--- /dev/null
+/*
+ * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
+ *
+ * @APPLE_LICENSE_HEADER_START@
+ *
+ * The contents of this file constitute Original Code as defined in and
+ * are subject to the Apple Public Source License Version 1.1 (the
+ * "License"). You may not use this file except in compliance with the
+ * License. Please obtain a copy of the License at
+ * http://www.apple.com/publicsource and read it before using this file.
+ *
+ * This Original Code and all software distributed under the License are
+ * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
+ * License for the specific language governing rights and limitations
+ * under the License.
+ *
+ * @APPLE_LICENSE_HEADER_END@
+ */
+
+#include <mach/mach_types.h>
+#include <mach/task.h>
+#include <mach/thread_act.h>
+
+#include <kern/kern_types.h>
+#include <kern/processor.h>
+#include <kern/thread.h>
+#include <kern/ipc_tt.h>
+
+#include <vm/vm_map.h>
+#include <vm/pmap.h>
+
+#include <ppc/chud/chud_xnu.h>
+#include <ppc/chud/chud_xnu_private.h>
+
+#include <ppc/misc_protos.h>
+#include <ppc/proc_reg.h>
+#include <ppc/machine_routines.h>
+#include <ppc/fpu_protos.h>
+
+// forward declarations
+extern kern_return_t machine_thread_get_kern_state( thread_t thread,
+ thread_flavor_t flavor,
+ thread_state_t tstate,
+ mach_msg_type_number_t *count);
+
+
+#pragma mark **** thread binding ****
+
+__private_extern__
+kern_return_t chudxnu_bind_thread(thread_t thread, int cpu)
+{
+ if(cpu>=0 && cpu<chudxnu_avail_cpu_count()) { /* make sure cpu # is sane */
+ thread_bind(thread, cpu_to_processor(cpu));
+ if(thread==current_thread()) {
+ (void)thread_block(THREAD_CONTINUE_NULL);
+ }
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }
+}
+
+__private_extern__
+kern_return_t chudxnu_unbind_thread(thread_t thread)
+{
+ thread_bind(thread, PROCESSOR_NULL);
+ return KERN_SUCCESS;
+}
+
+#pragma mark **** thread state ****
+
+__private_extern__
+kern_return_t chudxnu_copy_savearea_to_threadstate(thread_flavor_t flavor, thread_state_t tstate, mach_msg_type_number_t *count, struct savearea *sv)
+{
+ struct ppc_thread_state *ts;
+ struct ppc_thread_state64 *xts;
+
+ switch(flavor) {
+ case PPC_THREAD_STATE:
+ if(*count < PPC_THREAD_STATE_COUNT) { /* Is the count ok? */
+ *count = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+ ts = (struct ppc_thread_state *) tstate;
+ if(sv) {
+ ts->r0 = (unsigned int)sv->save_r0;
+ ts->r1 = (unsigned int)sv->save_r1;
+ ts->r2 = (unsigned int)sv->save_r2;
+ ts->r3 = (unsigned int)sv->save_r3;
+ ts->r4 = (unsigned int)sv->save_r4;
+ ts->r5 = (unsigned int)sv->save_r5;
+ ts->r6 = (unsigned int)sv->save_r6;
+ ts->r7 = (unsigned int)sv->save_r7;
+ ts->r8 = (unsigned int)sv->save_r8;
+ ts->r9 = (unsigned int)sv->save_r9;
+ ts->r10 = (unsigned int)sv->save_r10;
+ ts->r11 = (unsigned int)sv->save_r11;
+ ts->r12 = (unsigned int)sv->save_r12;
