluster_size == 0)
- cluster_size = PAGE_SIZE;
- object->cluster_size = cluster_size;
-
- assert(cluster_size >= PAGE_SIZE &&
- cluster_size % PAGE_SIZE == 0);
/*
* Wake up anyone waiting for the ready attribute
vm_object_unlock(object);
- return(KERN_SUCCESS);
+ return KERN_SUCCESS;
+}
+
+
+kern_return_t
+memory_object_synchronize_completed(
+ __unused memory_object_control_t control,
+ __unused memory_object_offset_t offset,
+ __unused memory_object_size_t length)
+{
+ panic("memory_object_synchronize_completed no longer supported\n");
+ return KERN_FAILURE;
}
+
/*
* Set the memory object attribute as provided.
*
- * XXX This routine cannot be completed until the vm_msync, clean
+ * XXX This routine cannot be completed until the vm_msync, clean
* in place, and cluster work is completed. See ifdef notyet
* below and note that vm_object_set_attributes_common()
* may have to be expanded.
*/
kern_return_t
memory_object_change_attributes(
- memory_object_control_t control,
- memory_object_flavor_t flavor,
- memory_object_info_t attributes,
- mach_msg_type_number_t count)
+ memory_object_control_t control,
+ memory_object_flavor_t flavor,
+ memory_object_info_t attributes,
+ mach_msg_type_number_t count)
{
- vm_object_t object;
- kern_return_t result = KERN_SUCCESS;
- boolean_t temporary;
- boolean_t may_cache;
- boolean_t invalidate;
- memory_object_cluster_size_t cluster_size;
- memory_object_copy_strategy_t copy_strategy;
- boolean_t silent_overwrite;
- boolean_t advisory_pageout;
+ vm_object_t object;
+ kern_return_t result = KERN_SUCCESS;
+ boolean_t may_cache;
+ boolean_t invalidate;
+ memory_object_copy_strategy_t copy_strategy;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
vm_object_lock(object);
- temporary = object->temporary;
may_cache = object->can_persist;
copy_strategy = object->copy_strategy;
- silent_overwrite = object->silent_overwrite;
- advisory_pageout = object->advisory_pageout;
#if notyet
invalidate = object->invalidate;
#endif
- cluster_size = object->cluster_size;
- vm_object_unlock(object);
+ vm_object_unlock(object);
switch (flavor) {
- case OLD_MEMORY_OBJECT_BEHAVIOR_INFO:
- {
- old_memory_object_behave_info_t behave;
+ case OLD_MEMORY_OBJECT_BEHAVIOR_INFO:
+ {
+ old_memory_object_behave_info_t behave;
- if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) {
- result = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) {
+ result = KERN_INVALID_ARGUMENT;
+ break;
+ }
- behave = (old_memory_object_behave_info_t) attributes;
+ behave = (old_memory_object_behave_info_t) attributes;
- temporary = behave->temporary;
invalidate = behave->invalidate;
copy_strategy = behave->copy_strategy;
break;
- }
+ }
- case MEMORY_OBJECT_BEHAVIOR_INFO:
- {
- memory_object_behave_info_t behave;
+ case MEMORY_OBJECT_BEHAVIOR_INFO:
+ {
+ memory_object_behave_info_t behave;
- if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) {
- result = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) {
+ result = KERN_INVALID_ARGUMENT;
+ break;
+ }
- behave = (memory_object_behave_info_t) attributes;
+ behave = (memory_object_behave_info_t) attributes;
- temporary = behave->temporary;
invalidate = behave->invalidate;
copy_strategy = behave->copy_strategy;
- silent_overwrite = behave->silent_overwrite;
- advisory_pageout = behave->advisory_pageout;
break;
- }
+ }
- case MEMORY_OBJECT_PERFORMANCE_INFO:
- {
- memory_object_perf_info_t perf;
+ case MEMORY_OBJECT_PERFORMANCE_INFO:
+ {
+ memory_object_perf_info_t perf;
- if (count != MEMORY_OBJECT_PERF_INFO_COUNT) {
- result = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (count != MEMORY_OBJECT_PERF_INFO_COUNT) {
+ result = KERN_INVALID_ARGUMENT;
+ break;
+ }
- perf = (memory_object_perf_info_t) attributes;
+ perf = (memory_object_perf_info_t) attributes;
may_cache = perf->may_cache;
- cluster_size = round_page_32(perf->cluster_size);
break;
- }
+ }
- case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO:
- {
- old_memory_object_attr_info_t attr;
+ case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO:
+ {
+ old_memory_object_attr_info_t attr;
- if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) {
- result = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) {
+ result = KERN_INVALID_ARGUMENT;
+ break;
+ }
attr = (old_memory_object_attr_info_t) attributes;
- may_cache = attr->may_cache;
- copy_strategy = attr->copy_strategy;
- cluster_size = page_size;
+ may_cache = attr->may_cache;
+ copy_strategy = attr->copy_strategy;
break;
- }
+ }
- case MEMORY_OBJECT_ATTRIBUTE_INFO:
- {
- memory_object_attr_info_t attr;
+ case MEMORY_OBJECT_ATTRIBUTE_INFO:
+ {
+ memory_object_attr_info_t attr;
- if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) {
- result = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) {
+ result = KERN_INVALID_ARGUMENT;
+ break;
+ }
attr = (memory_object_attr_info_t) attributes;
copy_strategy = attr->copy_strategy;
- may_cache = attr->may_cache_object;
- cluster_size = attr->cluster_size;
- temporary = attr->temporary;
+ may_cache = attr->may_cache_object;
break;
- }
+ }
- default:
+ default:
result = KERN_INVALID_ARGUMENT;
break;
}
- if (result != KERN_SUCCESS)
- return(result);
+ if (result != KERN_SUCCESS) {
+ return result;
+ }
if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) {
copy_strategy = MEMORY_OBJECT_COPY_DELAY;
- temporary = TRUE;
- } else {
- temporary = FALSE;
}
/*
* XXX may_cache may become a tri-valued variable to handle
* XXX uncache if not in use.
