/*
- * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
+
#include <i386/machine_routines.h>
#include <i386/io_map_entries.h>
#include <i386/cpuid.h>
#include <i386/fpu.h>
+#include <mach/processor.h>
#include <kern/processor.h>
#include <kern/machine.h>
-#include <kern/cpu_data.h>
+
#include <kern/cpu_number.h>
#include <kern/thread.h>
-#include <i386/cpu_data.h>
+#include <kern/thread_call.h>
+#include <kern/policy_internal.h>
+
+#include <prng/random.h>
#include <i386/machine_cpu.h>
-#include <i386/mp.h>
+#include <i386/lapic.h>
+#include <i386/bit_routines.h>
#include <i386/mp_events.h>
-#include <i386/cpu_threads.h>
-#include <i386/pmap.h>
-#include <i386/misc_protos.h>
#include <i386/pmCPU.h>
+#include <i386/trap.h>
+#include <i386/tsc.h>
+#include <i386/cpu_threads.h>
#include <i386/proc_reg.h>
#include <mach/vm_param.h>
-#if MACH_KDB
-#include <i386/db_machdep.h>
-#include <ddb/db_aout.h>
-#include <ddb/db_access.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_variables.h>
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_expr.h>
+#include <i386/pmap.h>
+#include <i386/pmap_internal.h>
+#include <i386/misc_protos.h>
+#include <kern/timer_queue.h>
+#if KPC
+#include <kern/kpc.h>
#endif
-
-#define MIN(a,b) ((a)<(b)? (a) : (b))
-
+#include <architecture/i386/pio.h>
+#include <i386/cpu_data.h>
#if DEBUG
-#define DBG(x...) kprintf("DBG: " x)
+#define DBG(x...) kprintf("DBG: " x)
#else
#define DBG(x...)
#endif
-extern void initialize_screen(Boot_Video *, unsigned int);
-extern thread_t Shutdown_context(thread_t thread, void (*doshutdown)(processor_t),processor_t processor);
-extern void wakeup(void *);
-extern unsigned KernelRelocOffset;
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+
+extern void wakeup(void *);
static int max_cpus_initialized = 0;
-unsigned int LockTimeOut = 12500000;
-unsigned int MutexSpin = 0;
+uint64_t LockTimeOut;
+uint64_t TLBTimeOut;
+uint64_t LockTimeOutTSC;
+uint32_t LockTimeOutUsec;
+uint64_t MutexSpin;
+uint64_t low_MutexSpin;
+int64_t high_MutexSpin;
+uint64_t LastDebuggerEntryAllowance;
+uint64_t delay_spin_threshold;
+
+extern uint64_t panic_restart_timeout;
+
+boolean_t virtualized = FALSE;
+
+decl_simple_lock_data(static, ml_timer_evaluation_slock);
+uint32_t ml_timer_eager_evaluations;
+uint64_t ml_timer_eager_evaluation_max;
+static boolean_t ml_timer_evaluation_in_progress = FALSE;
+
#define MAX_CPUS_SET 0x1
#define MAX_CPUS_WAIT 0x2
/* IO memory map services */
/* Map memory map IO space */
-vm_offset_t ml_io_map(
- vm_offset_t phys_addr,
+vm_offset_t
+ml_io_map(
+ vm_offset_t phys_addr,
vm_size_t size)
{
- return(io_map(phys_addr,size,VM_WIMG_IO));
+ return io_map(phys_addr, size, VM_WIMG_IO);
}
/* boot memory allocation */
-vm_offset_t ml_static_malloc(
- __unused vm_size_t size)
+vm_offset_t
+ml_static_malloc(
+ __unused vm_size_t size)
{
- return((vm_offset_t)NULL);
+ return (vm_offset_t)NULL;
}
-void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+void
+ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
{
- *phys_addr = bounce_pool_base;
- *size = bounce_pool_size;
+ *phys_addr = 0;
+ *size = 0;
}
vm_offset_t
-ml_boot_ptovirt(
+ml_static_ptovirt(
vm_offset_t paddr)
{
- return (vm_offset_t)((paddr-KernelRelocOffset) | LINEAR_KERNEL_ADDRESS);
-}
+#if defined(__x86_64__)
+ return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
+#else
+ return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
+#endif
+}
vm_offset_t
-ml_static_ptovirt(
- vm_offset_t paddr)
+ml_static_slide(
+ vm_offset_t vaddr)
{
- return (vm_offset_t)((unsigned) paddr | LINEAR_KERNEL_ADDRESS);
-}
+ return VM_KERNEL_SLIDE(vaddr);
+}
+vm_offset_t
+ml_static_unslide(
+ vm_offset_t vaddr)
+{
+ return VM_KERNEL_UNSLIDE(vaddr);
+}
/*
- * Routine: ml_static_mfree
- * Function:
+ * Reclaim memory, by virtual address, that was used in early boot that is no longer needed
+ * by the kernel.
