/*
- * Copyright (c) 2003 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2003-2008 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <i386/pmap.h>
-#include <i386/ipl.h>
#include <i386/misc_protos.h>
-#include <i386/mp_slave_boot.h>
#include <i386/cpuid.h>
#include <mach/thread_status.h>
#include <pexpert/i386/efi.h>
-#include "i386_lowmem.h"
+#include <i386/i386_lowmem.h>
+#include <i386/lowglobals.h>
+#include <i386/pal_routines.h>
+
+#include <mach-o/loader.h>
+#include <libkern/kernel_mach_header.h>
vm_size_t mem_size = 0;
-vm_offset_t first_avail = 0;/* first after page tables */
-vm_offset_t last_addr;
+pmap_paddr_t first_avail = 0;/* first after page tables */
uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */
uint64_t mem_actual;
uint64_t sane_size = 0; /* Memory size to use for defaults calculations */
-#define MAXBOUNCEPOOL (128 * 1024 * 1024)
-#define MAXLORESERVE ( 32 * 1024 * 1024)
-
-extern int bsd_mbuf_cluster_reserve(void);
+#define MAXLORESERVE (32 * 1024 * 1024)
+ppnum_t max_ppnum = 0;
+ppnum_t lowest_lo = 0;
+ppnum_t lowest_hi = 0;
+ppnum_t highest_hi = 0;
-uint32_t bounce_pool_base = 0;
-uint32_t bounce_pool_size = 0;
+uint32_t pmap_reserved_pages_allocated = 0;
+uint32_t pmap_last_reserved_range = 0xFFFFFFFF;
+uint32_t pmap_reserved_ranges = 0;
-static void reserve_bouncepool(uint32_t);
+extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *);
-
-pmap_paddr_t avail_start, avail_end;
+pmap_paddr_t avail_start, avail_end;
vm_offset_t virtual_avail, virtual_end;
static pmap_paddr_t avail_remaining;
vm_offset_t static_memory_end = 0;
-#include <mach-o/loader.h>
-vm_offset_t edata, etext, end;
+vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end;
/*
- * _mh_execute_header is the mach_header for the currently executing
- * 32 bit kernel
+ * _mh_execute_header is the mach_header for the currently executing kernel
*/
-extern struct mach_header _mh_execute_header;
-void *sectTEXTB; int sectSizeTEXT;
-void *sectDATAB; int sectSizeDATA;
-void *sectOBJCB; int sectSizeOBJC;
-void *sectLINKB; int sectSizeLINK;
-void *sectPRELINKB; int sectSizePRELINK;
-void *sectHIBB; int sectSizeHIB;
-
-extern void *getsegdatafromheader(struct mach_header *, const char *, int *);
-extern struct segment_command *getsegbyname(const char *);
-extern struct section *firstsect(struct segment_command *);
-extern struct section *nextsect(struct segment_command *, struct section *);
-
-
-void
-i386_macho_zerofill(void)
-{
- struct segment_command *sgp;
- struct section *sp;
-
- sgp = getsegbyname("__DATA");
- if (sgp) {
- sp = firstsect(sgp);
- if (sp) {
- do {
- if ((sp->flags & S_ZEROFILL))
- bzero((char *) sp->addr, sp->size);
- } while ((sp = nextsect(sgp, sp)));
- }
- }
-
- return;
-}
-
+void *sectTEXTB; unsigned long sectSizeTEXT;
+void *sectDATAB; unsigned long sectSizeDATA;
+void *sectOBJCB; unsigned long sectSizeOBJC;
+void *sectLINKB; unsigned long sectSizeLINK;
+void *sectPRELINKB; unsigned long sectSizePRELINK;
+void *sectHIBB; unsigned long sectSizeHIB;
+void *sectINITPTB; unsigned long sectSizeINITPT;
+
+kernel_segment_command_t *segTEXT;
+kernel_section_t *cursectTEXT, *lastsectTEXT;
+
+extern uint64_t firmware_Conventional_bytes;
+extern uint64_t firmware_RuntimeServices_bytes;
+extern uint64_t firmware_ACPIReclaim_bytes;
+extern uint64_t firmware_ACPINVS_bytes;
+extern uint64_t firmware_PalCode_bytes;
+extern uint64_t firmware_Reserved_bytes;
+extern uint64_t firmware_Unusable_bytes;
+extern uint64_t firmware_other_bytes;
+uint64_t firmware_MMIO_bytes;
+
+#if DEBUG
+#define PRINT_PMAP_MEMORY_TABLE
+#endif /* DEBUG */
/*
* Basic VM initialization.
