]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/i386/machine_routines.c
xnu-6153.101.6.tar.gz
[apple/xnu.git] / osfmk / i386 / machine_routines.c
index 825df3b0d9cd75b7a0c7eefff71df426872652a6..e27b01b22ccca5be8d6a9bf1bd2750c4ffe2a2d0 100644 (file)
@@ -1,8 +1,8 @@
 /*
- * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- * 
+ *
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
- * 
+ *
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
- * 
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
+ *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
+
 #include <i386/machine_routines.h>
 #include <i386/io_map_entries.h>
 #include <i386/cpuid.h>
 #include <i386/fpu.h>
+#include <mach/processor.h>
 #include <kern/processor.h>
 #include <kern/machine.h>
-#include <kern/cpu_data.h>
+
 #include <kern/cpu_number.h>
 #include <kern/thread.h>
-#include <i386/cpu_data.h>
+#include <kern/thread_call.h>
+#include <kern/policy_internal.h>
+
+#include <prng/random.h>
 #include <i386/machine_cpu.h>
-#include <i386/mp.h>
+#include <i386/lapic.h>
+#include <i386/bit_routines.h>
 #include <i386/mp_events.h>
-#include <i386/cpu_threads.h>
-#include <i386/pmap.h>
-#include <i386/misc_protos.h>
 #include <i386/pmCPU.h>
+#include <i386/trap.h>
+#include <i386/tsc.h>
+#include <i386/cpu_threads.h>
 #include <i386/proc_reg.h>
 #include <mach/vm_param.h>
-#if MACH_KDB
-#include <i386/db_machdep.h>
-#include <ddb/db_aout.h>
-#include <ddb/db_access.h>
-#include <ddb/db_sym.h>
-#include <ddb/db_variables.h>
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <ddb/db_expr.h>
+#include <i386/pmap.h>
+#include <i386/pmap_internal.h>
+#include <i386/misc_protos.h>
+#include <kern/timer_queue.h>
+#if KPC
+#include <kern/kpc.h>
 #endif
-
-#define MIN(a,b) ((a)<(b)? (a) : (b))
-
+#include <architecture/i386/pio.h>
+#include <i386/cpu_data.h>
 #if DEBUG
-#define DBG(x...)      kprintf("DBG: " x)
+#define DBG(x...)       kprintf("DBG: " x)
 #else
 #define DBG(x...)
 #endif
 
-extern void    initialize_screen(Boot_Video *, unsigned int);
-extern thread_t        Shutdown_context(thread_t thread, void (*doshutdown)(processor_t),processor_t  processor);
-extern void    wakeup(void *);
-extern unsigned KernelRelocOffset;
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+
+extern void     wakeup(void *);
 
 static int max_cpus_initialized = 0;
 
-unsigned int   LockTimeOut = 12500000;
-unsigned int   MutexSpin = 0;
+uint64_t        LockTimeOut;
+uint64_t        TLBTimeOut;
+uint64_t        LockTimeOutTSC;
+uint32_t        LockTimeOutUsec;
+uint64_t        MutexSpin;
+uint64_t        low_MutexSpin;
+int64_t         high_MutexSpin;
+uint64_t        LastDebuggerEntryAllowance;
+uint64_t        delay_spin_threshold;
+
+extern uint64_t panic_restart_timeout;
+
+boolean_t virtualized = FALSE;
+
+decl_simple_lock_data(static, ml_timer_evaluation_slock);
+uint32_t ml_timer_eager_evaluations;
+uint64_t ml_timer_eager_evaluation_max;
+static boolean_t ml_timer_evaluation_in_progress = FALSE;
+
 
 #define MAX_CPUS_SET    0x1
 #define MAX_CPUS_WAIT   0x2
@@ -79,229 +99,377 @@ unsigned int      MutexSpin = 0;
 /* IO memory map services */
 
 /* Map memory map IO space */
-vm_offset_t ml_io_map(
-       vm_offset_t phys_addr, 
+vm_offset_t
+ml_io_map(
+       vm_offset_t phys_addr,
        vm_size_t size)
 {
-       return(io_map(phys_addr,size,VM_WIMG_IO));
+       return io_map(phys_addr, size, VM_WIMG_IO);
 }
 
 /* boot memory allocation */
-vm_offset_t ml_static_malloc(
-                            __unused vm_size_t size)
+vm_offset_t
+ml_static_malloc(
+       __unused vm_size_t size)
 {
-       return((vm_offset_t)NULL);
+       return (vm_offset_t)NULL;
 }
 
 
-void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+void
+ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
 {
-        *phys_addr = bounce_pool_base;
-       *size      = bounce_pool_size;
+       *phys_addr = 0;
+       *size      = 0;
 }
 
 
 vm_offset_t
-ml_boot_ptovirt(
+ml_static_ptovirt(
        vm_offset_t paddr)
 {
-       return (vm_offset_t)((paddr-KernelRelocOffset) | LINEAR_KERNEL_ADDRESS);
-} 
+#if defined(__x86_64__)
+       return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
+#else
+       return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
+#endif
+}
 
 vm_offset_t
-ml_static_ptovirt(
-       vm_offset_t paddr)
+ml_static_slide(
+       vm_offset_t vaddr)
 {
-    return (vm_offset_t)((unsigned) paddr | LINEAR_KERNEL_ADDRESS);
-} 
+       return VM_KERNEL_SLIDE(vaddr);
+}
 
+vm_offset_t
+ml_static_unslide(
+       vm_offset_t vaddr)
+{
+       return VM_KERNEL_UNSLIDE(vaddr);
+}
 