*/
void
ml_static_mfree(
vm_offset_t vaddr,
vm_size_t size)
{
- vm_offset_t vaddr_cur;
+ addr64_t vaddr_cur;
ppnum_t ppn;
+ uint32_t freed_pages = 0;
+ vm_size_t map_size;
+
+ assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
-// if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
+ assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */
- assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
+ for (vaddr_cur = vaddr; vaddr_cur < round_page_64(vaddr + size);) {
+ map_size = pmap_query_pagesize(kernel_pmap, vaddr_cur);
- for (vaddr_cur = vaddr;
- vaddr_cur < round_page_32(vaddr+size);
- vaddr_cur += PAGE_SIZE) {
- ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur);
- if (ppn != (vm_offset_t)NULL) {
- pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE));
- vm_page_create(ppn,(ppn+1));
- vm_page_wire_count--;
+ /* just skip if nothing mapped here */
+ if (map_size == 0) {
+ vaddr_cur += PAGE_SIZE;
+ continue;
}
+
+ /*
+ * Can't free from the middle of a large page.
+ */
+ assert((vaddr_cur & (map_size - 1)) == 0);
+
+ ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
+ assert(ppn != (ppnum_t)NULL);
+
+ pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur + map_size);
+ while (map_size > 0) {
+ if (++kernel_pmap->stats.resident_count > kernel_pmap->stats.resident_max) {
+ kernel_pmap->stats.resident_max = kernel_pmap->stats.resident_count;
+ }
+
+ assert(pmap_valid_page(ppn));
+ if (IS_MANAGED_PAGE(ppn)) {
+ vm_page_create(ppn, (ppn + 1));
+ freed_pages++;
+ }
+ map_size -= PAGE_SIZE;
+ vaddr_cur += PAGE_SIZE;
+ ppn++;
+ }
+ }
+ vm_page_lockspin_queues();
+ vm_page_wire_count -= freed_pages;
+ vm_page_wire_count_initial -= freed_pages;
+ if (vm_page_wire_count_on_boot != 0) {
+ assert(vm_page_wire_count_on_boot >= freed_pages);
+ vm_page_wire_count_on_boot -= freed_pages;
}
+ vm_page_unlock_queues();
+
+#if DEBUG
+ kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
+#endif
}
/* virtual to physical on wired pages */
-vm_offset_t ml_vtophys(
+vm_offset_t
+ml_vtophys(
vm_offset_t vaddr)
{
- return kvtophys(vaddr);
+ return (vm_offset_t)kvtophys(vaddr);
+}
+
+/*
+ * Routine: ml_nofault_copy
+ * Function: Perform a physical mode copy if the source and
+ * destination have valid translations in the kernel pmap.
+ * If translations are present, they are assumed to
+ * be wired; i.e. no attempt is made to guarantee that the
+ * translations obtained remained valid for
+ * the duration of the copy process.
+ */
+
+vm_size_t
+ml_nofault_copy(
+ vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
+{
+ addr64_t cur_phys_dst, cur_phys_src;
+ uint32_t count, nbytes = 0;
+
+ while (size > 0) {
+ if (!(cur_phys_src = kvtophys(virtsrc))) {
+ break;
+ }
+ if (!(cur_phys_dst = kvtophys(virtdst))) {
+ break;
+ }
+ if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src))) {
+ break;
+ }
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+ if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) {
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
+ }
+ if (count > size) {
+ count = (uint32_t)size;
+ }
+
+ bcopy_phys(cur_phys_src, cur_phys_dst, count);
+
+ nbytes += count;
+ virtsrc += count;
+ virtdst += count;
+ size -= count;
+ }
+
+ return nbytes;
+}
+
+/*
+ * Routine: ml_validate_nofault
+ * Function: Validate that ths address range has a valid translations
+ * in the kernel pmap. If translations are present, they are
+ * assumed to be wired; i.e. no attempt is made to guarantee
+ * that the translation persist after the check.
+ * Returns: TRUE if the range is mapped and will not cause a fault,
+ * FALSE otherwise.