+ ts->r13 = (unsigned int)sv->save_r13;
+ ts->r14 = (unsigned int)sv->save_r14;
+ ts->r15 = (unsigned int)sv->save_r15;
+ ts->r16 = (unsigned int)sv->save_r16;
+ ts->r17 = (unsigned int)sv->save_r17;
+ ts->r18 = (unsigned int)sv->save_r18;
+ ts->r19 = (unsigned int)sv->save_r19;
+ ts->r20 = (unsigned int)sv->save_r20;
+ ts->r21 = (unsigned int)sv->save_r21;
+ ts->r22 = (unsigned int)sv->save_r22;
+ ts->r23 = (unsigned int)sv->save_r23;
+ ts->r24 = (unsigned int)sv->save_r24;
+ ts->r25 = (unsigned int)sv->save_r25;
+ ts->r26 = (unsigned int)sv->save_r26;
+ ts->r27 = (unsigned int)sv->save_r27;
+ ts->r28 = (unsigned int)sv->save_r28;
+ ts->r29 = (unsigned int)sv->save_r29;
+ ts->r30 = (unsigned int)sv->save_r30;
+ ts->r31 = (unsigned int)sv->save_r31;
+ ts->cr = (unsigned int)sv->save_cr;
+ ts->xer = (unsigned int)sv->save_xer;
+ ts->lr = (unsigned int)sv->save_lr;
+ ts->ctr = (unsigned int)sv->save_ctr;
+ ts->srr0 = (unsigned int)sv->save_srr0;
+ ts->srr1 = (unsigned int)sv->save_srr1;
+ ts->mq = 0;
+ ts->vrsave = (unsigned int)sv->save_vrsave;
+ } else {
+ bzero((void *)ts, sizeof(struct ppc_thread_state));
+ }
+ *count = PPC_THREAD_STATE_COUNT; /* Pass back the amount we actually copied */
+ return KERN_SUCCESS;
+ break;
+ case PPC_THREAD_STATE64:
+ if(*count < PPC_THREAD_STATE64_COUNT) { /* Is the count ok? */
+ return KERN_INVALID_ARGUMENT;
+ }
+ xts = (struct ppc_thread_state64 *) tstate;
+ if(sv) {
+ xts->r0 = sv->save_r0;
+ xts->r1 = sv->save_r1;
+ xts->r2 = sv->save_r2;
+ xts->r3 = sv->save_r3;
+ xts->r4 = sv->save_r4;
+ xts->r5 = sv->save_r5;
+ xts->r6 = sv->save_r6;
+ xts->r7 = sv->save_r7;
+ xts->r8 = sv->save_r8;
+ xts->r9 = sv->save_r9;
+ xts->r10 = sv->save_r10;
+ xts->r11 = sv->save_r11;
+ xts->r12 = sv->save_r12;
+ xts->r13 = sv->save_r13;
+ xts->r14 = sv->save_r14;
+ xts->r15 = sv->save_r15;
+ xts->r16 = sv->save_r16;
+ xts->r17 = sv->save_r17;
+ xts->r18 = sv->save_r18;
+ xts->r19 = sv->save_r19;
+ xts->r20 = sv->save_r20;
+ xts->r21 = sv->save_r21;
+ xts->r22 = sv->save_r22;
+ xts->r23 = sv->save_r23;
+ xts->r24 = sv->save_r24;
+ xts->r25 = sv->save_r25;
+ xts->r26 = sv->save_r26;
+ xts->r27 = sv->save_r27;
+ xts->r28 = sv->save_r28;
+ xts->r29 = sv->save_r29;
+ xts->r30 = sv->save_r30;
+ xts->r31 = sv->save_r31;
+ xts->cr = sv->save_cr;
+ xts->xer = sv->save_xer;
+ xts->lr = sv->save_lr;
+ xts->ctr = sv->save_ctr;
+ xts->srr0 = sv->save_srr0;
+ xts->srr1 = sv->save_srr1;
+ xts->vrsave = sv->save_vrsave;
+ } else {
+ bzero((void *)xts, sizeof(struct ppc_thread_state64));
+ }
+ *count = PPC_THREAD_STATE64_COUNT; /* Pass back the amount we actually copied */
+ return KERN_SUCCESS;
+ break;
+ default:
+ *count = 0;
+ return KERN_INVALID_ARGUMENT;
+ break;
+ }
+}
+
+__private_extern__
+kern_return_t chudxnu_copy_threadstate_to_savearea(struct savearea *sv, thread_flavor_t flavor, thread_state_t tstate, mach_msg_type_number_t *count)