 /*
- *     Routine:        ml_static_mfree
- *     Function:
+ * Reclaim memory, by virtual address, that was used in early boot that is no longer needed
+ * by the kernel.
  */
 void
 ml_static_mfree(
        vm_offset_t vaddr,
        vm_size_t size)
 {
-       vm_offset_t vaddr_cur;
+       addr64_t vaddr_cur;
        ppnum_t ppn;
+       uint32_t freed_pages = 0;
+       vm_size_t map_size;
+
+       assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
 
-//     if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
+       assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */
 
-       assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
+       for (vaddr_cur = vaddr; vaddr_cur < round_page_64(vaddr + size);) {
+               map_size = pmap_query_pagesize(kernel_pmap, vaddr_cur);
 
-       for (vaddr_cur = vaddr;
-            vaddr_cur < round_page_32(vaddr+size);
-            vaddr_cur += PAGE_SIZE) {
-               ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur);
-               if (ppn != (vm_offset_t)NULL) {
-                       pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE));
-                       vm_page_create(ppn,(ppn+1));
-                       vm_page_wire_count--;
+               /* just skip if nothing mapped here */
+               if (map_size == 0) {
+                       vaddr_cur += PAGE_SIZE;
+                       continue;
                }
+
+               /*
+                * Can't free from the middle of a large page.
+                */
+               assert((vaddr_cur & (map_size - 1)) == 0);
+
+               ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
+               assert(ppn != (ppnum_t)NULL);
+
+               pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur + map_size);
+               while (map_size > 0) {
+                       if (++kernel_pmap->stats.resident_count > kernel_pmap->stats.resident_max) {
+                               kernel_pmap->stats.resident_max = kernel_pmap->stats.resident_count;
+                       }
+
+                       assert(pmap_valid_page(ppn));
+                       if (IS_MANAGED_PAGE(ppn)) {
+                               vm_page_create(ppn, (ppn + 1));
+                               freed_pages++;
+                       }
+                       map_size -= PAGE_SIZE;
+                       vaddr_cur += PAGE_SIZE;
+                       ppn++;
+               }
+       }
+       vm_page_lockspin_queues();
+       vm_page_wire_count -= freed_pages;
+       vm_page_wire_count_initial -= freed_pages;
+       if (vm_page_wire_count_on_boot != 0) {
+               assert(vm_page_wire_count_on_boot >= freed_pages);
+               vm_page_wire_count_on_boot -= freed_pages;
        }
+       vm_page_unlock_queues();
+
+#if     DEBUG
+       kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
+#endif
 }
 
 
 /* virtual to physical on wired pages */
-vm_offset_t ml_vtophys(
+vm_offset_t
+ml_vtophys(
        vm_offset_t vaddr)
 {
-       return  kvtophys(vaddr);
+       return (vm_offset_t)kvtophys(vaddr);
+}
+
+/*
+ *     Routine:        ml_nofault_copy
+ *     Function:       Perform a physical mode copy if the source and
+ *                     destination have valid translations in the kernel pmap.
+ *                     If translations are present, they are assumed to
+ *                     be wired; i.e. no attempt is made to guarantee that the
+ *                     translations obtained remained valid for
+ *                     the duration of the copy process.
+ */
+
+vm_size_t
+ml_nofault_copy(
+       vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
+{
+       addr64_t cur_phys_dst, cur_phys_src;
+       uint32_t count, nbytes = 0;
+
+       while (size > 0) {
+               if (!(cur_phys_src = kvtophys(virtsrc))) {
+                       break;
+               }
+               if (!(cur_phys_dst = kvtophys(virtdst))) {
+                       break;
+               }
+               if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src))) {
+                       break;
+               }
+               count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+               if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) {
+                       count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
+               }
+               if (count > size) {
+                       count = (uint32_t)size;
+               }
+
+               bcopy_phys(cur_phys_src, cur_phys_dst, count);
+
+               nbytes += count;
+               virtsrc += count;
+               virtdst += count;
+               size -= count;
+       }
+
+       return nbytes;
+}
+
+/*
+ *     Routine:        ml_validate_nofault
+ *     Function: Validate that ths address range has a valid translations
+ *                     in the kernel pmap.  If translations are present, they are
+ *                     assumed to be wired; i.e. no attempt is made to guarantee
+ *                     that the translation persist after the check.
+ *  Returns: TRUE if the range is mapped and will not cause a fault,
+ *                     FALSE otherwise.
+ */
+
+boolean_t
+ml_validate_nofault(
+       vm_offset_t virtsrc, vm_size_t size)
+{
+       addr64_t cur_phys_src;
+       uint32_t count;
+
+       while (size > 0) {
+               if (!(cur_phys_src = kvtophys(virtsrc))) {
+                       return FALSE;
+               }
+               if (!pmap_valid_page(i386_btop(cur_phys_src))) {
+                       return FALSE;
+               }
+               count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+               if (count > size) {
+                       count = (uint32_t)size;
+               }
+
+               virtsrc += count;
+               size -= count;
+       }
+
+       return TRUE;
 }
 
 /* Interrupt handling */
 
 /* Initialize Interrupts */
-void ml_init_interrupt(void)
+void
+ml_init_interrupt(void)
 {
        (void) ml_set_interrupts_enabled(TRUE);
 }
 
+
 /* Get Interrupts Enabled */
-boolean_t ml_get_interrupts_enabled(void)
+boolean_t
+ml_get_interrupts_enabled(void)
 {
-  unsigned long flags;
+       unsigned long flags;
 