+ */
+
+boolean_t
+ml_validate_nofault(
+ vm_offset_t virtsrc, vm_size_t size)
+{
+ addr64_t cur_phys_src;
+ uint32_t count;
+
+ while (size > 0) {
+ if (!(cur_phys_src = kvtophys(virtsrc))) {
+ return FALSE;
+ }
+ if (!pmap_valid_page(i386_btop(cur_phys_src))) {
+ return FALSE;
+ }
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+ if (count > size) {
+ count = (uint32_t)size;
+ }
+
+ virtsrc += count;
+ size -= count;
+ }
+
+ return TRUE;
}
/* Interrupt handling */
/* Initialize Interrupts */
-void ml_init_interrupt(void)
+void
+ml_init_interrupt(void)
{
(void) ml_set_interrupts_enabled(TRUE);
}
+
/* Get Interrupts Enabled */
-boolean_t ml_get_interrupts_enabled(void)
+boolean_t
+ml_get_interrupts_enabled(void)
{
- unsigned long flags;
+ unsigned long flags;
- __asm__ volatile("pushf; popl %0" : "=r" (flags));
- return (flags & EFL_IF) != 0;
+ __asm__ volatile ("pushf; pop %0": "=r" (flags));
+ return (flags & EFL_IF) != 0;
}
/* Set Interrupts Enabled */
-boolean_t ml_set_interrupts_enabled(boolean_t enable)
+boolean_t
+ml_set_interrupts_enabled(boolean_t enable)
{
- unsigned long flags;
+ unsigned long flags;
+ boolean_t istate;
- __asm__ volatile("pushf; popl %0" : "=r" (flags));
+ __asm__ volatile ("pushf; pop %0" : "=r" (flags));
- if (enable) {
- ast_t *myast;
+ assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
- myast = ast_pending();
+ istate = ((flags & EFL_IF) != 0);
- if ( (get_preemption_level() == 0) && (*myast & AST_URGENT) ) {
- __asm__ volatile("sti");
- __asm__ volatile ("int $0xff");
- } else {
- __asm__ volatile ("sti");
+ if (enable) {
+ __asm__ volatile ("sti;nop");
+
+ if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT)) {
+ __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+ }
+ } else {
+ if (istate) {
+ __asm__ volatile ("cli");
+ }
}
- }
- else {
- __asm__ volatile("cli");
- }
- return (flags & EFL_IF) != 0;
+ return istate;
+}
+
+/* Early Set Interrupts Enabled */
+boolean_t
+ml_early_set_interrupts_enabled(boolean_t enable)
+{
+ if (enable == TRUE) {
+ kprintf("Caller attempted to enable interrupts too early in "
+ "kernel startup. Halting.\n");
+ hlt();
+ /*NOTREACHED*/
+ }
+
+ /* On x86, do not allow interrupts to be enabled very early */
+ return FALSE;
}
/* Check if running at interrupt context */
-boolean_t ml_at_interrupt_context(void)
+boolean_t
+ml_at_interrupt_context(void)
{
return get_interrupt_level() != 0;
}
+void
+ml_get_power_state(boolean_t *icp, boolean_t *pidlep)
+{
+ *icp = (get_interrupt_level() != 0);
+ /* These will be technically inaccurate for interrupts that occur
+ * successively within a single "idle exit" event, but shouldn't
+ * matter statistically.
+ */
+ *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
+}
+
/* Generate a fake interrupt */
-void ml_cause_interrupt(void)
+__dead2
+void
+ml_cause_interrupt(void)
{
panic("ml_cause_interrupt not defined yet on Intel");
}
-void ml_thread_policy(
+/*
+ * TODO: transition users of this to kernel_thread_start_priority
+ * ml_thread_policy is an unsupported KPI
+ */
+void
+ml_thread_policy(
thread_t thread,
- unsigned policy_id,
+ __unused unsigned policy_id,
unsigned policy_info)
{
- if (policy_id == MACHINE_GROUP)
- thread_bind(thread, master_processor);
-
if (policy_info & MACHINE_NETWORK_WORKLOOP) {
- spl_t s = splsched();
-
- thread_lock(thread);
+ thread_precedence_policy_data_t info;
+ __assert_only kern_return_t kret;
- set_priority(thread, thread->priority + 1);
+ info.importance = 1;
- thread_unlock(thread);
- splx(s);
+ kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
+ (thread_policy_t)&info,
+ THREAD_PRECEDENCE_POLICY_COUNT);
+ assert(kret == KERN_SUCCESS);
}
}
/* Initialize Interrupts */
-void ml_install_interrupt_handler(
+void
+ml_install_interrupt_handler(
void *nub,
int source,
void *target,
IOInterruptHandler handler,
- void *refCon)
+ void *refCon)
{
boolean_t current_state;
- current_state = ml_get_interrupts_enabled();
+ current_state = ml_set_interrupts_enabled(FALSE);
PE_install_interrupt_handler(nub, source, target,
- (IOInterruptHandler) handler, refCon);
+ (IOInterruptHandler) handler, refCon);
(void) ml_set_interrupts_enabled(current_state);
- initialize_screen(0, kPEAcquireScreen);
+ initialize_screen(NULL, kPEAcquireScreen);
}
void
-machine_idle(void)
+machine_signal_idle(
+ processor_t processor)
{
- cpu_core_t *my_core = cpu_core();
- int others_active;
-
- /*
- * We halt this cpu thread
- * unless kernel param idlehalt is false and no other thread
- * in the same core is active - if so, don't halt so that this
- * core doesn't go into a low-power mode.
- * For 4/4, we set a null "active cr3" while idle.
