/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
-#include <i386/misc_protos.h>
-#include <i386/proc_reg.h>
#include <i386/pmap.h>
+#include <i386/proc_reg.h>
+#include <i386/mp_desc.h>
+#include <i386/misc_protos.h>
+#include <i386/mp.h>
+#include <i386/cpu_data.h>
+#if CONFIG_MTRR
#include <i386/mtrr.h>
+#endif
+#if HYPERVISOR
+#include <kern/hv_support.h>
+#endif
+#if CONFIG_VMX
+#include <i386/vmx/vmx_cpu.h>
+#endif
+#include <i386/ucode.h>
#include <i386/acpi.h>
#include <i386/fpu.h>
+#include <i386/lapic.h>
#include <i386/mp.h>
#include <i386/mp_desc.h>
+#include <i386/serial_io.h>
+#if CONFIG_MCA
#include <i386/machine_check.h>
+#endif
+#include <i386/pmCPU.h>
+
+#include <i386/tsc.h>
+
+#define UINT64 uint64_t
+#define UINT32 uint32_t
+#define UINT16 uint16_t
+#define UINT8 uint8_t
+#define RSDP_VERSION_ACPI10 0
+#define RSDP_VERSION_ACPI20 2
+#include <acpi/Acpi.h>
+#include <acpi/Acpi_v1.h>
+#include <pexpert/i386/efi.h>
#include <kern/cpu_data.h>
+#include <kern/machine.h>
+#include <kern/timer_queue.h>
+#include <console/serial_protos.h>
+#include <machine/pal_routines.h>
+#include <vm/vm_page.h>
+#if HIBERNATION
#include <IOKit/IOHibernatePrivate.h>
+#endif
#include <IOKit/IOPlatformExpert.h>
+#include <sys/kdebug.h>
-extern void acpi_sleep_cpu(acpi_sleep_callback, void * refcon);
-extern char acpi_wake_start[];
-extern char acpi_wake_end[];
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
-extern int serial_init(void);
-extern unsigned int disableSerialOuput;
+#if CONFIG_SLEEP
+extern void acpi_sleep_cpu(acpi_sleep_callback, void * refcon);
+extern void acpi_wake_prot(void);
+#endif
+extern kern_return_t IOCPURunPlatformQuiesceActions(void);
+extern kern_return_t IOCPURunPlatformActiveActions(void);
+extern kern_return_t IOCPURunPlatformHaltRestartActions(uint32_t message);
-extern void set_kbd_leds(int leds);
+extern void fpinit(void);
-extern void fpinit(void);
+#if DEVELOPMENT || DEBUG
+#define DBG(x...) kprintf(x)
+#else
+#define DBG(x...)
+#endif
vm_offset_t
acpi_install_wake_handler(void)
{
- /* copy wake code to ACPI_WAKE_ADDR in low memory */
- bcopy_phys(kvtophys((vm_offset_t)acpi_wake_start),
- (addr64_t) ACPI_WAKE_ADDR,
- acpi_wake_end - acpi_wake_start);
+#if CONFIG_SLEEP
+ install_real_mode_bootstrap(acpi_wake_prot);
+ return REAL_MODE_BOOTSTRAP_OFFSET;
+#else
+ return 0;
+#endif
+}
- /* flush cache */
- wbinvd();
+#if CONFIG_SLEEP
- /* return physical address of the wakeup code */
- return ACPI_WAKE_ADDR;
-}
+unsigned int save_kdebug_enable = 0;
+static uint64_t acpi_sleep_abstime;
+static uint64_t acpi_idle_abstime;
+static uint64_t acpi_wake_abstime, acpi_wake_postrebase_abstime;
+boolean_t deep_idle_rebase = TRUE;
-typedef struct acpi_hibernate_callback_data {
- acpi_sleep_callback func;
- void *refcon;
-} acpi_hibernate_callback_data;
+#if HIBERNATION
+struct acpi_hibernate_callback_data {
+ acpi_sleep_callback func;
+ void *refcon;
+};
+typedef struct acpi_hibernate_callback_data acpi_hibernate_callback_data_t;
static void
acpi_hibernate(void *refcon)
{
- boolean_t dohalt;
+ uint32_t mode;
+
+ acpi_hibernate_callback_data_t *data =
+ (acpi_hibernate_callback_data_t *)refcon;
+
+ if (current_cpu_datap()->cpu_hibernate) {
+ mode = hibernate_write_image();
+
+ if (mode == kIOHibernatePostWriteHalt) {
+ // off
+ HIBLOG("power off\n");
+ IOCPURunPlatformHaltRestartActions(kPEHaltCPU);
+ if (PE_halt_restart) {
+ (*PE_halt_restart)(kPEHaltCPU);
+ }
+ } else if (mode == kIOHibernatePostWriteRestart) {
+ // restart
+ HIBLOG("restart\n");
+ IOCPURunPlatformHaltRestartActions(kPERestartCPU);
+ if (PE_halt_restart) {
+ (*PE_halt_restart)(kPERestartCPU);
+ }
+ } else {
+ // sleep
+ HIBLOG("sleep\n");
+
+ // should we come back via regular wake, set the state in memory.