-  __asm__ volatile("pushf; popl        %0" :  "=r" (flags));
-  return (flags & EFL_IF) != 0;
+       __asm__ volatile ("pushf; pop   %0":  "=r" (flags));
+       return (flags & EFL_IF) != 0;
 }
 
 /* Set Interrupts Enabled */
-boolean_t ml_set_interrupts_enabled(boolean_t enable)
+boolean_t
+ml_set_interrupts_enabled(boolean_t enable)
 {
-  unsigned long flags;
+       unsigned long flags;
+       boolean_t istate;
 
-  __asm__ volatile("pushf; popl        %0" :  "=r" (flags));
+       __asm__ volatile ("pushf; pop   %0"  :  "=r" (flags));
 
-  if (enable) {
-       ast_t           *myast;
+       assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
 
-       myast = ast_pending();
+       istate = ((flags & EFL_IF) != 0);
 
-       if ( (get_preemption_level() == 0) &&  (*myast & AST_URGENT) ) {
-       __asm__ volatile("sti");
-          __asm__ volatile ("int $0xff");
-        } else {
-         __asm__ volatile ("sti");
+       if (enable) {
+               __asm__ volatile ("sti;nop");
+
+               if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT)) {
+                       __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+               }
+       } else {
+               if (istate) {
+                       __asm__ volatile ("cli");
+               }
        }
-  }
-  else {
-       __asm__ volatile("cli");
-  }
 
-  return (flags & EFL_IF) != 0;
+       return istate;
+}
+
+/* Early Set Interrupts Enabled */
+boolean_t
+ml_early_set_interrupts_enabled(boolean_t enable)
+{
+       if (enable == TRUE) {
+               kprintf("Caller attempted to enable interrupts too early in "
+                   "kernel startup. Halting.\n");
+               hlt();
+               /*NOTREACHED*/
+       }
+
+       /* On x86, do not allow interrupts to be enabled very early */
+       return FALSE;
 }
 
 /* Check if running at interrupt context */
-boolean_t ml_at_interrupt_context(void)
+boolean_t
+ml_at_interrupt_context(void)
 {
        return get_interrupt_level() != 0;
 }
 
+void
+ml_get_power_state(boolean_t *icp, boolean_t *pidlep)
+{
+       *icp = (get_interrupt_level() != 0);
+       /* These will be technically inaccurate for interrupts that occur
+        * successively within a single "idle exit" event, but shouldn't
+        * matter statistically.
+        */
+       *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
+}
+
 /* Generate a fake interrupt */
-void ml_cause_interrupt(void)
+__dead2
+void
+ml_cause_interrupt(void)
 {
        panic("ml_cause_interrupt not defined yet on Intel");
 }
 
-void ml_thread_policy(
+/*
+ * TODO: transition users of this to kernel_thread_start_priority
+ * ml_thread_policy is an unsupported KPI
+ */
+void
+ml_thread_policy(
        thread_t thread,
-       unsigned policy_id,
+       __unused        unsigned policy_id,
        unsigned policy_info)
 {
-       if (policy_id == MACHINE_GROUP)
-               thread_bind(thread, master_processor);
-
        if (policy_info & MACHINE_NETWORK_WORKLOOP) {
-               spl_t           s = splsched();
-
-               thread_lock(thread);
+               thread_precedence_policy_data_t info;
+               __assert_only kern_return_t kret;
 
-               set_priority(thread, thread->priority + 1);
+               info.importance = 1;
 
-               thread_unlock(thread);
-               splx(s);
+               kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
+                   (thread_policy_t)&info,
+                   THREAD_PRECEDENCE_POLICY_COUNT);
+               assert(kret == KERN_SUCCESS);
        }
 }
 
 /* Initialize Interrupts */
-void ml_install_interrupt_handler(
+void
+ml_install_interrupt_handler(
        void *nub,
        int source,
        void *target,
        IOInterruptHandler handler,
-       void *refCon)  
+       void *refCon)
 {
        boolean_t current_state;
 
-       current_state = ml_get_interrupts_enabled();
+       current_state = ml_set_interrupts_enabled(FALSE);
 
        PE_install_interrupt_handler(nub, source, target,
-                                    (IOInterruptHandler) handler, refCon);
+           (IOInterruptHandler) handler, refCon);
 
        (void) ml_set_interrupts_enabled(current_state);
 
-       initialize_screen(0, kPEAcquireScreen);
+       initialize_screen(NULL, kPEAcquireScreen);
 }
 
 
 void
-machine_idle(void)
+machine_signal_idle(
+       processor_t processor)
 {
-       cpu_core_t      *my_core = cpu_core();
-       int             others_active;
-
-       /*
-        * We halt this cpu thread
-        * unless kernel param idlehalt is false and no other thread
-        * in the same core is active - if so, don't halt so that this
-        * core doesn't go into a low-power mode.
-        * For 4/4, we set a null "active cr3" while idle.
-        */
-       others_active = !atomic_decl_and_test(
-                               (long *) &my_core->active_threads, 1);
-       if (idlehalt || others_active) {
-               DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
-               MARK_CPU_IDLE(cpu_number());
-               machine_idle_cstate();
-               MARK_CPU_ACTIVE(cpu_number());
-               DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
-       } else {
-               __asm__ volatile("sti");
-       }
-       atomic_incl((long *) &my_core->active_threads, 1);
+       cpu_interrupt(processor->cpu_id);
 }
 