*/
- return (vm_object_set_attributes_common(object,
- may_cache,
- copy_strategy,
- temporary,
- cluster_size,
- silent_overwrite,
- advisory_pageout));
+ return vm_object_set_attributes_common(object,
+ may_cache,
+ copy_strategy);
}
kern_return_t
memory_object_get_attributes(
- memory_object_control_t control,
- memory_object_flavor_t flavor,
- memory_object_info_t attributes, /* pointer to OUT array */
- mach_msg_type_number_t *count) /* IN/OUT */
+ memory_object_control_t control,
+ memory_object_flavor_t flavor,
+ memory_object_info_t attributes, /* pointer to OUT array */
+ mach_msg_type_number_t *count) /* IN/OUT */
{
- kern_return_t ret = KERN_SUCCESS;
- vm_object_t object;
+ kern_return_t ret = KERN_SUCCESS;
+ vm_object_t object;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- vm_object_lock(object);
+ vm_object_lock(object);
switch (flavor) {
- case OLD_MEMORY_OBJECT_BEHAVIOR_INFO:
- {
- old_memory_object_behave_info_t behave;
+ case OLD_MEMORY_OBJECT_BEHAVIOR_INFO:
+ {
+ old_memory_object_behave_info_t behave;
if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) {
ret = KERN_INVALID_ARGUMENT;
behave = (old_memory_object_behave_info_t) attributes;
behave->copy_strategy = object->copy_strategy;
- behave->temporary = object->temporary;
-#if notyet /* remove when vm_msync complies and clean in place fini */
- behave->invalidate = object->invalidate;
+ behave->temporary = FALSE;
+#if notyet /* remove when vm_msync complies and clean in place fini */
+ behave->invalidate = object->invalidate;
#else
behave->invalidate = FALSE;
#endif
*count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT;
break;
- }
+ }
- case MEMORY_OBJECT_BEHAVIOR_INFO:
- {
- memory_object_behave_info_t behave;
+ case MEMORY_OBJECT_BEHAVIOR_INFO:
+ {
+ memory_object_behave_info_t behave;
if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) {
- ret = KERN_INVALID_ARGUMENT;
- break;
- }
-
- behave = (memory_object_behave_info_t) attributes;
- behave->copy_strategy = object->copy_strategy;
- behave->temporary = object->temporary;
-#if notyet /* remove when vm_msync complies and clean in place fini */
- behave->invalidate = object->invalidate;
+ ret = KERN_INVALID_ARGUMENT;
+ break;
+ }
+
+ behave = (memory_object_behave_info_t) attributes;
+ behave->copy_strategy = object->copy_strategy;
+ behave->temporary = FALSE;
+#if notyet /* remove when vm_msync complies and clean in place fini */
+ behave->invalidate = object->invalidate;
#else
behave->invalidate = FALSE;
#endif
- behave->advisory_pageout = object->advisory_pageout;
- behave->silent_overwrite = object->silent_overwrite;
- *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT;
+ behave->advisory_pageout = FALSE;
+ behave->silent_overwrite = FALSE;
+ *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT;
break;
- }
+ }
- case MEMORY_OBJECT_PERFORMANCE_INFO:
- {
- memory_object_perf_info_t perf;
+ case MEMORY_OBJECT_PERFORMANCE_INFO:
+ {
+ memory_object_perf_info_t perf;
if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) {
ret = KERN_INVALID_ARGUMENT;
}
perf = (memory_object_perf_info_t) attributes;
- perf->cluster_size = object->cluster_size;
+ perf->cluster_size = PAGE_SIZE;
perf->may_cache = object->can_persist;
*count = MEMORY_OBJECT_PERF_INFO_COUNT;
break;
- }
+ }
- case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO:
- {
- old_memory_object_attr_info_t attr;
+ case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO:
+ {
+ old_memory_object_attr_info_t attr;
- if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) {
- ret = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) {
+ ret = KERN_INVALID_ARGUMENT;
+ break;
+ }
- attr = (old_memory_object_attr_info_t) attributes;
- attr->may_cache = object->can_persist;
- attr->copy_strategy = object->copy_strategy;
+ attr = (old_memory_object_attr_info_t) attributes;
+ attr->may_cache = object->can_persist;
+ attr->copy_strategy = object->copy_strategy;
- *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT;
- break;
- }
+ *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT;
+ break;
+ }
- case MEMORY_OBJECT_ATTRIBUTE_INFO:
- {
- memory_object_attr_info_t attr;
+ case MEMORY_OBJECT_ATTRIBUTE_INFO:
+ {
+ memory_object_attr_info_t attr;
- if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) {
- ret = KERN_INVALID_ARGUMENT;
- break;
- }
+ if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) {
+ ret = KERN_INVALID_ARGUMENT;
+ break;
+ }
- attr = (memory_object_attr_info_t) attributes;
- attr->copy_strategy = object->copy_strategy;