*/
unsigned int safeboot;
ppnum_t maxpg = 0;
uint32_t pmap_type;
- uint32_t maxbouncepoolsize;
uint32_t maxloreserve;
uint32_t maxdmaaddr;
+ uint32_t mbuf_reserve = 0;
+ boolean_t mbuf_override = FALSE;
+
+#if DEBUG
+ kprintf("Boot args revision: %d version: %d",
+ args->Revision, args->Version);
+ kprintf(" commandline: \"");
+ for(i=0; i<BOOT_LINE_LENGTH; i++)
+ kprintf("%c", args->CommandLine[i]);
+ kprintf("\"\n");
+#endif
/*
* Now retrieve addresses for end, edata, and etext
&_mh_execute_header, "__LINKEDIT", §SizeLINK);
sectHIBB = (void *)getsegdatafromheader(
&_mh_execute_header, "__HIB", §SizeHIB);
+ sectINITPTB = (void *)getsegdatafromheader(
+ &_mh_execute_header, "__INITPT", §SizeINITPT);
sectPRELINKB = (void *) getsegdatafromheader(
- &_mh_execute_header, "__PRELINK", §SizePRELINK);
+ &_mh_execute_header, "__PRELINK_TEXT", §SizePRELINK);
- etext = (vm_offset_t) sectTEXTB + sectSizeTEXT;
+ segTEXT = getsegbynamefromheader(&_mh_execute_header, "__TEXT");
+ cursectTEXT = lastsectTEXT = firstsect(segTEXT);
+ /* Discover the last TEXT section within the TEXT segment */
+ while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) {
+ lastsectTEXT = cursectTEXT;
+ }
+
+ sHIB = (vm_offset_t) sectHIBB;
+ eHIB = (vm_offset_t) sectHIBB + sectSizeHIB;
+ /* Zero-padded from ehib to stext if text is 2M-aligned */
+ stext = (vm_offset_t) sectTEXTB;
+ etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size);
+ /* Zero-padded from etext to sdata if text is 2M-aligned */
+ sdata = (vm_offset_t) sectDATAB;
edata = (vm_offset_t) sectDATAB + sectSizeDATA;
+#if DEBUG
+ kprintf("sectTEXTB = %p\n", sectTEXTB);
+ kprintf("sectDATAB = %p\n", sectDATAB);
+ kprintf("sectOBJCB = %p\n", sectOBJCB);
+ kprintf("sectLINKB = %p\n", sectLINKB);
+ kprintf("sectHIBB = %p\n", sectHIBB);
+ kprintf("sectPRELINKB = %p\n", sectPRELINKB);
+ kprintf("eHIB = %p\n", (void *) eHIB);
+ kprintf("stext = %p\n", (void *) stext);
+ kprintf("etext = %p\n", (void *) etext);
+ kprintf("sdata = %p\n", (void *) sdata);
+ kprintf("edata = %p\n", (void *) edata);
+#endif
+
vm_set_page_size();
/*
* Compute the memory size.