+ cpu_datap(0)->cpu_hibernate = 0;
+ }
+ }
- acpi_hibernate_callback_data *data = (acpi_hibernate_callback_data *)refcon;
+#if CONFIG_VMX
+ vmx_suspend();
+#endif
+ kdebug_enable = 0;
- if (current_cpu_datap()->cpu_hibernate) {
+ IOCPURunPlatformQuiesceActions();
- dohalt = hibernate_write_image();
- if (dohalt)
- {
- // off
- HIBLOG("power off\n");
- if (PE_halt_restart)
- (*PE_halt_restart)(kPEHaltCPU);
+ acpi_sleep_abstime = mach_absolute_time();
+
+ (data->func)(data->refcon);
+
+ /* should never get here! */
+}
+#endif /* HIBERNATION */
+#endif /* CONFIG_SLEEP */
+
+extern void slave_pstart(void);
+
+void
+acpi_sleep_kernel(acpi_sleep_callback func, void *refcon)
+{
+#if HIBERNATION
+ acpi_hibernate_callback_data_t data;
+#endif
+ boolean_t did_hibernate;
+ cpu_data_t *cdp = current_cpu_datap();
+ unsigned int cpu;
+ kern_return_t rc;
+ unsigned int my_cpu;
+ uint64_t start;
+ uint64_t elapsed = 0;
+ uint64_t elapsed_trace_start = 0;
+
+ my_cpu = cpu_number();
+ kprintf("acpi_sleep_kernel hib=%d, cpu=%d\n", cdp->cpu_hibernate,
+ my_cpu);
+
+ /* Get all CPUs to be in the "off" state */
+ for (cpu = 0; cpu < real_ncpus; cpu += 1) {
+ if (cpu == my_cpu) {
+ continue;
+ }
+ rc = pmCPUExitHaltToOff(cpu);
+ if (rc != KERN_SUCCESS) {
+ panic("Error %d trying to transition CPU %d to OFF",
+ rc, cpu);
+ }
+ }
+
+ /* shutdown local APIC before passing control to firmware */
+ lapic_shutdown(true);
+
+#if HIBERNATION
+ data.func = func;
+ data.refcon = refcon;
+#endif
+
+#if MONOTONIC
+ mt_cpu_down(cdp);
+#endif /* MONOTONIC */
+
+ /* Save power management timer state */
+ pmTimerSave();
+
+#if HYPERVISOR
+ /* Notify hypervisor that we are about to sleep */
+ hv_suspend();
+#endif
+
+ /*
+ * Enable FPU/SIMD unit for potential hibernate acceleration
+ */
+ clear_ts();
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_START);
+
+ save_kdebug_enable = kdebug_enable;
+ kdebug_enable = 0;
+
+ acpi_sleep_abstime = mach_absolute_time();
+
+#if CONFIG_SLEEP
+ /*
+ * Save master CPU state and sleep platform.
+ * Will not return until platform is woken up,
+ * or if sleep failed.
+ */
+ uint64_t old_cr3 = x86_64_pre_sleep();
+#if HIBERNATION
+ acpi_sleep_cpu(acpi_hibernate, &data);
+#else
+#if CONFIG_VMX
+ vmx_suspend();
+#endif
+ acpi_sleep_cpu(func, refcon);
+#endif
+
+ acpi_wake_abstime = mach_absolute_time();
+ /* Rebase TSC->absolute time conversion, using timestamp
+ * recorded before sleep.