- attr->cluster_size = object->cluster_size;
- attr->may_cache_object = object->can_persist;
- attr->temporary = object->temporary;
+ attr = (memory_object_attr_info_t) attributes;
+ attr->copy_strategy = object->copy_strategy;
+ attr->cluster_size = PAGE_SIZE;
+ attr->may_cache_object = object->can_persist;
+ attr->temporary = FALSE;
- *count = MEMORY_OBJECT_ATTR_INFO_COUNT;
- break;
- }
+ *count = MEMORY_OBJECT_ATTR_INFO_COUNT;
+ break;
+ }
- default:
+ default:
ret = KERN_INVALID_ARGUMENT;
break;
}
- vm_object_unlock(object);
+ vm_object_unlock(object);
- return(ret);
+ return ret;
}
kern_return_t
memory_object_iopl_request(
- ipc_port_t port,
- memory_object_offset_t offset,
- upl_size_t *upl_size,
- upl_t *upl_ptr,
- upl_page_info_array_t user_page_list,
- unsigned int *page_list_count,
- int *flags)
+ ipc_port_t port,
+ memory_object_offset_t offset,
+ upl_size_t *upl_size,
+ upl_t *upl_ptr,
+ upl_page_info_array_t user_page_list,
+ unsigned int *page_list_count,
+ upl_control_flags_t *flags,
+ vm_tag_t tag)
{
- vm_object_t object;
- kern_return_t ret;
- int caller_flags;
+ vm_object_t object;
+ kern_return_t ret;
+ upl_control_flags_t caller_flags;
caller_flags = *flags;
}
if (ip_kotype(port) == IKOT_NAMED_ENTRY) {
- vm_named_entry_t named_entry;
+ vm_named_entry_t named_entry;
- named_entry = (vm_named_entry_t)port->ip_kobject;
+ named_entry = (vm_named_entry_t) ip_get_kobject(port);
/* a few checks to make sure user is obeying rules */
- if(*upl_size == 0) {
- if(offset >= named_entry->size)
- return(KERN_INVALID_RIGHT);
- *upl_size = named_entry->size - offset;
+ if (*upl_size == 0) {
+ if (offset >= named_entry->size) {
+ return KERN_INVALID_RIGHT;
+ }
+ *upl_size = (upl_size_t)(named_entry->size - offset);
+ if (*upl_size != named_entry->size - offset) {
+ return KERN_INVALID_ARGUMENT;
+ }
}
- if(caller_flags & UPL_COPYOUT_FROM) {
- if((named_entry->protection & VM_PROT_READ)
- != VM_PROT_READ) {
- return(KERN_INVALID_RIGHT);
+ if (caller_flags & UPL_COPYOUT_FROM) {
+ if ((named_entry->protection & VM_PROT_READ)
+ != VM_PROT_READ) {
+ return KERN_INVALID_RIGHT;
}
} else {
- if((named_entry->protection &
- (VM_PROT_READ | VM_PROT_WRITE))
- != (VM_PROT_READ | VM_PROT_WRITE)) {
- return(KERN_INVALID_RIGHT);
+ if ((named_entry->protection &
+ (VM_PROT_READ | VM_PROT_WRITE))
+ != (VM_PROT_READ | VM_PROT_WRITE)) {
+ return KERN_INVALID_RIGHT;
}
}
- if(named_entry->size < (offset + *upl_size))
- return(KERN_INVALID_ARGUMENT);
+ if (named_entry->size < (offset + *upl_size)) {
+ return KERN_INVALID_ARGUMENT;
+ }
/* the callers parameter offset is defined to be the */
/* offset from beginning of named entry offset in object */
offset = offset + named_entry->offset;
+ offset += named_entry->data_offset;
- if(named_entry->is_sub_map)
- return (KERN_INVALID_ARGUMENT);
-
- named_entry_lock(named_entry);
-
- if (named_entry->is_pager) {
- object = vm_object_enter(named_entry->backing.pager,
- named_entry->offset + named_entry->size,
- named_entry->internal,
- FALSE,
- FALSE);
- if (object == VM_OBJECT_NULL) {
- named_entry_unlock(named_entry);
- return(KERN_INVALID_OBJECT);
- }
+ if (named_entry->is_sub_map ||
+ named_entry->is_copy) {
+ return KERN_INVALID_ARGUMENT;
+ }
+ if (!named_entry->is_object) {
+ return KERN_INVALID_ARGUMENT;
+ }
- /* JMM - drop reference on pager here? */
+ named_entry_lock(named_entry);
- /* create an extra reference for the named entry */
- vm_object_lock(object);
- vm_object_reference_locked(object);
- named_entry->backing.object = object;
- named_entry->is_pager = FALSE;
- named_entry_unlock(named_entry);
-
- /* wait for object to be ready */
- while (!object->pager_ready) {
- vm_object_wait(object,
- VM_OBJECT_EVENT_PAGER_READY,
- THREAD_UNINT);
- vm_object_lock(object);
- }
- vm_object_unlock(object);
- } else {
- /* This is the case where we are going to map */
- /* an already mapped object. If the object is */
- /* not ready it is internal. An external */
- /* object cannot be mapped until it is ready */
- /* we can therefore avoid the ready check */
- /* in this case. */
- object = named_entry->backing.object;
- vm_object_reference(object);
- named_entry_unlock(named_entry);
- }
- } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) {
- memory_object_control_t control;
- control = (memory_object_control_t) port;
- if (control == NULL)
- return (KERN_INVALID_ARGUMENT);
- object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ object = vm_named_entry_to_vm_object(named_entry);