*/
- if ((1 == vm_himemory_mode) || PE_parse_boot_arg("-x", &safeboot)) {
+ if ((1 == vm_himemory_mode) || PE_parse_boot_argn("-x", &safeboot, sizeof (safeboot))) {
maxpg = 1 << (32 - I386_PGSHIFT);
}
avail_remaining = 0;
pmap_memory_region_count = pmap_memory_region_current = 0;
fap = (ppnum_t) i386_btop(first_avail);
- mptr = (EfiMemoryRange *)args->MemoryMap;
+ mptr = (EfiMemoryRange *)ml_static_ptovirt((vm_offset_t)args->MemoryMap);
if (args->MemoryMapDescriptorSize == 0)
panic("Invalid memory map descriptor size");
msize = args->MemoryMapDescriptorSize;
mcount = args->MemoryMapSize / msize;
#define FOURGIG 0x0000000100000000ULL
+#define ONEGIG 0x0000000040000000ULL
for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
ppnum_t base, top;
+ uint64_t region_bytes = 0;
if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
break;
}
base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
- top = (ppnum_t) ((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1;
+ top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1);
+ region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
+ pmap_type = mptr->Type;
switch (mptr->Type) {
case kEfiLoaderCode:
* Consolidate usable memory types into one.
*/
pmap_type = kEfiConventionalMemory;
- sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
+ sane_size += region_bytes;
+ firmware_Conventional_bytes += region_bytes;
break;
+ /*
+ * sane_size should reflect the total amount of physical
+ * RAM in the system, not just the amount that is
+ * available for the OS to use.
+ * FIXME:Consider deriving this value from SMBIOS tables
+ * rather than reverse engineering the memory map.
+ * Alternatively, see
+ * <rdar://problem/4642773> Memory map should
+ * describe all memory
+ * Firmware on some systems guarantees that the memory
+ * map is complete via the "RomReservedMemoryTracked"
+ * feature field--consult that where possible to
+ * avoid the "round up to 128M" workaround below.
+ */
case kEfiRuntimeServicesCode:
case kEfiRuntimeServicesData:
+ firmware_RuntimeServices_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
case kEfiACPIReclaimMemory:
+ firmware_ACPIReclaim_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
case kEfiACPIMemoryNVS:
+ firmware_ACPINVS_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
case kEfiPalCode:
- /*
- * sane_size should reflect the total amount of physical ram
- * in the system, not just the amount that is available for
- * the OS to use
- */
- sane_size += (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
- /* fall thru */
+ firmware_PalCode_bytes += region_bytes;
+ sane_size += region_bytes;
+ break;
+ case kEfiReservedMemoryType:
+ firmware_Reserved_bytes += region_bytes;
+ break;
case kEfiUnusableMemory:
+ firmware_Unusable_bytes += region_bytes;
+ break;
case kEfiMemoryMappedIO:
case kEfiMemoryMappedIOPortSpace:
- case kEfiReservedMemoryType:
+ firmware_MMIO_bytes += region_bytes;
+ break;
default:
- pmap_type = mptr->Type;
+ firmware_other_bytes += region_bytes;
+ break;
}
- kprintf("EFI region: type = %d/%d, base = 0x%x, top = 0x%x\n", mptr->Type, pmap_type, base, top);
+#if DEBUG
+ kprintf("EFI region %d: type %u/%d, base 0x%x, top 0x%x\n",
+ i, mptr->Type, pmap_type, base, top);
+#endif
if (maxpg) {
if (base >= maxpg)
/*
* handle each region
*/
- if (kEfiACPIMemoryNVS == pmap_type) {
- prev_pmptr = 0;
- continue;
- } else if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
- pmap_type != kEfiConventionalMemory) {
+ if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
+ pmap_type != kEfiConventionalMemory) {
prev_pmptr = 0;
continue;
} else {
/*
* Usable memory region
*/
- if (top < I386_LOWMEM_RESERVED) {
+ if (top < I386_LOWMEM_RESERVED ||
+ !pal_is_usable_memory(base, top)) {
prev_pmptr = 0;
continue;
}
pmptr->base = base;
else
pmptr->base = I386_LOWMEM_RESERVED;
+
+ pmptr->end = top;
+
/*
- * mark as already mapped
+ * A range may be marked with with the
+ * EFI_MEMORY_KERN_RESERVED attribute
+ * on some systems, to indicate that the range
+ * must not be made available to devices.