+__dead2
 void
-machine_signal_idle(
-        processor_t processor)
+machine_signal_idle_deferred(
+       __unused processor_t processor)
 {
-       cpu_interrupt(PROCESSOR_DATA(processor, slot_num));
+       panic("Unimplemented");
 }
 
-thread_t        
-machine_processor_shutdown(
-       thread_t               thread,
-       void                   (*doshutdown)(processor_t),
-       processor_t    processor)
+__dead2
+void
+machine_signal_idle_cancel(
+       __unused processor_t processor)
 {
-        fpu_save_context(thread);
-       return(Shutdown_context(thread, doshutdown, processor));
+       panic("Unimplemented");
 }
 
-kern_return_t
-ml_processor_register(
-       cpu_id_t        cpu_id,
-       uint32_t        lapic_id,
-       processor_t     *processor_out,
-       ipi_handler_t   *ipi_handler,
-       boolean_t       boot_cpu)
+static kern_return_t
+register_cpu(
+       uint32_t        lapic_id,
+       processor_t     *processor_out,
+       boolean_t       boot_cpu )
 {
-       int             target_cpu;
-       cpu_data_t      *this_cpu_datap;
+       int             target_cpu;
+       cpu_data_t      *this_cpu_datap;
 
        this_cpu_datap = cpu_data_alloc(boot_cpu);
        if (this_cpu_datap == NULL) {
@@ -309,134 +477,240 @@ ml_processor_register(
        }
        target_cpu = this_cpu_datap->cpu_number;
        assert((boot_cpu && (target_cpu == 0)) ||
-             (!boot_cpu && (target_cpu != 0)));
+           (!boot_cpu && (target_cpu != 0)));
 
        lapic_cpu_map(lapic_id, target_cpu);
 
-       this_cpu_datap->cpu_id = cpu_id;
+       /* The cpu_id is not known at registration phase. Just do
+        * lapic_id for now
+        */
        this_cpu_datap->cpu_phys_number = lapic_id;
 
        this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
-       if (this_cpu_datap->cpu_console_buf == NULL)
+       if (this_cpu_datap->cpu_console_buf == NULL) {
                goto failed;
+       }
 
-       this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
-       if (this_cpu_datap->cpu_chud == NULL)
+#if KPC
+       if (kpc_register_cpu(this_cpu_datap) != TRUE) {
                goto failed;
+       }
+#endif
 
        if (!boot_cpu) {
-               this_cpu_datap->cpu_core = cpu_thread_alloc(target_cpu);
+               cpu_thread_alloc(this_cpu_datap->cpu_number);
+               if (this_cpu_datap->lcpu.core == NULL) {
+                       goto failed;
+               }
 
+#if NCOPY_WINDOWS > 0
                this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
-               if (this_cpu_datap->cpu_pmap == NULL)
+               if (this_cpu_datap->cpu_pmap == NULL) {
                        goto failed;
+               }
+#endif
 
                this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
-               if (this_cpu_datap->cpu_processor == NULL)
+               if (this_cpu_datap->cpu_processor == NULL) {
                        goto failed;
-               processor_init(this_cpu_datap->cpu_processor, target_cpu);
+               }
+               /*
+                * processor_init() deferred to topology start
+                * because "slot numbers" a.k.a. logical processor numbers
+                * are not yet finalized.
+                */
        }
 
        *processor_out = this_cpu_datap->cpu_processor;
-       *ipi_handler = NULL;
 
        return KERN_SUCCESS;
 
 failed:
        cpu_processor_free(this_cpu_datap->cpu_processor);
+#if NCOPY_WINDOWS > 0
        pmap_cpu_free(this_cpu_datap->cpu_pmap);
-       chudxnu_cpu_free(this_cpu_datap->cpu_chud);
+#endif
        console_cpu_free(this_cpu_datap->cpu_console_buf);
+#if KPC
+       kpc_unregister_cpu(this_cpu_datap);
+#endif /* KPC */
+
        return KERN_FAILURE;
 }
 
+
+kern_return_t
+ml_processor_register(
+       cpu_id_t        cpu_id,
+       uint32_t        lapic_id,
+       processor_t     *processor_out,
+       boolean_t       boot_cpu,
+       boolean_t       start )
+{
+       static boolean_t done_topo_sort = FALSE;
+       static uint32_t num_registered = 0;
+
+       /* Register all CPUs first, and track max */
+       if (start == FALSE) {
+               num_registered++;
+
+               DBG( "registering CPU lapic id %d\n", lapic_id );
+
+               return register_cpu( lapic_id, processor_out, boot_cpu );
+       }
+
+       /* Sort by topology before we start anything */
+       if (!done_topo_sort) {
+               DBG( "about to start CPUs. %d registered\n", num_registered );
+
+               cpu_topology_sort( num_registered );
+               done_topo_sort = TRUE;
+       }
+
+       /* Assign the cpu ID */
+       uint32_t cpunum = -1;
+       cpu_data_t  *this_cpu_datap = NULL;
+
+       /* find cpu num and pointer */
+       cpunum = ml_get_cpuid( lapic_id );
+
+       if (cpunum == 0xFFFFFFFF) { /* never heard of it? */
+               panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+       }
+
+       this_cpu_datap = cpu_datap(cpunum);
+
+       /* fix the CPU id */
+       this_cpu_datap->cpu_id = cpu_id;
+
+       /* allocate and initialize other per-cpu structures */
+       if (!boot_cpu) {
+               mp_cpus_call_cpu_init(cpunum);
+               random_cpu_init(cpunum);
+       }
+
+       /* output arg */
+       *processor_out = this_cpu_datap->cpu_processor;
+
+       /* OK, try and start this CPU */
+       return cpu_topology_start_cpu( cpunum );
+}
+
+
 void
 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
 {
-       boolean_t       os_supports_sse;
+       boolean_t       os_supports_sse;
        i386_cpu_info_t *cpuid_infop;
 