+ assert(object != VM_OBJECT_NULL);
vm_object_reference(object);
+ named_entry_unlock(named_entry);
+ } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) {
+ panic("unexpected IKOT_MEM_OBJ_CONTROL: %p", port);
} else {
return KERN_INVALID_ARGUMENT;
}
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
if (!object->private) {
- if (*upl_size > (MAX_UPL_TRANSFER*PAGE_SIZE))
- *upl_size = (MAX_UPL_TRANSFER*PAGE_SIZE);
if (object->phys_contiguous) {
*flags = UPL_PHYS_CONTIG;
} else {
}
ret = vm_object_iopl_request(object,
- offset,
- *upl_size,
- upl_ptr,
- user_page_list,
- page_list_count,
- caller_flags);
+ offset,
+ *upl_size,
+ upl_ptr,
+ user_page_list,
+ page_list_count,
+ caller_flags,
+ tag);
vm_object_deallocate(object);
return ret;
}
-/*
+/*
* Routine: memory_object_upl_request [interface]
* Purpose:
* Cause the population of a portion of a vm_object.
kern_return_t
memory_object_upl_request(
- memory_object_control_t control,
- memory_object_offset_t offset,
- upl_size_t size,
- upl_t *upl_ptr,
- upl_page_info_array_t user_page_list,
- unsigned int *page_list_count,
- int cntrl_flags)
+ memory_object_control_t control,
+ memory_object_offset_t offset,
+ upl_size_t size,
+ upl_t *upl_ptr,
+ upl_page_info_array_t user_page_list,
+ unsigned int *page_list_count,
+ int cntrl_flags,
+ int tag)
{
- vm_object_t object;
+ vm_object_t object;
+ vm_tag_t vmtag = (vm_tag_t)tag;
+ assert(vmtag == tag);
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_TERMINATED;
+ }
return vm_object_upl_request(object,
- offset,
- size,
- upl_ptr,
- user_page_list,
- page_list_count,
- cntrl_flags);
+ offset,
+ size,
+ upl_ptr,
+ user_page_list,
+ page_list_count,
+ (upl_control_flags_t)(unsigned int) cntrl_flags,
+ vmtag);
}
-/*
+/*
* Routine: memory_object_super_upl_request [interface]
* Purpose:
* Cause the population of a portion of a vm_object
kern_return_t
memory_object_super_upl_request(
memory_object_control_t control,
- memory_object_offset_t offset,
- upl_size_t size,
- upl_size_t super_cluster,
- upl_t *upl,
- upl_page_info_t *user_page_list,
- unsigned int *page_list_count,
- int cntrl_flags)
+ memory_object_offset_t offset,
+ upl_size_t size,
+ upl_size_t super_cluster,
+ upl_t *upl,
+ upl_page_info_t *user_page_list,
+ unsigned int *page_list_count,
+ int cntrl_flags,
+ int tag)
{
- vm_object_t object;
+ vm_object_t object;
+ vm_tag_t vmtag = (vm_tag_t)tag;
+ assert(vmtag == tag);
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
return vm_object_super_upl_request(object,
- offset,
- size,
- super_cluster,
- upl,
- user_page_list,
- page_list_count,
- cntrl_flags);
+ offset,
+ size,
+ super_cluster,
+ upl,
+ user_page_list,
+ page_list_count,
+ (upl_control_flags_t)(unsigned int) cntrl_flags,
+ vmtag);
}
-int vm_stat_discard_cleared_reply = 0;
-int vm_stat_discard_cleared_unset = 0;
-int vm_stat_discard_cleared_too_late = 0;
+kern_return_t
+memory_object_cluster_size(
+ memory_object_control_t control,
+ memory_object_offset_t *start,
+ vm_size_t *length,
+ uint32_t *io_streaming,
+ memory_object_fault_info_t mo_fault_info)
+{
+ vm_object_t object;
+ vm_object_fault_info_t fault_info;
+ object = memory_object_control_to_vm_object(control);
+
+ if (object == VM_OBJECT_NULL || object->paging_offset > *start) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ *start -= object->paging_offset;
+
+ fault_info = (vm_object_fault_info_t)(uintptr_t) mo_fault_info;
+ vm_object_cluster_size(object,
+ (vm_object_offset_t *)start,
+ length,
+ fault_info,
+ io_streaming);
+
+ *start += object->paging_offset;
+
+ return KERN_SUCCESS;
+}
/*
*/
kern_return_t
host_default_memory_manager(
- host_priv_t host_priv,
- memory_object_default_t *default_manager,
- memory_object_cluster_size_t cluster_size)
+ host_priv_t host_priv,
+ memory_object_default_t *default_manager,
+ __unused memory_object_cluster_size_t cluster_size)
{
memory_object_default_t current_manager;
memory_object_default_t new_manager;
memory_object_default_t returned_manager;
+ kern_return_t result = KERN_SUCCESS;
- if (host_priv == HOST_PRIV_NULL)
- return(KERN_INVALID_HOST);
-
- assert(host_priv == &realhost);
+ if (host_priv == HOST_PRIV_NULL) {
+ return KERN_INVALID_HOST;
+ }
new_manager = *default_manager;
- mutex_lock(&memory_manager_default_lock);
+ lck_mtx_lock(&memory_manager_default_lock);
current_manager = memory_manager_default;
+ returned_manager = MEMORY_OBJECT_DEFAULT_NULL;
if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) {
/*
* Retrieve the current value.