+ * Simplifying assumptions are made regarding
+ * the placement of the range.
*/
- pmptr->alloc = pmptr->end = top;
+ if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
+ pmap_reserved_ranges++;
+
+ if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) &&
+ (top < I386_KERNEL_IMAGE_BASE_PAGE)) {
+ pmptr->alloc = pmptr->base;
+ pmap_last_reserved_range = pmap_memory_region_count;
+ }
+ else {
+ /*
+ * mark as already mapped
+ */
+ pmptr->alloc = top;
+ }
pmptr->type = pmap_type;
}
else if ( (base < fap) && (top > fap) ) {
if (prev_pmptr &&
pmptr->type == prev_pmptr->type &&
pmptr->base == pmptr->alloc &&
- pmptr->base == (prev_pmptr->end + 1)) {
- prev_pmptr->end = pmptr->end;
+ pmptr->base == (prev_pmptr->end + 1))
+ {
+ if(prev_pmptr->end == prev_pmptr->alloc)
+ prev_pmptr->alloc = pmptr->base;
+ prev_pmptr->end = pmptr->end;
} else {
pmap_memory_region_count++;
prev_pmptr = pmptr;
}
}
-
#ifdef PRINT_PMAP_MEMORY_TABLE
{
unsigned int j;
pmap_memory_region_t *p = pmap_memory_regions;
- vm_offset_t region_start, region_end;
- vm_offset_t efi_start, efi_end;
+ addr64_t region_start, region_end;
+ addr64_t efi_start, efi_end;
for (j=0;j<pmap_memory_region_count;j++, p++) {
- kprintf("type %d base 0x%x alloc 0x%x top 0x%x\n", p->type,
- p->base << I386_PGSHIFT, p->alloc << I386_PGSHIFT, p->end << I386_PGSHIFT);
- region_start = p->base << I386_PGSHIFT;
- region_end = (p->end << I386_PGSHIFT) - 1;
- mptr = args->MemoryMap;
+ kprintf("pmap region %d type %d base 0x%llx alloc 0x%llx top 0x%llx\n",
+ j, p->type,
+ (addr64_t) p->base << I386_PGSHIFT,
+ (addr64_t) p->alloc << I386_PGSHIFT,
+ (addr64_t) p->end << I386_PGSHIFT);
+ region_start = (addr64_t) p->base << I386_PGSHIFT;
+ region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
+ mptr = (EfiMemoryRange *) ml_static_ptovirt((vm_offset_t)args->MemoryMap);
for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
if (mptr->Type != kEfiLoaderCode &&
mptr->Type != kEfiLoaderData &&
mptr->Type != kEfiBootServicesCode &&
mptr->Type != kEfiBootServicesData &&
mptr->Type != kEfiConventionalMemory) {
- efi_start = (vm_offset_t)mptr->PhysicalStart;
+ efi_start = (addr64_t)mptr->PhysicalStart;
efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
if ((efi_start >= region_start && efi_start <= region_end) ||
(efi_end >= region_start && efi_end <= region_end)) {
kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
}
- }
-
+ }
}
- }
+ }
}
#endif
avail_start = first_avail;
mem_actual = sane_size;
-#define MEG (1024*1024)
-
/*
* For user visible memory size, round up to 128 Mb - accounting for the various stolen memory
* not reported by EFI.
*/
- sane_size = (sane_size + 128 * MEG - 1) & ~((uint64_t)(128 * MEG - 1));
+ sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
+
+ /*
+ * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
+ * Unless overriden by the maxmem= boot-arg
+ * -- which is a non-zero maxmem argument to this function.