-       if (cpu_infop == NULL)
+       if (cpu_infop == NULL) {
                return;
+       }
+
        /*
         * Are we supporting MMX/SSE/SSE2/SSE3?
         * As distinct from whether the cpu has these capabilities.
         */
-       os_supports_sse = get_cr4() & CR4_XMM;
-       if ((cpuid_features() & CPUID_FEATURE_MNI) && os_supports_sse)
+       os_supports_sse = !!(get_cr4() & CR4_OSXMM);
+
+       if (ml_fpu_avx_enabled()) {
+               cpu_infop->vector_unit = 9;
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) {
+               cpu_infop->vector_unit = 8;
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse) {
+               cpu_infop->vector_unit = 7;
+       } else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse) {
                cpu_infop->vector_unit = 6;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse) {
                cpu_infop->vector_unit = 5;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse) {
                cpu_infop->vector_unit = 4;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse) {
                cpu_infop->vector_unit = 3;
-       else if (cpuid_features() & CPUID_FEATURE_MMX)
+       } else if (cpuid_features() & CPUID_FEATURE_MMX) {
                cpu_infop->vector_unit = 2;
-       else
+       } else {
                cpu_infop->vector_unit = 0;
+       }
 
        cpuid_infop  = cpuid_info();
 
-       cpu_infop->cache_line_size = cpuid_infop->cache_linesize; 
+       cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
 
        cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
        cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
-  
-        if (cpuid_infop->cache_size[L2U] > 0) {
-            cpu_infop->l2_settings = 1;
-            cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
-        } else {
-            cpu_infop->l2_settings = 0;
-            cpu_infop->l2_cache_size = 0xFFFFFFFF;
-        }
-
-        if (cpuid_infop->cache_size[L3U] > 0) {
-            cpu_infop->l3_settings = 1;
-            cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
-        } else {
-            cpu_infop->l3_settings = 0;
-            cpu_infop->l3_cache_size = 0xFFFFFFFF;
-        }
+
+       if (cpuid_infop->cache_size[L2U] > 0) {
+               cpu_infop->l2_settings = 1;
+               cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
+       } else {
+               cpu_infop->l2_settings = 0;
+               cpu_infop->l2_cache_size = 0xFFFFFFFF;
+       }
+
+       if (cpuid_infop->cache_size[L3U] > 0) {
+               cpu_infop->l3_settings = 1;
+               cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
+       } else {
+               cpu_infop->l3_settings = 0;
+               cpu_infop->l3_cache_size = 0xFFFFFFFF;
+       }
 }
 
 void
 ml_init_max_cpus(unsigned long max_cpus)
 {
-        boolean_t current_state;
+       boolean_t current_state;
 
-        current_state = ml_set_interrupts_enabled(FALSE);
-        if (max_cpus_initialized != MAX_CPUS_SET) {
-                if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
+       current_state = ml_set_interrupts_enabled(FALSE);
+       if (max_cpus_initialized != MAX_CPUS_SET) {
+               if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
                        /*
-                        * Note: max_cpus is the number of enable processors
+                        * Note: max_cpus is the number of enabled processors
                         * that ACPI found; max_ncpus is the maximum number
                         * that the kernel supports or that the "cpus="
                         * boot-arg has set. Here we take int minimum.
                         */
-                        machine_info.max_cpus = MIN(max_cpus, max_ncpus);
+                       machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
+               }
+               if (max_cpus_initialized == MAX_CPUS_WAIT) {
+                       wakeup((event_t)&max_cpus_initialized);
                }
-                if (max_cpus_initialized == MAX_CPUS_WAIT)
-                        wakeup((event_t)&max_cpus_initialized);
-                max_cpus_initialized = MAX_CPUS_SET;
-        }
-        (void) ml_set_interrupts_enabled(current_state);
+               max_cpus_initialized = MAX_CPUS_SET;
+       }
+       (void) ml_set_interrupts_enabled(current_state);
 }
 
 int
 ml_get_max_cpus(void)
 {
-        boolean_t current_state;
+       boolean_t current_state;
 
-        current_state = ml_set_interrupts_enabled(FALSE);
-        if (max_cpus_initialized != MAX_CPUS_SET) {
-                max_cpus_initialized = MAX_CPUS_WAIT;
-                assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
-                (void)thread_block(THREAD_CONTINUE_NULL);
-        }
-        (void) ml_set_interrupts_enabled(current_state);
-        return(machine_info.max_cpus);
+       current_state = ml_set_interrupts_enabled(FALSE);
+       if (max_cpus_initialized != MAX_CPUS_SET) {
+               max_cpus_initialized = MAX_CPUS_WAIT;
+               assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
+               (void)thread_block(THREAD_CONTINUE_NULL);
+       }
+       (void) ml_set_interrupts_enabled(current_state);
+       return machine_info.max_cpus;
+}
+
+boolean_t
+ml_wants_panic_trap_to_debugger(void)
+{
+       return FALSE;
+}
+
+void
+ml_panic_trap_to_debugger(__unused const char *panic_format_str,
+    __unused va_list *panic_args,
+    __unused unsigned int reason,
+    __unused void *ctx,
+    __unused uint64_t panic_options_mask,
+    __unused unsigned long panic_caller)
+{
+       return;
 }
 