*/
- memory_object_default_reference(current_manager);
returned_manager = current_manager;
+ memory_object_default_reference(returned_manager);
} else {
+ /*
+ * Only allow the kernel to change the value.
+ */
+ extern task_t kernel_task;
+ if (current_task() != kernel_task) {
+ result = KERN_NO_ACCESS;
+ goto out;
+ }
+
+ /*
+ * If this is the first non-null manager, start
+ * up the internal pager support.
+ */
+ if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) {
+ result = vm_pageout_internal_start();
+ if (result != KERN_SUCCESS) {
+ goto out;
+ }
+ }
+
/*
* Retrieve the current value,
* and replace it with the supplied value.
* but we have to take a reference on the new
* one.
*/
-
returned_manager = current_manager;
memory_manager_default = new_manager;
memory_object_default_reference(new_manager);
- if (cluster_size % PAGE_SIZE != 0) {
-#if 0
- mutex_unlock(&memory_manager_default_lock);
- return KERN_INVALID_ARGUMENT;
-#else
- cluster_size = round_page_32(cluster_size);
-#endif
- }
- memory_manager_default_cluster = cluster_size;
-
/*
* In case anyone's been waiting for a memory
* manager to be established, wake them up.
*/
thread_wakeup((event_t) &memory_manager_default);
- }
- mutex_unlock(&memory_manager_default_lock);
+ /*
+ * Now that we have a default pager for anonymous memory,
+ * reactivate all the throttled pages (i.e. dirty pages with
+ * no pager).
+ */
+ if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) {
+ vm_page_reactivate_all_throttled();
+ }
+ }
+out:
+ lck_mtx_unlock(&memory_manager_default_lock);
*default_manager = returned_manager;
- return(KERN_SUCCESS);
+ return result;
}
/*
*/
__private_extern__ memory_object_default_t
-memory_manager_default_reference(
- memory_object_cluster_size_t *cluster_size)
+memory_manager_default_reference(void)
{
memory_object_default_t current_manager;
- mutex_lock(&memory_manager_default_lock);
+ lck_mtx_lock(&memory_manager_default_lock);
current_manager = memory_manager_default;
while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) {
wait_result_t res;
- res = thread_sleep_mutex((event_t) &memory_manager_default,
- &memory_manager_default_lock,
- THREAD_UNINT);
+ res = lck_mtx_sleep(&memory_manager_default_lock,
+ LCK_SLEEP_DEFAULT,
+ (event_t) &memory_manager_default,
+ THREAD_UNINT);
assert(res == THREAD_AWAKENED);
current_manager = memory_manager_default;
}
memory_object_default_reference(current_manager);
- *cluster_size = memory_manager_default_cluster;
- mutex_unlock(&memory_manager_default_lock);
+ lck_mtx_unlock(&memory_manager_default_lock);
return current_manager;
}
{
memory_object_default_t current;
- mutex_lock(&memory_manager_default_lock);
+ lck_mtx_lock(&memory_manager_default_lock);
current = memory_manager_default;
if (current == MEMORY_OBJECT_DEFAULT_NULL) {
- static boolean_t logged; /* initialized to 0 */
- boolean_t complain = !logged;
+ static boolean_t logged; /* initialized to 0 */
+ boolean_t complain = !logged;
logged = TRUE;
- mutex_unlock(&memory_manager_default_lock);
- if (complain)
+ lck_mtx_unlock(&memory_manager_default_lock);
+ if (complain) {
printf("Warning: No default memory manager\n");
- return(KERN_FAILURE);
+ }
+ return KERN_FAILURE;
} else {
- mutex_unlock(&memory_manager_default_lock);
- return(KERN_SUCCESS);
+ lck_mtx_unlock(&memory_manager_default_lock);
+ return KERN_SUCCESS;
}
}
-__private_extern__ void
-memory_manager_default_init(void)
-{
- memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL;
- mutex_init(&memory_manager_default_lock, 0);
-}
-
-
-
/* Allow manipulation of individual page state. This is actually part of */
/* the UPL regimen but takes place on the object rather than on a UPL */
kern_return_t
memory_object_page_op(
- memory_object_control_t control,
- memory_object_offset_t offset,
- int ops,
- ppnum_t *phys_entry,
- int *flags)
+ memory_object_control_t control,
+ memory_object_offset_t offset,
+ int ops,
+ ppnum_t *phys_entry,
+ int *flags)
{
- vm_object_t object;
+ vm_object_t object;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
return vm_object_page_op(object, offset, ops, phys_entry, flags);
}
/*
- * memory_object_range_op offers performance enhancement over
- * memory_object_page_op for page_op functions which do not require page
- * level state to be returned from the call. Page_op was created to provide
- * a low-cost alternative to page manipulation via UPLs when only a single
- * page was involved. The range_op call establishes the ability in the _op
+ * memory_object_range_op offers performance enhancement over
+ * memory_object_page_op for page_op functions which do not require page
+ * level state to be returned from the call. Page_op was created to provide
+ * a low-cost alternative to page manipulation via UPLs when only a single
+ * page was involved. The range_op call establishes the ability in the _op
* family of functions to work on multiple pages where the lack of page level
* state handling allows the caller to avoid the overhead of the upl structures.