+{
+ struct ppc_thread_state *ts;
+ struct ppc_thread_state64 *xts;
+
+ switch(flavor) {
+ case PPC_THREAD_STATE:
+ if(*count < PPC_THREAD_STATE_COUNT) { /* Is the count ok? */
+ return KERN_INVALID_ARGUMENT;
+ }
+ ts = (struct ppc_thread_state *) tstate;
+ if(sv) {
+ sv->save_r0 = (uint64_t)ts->r0;
+ sv->save_r1 = (uint64_t)ts->r1;
+ sv->save_r2 = (uint64_t)ts->r2;
+ sv->save_r3 = (uint64_t)ts->r3;
+ sv->save_r4 = (uint64_t)ts->r4;
+ sv->save_r5 = (uint64_t)ts->r5;
+ sv->save_r6 = (uint64_t)ts->r6;
+ sv->save_r7 = (uint64_t)ts->r7;
+ sv->save_r8 = (uint64_t)ts->r8;
+ sv->save_r9 = (uint64_t)ts->r9;
+ sv->save_r10 = (uint64_t)ts->r10;
+ sv->save_r11 = (uint64_t)ts->r11;
+ sv->save_r12 = (uint64_t)ts->r12;
+ sv->save_r13 = (uint64_t)ts->r13;
+ sv->save_r14 = (uint64_t)ts->r14;
+ sv->save_r15 = (uint64_t)ts->r15;
+ sv->save_r16 = (uint64_t)ts->r16;
+ sv->save_r17 = (uint64_t)ts->r17;
+ sv->save_r18 = (uint64_t)ts->r18;
+ sv->save_r19 = (uint64_t)ts->r19;
+ sv->save_r20 = (uint64_t)ts->r20;
+ sv->save_r21 = (uint64_t)ts->r21;
+ sv->save_r22 = (uint64_t)ts->r22;
+ sv->save_r23 = (uint64_t)ts->r23;
+ sv->save_r24 = (uint64_t)ts->r24;
+ sv->save_r25 = (uint64_t)ts->r25;
+ sv->save_r26 = (uint64_t)ts->r26;
+ sv->save_r27 = (uint64_t)ts->r27;
+ sv->save_r28 = (uint64_t)ts->r28;
+ sv->save_r29 = (uint64_t)ts->r29;
+ sv->save_r30 = (uint64_t)ts->r30;
+ sv->save_r31 = (uint64_t)ts->r31;
+ sv->save_cr = ts->cr;
+ sv->save_xer = (uint64_t)ts->xer;
+ sv->save_lr = (uint64_t)ts->lr;
+ sv->save_ctr = (uint64_t)ts->ctr;
+ sv->save_srr0 = (uint64_t)ts->srr0;
+ sv->save_srr1 = (uint64_t)ts->srr1;
+ sv->save_vrsave = ts->vrsave;
+ return KERN_SUCCESS;
+ }
+ break;
+ case PPC_THREAD_STATE64:
+ if(*count < PPC_THREAD_STATE64_COUNT) { /* Is the count ok? */
+ return KERN_INVALID_ARGUMENT;
+ }
+ xts = (struct ppc_thread_state64 *) tstate;
+ if(sv) {
+ sv->save_r0 = xts->r0;
+ sv->save_r1 = xts->r1;
+ sv->save_r2 = xts->r2;
+ sv->save_r3 = xts->r3;
+ sv->save_r4 = xts->r4;
+ sv->save_r5 = xts->r5;
+ sv->save_r6 = xts->r6;
+ sv->save_r7 = xts->r7;
+ sv->save_r8 = xts->r8;
+ sv->save_r9 = xts->r9;
+ sv->save_r10 = xts->r10;
+ sv->save_r11 = xts->r11;
+ sv->save_r12 = xts->r12;
+ sv->save_r13 = xts->r13;
+ sv->save_r14 = xts->r14;
+ sv->save_r15 = xts->r15;
+ sv->save_r16 = xts->r16;
+ sv->save_r17 = xts->r17;
+ sv->save_r18 = xts->r18;
+ sv->save_r19 = xts->r19;
+ sv->save_r20 = xts->r20;
+ sv->save_r21 = xts->r21;
+ sv->save_r22 = xts->r22;
+ sv->save_r23 = xts->r23;
+ sv->save_r24 = xts->r24;
+ sv->save_r25 = xts->r25;
+ sv->save_r26 = xts->r26;
+ sv->save_r27 = xts->r27;
+ sv->save_r28 = xts->r28;
+ sv->save_r29 = xts->r29;
+ sv->save_r30 = xts->r30;
+ sv->save_r31 = xts->r31;
+ sv->save_cr = xts->cr;
+ sv->save_xer = xts->xer;
+ sv->save_lr = xts->lr;
+ sv->save_ctr = xts->ctr;
+ sv->save_srr0 = xts->srr0;
+ sv->save_srr1 = xts->srr1;