 /*
@@ -446,216 +720,420 @@ ml_get_max_cpus(void)
 void
 ml_init_lock_timeout(void)
 {
-       uint64_t        abstime;
-       uint32_t        mtxspin; 
+       uint64_t        abstime;
+       uint32_t        mtxspin;
+#if DEVELOPMENT || DEBUG
+       uint64_t        default_timeout_ns = NSEC_PER_SEC >> 2;
+#else
+       uint64_t        default_timeout_ns = NSEC_PER_SEC >> 1;
+#endif
+       uint32_t        slto;
+       uint32_t        prt;
+
+       if (PE_parse_boot_argn("slto_us", &slto, sizeof(slto))) {
+               default_timeout_ns = slto * NSEC_PER_USEC;
+       }
 
        /*
-        * XXX As currently implemented for x86, LockTimeOut should be a
-        * cycle (tsc) count not an absolute time (nanoseconds) -
-        * but it's of the right order.
+        * LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
+        * and LockTimeOutUsec is in microseconds and it's 32-bits.
         */
-       nanoseconds_to_absolutetime(NSEC_PER_SEC>>2, &abstime);
-       LockTimeOut = (unsigned int)abstime;
+       LockTimeOutUsec = (uint32_t) (default_timeout_ns / NSEC_PER_USEC);
+       nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+       LockTimeOut = abstime;
+       LockTimeOutTSC = tmrCvt(abstime, tscFCvtn2t);
 
-       if (PE_parse_boot_arg("mtxspin", &mtxspin)) {
-               if (mtxspin > USEC_PER_SEC>>4)
-                       mtxspin =  USEC_PER_SEC>>4;
-               nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+       /*
+        * TLBTimeOut dictates the TLB flush timeout period. It defaults to
+        * LockTimeOut but can be overriden separately. In particular, a
+        * zero value inhibits the timeout-panic and cuts a trace evnt instead
+        * - see pmap_flush_tlbs().
+        */
+       if (PE_parse_boot_argn("tlbto_us", &slto, sizeof(slto))) {
+               default_timeout_ns = slto * NSEC_PER_USEC;
+               nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+               TLBTimeOut = (uint32_t) abstime;
        } else {
-               nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+               TLBTimeOut = LockTimeOut;
+       }
+
+#if DEVELOPMENT || DEBUG
+       reportphyreaddelayabs = LockTimeOut >> 1;
+#endif
+       if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof(slto))) {
+               default_timeout_ns = slto * NSEC_PER_USEC;
+               nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+               reportphyreaddelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("phywritemaxus", &slto, sizeof(slto))) {
+               nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+               reportphywritedelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("tracephyreadus", &slto, sizeof(slto))) {
+               nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+               tracephyreaddelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("tracephywriteus", &slto, sizeof(slto))) {
+               nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+               tracephywritedelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof(mtxspin))) {
+               if (mtxspin > USEC_PER_SEC >> 4) {
+                       mtxspin =  USEC_PER_SEC >> 4;
+               }
+               nanoseconds_to_absolutetime(mtxspin * NSEC_PER_USEC, &abstime);
+       } else {
+               nanoseconds_to_absolutetime(10 * NSEC_PER_USEC, &abstime);
        }
        MutexSpin = (unsigned int)abstime;
+       low_MutexSpin = MutexSpin;
+       /*
+        * high_MutexSpin should be initialized as low_MutexSpin * real_ncpus, but
+        * real_ncpus is not set at this time
+        */
+       high_MutexSpin = -1;
+
+       nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
+       if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof(prt))) {
+               nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
+       }
+
+       virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
+       if (virtualized) {
+               int     vti;
+
+               if (!PE_parse_boot_argn("vti", &vti, sizeof(vti))) {
+                       vti = 6;
+               }
+               printf("Timeouts adjusted for virtualization (<<%d)\n", vti);
+               kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti);
+#define VIRTUAL_TIMEOUT_INFLATE64(_timeout)                     \
+MACRO_BEGIN                                                     \
+       kprintf("%24s: 0x%016llx ", #_timeout, _timeout);       \
+       _timeout <<= vti;                                       \
+       kprintf("-> 0x%016llx\n",  _timeout);                   \
+MACRO_END
+#define VIRTUAL_TIMEOUT_INFLATE32(_timeout)                     \
+MACRO_BEGIN                                                     \
+       kprintf("%24s:         0x%08x ", #_timeout, _timeout);  \
+       if ((_timeout <<vti) >> vti == _timeout)                \
+               _timeout <<= vti;                               \
+       else                                                    \
+               _timeout = ~0; /* cap rather than overflow */   \
+       kprintf("-> 0x%08x\n",  _timeout);                      \
+MACRO_END
+               VIRTUAL_TIMEOUT_INFLATE32(LockTimeOutUsec);
+               VIRTUAL_TIMEOUT_INFLATE64(LockTimeOut);
+               VIRTUAL_TIMEOUT_INFLATE64(LockTimeOutTSC);
+               VIRTUAL_TIMEOUT_INFLATE64(TLBTimeOut);
+               VIRTUAL_TIMEOUT_INFLATE64(MutexSpin);
+               VIRTUAL_TIMEOUT_INFLATE64(low_MutexSpin);
+               VIRTUAL_TIMEOUT_INFLATE64(reportphyreaddelayabs);
+       }
+
+       interrupt_latency_tracker_setup();
+       simple_lock_init(&ml_timer_evaluation_slock, 0);
 }
 