+ */
+ if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
+ maxmem = KERNEL_MAXMEM;
+ printf("Physical memory %lld bytes capped at %dGB\n",
+ sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
+ }
/*
* if user set maxmem, reduce memory sizes
*/
if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
- ppnum_t discarded_pages = (sane_size - maxmem) >> I386_PGSHIFT;
- sane_size = maxmem;
+ ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
+ ppnum_t highest_pn = 0;
+ ppnum_t cur_alloc = 0;
+ uint64_t pages_to_use;
+ unsigned cur_region = 0;
+
+ sane_size = maxmem;
+
if (avail_remaining > discarded_pages)
avail_remaining -= discarded_pages;
else
avail_remaining = 0;
+
+ pages_to_use = avail_remaining;
+
+ while (cur_region < pmap_memory_region_count && pages_to_use) {
+ for (cur_alloc = pmap_memory_regions[cur_region].alloc;
+ cur_alloc < pmap_memory_regions[cur_region].end && pages_to_use;
+ cur_alloc++) {
+ if (cur_alloc > highest_pn)
+ highest_pn = cur_alloc;
+ pages_to_use--;
+ }
+ if (pages_to_use == 0)
+ pmap_memory_regions[cur_region].end = cur_alloc;
+
+ cur_region++;
+ }
+ pmap_memory_region_count = cur_region;
+
+ avail_end = i386_ptob(highest_pn + 1);
}
/*
mem_size = (vm_size_t)sane_size;
max_mem = sane_size;
- kprintf("Physical memory %d MB\n", sane_size/MEG);
+ kprintf("Physical memory %llu MB\n", sane_size/MB);
- if (!PE_parse_boot_arg("max_valid_dma_addr", &maxdmaaddr))
- max_valid_dma_address = 1024ULL * 1024ULL * 4096ULL;
- else
- max_valid_dma_address = ((uint64_t) maxdmaaddr) * 1024ULL * 1024ULL;
-
- if (!PE_parse_boot_arg("maxbouncepool", &maxbouncepoolsize))
- maxbouncepoolsize = MAXBOUNCEPOOL;
- else
- maxbouncepoolsize = maxbouncepoolsize * (1024 * 1024);
-
- /*
- * bsd_mbuf_cluster_reserve depends on sane_size being set
- * in order to correctly determine the size of the mbuf pool
- * that will be reserved
- */
- if (!PE_parse_boot_arg("maxloreserve", &maxloreserve))
- maxloreserve = MAXLORESERVE + bsd_mbuf_cluster_reserve();
- else
- maxloreserve = maxloreserve * (1024 * 1024);
+ max_valid_low_ppnum = (2 * GB) / PAGE_SIZE;
+ if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) {
+ max_valid_dma_address = (uint64_t)4 * (uint64_t)GB;
+ } else {
+ max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
+ if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum)
+ max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE);
+ }
if (avail_end >= max_valid_dma_address) {
- if (maxbouncepoolsize)
- reserve_bouncepool(maxbouncepoolsize);
- if (maxloreserve)
- vm_lopage_poolsize = maxloreserve / PAGE_SIZE;
+ if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) {
+
+ if (sane_size >= (ONEGIG * 15))
+ maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4;
+ else if (sane_size >= (ONEGIG * 7))
+ maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2;
+ else
+ maxloreserve = MAXLORESERVE / PAGE_SIZE;
+
+ mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE;
+ } else
+ maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE;
+
+ if (maxloreserve) {
+ vm_lopage_free_limit = maxloreserve;
+
+ if (mbuf_override == TRUE) {
+ vm_lopage_free_limit += mbuf_reserve;
+ vm_lopage_lowater = 0;
+ } else
+ vm_lopage_lowater = vm_lopage_free_limit / 16;
+
+ vm_lopage_refill = TRUE;
+ vm_lopage_needed = TRUE;
+ }
}
-
+
/*
* Initialize kernel physical map.
* Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
*/
+ kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining);
pmap_bootstrap(0, IA32e);
}
unsigned int
pmap_free_pages(void)
{
- return avail_remaining;
+ return (unsigned int)avail_remaining;
+}
+
+
+boolean_t pmap_next_page_reserved(ppnum_t *);
+
+/*
+ * Pick a page from a "kernel private" reserved range; works around
+ * errata on some hardware.