+ sv->save_vrsave = xts->vrsave;
+ return KERN_SUCCESS;
+ }
+ }
+ return KERN_FAILURE;
+}
+
+__private_extern__
+kern_return_t chudxnu_thread_user_state_available(thread_t thread)
+{
+ if(find_user_regs(thread)) {
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }
+}
+
+__private_extern__
+kern_return_t chudxnu_thread_get_state(thread_t thread,
+ thread_flavor_t flavor,
+ thread_state_t tstate,
+ mach_msg_type_number_t *count,
+ boolean_t user_only)
+{
+ if(flavor==PPC_THREAD_STATE || flavor==PPC_THREAD_STATE64) { // machine_thread_get_state filters out some bits
+ struct savearea *sv;
+ if(user_only) {
+ sv = find_user_regs(thread);
+ } else {
+ sv = find_kern_regs(thread);
+ }
+ return chudxnu_copy_savearea_to_threadstate(flavor, tstate, count, sv);
+ } else {
+ if(user_only) {
+ return machine_thread_get_state(thread, flavor, tstate, count);
+ } else {
+ // doesn't do FP or VMX
+ return machine_thread_get_kern_state(thread, flavor, tstate, count);
+ }
+ }
+}
+
+__private_extern__
+kern_return_t chudxnu_thread_set_state(thread_t thread,
+ thread_flavor_t flavor,
+ thread_state_t tstate,
+ mach_msg_type_number_t count,
+ boolean_t user_only)
+{
+ if(flavor==PPC_THREAD_STATE || flavor==PPC_THREAD_STATE64) { // machine_thread_set_state filters out some bits
+ struct savearea *sv;
+ if(user_only) {
+ sv = find_user_regs(thread);
+ } else {
+ sv = find_kern_regs(thread);
+ }
+ return chudxnu_copy_threadstate_to_savearea(sv, flavor, tstate, &count);
+ } else {
+ return machine_thread_set_state(thread, flavor, tstate, count); // always user
+ }
+}
+
+#pragma mark **** task memory read/write ****
+
+__private_extern__
+kern_return_t chudxnu_task_read(task_t task, void *kernaddr, uint64_t usraddr, vm_size_t size)
+{
+ kern_return_t ret = KERN_SUCCESS;
+
+ if(!chudxnu_is_64bit_task(task)) { // clear any cruft out of upper 32-bits for 32-bit tasks
+ usraddr &= 0x00000000FFFFFFFFULL;
+ }
+
+ if(current_task()==task) {
+ thread_t cur_thr = current_thread();
+ vm_offset_t recover_handler = cur_thr->recover;
+
+ if(ml_at_interrupt_context()) {
+ return KERN_FAILURE; // can't do copyin on interrupt stack
+ }
+
+ if(copyin(usraddr, kernaddr, size)) {
+ ret = KERN_FAILURE;
+ }
+ cur_thr->recover = recover_handler;
+ } else {
+ vm_map_t map = get_task_map(task);
+ ret = vm_map_read_user(map, usraddr, kernaddr, size);
+ }
+
+ return ret;
+}
+
+__private_extern__
+kern_return_t chudxnu_task_write(task_t task, uint64_t useraddr, void *kernaddr, vm_size_t size)
+{
+ kern_return_t ret = KERN_SUCCESS;
+
+ if(!chudxnu_is_64bit_task(task)) { // clear any cruft out of upper 32-bits for 32-bit tasks
+ useraddr &= 0x00000000FFFFFFFFULL;
+ }
+
+ if(current_task()==task) {
+ thread_t cur_thr = current_thread();
+ vm_offset_t recover_handler = cur_thr->recover;
+
+ if(ml_at_interrupt_context()) {
+ return KERN_FAILURE; // can't do copyout on interrupt stack
+ }
+