 /*
- * This is called from the machine-independent routine cpu_up()
- * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ * Threshold above which we should attempt to block
+ * instead of spinning for clock_delay_until().
  */
+
 void
-ml_cpu_up(void)
+ml_init_delay_spin_threshold(int threshold_us)
 {
-       return;
+       nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
 }
 
-/*
- * This is called from the machine-independent routine cpu_down()
- * to perform machine-dependent info updates.
- */
-void
-ml_cpu_down(void)
+boolean_t
+ml_delay_should_spin(uint64_t interval)
 {
-       return;
+       return (interval < delay_spin_threshold) ? TRUE : FALSE;
 }
 
-/* Stubs for pc tracing mechanism */
+uint32_t yield_delay_us = 0;
 
-int *pc_trace_buf;
-int pc_trace_cnt = 0;
-
-int
-set_be_bit(void)
+void
+ml_delay_on_yield(void)
 {
-  return(0);
+#if DEVELOPMENT || DEBUG
+       if (yield_delay_us) {
+               delay(yield_delay_us);
+       }
+#endif
 }
 
-int
-clr_be_bit(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ */
+void
+ml_cpu_up(void)
 {
-  return(0);
+       return;
 }
 
-int
-be_tracing(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates.
+ */
+void
+ml_cpu_down(void)
 {
-  return(0);
+       i386_deactivate_cpu();
+
+       return;
 }
 
 /*
  * The following are required for parts of the kernel
  * that cannot resolve these functions as inlines:
  */
-extern thread_t current_act(void);
+extern thread_t current_act(void) __attribute__((const));
 thread_t
 current_act(void)
 {
-  return(current_thread_fast());
+       return current_thread_fast();
 }
 
 #undef current_thread
-extern thread_t current_thread(void);
+extern thread_t current_thread(void) __attribute__((const));
 thread_t
 current_thread(void)
 {
-  return(current_thread_fast());
+       return current_thread_fast();
+}
+
+
+boolean_t
+ml_is64bit(void)
+{
+       return cpu_mode_is64bit();
+}
+
+
+boolean_t
+ml_thread_is64bit(thread_t thread)
+{
+       return thread_is_64bit_addr(thread);
+}
+
+
+boolean_t
+ml_state_is64bit(void *saved_state)
+{
+       return is_saved_state64(saved_state);
 }
 
-/*
- * Set the worst-case time for the C4 to C2 transition.
- * The maxdelay parameter is in nanoseconds. 
- */
 void
-ml_set_maxsnoop(uint32_t maxdelay)
+ml_cpu_set_ldt(int selector)
 {
-       C4C2SnoopDelay = maxdelay;      /* Set the transition time */ 
-       machine_nap_policy();           /* Adjust the current nap state */
+       /*
+        * Avoid loading the LDT
+        * if we're setting the KERNEL LDT and it's already set.
+        */
+       if (selector == KERNEL_LDT &&
+           current_cpu_datap()->cpu_ldt == KERNEL_LDT) {
+               return;
+       }
+
+       lldt(selector);
+       current_cpu_datap()->cpu_ldt = selector;
 }
 
+void
+ml_fp_setvalid(boolean_t value)
+{
+       fp_setvalid(value);
+}
 
-/*
- * Get the worst-case time for the C4 to C2 transition.  Returns nanoseconds.
- */
+uint64_t
+ml_cpu_int_event_time(void)
+{
+       return current_cpu_datap()->cpu_int_event_time;
+}
 
-unsigned
-ml_get_maxsnoop(void)
+vm_offset_t
+ml_stack_remaining(void)
 {
-       return C4C2SnoopDelay;          /* Set the transition time */
+       uintptr_t local = (uintptr_t) &local;
+
+       if (ml_at_interrupt_context() != 0) {
+               return local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE);
+       } else {
+               return local - current_thread()->kernel_stack;
+       }
 }
 
+#if KASAN
+vm_offset_t ml_stack_base(void);
+vm_size_t ml_stack_size(void);
 
-uint32_t
-ml_get_maxbusdelay(void)
+vm_offset_t
+ml_stack_base(void)
 {
-    return maxBusDelay;
+       if (ml_at_interrupt_context()) {
+               return current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE;
+       } else {
+               return current_thread()->kernel_stack;
+       }
 }
 
-/*
- * Set the maximum delay time allowed for snoop on the bus.
- *
- * Note that this value will be compared to the amount of time that it takes
- * to transition from a non-snooping power state (C4) to a snooping state (C2).
- * If maxBusDelay is less than C4C2SnoopDelay,
- * we will not enter the lowest power state.
- */
-void
-ml_set_maxbusdelay(uint32_t mdelay)
+vm_size_t
+ml_stack_size(void)
 {
-       maxBusDelay = mdelay;           /* Set the delay */
-       machine_nap_policy();           /* Adjust the current nap state */
+       if (ml_at_interrupt_context()) {
+               return INTSTACK_SIZE;
+       } else {
+               return kernel_stack_size;
+       }
 }
+#endif
+
+void
+kernel_preempt_check(void)
+{
+       boolean_t       intr;
+       unsigned long flags;
+
+       assert(get_preemption_level() == 0);
+
+       if (__improbable(*ast_pending() & AST_URGENT)) {
+               /*
+                * can handle interrupts and preemptions
+                * at this point
+                */
+               __asm__ volatile ("pushf; pop   %0"  :  "=r" (flags));
 