*/
kern_return_t
memory_object_range_op(
- memory_object_control_t control,
- memory_object_offset_t offset_beg,
- memory_object_offset_t offset_end,
+ memory_object_control_t control,
+ memory_object_offset_t offset_beg,
+ memory_object_offset_t offset_end,
int ops,
int *range)
{
- vm_object_t object;
+ vm_object_t object;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
return vm_object_range_op(object,
- offset_beg,
- offset_end,
- ops,
- range);
+ offset_beg,
+ offset_end,
+ ops,
+ (uint32_t *) range);
+}
+
+
+void
+memory_object_mark_used(
+ memory_object_control_t control)
+{
+ vm_object_t object;
+
+ if (control == NULL) {
+ return;
+ }
+
+ object = memory_object_control_to_vm_object(control);
+
+ if (object != VM_OBJECT_NULL) {
+ vm_object_cache_remove(object);
+ }
+}
+
+
+void
+memory_object_mark_unused(
+ memory_object_control_t control,
+ __unused boolean_t rage)
+{
+ vm_object_t object;
+
+ if (control == NULL) {
+ return;
+ }
+
+ object = memory_object_control_to_vm_object(control);
+
+ if (object != VM_OBJECT_NULL) {
+ vm_object_cache_add(object);
+ }
}
+void
+memory_object_mark_io_tracking(
+ memory_object_control_t control)
+{
+ vm_object_t object;
+
+ if (control == NULL) {
+ return;
+ }
+ object = memory_object_control_to_vm_object(control);
+
+ if (object != VM_OBJECT_NULL) {
+ vm_object_lock(object);
+ object->io_tracking = TRUE;
+ vm_object_unlock(object);
+ }
+}
+
+void
+memory_object_mark_trusted(
+ memory_object_control_t control)
+{
+ vm_object_t object;
+
+ if (control == NULL) {
+ return;
+ }
+ object = memory_object_control_to_vm_object(control);
+
+ if (object != VM_OBJECT_NULL) {
+ vm_object_lock(object);
+ object->pager_trusted = TRUE;
+ vm_object_unlock(object);
+ }
+}
+
+#if CONFIG_SECLUDED_MEMORY
+void
+memory_object_mark_eligible_for_secluded(
+ memory_object_control_t control,
+ boolean_t eligible_for_secluded)
+{
+ vm_object_t object;
+
+ if (control == NULL) {
+ return;
+ }
+ object = memory_object_control_to_vm_object(control);
+
+ if (object == VM_OBJECT_NULL) {
+ return;
+ }
+
+ vm_object_lock(object);
+ if (eligible_for_secluded &&
+ secluded_for_filecache && /* global boot-arg */
+ !object->eligible_for_secluded) {
+ object->eligible_for_secluded = TRUE;
+ vm_page_secluded.eligible_for_secluded += object->resident_page_count;
+ } else if (!eligible_for_secluded &&
+ object->eligible_for_secluded) {
+ object->eligible_for_secluded = FALSE;
+ vm_page_secluded.eligible_for_secluded -= object->resident_page_count;
+ if (object->resident_page_count) {
+ /* XXX FBDP TODO: flush pages from secluded queue? */
+ // printf("FBDP TODO: flush %d pages from %p from secluded queue\n", object->resident_page_count, object);
+ }
+ }
+ vm_object_unlock(object);
+}
+#endif /* CONFIG_SECLUDED_MEMORY */
kern_return_t
memory_object_pages_resident(
- memory_object_control_t control,
- boolean_t * has_pages_resident)
+ memory_object_control_t control,
+ boolean_t * has_pages_resident)
{
- vm_object_t object;
+ vm_object_t object;
*has_pages_resident = FALSE;
object = memory_object_control_to_vm_object(control);
- if (object == VM_OBJECT_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- if (object->resident_page_count)
+ if (object->resident_page_count) {
*has_pages_resident = TRUE;
-
- return (KERN_SUCCESS);
+ }
+
+ return KERN_SUCCESS;
}
+kern_return_t
+memory_object_signed(
+ memory_object_control_t control,
+ boolean_t is_signed)
+{
+ vm_object_t object;
-static zone_t mem_obj_control_zone;
+ object = memory_object_control_to_vm_object(control);
+ if (object == VM_OBJECT_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
-__private_extern__ void
-memory_object_control_bootstrap(void)
+ vm_object_lock(object);
+ object->code_signed = is_signed;
+ vm_object_unlock(object);
+
+ return KERN_SUCCESS;
+}
+
+boolean_t
+memory_object_is_signed(
+ memory_object_control_t control)
{
- int i;
+ boolean_t is_signed;
+ vm_object_t object;
- i = (vm_size_t) sizeof (struct memory_object_control);
- mem_obj_control_zone = zinit (i, 8192*i, 4096, "mem_obj_control");
- return;
+ object = memory_object_control_to_vm_object(control);
+ if (object == VM_OBJECT_NULL) {
+ return FALSE;
+ }
+
+ vm_object_lock_shared(object);
+ is_signed = object->code_signed;
+ vm_object_unlock(object);
+
+ return is_signed;
}
-__private_extern__ memory_object_control_t
-memory_object_control_allocate(
- vm_object_t object)
-{