- */
- others_active = !atomic_decl_and_test(
- (long *) &my_core->active_threads, 1);
- if (idlehalt || others_active) {
- DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
- MARK_CPU_IDLE(cpu_number());
- machine_idle_cstate();
- MARK_CPU_ACTIVE(cpu_number());
- DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
- } else {
- __asm__ volatile("sti");
- }
- atomic_incl((long *) &my_core->active_threads, 1);
+ cpu_interrupt(processor->cpu_id);
}
+__dead2
void
-machine_signal_idle(
- processor_t processor)
+machine_signal_idle_deferred(
+ __unused processor_t processor)
{
- cpu_interrupt(PROCESSOR_DATA(processor, slot_num));
+ panic("Unimplemented");
}
-thread_t
-machine_processor_shutdown(
- thread_t thread,
- void (*doshutdown)(processor_t),
- processor_t processor)
+__dead2
+void
+machine_signal_idle_cancel(
+ __unused processor_t processor)
{
- fpu_save_context(thread);
- return(Shutdown_context(thread, doshutdown, processor));
+ panic("Unimplemented");
}
-kern_return_t
-ml_processor_register(
- cpu_id_t cpu_id,
- uint32_t lapic_id,
- processor_t *processor_out,
- ipi_handler_t *ipi_handler,
- boolean_t boot_cpu)
+static kern_return_t
+register_cpu(
+ uint32_t lapic_id,
+ processor_t *processor_out,
+ boolean_t boot_cpu )
{
- int target_cpu;
- cpu_data_t *this_cpu_datap;
+ int target_cpu;
+ cpu_data_t *this_cpu_datap;
this_cpu_datap = cpu_data_alloc(boot_cpu);
if (this_cpu_datap == NULL) {
}
target_cpu = this_cpu_datap->cpu_number;
assert((boot_cpu && (target_cpu == 0)) ||
- (!boot_cpu && (target_cpu != 0)));
+ (!boot_cpu && (target_cpu != 0)));
lapic_cpu_map(lapic_id, target_cpu);
- this_cpu_datap->cpu_id = cpu_id;
+ /* The cpu_id is not known at registration phase. Just do
+ * lapic_id for now
+ */
this_cpu_datap->cpu_phys_number = lapic_id;
this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
- if (this_cpu_datap->cpu_console_buf == NULL)
+ if (this_cpu_datap->cpu_console_buf == NULL) {
goto failed;
+ }
- this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
- if (this_cpu_datap->cpu_chud == NULL)
+#if KPC
+ if (kpc_register_cpu(this_cpu_datap) != TRUE) {
goto failed;
+ }
+#endif
if (!boot_cpu) {
- this_cpu_datap->cpu_core = cpu_thread_alloc(target_cpu);
+ cpu_thread_alloc(this_cpu_datap->cpu_number);
+ if (this_cpu_datap->lcpu.core == NULL) {
+ goto failed;
+ }
+#if NCOPY_WINDOWS > 0
this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
- if (this_cpu_datap->cpu_pmap == NULL)
+ if (this_cpu_datap->cpu_pmap == NULL) {
goto failed;
+ }
+#endif
this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
- if (this_cpu_datap->cpu_processor == NULL)
+ if (this_cpu_datap->cpu_processor == NULL) {
goto failed;
- processor_init(this_cpu_datap->cpu_processor, target_cpu);
+ }
+ /*
+ * processor_init() deferred to topology start
+ * because "slot numbers" a.k.a. logical processor numbers
+ * are not yet finalized.
+ */
}
*processor_out = this_cpu_datap->cpu_processor;
- *ipi_handler = NULL;
return KERN_SUCCESS;
failed:
cpu_processor_free(this_cpu_datap->cpu_processor);
+#if NCOPY_WINDOWS > 0
pmap_cpu_free(this_cpu_datap->cpu_pmap);
- chudxnu_cpu_free(this_cpu_datap->cpu_chud);
+#endif
console_cpu_free(this_cpu_datap->cpu_console_buf);
+#if KPC
+ kpc_unregister_cpu(this_cpu_datap);
+#endif /* KPC */
+
return KERN_FAILURE;
}
+
+kern_return_t
+ml_processor_register(
+ cpu_id_t cpu_id,
+ uint32_t lapic_id,
+ processor_t *processor_out,
+ boolean_t boot_cpu,
+ boolean_t start )
+{
+ static boolean_t done_topo_sort = FALSE;
+ static uint32_t num_registered = 0;
+
+ /* Register all CPUs first, and track max */
+ if (start == FALSE) {
+ num_registered++;
+
+ DBG( "registering CPU lapic id %d\n", lapic_id );
+
+ return register_cpu( lapic_id, processor_out, boot_cpu );
+ }
+
+ /* Sort by topology before we start anything */
+ if (!done_topo_sort) {
+ DBG( "about to start CPUs. %d registered\n", num_registered );
+
+ cpu_topology_sort( num_registered );
+ done_topo_sort = TRUE;
+ }
+
+ /* Assign the cpu ID */
+ uint32_t cpunum = -1;
+ cpu_data_t *this_cpu_datap = NULL;
+
+ /* find cpu num and pointer */
+ cpunum = ml_get_cpuid( lapic_id );
+
+ if (cpunum == 0xFFFFFFFF) { /* never heard of it? */
+ panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+ }
+
+ this_cpu_datap = cpu_datap(cpunum);
+
+ /* fix the CPU id */
+ this_cpu_datap->cpu_id = cpu_id;
+
+ /* allocate and initialize other per-cpu structures */
+ if (!boot_cpu) {
+ mp_cpus_call_cpu_init(cpunum);
+ random_cpu_init(cpunum);
+ }
+
+ /* output arg */
+ *processor_out = this_cpu_datap->cpu_processor;
+
+ /* OK, try and start this CPU */
+ return cpu_topology_start_cpu( cpunum );
+}
+
+
void
ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
{
- boolean_t os_supports_sse;
+ boolean_t os_supports_sse;
i386_cpu_info_t *cpuid_infop;
- if (cpu_infop == NULL)
+ if (cpu_infop == NULL) {
return;
-
+ }
+
/*
* Are we supporting MMX/SSE/SSE2/SSE3?