+ */
+ rtc_nanotime_init(acpi_sleep_abstime);
+ acpi_wake_postrebase_abstime = start = mach_absolute_time();
+ assert(start >= acpi_sleep_abstime);
+
+ x86_64_post_sleep(old_cr3);
+
+#endif /* CONFIG_SLEEP */
+
+ /* Reset UART if kprintf is enabled.
+ * However kprintf should not be used before rtc_sleep_wakeup()
+ * for compatibility with firewire kprintf.
+ */
+
+ if (FALSE == disable_serial_output) {
+ pal_serial_init();
}
- else
+
+#if HIBERNATION
+ if (current_cpu_datap()->cpu_hibernate) {
+ did_hibernate = TRUE;
+ } else
+#endif
{
- // sleep
- HIBLOG("sleep\n");
+ did_hibernate = FALSE;
+ }
+
+ /* Re-enable fast syscall */
+ cpu_syscall_init(current_cpu_datap());
+
+#if CONFIG_MCA
+ /* Re-enable machine check handling */
+ mca_cpu_init();
+#endif
+
+#if CONFIG_MTRR
+ /* restore MTRR settings */
+ mtrr_update_cpu();
+#endif
+
+ /* update CPU microcode and apply CPU workarounds */
+ ucode_update_wake_and_apply_cpu_was();
+
+#if CONFIG_MTRR
+ /* set up PAT following boot processor power up */
+ pat_init();
+#endif
+
+#if CONFIG_VMX
+ /*
+ * Restore VT mode
+ */
+ vmx_resume(did_hibernate);
+#endif
- // should we come back via regular wake, set the state in memory.
- cpu_datap(0)->cpu_hibernate = 0;
+ /*
+ * Go through all of the CPUs and mark them as requiring
+ * a full restart.
+ */
+ pmMarkAllCPUsOff();
+
+
+ /* re-enable and re-init local apic (prior to starting timers) */
+ if (lapic_probe()) {
+ lapic_configure(true);
}
- }
- (data->func)(data->refcon);
+#if KASAN
+ /*
+ * The sleep implementation uses indirect noreturn calls, so we miss stack
+ * unpoisoning. Do it explicitly.
+ */
+ kasan_unpoison_curstack(true);
+#endif
+
+ elapsed += mach_absolute_time() - start;
+
+ rtc_decrementer_configure();
+ kdebug_enable = save_kdebug_enable;
+
+ if (kdebug_enable == 0) {
+ elapsed_trace_start += kdebug_wake();
+ }
+ start = mach_absolute_time();
+
+ /* Reconfigure FP/SIMD unit */
+ init_fpu();
+ clear_ts();
+
+
+#if HYPERVISOR
+ /* Notify hypervisor that we are about to resume */
+ hv_resume();
+#endif
- /* should never get here! */
+ IOCPURunPlatformActiveActions();
+
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 0) | DBG_FUNC_END, start, elapsed,
+ elapsed_trace_start, acpi_wake_abstime);
+
+ /* Restore power management register state */
+ pmCPUMarkRunning(current_cpu_datap());
+
+ /* Restore power management timer state */
+ pmTimerRestore();
+
+ /* Restart timer interrupts */
+ rtc_timer_start();
+
+#if MONOTONIC
+ mt_cpu_up(cdp);
+#endif /* MONOTONIC */
+
+#if HIBERNATION
+ kprintf("ret from acpi_sleep_cpu hib=%d\n", did_hibernate);
+#endif /* HIBERNATION */
+
+#if CONFIG_SLEEP
+ /* Becase we don't save the bootstrap page, and we share it
+ * between sleep and mp slave init, we need to recreate it
+ * after coming back from sleep or hibernate */
+ install_real_mode_bootstrap(slave_pstart);
+#endif /* CONFIG_SLEEP */
}
void
-acpi_sleep_kernel(acpi_sleep_callback func, void *refcon)
+ml_hibernate_active_pre(void)
{
- acpi_hibernate_callback_data data;
- boolean_t did_hibernate;
-
- kprintf("acpi_sleep_kernel hib=%d\n", current_cpu_datap()->cpu_hibernate);
-
- /* shutdown local APIC before passing control to BIOS */
- lapic_shutdown();
-
- data.func = func;
- data.refcon = refcon;
-
- /* Save HPET state */
- hpet_save();
-
- /*
- * If we're in 64-bit mode, drop back into legacy mode during sleep.