+ */
+boolean_t
+pmap_next_page_reserved(ppnum_t *pn) {
+ if (pmap_reserved_ranges && pmap_last_reserved_range != 0xFFFFFFFF) {
+ uint32_t n;
+ pmap_memory_region_t *region;
+ for (n = 0; n <= pmap_last_reserved_range; n++) {
+ region = &pmap_memory_regions[n];
+ if (region->alloc < region->end) {
+ *pn = region->alloc++;
+ avail_remaining--;
+
+ if (*pn > max_ppnum)
+ max_ppnum = *pn;
+
+ if (lowest_lo == 0 || *pn < lowest_lo)
+ lowest_lo = *pn;
+
+ pmap_reserved_pages_allocated++;
+ return TRUE;
+ }
+ }
+ }
+ return FALSE;
+}
+
+
+boolean_t
+pmap_next_page_hi(
+ ppnum_t *pn)
+{
+ pmap_memory_region_t *region;
+ int n;
+
+ if (pmap_next_page_reserved(pn))
+ return TRUE;
+
+ if (avail_remaining) {
+ for (n = pmap_memory_region_count - 1; n >= 0; n--) {
+ region = &pmap_memory_regions[n];
+
+ if (region->alloc != region->end) {
+ *pn = region->alloc++;
+ avail_remaining--;
+
+ if (*pn > max_ppnum)
+ max_ppnum = *pn;
+
+ if (lowest_lo == 0 || *pn < lowest_lo)
+ lowest_lo = *pn;
+
+ if (lowest_hi == 0 || *pn < lowest_hi)
+ lowest_hi = *pn;
+
+ if (*pn > highest_hi)
+ highest_hi = *pn;
+
+ return TRUE;
+ }
+ }
+ }
+ return FALSE;
}
pmap_next_page(
ppnum_t *pn)
{
-
if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
- if (pmap_memory_regions[pmap_memory_region_current].alloc ==
- pmap_memory_regions[pmap_memory_region_current].end) {
- pmap_memory_region_current++;
+ if (pmap_memory_regions[pmap_memory_region_current].alloc ==
+ pmap_memory_regions[pmap_memory_region_current].end) {
+ pmap_memory_region_current++;
continue;
}
*pn = pmap_memory_regions[pmap_memory_region_current].alloc++;
avail_remaining--;
+ if (*pn > max_ppnum)
+ max_ppnum = *pn;
+
+ if (lowest_lo == 0 || *pn < lowest_lo)
+ lowest_lo = *pn;
+
return TRUE;
}
return FALSE;
unsigned int i;
pmap_memory_region_t *pmptr = pmap_memory_regions;
- assert(pn);
for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
- if ( (pn >= pmptr->base) && (pn <= pmptr->end) && pmptr->type == kEfiConventionalMemory )
+ if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
return TRUE;
}
return FALSE;
}
-
-static void
-reserve_bouncepool(uint32_t bounce_pool_wanted)
-{
- pmap_memory_region_t *pmptr = pmap_memory_regions;
- pmap_memory_region_t *lowest = NULL;
- unsigned int i;
- unsigned int pages_needed;
-
- pages_needed = bounce_pool_wanted / PAGE_SIZE;
-
- for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
- if ( (pmptr->type == kEfiConventionalMemory) && ((pmptr->end - pmptr->alloc) >= pages_needed) ) {
- if ( (lowest == NULL) || (pmptr->alloc < lowest->alloc) )
- lowest = pmptr;
- }
- }
- if ( (lowest != NULL) ) {
- bounce_pool_base = lowest->alloc * PAGE_SIZE;
- bounce_pool_size = bounce_pool_wanted;
-
- lowest->alloc += pages_needed;
- avail_remaining -= pages_needed;
- }
-}