* As distinct from whether the cpu has these capabilities.
*/
- os_supports_sse = get_cr4() & CR4_XMM;
- if ((cpuid_features() & CPUID_FEATURE_MNI) && os_supports_sse)
+ os_supports_sse = !!(get_cr4() & CR4_OSXMM);
+
+ if (ml_fpu_avx_enabled()) {
+ cpu_infop->vector_unit = 9;
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) {
+ cpu_infop->vector_unit = 8;
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse) {
+ cpu_infop->vector_unit = 7;
+ } else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse) {
cpu_infop->vector_unit = 6;
- else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse) {
cpu_infop->vector_unit = 5;
- else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse) {
cpu_infop->vector_unit = 4;
- else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
+ } else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse) {
cpu_infop->vector_unit = 3;
- else if (cpuid_features() & CPUID_FEATURE_MMX)
+ } else if (cpuid_features() & CPUID_FEATURE_MMX) {
cpu_infop->vector_unit = 2;
- else
+ } else {
cpu_infop->vector_unit = 0;
+ }
cpuid_infop = cpuid_info();
- cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
+ cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
-
- if (cpuid_infop->cache_size[L2U] > 0) {
- cpu_infop->l2_settings = 1;
- cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
- } else {
- cpu_infop->l2_settings = 0;
- cpu_infop->l2_cache_size = 0xFFFFFFFF;
- }
-
- if (cpuid_infop->cache_size[L3U] > 0) {
- cpu_infop->l3_settings = 1;
- cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
- } else {
- cpu_infop->l3_settings = 0;
- cpu_infop->l3_cache_size = 0xFFFFFFFF;
- }
+
+ if (cpuid_infop->cache_size[L2U] > 0) {
+ cpu_infop->l2_settings = 1;
+ cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
+ } else {
+ cpu_infop->l2_settings = 0;
+ cpu_infop->l2_cache_size = 0xFFFFFFFF;
+ }
+
+ if (cpuid_infop->cache_size[L3U] > 0) {
+ cpu_infop->l3_settings = 1;
+ cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
+ } else {
+ cpu_infop->l3_settings = 0;
+ cpu_infop->l3_cache_size = 0xFFFFFFFF;
+ }
}
void
ml_init_max_cpus(unsigned long max_cpus)
{
- boolean_t current_state;
+ boolean_t current_state;
- current_state = ml_set_interrupts_enabled(FALSE);
- if (max_cpus_initialized != MAX_CPUS_SET) {
- if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
+ current_state = ml_set_interrupts_enabled(FALSE);
+ if (max_cpus_initialized != MAX_CPUS_SET) {
+ if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
/*
- * Note: max_cpus is the number of enable processors
+ * Note: max_cpus is the number of enabled processors
* that ACPI found; max_ncpus is the maximum number
* that the kernel supports or that the "cpus="
* boot-arg has set. Here we take int minimum.
*/
- machine_info.max_cpus = MIN(max_cpus, max_ncpus);
+ machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
+ }
+ if (max_cpus_initialized == MAX_CPUS_WAIT) {
+ wakeup((event_t)&max_cpus_initialized);
}
- if (max_cpus_initialized == MAX_CPUS_WAIT)
- wakeup((event_t)&max_cpus_initialized);
- max_cpus_initialized = MAX_CPUS_SET;
- }
- (void) ml_set_interrupts_enabled(current_state);
+ max_cpus_initialized = MAX_CPUS_SET;
+ }
+ (void) ml_set_interrupts_enabled(current_state);
}
int
ml_get_max_cpus(void)
{
- boolean_t current_state;
+ boolean_t current_state;
- current_state = ml_set_interrupts_enabled(FALSE);
- if (max_cpus_initialized != MAX_CPUS_SET) {
- max_cpus_initialized = MAX_CPUS_WAIT;
- assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
- (void)thread_block(THREAD_CONTINUE_NULL);
- }
- (void) ml_set_interrupts_enabled(current_state);
- return(machine_info.max_cpus);
+ current_state = ml_set_interrupts_enabled(FALSE);
+ if (max_cpus_initialized != MAX_CPUS_SET) {
+ max_cpus_initialized = MAX_CPUS_WAIT;
+ assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
+ (void)thread_block(THREAD_CONTINUE_NULL);
+ }
+ (void) ml_set_interrupts_enabled(current_state);
+ return machine_info.max_cpus;
+}
+
+boolean_t
+ml_wants_panic_trap_to_debugger(void)
+{
+ return FALSE;
+}
+
+void
+ml_panic_trap_to_debugger(__unused const char *panic_format_str,
+ __unused va_list *panic_args,
+ __unused unsigned int reason,
+ __unused void *ctx,
+ __unused uint64_t panic_options_mask,
+ __unused unsigned long panic_caller)
+{
+ return;
}
/*
void
ml_init_lock_timeout(void)
{
- uint64_t abstime;
- uint32_t mtxspin;
+ uint64_t abstime;
+ uint32_t mtxspin;
+#if DEVELOPMENT || DEBUG
+ uint64_t default_timeout_ns = NSEC_PER_SEC >> 2;
+#else
+ uint64_t default_timeout_ns = NSEC_PER_SEC >> 1;
+#endif
+ uint32_t slto;
+ uint32_t prt;
+
+ if (PE_parse_boot_argn("slto_us", &slto, sizeof(slto))) {
+ default_timeout_ns = slto * NSEC_PER_USEC;
+ }
/*
- * XXX As currently implemented for x86, LockTimeOut should be a
- * cycle (tsc) count not an absolute time (nanoseconds) -
- * but it's of the right order.
+ * LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
+ * and LockTimeOutUsec is in microseconds and it's 32-bits.
*/
- nanoseconds_to_absolutetime(NSEC_PER_SEC>>2, &abstime);
- LockTimeOut = (unsigned int)abstime;
+ LockTimeOutUsec = (uint32_t) (default_timeout_ns / NSEC_PER_USEC);
+ nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+ LockTimeOut = abstime;
+ LockTimeOutTSC = tmrCvt(abstime, tscFCvtn2t);
- if (PE_parse_boot_arg("mtxspin", &mtxspin)) {
- if (mtxspin > USEC_PER_SEC>>4)
- mtxspin = USEC_PER_SEC>>4;
- nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+ /*
+ * TLBTimeOut dictates the TLB flush timeout period. It defaults to
+ * LockTimeOut but can be overriden separately. In particular, a
+ * zero value inhibits the timeout-panic and cuts a trace evnt instead
+ * - see pmap_flush_tlbs().
+ */
+ if (PE_parse_boot_argn("tlbto_us", &slto, sizeof(slto))) {
+ default_timeout_ns = slto * NSEC_PER_USEC;
+ nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+ TLBTimeOut = (uint32_t) abstime;
} else {
- nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+ TLBTimeOut = LockTimeOut;
+ }
+
+#if DEVELOPMENT || DEBUG
+ reportphyreaddelayabs = LockTimeOut >> 1;
+#endif
+ if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof(slto))) {
+ default_timeout_ns = slto * NSEC_PER_USEC;
+ nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+ reportphyreaddelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("phywritemaxus", &slto, sizeof(slto))) {
+ nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+ reportphywritedelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("tracephyreadus", &slto, sizeof(slto))) {
+ nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+ tracephyreaddelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("tracephywriteus", &slto, sizeof(slto))) {
+ nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+ tracephywritedelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof(mtxspin))) {
+ if (mtxspin > USEC_PER_SEC >> 4) {
+ mtxspin = USEC_PER_SEC >> 4;
+ }
+ nanoseconds_to_absolutetime(mtxspin * NSEC_PER_USEC, &abstime);
+ } else {
+ nanoseconds_to_absolutetime(10 * NSEC_PER_USEC, &abstime);
}
MutexSpin = (unsigned int)abstime;
+ low_MutexSpin = MutexSpin;
+ /*
+ * high_MutexSpin should be initialized as low_MutexSpin * real_ncpus, but
+ * real_ncpus is not set at this time
+ */
+ high_MutexSpin = -1;
+
+ nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
+ if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof(prt))) {
+ nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
+ }
+
+ virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
+ if (virtualized) {
+ int vti;
+
+ if (!PE_parse_boot_argn("vti", &vti, sizeof(vti))) {
+ vti = 6;
+ }
+ printf("Timeouts adjusted for virtualization (<<%d)\n", vti);
+ kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti);
+#define VIRTUAL_TIMEOUT_INFLATE64(_timeout) \
+MACRO_BEGIN \
+ kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
+ _timeout <<= vti; \
+ kprintf("-> 0x%016llx\n", _timeout); \
+MACRO_END
+#define VIRTUAL_TIMEOUT_INFLATE32(_timeout) \
+MACRO_BEGIN \
+ kprintf("%24s: 0x%08x ", #_timeout, _timeout); \
+ if ((_timeout <<vti) >> vti == _timeout) \
+ _timeout <<= vti; \
+ else \
+ _timeout = ~0; /* cap rather than overflow */ \
+ kprintf("-> 0x%08x\n", _timeout); \
+MACRO_END
+ VIRTUAL_TIMEOUT_INFLATE32(LockTimeOutUsec);
+ VIRTUAL_TIMEOUT_INFLATE64(LockTimeOut);
+ VIRTUAL_TIMEOUT_INFLATE64(LockTimeOutTSC);
+ VIRTUAL_TIMEOUT_INFLATE64(TLBTimeOut);
+ VIRTUAL_TIMEOUT_INFLATE64(MutexSpin);
+ VIRTUAL_TIMEOUT_INFLATE64(low_MutexSpin);
+ VIRTUAL_TIMEOUT_INFLATE64(reportphyreaddelayabs);
+ }
+
+ interrupt_latency_tracker_setup();
+ simple_lock_init(&ml_timer_evaluation_slock, 0);
}
/*
- * This is called from the machine-independent routine cpu_up()
- * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ * Threshold above which we should attempt to block
+ * instead of spinning for clock_delay_until().