- */
- if (cpu_mode_is64bit()) {
- cpu_IA32e_disable(current_cpu_datap());
- kprintf("acpi_sleep_kernel legacy mode re-entered\n");
- }
-
- /*
- * Save master CPU state and sleep platform.
- * Will not return until platform is woken up,
- * or if sleep failed.
- */
- acpi_sleep_cpu(acpi_hibernate, &data);
-
- /* reset UART if kprintf is enabled */
- if (FALSE == disableSerialOuput)
- serial_init();
-
- kprintf("ret from acpi_sleep_cpu hib=%d\n", current_cpu_datap()->cpu_hibernate);
-
- if (current_cpu_datap()->cpu_hibernate) {
- int i;
- for (i=0; i<PMAP_NWINDOWS; i++) {
- *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0;
- }
- current_cpu_datap()->cpu_hibernate = 0;
- did_hibernate = TRUE;
-
- } else {
- did_hibernate = FALSE;
- }
-
- /* Re-enable 64-bit mode if necessary. */
- if (cpu_mode_is64bit()) {
- cpu_IA32e_enable(current_cpu_datap());
- cpu_desc_load64(current_cpu_datap());
- kprintf("acpi_sleep_kernel 64-bit mode re-enabled\n");
- fast_syscall_init64();
- } else {
- fast_syscall_init();
- }
-
- /* Re-enable machine check handling */
- mca_cpu_init();
-
- /* restore MTRR settings */
- mtrr_update_cpu();
-
- /* set up PAT following boot processor power up */
- pat_init();
-
- if (did_hibernate) {
- hibernate_machine_init();
- }
-
- /* re-enable and re-init local apic */
- if (lapic_probe())
- lapic_init();
-
- /* Restore HPET state */
- hpet_restore();
-
- /* let the realtime clock reset */
- rtc_sleep_wakeup();
-
- fpinit();
- clear_fpu();
-
- if (did_hibernate) {
- enable_preemption();
- }
+#if HIBERNATION
+ hibernate_rebuild_vm_structs();
+#endif /* HIBERNATION */
+}
+
+void
+ml_hibernate_active_post(void)
+{
+#if HIBERNATION
+ if (current_cpu_datap()->cpu_hibernate) {
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 2) | DBG_FUNC_START);
+ hibernate_machine_init();
+ KDBG(IOKDBG_CODE(DBG_HIBERNATE, 2) | DBG_FUNC_END);
+ current_cpu_datap()->cpu_hibernate = 0;
+ }
+#endif /* HIBERNATION */
+}
+
+/*
+ * acpi_idle_kernel is called by the ACPI Platform kext to request the kernel
+ * to idle the boot processor in the deepest C-state for S0 sleep. All slave
+ * processors are expected already to have been offlined in the deepest C-state.
+ *
+ * The contract with ACPI is that although the kernel is called with interrupts
+ * disabled, interrupts may need to be re-enabled to dismiss any pending timer
+ * interrupt. However, the callback function will be called once this has
+ * occurred and interrupts are guaranteed to be disabled at that time,
+ * and to remain disabled during C-state entry, exit (wake) and return
+ * from acpi_idle_kernel.
+ */
+void
+acpi_idle_kernel(acpi_sleep_callback func, void *refcon)
+{
+ boolean_t istate = ml_get_interrupts_enabled();
+
+ kprintf("acpi_idle_kernel, cpu=%d, interrupts %s\n",
+ cpu_number(), istate ? "enabled" : "disabled");
+
+ assert(cpu_number() == master_cpu);
+
+#if MONOTONIC
+ mt_cpu_down(cpu_datap(0));
+#endif /* MONOTONIC */
+
+ /* Cancel any pending deadline */
+ setPop(0);
+ while (lapic_is_interrupting(LAPIC_TIMER_VECTOR)
+#if MONOTONIC
+ || lapic_is_interrupting(LAPIC_VECTOR(PERFCNT))
+#endif /* MONOTONIC */
+ ) {
+ (void) ml_set_interrupts_enabled(TRUE);
+ setPop(0);
+ ml_set_interrupts_enabled(FALSE);
+ }
+
+ if (current_cpu_datap()->cpu_hibernate) {
+ /* Call hibernate_write_image() to put disk to low power state */
+ hibernate_write_image();
+ cpu_datap(0)->cpu_hibernate = 0;
+ }
+
+ /*
+ * Call back to caller to indicate that interrupts will remain
+ * disabled while we deep idle, wake and return.