- memory_object_control_t control;
+boolean_t
+memory_object_is_shared_cache(
+ memory_object_control_t control)
+{
+ vm_object_t object = VM_OBJECT_NULL;
- control = (memory_object_control_t)zalloc(mem_obj_control_zone);
- if (control != MEMORY_OBJECT_CONTROL_NULL) {
- control->moc_object = object;
- control->moc_ikot = IKOT_MEM_OBJ_CONTROL; /* fake ip_kotype */
+ object = memory_object_control_to_vm_object(control);
+ if (object == VM_OBJECT_NULL) {
+ return FALSE;
}
- return (control);
+
+ return object->object_is_shared_cache;
+}
+
+__private_extern__ memory_object_control_t
+memory_object_control_allocate(
+ vm_object_t object)
+{
+ return object;
}
__private_extern__ void
memory_object_control_collapse(
- memory_object_control_t control,
- vm_object_t object)
-{
- assert((control->moc_object != VM_OBJECT_NULL) &&
- (control->moc_object != object));
- control->moc_object = object;
+ memory_object_control_t *control,
+ vm_object_t object)
+{
+ *control = object;
}
__private_extern__ vm_object_t
memory_object_control_to_vm_object(
- memory_object_control_t control)
+ memory_object_control_t control)
{
- if (control == MEMORY_OBJECT_CONTROL_NULL ||
- control->moc_ikot != IKOT_MEM_OBJ_CONTROL)
- return VM_OBJECT_NULL;
+ return control;
+}
+
+__private_extern__ vm_object_t
+memory_object_to_vm_object(
+ memory_object_t mem_obj)
+{
+ memory_object_control_t mo_control;
- return (control->moc_object);
+ if (mem_obj == MEMORY_OBJECT_NULL) {
+ return VM_OBJECT_NULL;
+ }
+ mo_control = mem_obj->mo_control;
+ if (mo_control == NULL) {
+ return VM_OBJECT_NULL;
+ }
+ return memory_object_control_to_vm_object(mo_control);
}
memory_object_control_t
convert_port_to_mo_control(
- __unused mach_port_t port)
+ __unused mach_port_t port)
{
return MEMORY_OBJECT_CONTROL_NULL;
}
mach_port_t
convert_mo_control_to_port(
- __unused memory_object_control_t control)
+ __unused memory_object_control_t control)
{
return MACH_PORT_NULL;
}
void
memory_object_control_reference(
- __unused memory_object_control_t control)
+ __unused memory_object_control_t control)
{
return;
}
*/
void
memory_object_control_deallocate(
- memory_object_control_t control)
+ __unused memory_object_control_t control)
{
- zfree(mem_obj_control_zone, control);
}
void
memory_object_control_disable(
- memory_object_control_t control)
+ memory_object_control_t *control)
{
- assert(control->moc_object != VM_OBJECT_NULL);
- control->moc_object = VM_OBJECT_NULL;
+ assert(*control != VM_OBJECT_NULL);
+ *control = VM_OBJECT_NULL;
}
void
memory_object_t
convert_port_to_memory_object(
- __unused mach_port_t port)
+ __unused mach_port_t port)
{
- return (MEMORY_OBJECT_NULL);
+ return MEMORY_OBJECT_NULL;
}
mach_port_t
convert_memory_object_to_port(
- __unused memory_object_t object)
+ __unused memory_object_t object)
{
- return (MACH_PORT_NULL);
+ return MACH_PORT_NULL;
}
/* Routine memory_object_reference */
-void memory_object_reference(
+void
+memory_object_reference(
memory_object_t memory_object)
{
(memory_object->mo_pager_ops->memory_object_reference)(
}
/* Routine memory_object_deallocate */
-void memory_object_deallocate(
+void
+memory_object_deallocate(
memory_object_t memory_object)
{
(memory_object->mo_pager_ops->memory_object_deallocate)(
- memory_object);
+ memory_object);
}
/* Routine memory_object_init */
-kern_return_t memory_object_init
+kern_return_t
+memory_object_init
(
memory_object_t memory_object,
memory_object_control_t memory_control,
}
/* Routine memory_object_terminate */
-kern_return_t memory_object_terminate
+kern_return_t
+memory_object_terminate
(
memory_object_t memory_object
)
}
/* Routine memory_object_data_request */
-kern_return_t memory_object_data_request
+kern_return_t
+memory_object_data_request
(
memory_object_t memory_object,
memory_object_offset_t offset,
memory_object_cluster_size_t length,
- vm_prot_t desired_access
+ vm_prot_t desired_access,
+ memory_object_fault_info_t fault_info
)
{
return (memory_object->mo_pager_ops->memory_object_data_request)(
memory_object,
- offset,
+ offset,
length,
- desired_access);
+ desired_access,
+ fault_info);
}
/* Routine memory_object_data_return */
-kern_return_t memory_object_data_return
+kern_return_t
+memory_object_data_return
(
memory_object_t memory_object,
memory_object_offset_t offset,
- vm_size_t size,
+ memory_object_cluster_size_t size,
memory_object_offset_t *resid_offset,
- int *io_error,
+ int *io_error,