+               intr = ((flags & EFL_IF) != 0);
 
-boolean_t ml_is64bit(void) {
+               /*
+                * now cause the PRE-EMPTION trap
+                */
+               if (intr == TRUE) {
+                       __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+               }
+       }
+}
+
+boolean_t
+machine_timeout_suspended(void)
+{
+       return pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake();
+}
 
-        return (cpu_mode_is64bit());
+/* Eagerly evaluate all pending timer and thread callouts
+ */
+void
+ml_timer_evaluate(void)
+{
+       KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+       uint64_t te_end, te_start = mach_absolute_time();
+       simple_lock(&ml_timer_evaluation_slock, LCK_GRP_NULL);
+       ml_timer_evaluation_in_progress = TRUE;
+       thread_call_delayed_timer_rescan_all();
+       mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
+       ml_timer_evaluation_in_progress = FALSE;
+       ml_timer_eager_evaluations++;
+       te_end = mach_absolute_time();
+       ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
+       simple_unlock(&ml_timer_evaluation_slock);
+
+       KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_END, 0, 0, 0, 0, 0);
 }
 
+boolean_t
+ml_timer_forced_evaluation(void)
+{
+       return ml_timer_evaluation_in_progress;
+}
 
-boolean_t ml_thread_is64bit(thread_t thread) {
-  
-        return (thread_is_64bit(thread));
+/* 32-bit right-rotate n bits */
+static inline uint32_t
+ror32(uint32_t val, const unsigned int n)
+{
+       __asm__ volatile ("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n));
+       return val;
 }
 
+void
+ml_entropy_collect(void)
+{
+       uint32_t        tsc_lo, tsc_hi;
+       uint32_t        *ep;
+
+       assert(cpu_number() == master_cpu);
 
-boolean_t ml_state_is64bit(void *saved_state) {
+       /* update buffer pointer cyclically */
+       ep = EntropyData.buffer + (EntropyData.sample_count & ENTROPY_BUFFER_INDEX_MASK);
+       EntropyData.sample_count += 1;
 
-       return is_saved_state64(saved_state);
+       rdtsc_nofence(tsc_lo, tsc_hi);
+       *ep = ror32(*ep, 9) ^ tsc_lo;
 }
 
-void ml_cpu_set_ldt(int selector)
+uint64_t
+ml_energy_stat(__unused thread_t t)
 {
-       /*
-        * Avoid loading the LDT
-        * if we're setting the KERNEL LDT and it's already set.
-        */
-       if (selector == KERNEL_LDT &&
-           current_cpu_datap()->cpu_ldt == KERNEL_LDT)
-               return;
+       return 0;
+}
 
-       /*
-        * If 64bit this requires a mode switch (and back). 
-        */
-       if (cpu_mode_is64bit())
-               ml_64bit_lldt(selector);
-       else
-               lldt(selector);
-       current_cpu_datap()->cpu_ldt = selector;        
+void
+ml_gpu_stat_update(uint64_t gpu_ns_delta)
+{
+       current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
 }
 
-void ml_fp_setvalid(boolean_t value)
+uint64_t
+ml_gpu_stat(thread_t t)
 {
-        fp_setvalid(value);
+       return t->machine.thread_gpu_ns;
 }
 
-#if MACH_KDB
+int plctrace_enabled = 0;
 
-/*
- *     Display the global msrs
- * *           
- *     ms
- */
-void 
-db_msr(__unused db_expr_t addr,
-       __unused int have_addr,
-       __unused db_expr_t count,
-       __unused char *modif)
+void
+_disable_preemption(void)
 {
+       disable_preemption_internal();
+}
 
-       uint32_t        i, msrlow, msrhigh;
+void
+_enable_preemption(void)
+{
+       enable_preemption_internal();
+}
 
-       /* Try all of the first 4096 msrs */
-       for (i = 0; i < 4096; i++) {
-               if (!rdmsr_carefully(i, &msrlow, &msrhigh)) {
-                       db_printf("%08X - %08X.%08X\n", i, msrhigh, msrlow);
-               }
-       }
+void
+plctrace_disable(void)
+{
+       plctrace_enabled = 0;
+}
 
-       /* Try all of the 4096 msrs at 0x0C000000 */
-       for (i = 0; i < 4096; i++) {
-               if (!rdmsr_carefully(0x0C000000 | i, &msrlow, &msrhigh)) {
-                       db_printf("%08X - %08X.%08X\n",
-                               0x0C000000 | i, msrhigh, msrlow);
-               }
-       }
+static boolean_t ml_quiescing;
 
-       /* Try all of the 4096 msrs at 0xC0000000 */
-       for (i = 0; i < 4096; i++) {
-               if (!rdmsr_carefully(0xC0000000 | i, &msrlow, &msrhigh)) {
-                       db_printf("%08X - %08X.%08X\n",
-                               0xC0000000 | i, msrhigh, msrlow);
-               }
-       }
+void
+ml_set_is_quiescing(boolean_t quiescing)
+{
+       assert(FALSE == ml_get_interrupts_enabled());
+       ml_quiescing = quiescing;
 }
 
-#endif
+boolean_t
+ml_is_quiescing(void)
+{
+       assert(FALSE == ml_get_interrupts_enabled());
+       return ml_quiescing;
+}
+
+uint64_t
+ml_get_booter_memory_size(void)
+{
+       return 0;
+}