+ */
+ IOCPURunPlatformQuiesceActions();
+
+ func(refcon);
+
+ acpi_idle_abstime = mach_absolute_time();
+
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_DEEP_IDLE) | DBG_FUNC_START,
+ acpi_idle_abstime, deep_idle_rebase, 0, 0, 0);
+
+ /*
+ * Disable tracing during S0-sleep
+ * unless overridden by sysctl -w tsc.deep_idle_rebase=0
+ */
+ if (deep_idle_rebase) {
+ save_kdebug_enable = kdebug_enable;
+ kdebug_enable = 0;
+ }
+
+ /*
+ * Call into power-management to enter the lowest C-state.
+ * Note when called on the boot processor this routine will
+ * return directly when awoken.
+ */
+ pmCPUHalt(PM_HALT_SLEEP);
+
+ /*
+ * Get wakeup time relative to the TSC which has progressed.
+ * Then rebase nanotime to reflect time not progressing over sleep
+ * - unless overriden so that tracing can occur during deep_idle.
+ */
+ acpi_wake_abstime = mach_absolute_time();
+ if (deep_idle_rebase) {
+ rtc_sleep_wakeup(acpi_idle_abstime);
+ kdebug_enable = save_kdebug_enable;
+ }
+ acpi_wake_postrebase_abstime = mach_absolute_time();
+ assert(mach_absolute_time() >= acpi_idle_abstime);
+
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_DEEP_IDLE) | DBG_FUNC_END,
+ acpi_wake_abstime, acpi_wake_abstime - acpi_idle_abstime, 0, 0, 0);
+
+#if MONOTONIC
+ mt_cpu_up(cpu_datap(0));
+#endif /* MONOTONIC */
+
+ /* Like S3 sleep, turn on tracing if trace_wake boot-arg is present */
+ if (kdebug_enable == 0) {
+ kdebug_wake();
+ }
+
+ IOCPURunPlatformActiveActions();
+
+ /* Restart timer interrupts */
+ rtc_timer_start();
+}
+
+extern char real_mode_bootstrap_end[];
+extern char real_mode_bootstrap_base[];
+
+void
+install_real_mode_bootstrap(void *prot_entry)
+{
+ /*
+ * Copy the boot entry code to the real-mode vector area REAL_MODE_BOOTSTRAP_OFFSET.
+ * This is in page 1 which has been reserved for this purpose by
+ * machine_startup() from the boot processor.
+ * The slave boot code is responsible for switching to protected
+ * mode and then jumping to the common startup, _start().
+ */
+ bcopy_phys(kvtophys((vm_offset_t) real_mode_bootstrap_base),
+ (addr64_t) REAL_MODE_BOOTSTRAP_OFFSET,
+ real_mode_bootstrap_end - real_mode_bootstrap_base);
+
+ /*
+ * Set the location at the base of the stack to point to the
+ * common startup entry.
+ */
+ ml_phys_write_word(
+ PROT_MODE_START + REAL_MODE_BOOTSTRAP_OFFSET,
+ (unsigned int)kvtophys((vm_offset_t)prot_entry));
+
+ /* Flush caches */
+ __asm__("wbinvd");
+}
+
+boolean_t
+ml_recent_wake(void)
+{
+ uint64_t ctime = mach_absolute_time();
+ assert(ctime > acpi_wake_postrebase_abstime);
+ return (ctime - acpi_wake_postrebase_abstime) < 5 * NSEC_PER_SEC;
+}
+
+static uint8_t
+cksum8(uint8_t *ptr, uint32_t size)
+{
+ uint8_t sum = 0;
+ uint32_t i;
+
+ for (i = 0; i < size; i++) {
+ sum += ptr[i];
+ }
+
+ return sum;
+}
+
+/*
+ * Parameterized search for a specified table given an sdtp (either RSDT or XSDT).