boolean_t dirty,
boolean_t kernel_copy,
- int upl_flags
+ int upl_flags
)
{
return (memory_object->mo_pager_ops->memory_object_data_return)(
}
/* Routine memory_object_data_initialize */
-kern_return_t memory_object_data_initialize
+kern_return_t
+memory_object_data_initialize
(
memory_object_t memory_object,
memory_object_offset_t offset,
- vm_size_t size
+ memory_object_cluster_size_t size
)
{
return (memory_object->mo_pager_ops->memory_object_data_initialize)(
}
/* Routine memory_object_data_unlock */
-kern_return_t memory_object_data_unlock
+kern_return_t
+memory_object_data_unlock
(
memory_object_t memory_object,
memory_object_offset_t offset,
- vm_size_t size,
+ memory_object_size_t size,
vm_prot_t desired_access
)
{
}
/* Routine memory_object_synchronize */
-kern_return_t memory_object_synchronize
+kern_return_t
+memory_object_synchronize
(
memory_object_t memory_object,
memory_object_offset_t offset,
- vm_size_t size,
+ memory_object_size_t size,
vm_sync_t sync_flags
)
{
+ panic("memory_object_syncrhonize no longer supported\n");
+
return (memory_object->mo_pager_ops->memory_object_synchronize)(
memory_object,
offset,
sync_flags);
}
-/* Routine memory_object_unmap */
-kern_return_t memory_object_unmap
+
+/*
+ * memory_object_map() is called by VM (in vm_map_enter() and its variants)
+ * each time a "named" VM object gets mapped directly or indirectly
+ * (copy-on-write mapping). A "named" VM object has an extra reference held
+ * by the pager to keep it alive until the pager decides that the
+ * memory object (and its VM object) can be reclaimed.
+ * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all
+ * the mappings of that memory object have been removed.
+ *
+ * For a given VM object, calls to memory_object_map() and memory_object_unmap()
+ * are serialized (through object->mapping_in_progress), to ensure that the
+ * pager gets a consistent view of the mapping status of the memory object.
+ *
+ * This allows the pager to keep track of how many times a memory object
+ * has been mapped and with which protections, to decide when it can be
+ * reclaimed.
+ */
+
+/* Routine memory_object_map */
+kern_return_t
+memory_object_map
+(
+ memory_object_t memory_object,
+ vm_prot_t prot
+)
+{
+ return (memory_object->mo_pager_ops->memory_object_map)(
+ memory_object,
+ prot);
+}
+
+/* Routine memory_object_last_unmap */
+kern_return_t
+memory_object_last_unmap
(
memory_object_t memory_object
)
{
- return (memory_object->mo_pager_ops->memory_object_unmap)(
+ return (memory_object->mo_pager_ops->memory_object_last_unmap)(
memory_object);
}
-/* Routine memory_object_create */
-kern_return_t memory_object_create
+/* Routine memory_object_data_reclaim */
+kern_return_t
+memory_object_data_reclaim
(
- memory_object_default_t default_memory_manager,
- vm_size_t new_memory_object_size,
- memory_object_t *new_memory_object
+ memory_object_t memory_object,
+ boolean_t reclaim_backing_store
)
{
- return default_pager_memory_object_create(default_memory_manager,
- new_memory_object_size,
- new_memory_object);
+ if (memory_object->mo_pager_ops->memory_object_data_reclaim == NULL) {
+ return KERN_NOT_SUPPORTED;
+ }
+ return (memory_object->mo_pager_ops->memory_object_data_reclaim)(
+ memory_object,
+ reclaim_backing_store);
+}
+
+boolean_t
+memory_object_backing_object
+(
+ memory_object_t memory_object,
+ memory_object_offset_t offset,
+ vm_object_t *backing_object,
+ vm_object_offset_t *backing_offset)
+{
+ if (memory_object->mo_pager_ops->memory_object_backing_object == NULL) {
+ return FALSE;
+ }
+ return (memory_object->mo_pager_ops->memory_object_backing_object)(
+ memory_object,
+ offset,
+ backing_object,
+ backing_offset);
}
upl_t
convert_port_to_upl(
- ipc_port_t port)
+ ipc_port_t port)
{
upl_t upl;
ip_lock(port);
if (!ip_active(port) || (ip_kotype(port) != IKOT_UPL)) {
- ip_unlock(port);
- return (upl_t)NULL;
+ ip_unlock(port);
+ return (upl_t)NULL;
}
- upl = (upl_t) port->ip_kobject;
+ upl = (upl_t) ip_get_kobject(port);
ip_unlock(port);
upl_lock(upl);
- upl->ref_count+=1;
+ upl->ref_count += 1;
upl_unlock(upl);
return upl;
}
mach_port_t
convert_upl_to_port(
- __unused upl_t upl)
+ __unused upl_t upl)
{
return MACH_PORT_NULL;
}
__private_extern__ void
upl_no_senders(
- __unused ipc_port_t port,
- __unused mach_port_mscount_t mscount)
+ __unused ipc_port_t port,
+ __unused mach_port_mscount_t mscount)
{
return;
}