*/
+
void
-ml_cpu_up(void)
+ml_init_delay_spin_threshold(int threshold_us)
{
- return;
+ nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
}
-/*
- * This is called from the machine-independent routine cpu_down()
- * to perform machine-dependent info updates.
- */
-void
-ml_cpu_down(void)
+boolean_t
+ml_delay_should_spin(uint64_t interval)
{
- return;
+ return (interval < delay_spin_threshold) ? TRUE : FALSE;
}
-/* Stubs for pc tracing mechanism */
+uint32_t yield_delay_us = 0;
-int *pc_trace_buf;
-int pc_trace_cnt = 0;
-
-int
-set_be_bit(void)
+void
+ml_delay_on_yield(void)
{
- return(0);
+#if DEVELOPMENT || DEBUG
+ if (yield_delay_us) {
+ delay(yield_delay_us);
+ }
+#endif
}
-int
-clr_be_bit(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ */
+void
+ml_cpu_up(void)
{
- return(0);
+ return;
}
-int
-be_tracing(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates.
+ */
+void
+ml_cpu_down(void)
{
- return(0);
+ i386_deactivate_cpu();
+
+ return;
}
/*
* The following are required for parts of the kernel
* that cannot resolve these functions as inlines:
*/
-extern thread_t current_act(void);
+extern thread_t current_act(void) __attribute__((const));
thread_t
current_act(void)
{
- return(current_thread_fast());
+ return current_thread_fast();
}
#undef current_thread
-extern thread_t current_thread(void);
+extern thread_t current_thread(void) __attribute__((const));
thread_t
current_thread(void)
{
- return(current_thread_fast());
+ return current_thread_fast();
+}
+
+
+boolean_t
+ml_is64bit(void)
+{
+ return cpu_mode_is64bit();
+}
+
+
+boolean_t
+ml_thread_is64bit(thread_t thread)
+{
+ return thread_is_64bit_addr(thread);
+}
+
+
+boolean_t
+ml_state_is64bit(void *saved_state)
+{
+ return is_saved_state64(saved_state);
}
-/*
- * Set the worst-case time for the C4 to C2 transition.
- * The maxdelay parameter is in nanoseconds.
- */
-
void
-ml_set_maxsnoop(uint32_t maxdelay)
+ml_cpu_set_ldt(int selector)
{
- C4C2SnoopDelay = maxdelay; /* Set the transition time */
- machine_nap_policy(); /* Adjust the current nap state */
+ /*
+ * Avoid loading the LDT
+ * if we're setting the KERNEL LDT and it's already set.
+ */
+ if (selector == KERNEL_LDT &&
+ current_cpu_datap()->cpu_ldt == KERNEL_LDT) {
+ return;
+ }
+
+ lldt(selector);
+ current_cpu_datap()->cpu_ldt = selector;
}
+void
+ml_fp_setvalid(boolean_t value)
+{
+ fp_setvalid(value);
+}
-/*
- * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds.
- */
+uint64_t
+ml_cpu_int_event_time(void)
+{
+ return current_cpu_datap()->cpu_int_event_time;
+}
-unsigned
-ml_get_maxsnoop(void)
+vm_offset_t
+ml_stack_remaining(void)
{
- return C4C2SnoopDelay; /* Set the transition time */
+ uintptr_t local = (uintptr_t) &local;
+
+ if (ml_at_interrupt_context() != 0) {
+ return local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE);
+ } else {
+ return local - current_thread()->kernel_stack;
+ }
}
+#if KASAN
+vm_offset_t ml_stack_base(void);
+vm_size_t ml_stack_size(void);
-uint32_t
-ml_get_maxbusdelay(void)
+vm_offset_t
+ml_stack_base(void)
{
- return maxBusDelay;
+ if (ml_at_interrupt_context()) {
+ return current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE;
+ } else {
+ return current_thread()->kernel_stack;
+ }
}
-/*
- * Set the maximum delay time allowed for snoop on the bus.
- *
- * Note that this value will be compared to the amount of time that it takes
- * to transition from a non-snooping power state (C4) to a snooping state (C2).
- * If maxBusDelay is less than C4C2SnoopDelay,
- * we will not enter the lowest power state.