+ * Note that efiboot does not modify the addresses of tables in the RSDT or XSDT
+ * TableOffsetEntry array, so we do not need to "convert" from efiboot virtual to
+ * physical.
+ */
+#define SEARCH_FOR_ACPI_TABLE(sdtp, signature, entry_type) \
+{ \
+ uint32_t i, pointer_count; \
+ \
+ /* Walk the list of tables in the *SDT, looking for the signature passed in */ \
+ pointer_count = ((sdtp)->Length - sizeof(ACPI_TABLE_HEADER)) / sizeof(entry_type); \
+ \
+ for (i = 0; i < pointer_count; i++) { \
+ ACPI_TABLE_HEADER *next_table = \
+ (ACPI_TABLE_HEADER *)PHYSMAP_PTOV( \
+ (uintptr_t)(sdtp)->TableOffsetEntry[i]); \
+ if (strncmp(&next_table->Signature[0], (signature), 4) == 0) { \
+ /* \
+ * Checksum the table first, then return it if the checksum \
+ * is valid. \
+ */ \
+ if (cksum8((uint8_t *)next_table, next_table->Length) == 0) { \
+ return next_table; \
+ } else { \
+ DBG("Invalid checksum for table [%s]@0x%lx!\n", (signature), \
+ (unsigned long)(sdtp)->TableOffsetEntry[i]); \
+ return NULL; \
+ } \
+ } \
+ } \
+ \
+ return NULL; \
+}
+
+static ACPI_TABLE_HEADER *
+acpi_find_table_via_xsdt(XSDT_DESCRIPTOR *xsdtp, const char *signature)
+{
+ SEARCH_FOR_ACPI_TABLE(xsdtp, signature, UINT64);
+}
+
+static ACPI_TABLE_HEADER *
+acpi_find_table_via_rsdt(RSDT_DESCRIPTOR *rsdtp, const char *signature)
+{
+ SEARCH_FOR_ACPI_TABLE(rsdtp, signature, UINT32);
+}
+
+/*
+ * Returns a pointer to an ACPI table header corresponding to the table
+ * whose signature is passed in, or NULL if no such table could be found.
+ */
+static ACPI_TABLE_HEADER *
+acpi_find_table(uintptr_t rsdp_physaddr, const char *signature)
+{
+ static RSDP_DESCRIPTOR *rsdp = NULL;
+ static XSDT_DESCRIPTOR *xsdtp = NULL;
+ static RSDT_DESCRIPTOR *rsdtp = NULL;
+
+ if (signature == NULL) {
+ DBG("Invalid NULL signature passed to acpi_find_table\n");
+ return NULL;
+ }
+
+ /*
+ * RSDT or XSDT is required; without it, we cannot locate other tables.
+ */
+ if (__improbable(rsdp == NULL || (rsdtp == NULL && xsdtp == NULL))) {
+ rsdp = PHYSMAP_PTOV(rsdp_physaddr);
+
+ /* Verify RSDP signature */
+ if (__improbable(strncmp((void *)rsdp, "RSD PTR ", 8) != 0)) {
+ DBG("RSDP signature mismatch: Aborting acpi_find_table\n");
+ rsdp = NULL;
+ return NULL;
+ }
+
+ /* Verify RSDP checksum */
+ if (__improbable(cksum8((uint8_t *)rsdp, sizeof(RSDP_DESCRIPTOR)) != 0)) {
+ DBG("RSDP@0x%lx signature mismatch: Aborting acpi_find_table\n",
+ (unsigned long)rsdp_physaddr);
+ rsdp = NULL;
+ return NULL;
+ }
+
+ /* Ensure the revision of the RSDP indicates the presence of an RSDT or XSDT */
+ if (__improbable(rsdp->Revision >= RSDP_VERSION_ACPI20 && rsdp->XsdtPhysicalAddress == 0ULL)) {
+ DBG("RSDP XSDT Physical Address is 0!: Aborting acpi_find_table\n");
+ rsdp = NULL;
+ return NULL;
+ } else if (__probable(rsdp->Revision >= RSDP_VERSION_ACPI20)) {
+ /* XSDT (with 64-bit pointers to tables) */
+ rsdtp = NULL;
+ xsdtp = PHYSMAP_PTOV(rsdp->XsdtPhysicalAddress);
+ if (cksum8((uint8_t *)xsdtp, xsdtp->Length) != 0) {
+ DBG("ERROR: XSDT@0x%lx checksum is non-zero; not using this XSDT\n",
+ (unsigned long)rsdp->XsdtPhysicalAddress);
+ xsdtp = NULL;
+ return NULL;
+ }
+ } else if (__improbable(rsdp->Revision == RSDP_VERSION_ACPI10 && rsdp->RsdtPhysicalAddress == 0)) {
+ DBG("RSDP RSDT Physical Address is 0!: Aborting acpi_find_table\n");
+ rsdp = NULL;
+ return NULL;
+ } else if (__improbable(rsdp->Revision == RSDP_VERSION_ACPI10)) {
+ /* RSDT (with 32-bit pointers to tables) */
+ xsdtp = NULL;
+ rsdtp = PHYSMAP_PTOV((uintptr_t)rsdp->RsdtPhysicalAddress);
+ if (cksum8((uint8_t *)rsdtp, rsdtp->Length) != 0) {
+ DBG("ERROR: RSDT@0x%lx checksum is non-zero; not using this RSDT\n",
+ (unsigned long)rsdp->RsdtPhysicalAddress);
+ rsdtp = NULL;
+ return NULL;
+ }
+ } else {
+ DBG("Unrecognized RSDP Revision (0x%x): Aborting acpi_find_table\n",
+ rsdp->Revision);
+ rsdp = NULL;
+ return NULL;
+ }
+ }
+
+ assert(xsdtp != NULL || rsdtp != NULL);
+
+ if (__probable(xsdtp != NULL)) {
+ return acpi_find_table_via_xsdt(xsdtp, signature);
+ } else if (rsdtp != NULL) {
+ return acpi_find_table_via_rsdt(rsdtp, signature);
+ }
+
+ return NULL;
+}
+
+/*
+ * Returns the count of enabled logical processors present in the ACPI
+ * MADT, or 0 if the MADT could not be located.
+ */
+uint32_t
+acpi_count_enabled_logical_processors(void)
+{
+ MULTIPLE_APIC_TABLE *madtp;
+ void *end_ptr;
+ APIC_HEADER *next_apic_entryp;
+ uint32_t enabled_cpu_count = 0;
+ uint64_t rsdp_physaddr;
+
+ rsdp_physaddr = efi_get_rsdp_physaddr();
+ if (__improbable(rsdp_physaddr == 0)) {
+ DBG("acpi_count_enabled_logical_processors: Could not get RSDP physaddr from EFI.\n");
+ return 0;
+ }
+
+ madtp = (MULTIPLE_APIC_TABLE *)acpi_find_table(rsdp_physaddr, ACPI_SIG_MADT);
+
+ if (__improbable(madtp == NULL)) {
+ DBG("acpi_count_enabled_logical_processors: Could not find the MADT.\n");
+ return 0;
+ }
+
+ end_ptr = (void *)((uintptr_t)madtp + madtp->Length);
+ next_apic_entryp = (APIC_HEADER *)((uintptr_t)madtp + sizeof(MULTIPLE_APIC_TABLE));
+
+ while ((void *)next_apic_entryp < end_ptr) {
+ switch (next_apic_entryp->Type) {
+ case APIC_PROCESSOR:
+ {
+ MADT_PROCESSOR_APIC *madt_procp = (MADT_PROCESSOR_APIC *)next_apic_entryp;
+ if (madt_procp->ProcessorEnabled) {
+ enabled_cpu_count++;
+ }
+
+ break;
+ }
+
+ default:
+ DBG("Ignoring MADT entry type 0x%x length 0x%x\n", next_apic_entryp->Type,
+ next_apic_entryp->Length);
+ break;
+ }
+
+ next_apic_entryp = (APIC_HEADER *)((uintptr_t)next_apic_entryp + next_apic_entryp->Length);
+ }
+
+ return enabled_cpu_count;
}