- */
-
-void
-ml_set_maxbusdelay(uint32_t mdelay)
+vm_size_t
+ml_stack_size(void)
{
- maxBusDelay = mdelay; /* Set the delay */
- machine_nap_policy(); /* Adjust the current nap state */
+ if (ml_at_interrupt_context()) {
+ return INTSTACK_SIZE;
+ } else {
+ return kernel_stack_size;
+ }
}
+#endif
+
+void
+kernel_preempt_check(void)
+{
+ boolean_t intr;
+ unsigned long flags;
+
+ assert(get_preemption_level() == 0);
+
+ if (__improbable(*ast_pending() & AST_URGENT)) {
+ /*
+ * can handle interrupts and preemptions
+ * at this point
+ */
+ __asm__ volatile ("pushf; pop %0" : "=r" (flags));
+ intr = ((flags & EFL_IF) != 0);
-boolean_t ml_is64bit(void) {
+ /*
+ * now cause the PRE-EMPTION trap
+ */
+ if (intr == TRUE) {
+ __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+ }
+ }
+}
+
+boolean_t
+machine_timeout_suspended(void)
+{
+ return pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake();
+}
- return (cpu_mode_is64bit());
+/* Eagerly evaluate all pending timer and thread callouts
+ */
+void
+ml_timer_evaluate(void)
+{
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ uint64_t te_end, te_start = mach_absolute_time();
+ simple_lock(&ml_timer_evaluation_slock, LCK_GRP_NULL);
+ ml_timer_evaluation_in_progress = TRUE;
+ thread_call_delayed_timer_rescan_all();
+ mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
+ ml_timer_evaluation_in_progress = FALSE;
+ ml_timer_eager_evaluations++;
+ te_end = mach_absolute_time();
+ ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
+ simple_unlock(&ml_timer_evaluation_slock);
+
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_END, 0, 0, 0, 0, 0);
}
+boolean_t
+ml_timer_forced_evaluation(void)
+{
+ return ml_timer_evaluation_in_progress;
+}
-boolean_t ml_thread_is64bit(thread_t thread) {
-
- return (thread_is_64bit(thread));
+/* 32-bit right-rotate n bits */
+static inline uint32_t
+ror32(uint32_t val, const unsigned int n)
+{
+ __asm__ volatile ("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n));
+ return val;
}
+void
+ml_entropy_collect(void)
+{
+ uint32_t tsc_lo, tsc_hi;
+ uint32_t *ep;
+
+ assert(cpu_number() == master_cpu);
-boolean_t ml_state_is64bit(void *saved_state) {
+ /* update buffer pointer cyclically */
+ ep = EntropyData.buffer + (EntropyData.sample_count & ENTROPY_BUFFER_INDEX_MASK);
+ EntropyData.sample_count += 1;
- return is_saved_state64(saved_state);
+ rdtsc_nofence(tsc_lo, tsc_hi);
+ *ep = ror32(*ep, 9) ^ tsc_lo;
}
-void ml_cpu_set_ldt(int selector)
+uint64_t
+ml_energy_stat(__unused thread_t t)
{
- /*
- * Avoid loading the LDT
- * if we're setting the KERNEL LDT and it's already set.
- */
- if (selector == KERNEL_LDT &&
- current_cpu_datap()->cpu_ldt == KERNEL_LDT)
- return;
+ return 0;
+}
- /*
- * If 64bit this requires a mode switch (and back).
- */
- if (cpu_mode_is64bit())
- ml_64bit_lldt(selector);
- else
- lldt(selector);
- current_cpu_datap()->cpu_ldt = selector;
+void
+ml_gpu_stat_update(uint64_t gpu_ns_delta)
+{
+ current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
}
-void ml_fp_setvalid(boolean_t value)
+uint64_t
+ml_gpu_stat(thread_t t)
{
- fp_setvalid(value);
+ return t->machine.thread_gpu_ns;
}
-#if MACH_KDB
+int plctrace_enabled = 0;
-/*
- * Display the global msrs
- * *
- * ms
- */
-void
-db_msr(__unused db_expr_t addr,
- __unused int have_addr,
- __unused db_expr_t count,
- __unused char *modif)
+void
+_disable_preemption(void)
{
+ disable_preemption_internal();
+}
- uint32_t i, msrlow, msrhigh;
+void
+_enable_preemption(void)
+{
+ enable_preemption_internal();
+}
- /* Try all of the first 4096 msrs */
- for (i = 0; i < 4096; i++) {
- if (!rdmsr_carefully(i, &msrlow, &msrhigh)) {
- db_printf("%08X - %08X.%08X\n", i, msrhigh, msrlow);
- }
- }
+void
+plctrace_disable(void)
+{
+ plctrace_enabled = 0;
+}
- /* Try all of the 4096 msrs at 0x0C000000 */
- for (i = 0; i < 4096; i++) {
- if (!rdmsr_carefully(0x0C000000 | i, &msrlow, &msrhigh)) {
- db_printf("%08X - %08X.%08X\n",
- 0x0C000000 | i, msrhigh, msrlow);
- }
- }
+static boolean_t ml_quiescing;
- /* Try all of the 4096 msrs at 0xC0000000 */
- for (i = 0; i < 4096; i++) {
- if (!rdmsr_carefully(0xC0000000 | i, &msrlow, &msrhigh)) {
- db_printf("%08X - %08X.%08X\n",
- 0xC0000000 | i, msrhigh, msrlow);
- }
- }
+void
+ml_set_is_quiescing(boolean_t quiescing)
+{
+ assert(FALSE == ml_get_interrupts_enabled());
+ ml_quiescing = quiescing;
}
-#endif
+boolean_t
+ml_is_quiescing(void)
+{
+ assert(FALSE == ml_get_interrupts_enabled());
+ return ml_quiescing;
+}
+
+uint64_t
+ml_get_booter_memory_size(void)
+{
+ return 0;
+}