+ if(copyout(kernaddr, useraddr, size)) {
+ ret = KERN_FAILURE;
+ }
+ cur_thr->recover = recover_handler;
+ } else {
+ vm_map_t map = get_task_map(task);
+ ret = vm_map_write_user(map, kernaddr, useraddr, size);
+ }
+
+ return ret;
+}
+
+__private_extern__
+kern_return_t chudxnu_kern_read(void *dstaddr, vm_offset_t srcaddr, vm_size_t size)
+{
+ while(size>0) {
+ ppnum_t pp;
+ addr64_t phys_addr;
+
+ pp = pmap_find_phys(kernel_pmap, srcaddr); /* Get the page number */
+ if(!pp) {
+ return KERN_FAILURE; /* Not mapped... */
+ }
+
+ phys_addr = ((addr64_t)pp << 12) | (srcaddr & 0x0000000000000FFFULL); /* Shove in the page offset */
+ if(phys_addr >= mem_actual) {
+ return KERN_FAILURE; /* out of range */
+ }
+
+ if((phys_addr&0x1) || size==1) {
+ *((uint8_t *)dstaddr) = ml_phys_read_byte_64(phys_addr);
+ ((uint8_t *)dstaddr)++;
+ srcaddr += sizeof(uint8_t);
+ size -= sizeof(uint8_t);
+ } else if((phys_addr&0x3) || size<=2) {
+ *((uint16_t *)dstaddr) = ml_phys_read_half_64(phys_addr);
+ ((uint16_t *)dstaddr)++;
+ srcaddr += sizeof(uint16_t);
+ size -= sizeof(uint16_t);
+ } else {
+ *((uint32_t *)dstaddr) = ml_phys_read_word_64(phys_addr);
+ ((uint32_t *)dstaddr)++;
+ srcaddr += sizeof(uint32_t);
+ size -= sizeof(uint32_t);
+ }
+ }
+ return KERN_SUCCESS;
+}
+
+__private_extern__
+kern_return_t chudxnu_kern_write(vm_offset_t dstaddr, void *srcaddr, vm_size_t size)
+{
+ while(size>0) {
+ ppnum_t pp;
+ addr64_t phys_addr;
+
+ pp = pmap_find_phys(kernel_pmap, dstaddr); /* Get the page number */
+ if(!pp) {
+ return KERN_FAILURE; /* Not mapped... */
+ }
+
+ phys_addr = ((addr64_t)pp << 12) | (dstaddr & 0x0000000000000FFFULL); /* Shove in the page offset */
+ if(phys_addr >= mem_actual) {
+ return KERN_FAILURE; /* out of range */
+ }
+
+ if((phys_addr&0x1) || size==1) {
+ ml_phys_write_byte_64(phys_addr, *((uint8_t *)srcaddr));
+ ((uint8_t *)srcaddr)++;
+ dstaddr += sizeof(uint8_t);
+ size -= sizeof(uint8_t);
+ } else if((phys_addr&0x3) || size<=2) {
+ ml_phys_write_half_64(phys_addr, *((uint16_t *)srcaddr));
+ ((uint16_t *)srcaddr)++;
+ dstaddr += sizeof(uint16_t);
+ size -= sizeof(uint16_t);
+ } else {
+ ml_phys_write_word_64(phys_addr, *((uint32_t *)srcaddr));
+ ((uint32_t *)srcaddr)++;
+ dstaddr += sizeof(uint32_t);
+ size -= sizeof(uint32_t);
+ }
+ }
+
+ return KERN_SUCCESS;
+}
+
+// chudxnu_thread_get_callstack gathers a raw callstack along with any information needed to
+// fix it up later (in case we stopped program as it was saving values into prev stack frame, etc.)
+// after sampling has finished.
+//
+// For an N-entry callstack:
+//
+// [0] current pc
+// [1..N-3] stack frames (including current one)
+// [N-2] current LR (return value if we're in a leaf function)
+// [N-1] current r0 (in case we've saved LR in r0)
+//
+
+#define FP_LINK_OFFSET 2
+#define STACK_ALIGNMENT_MASK 0xF // PPC stack frames are supposed to be 16-byte aligned
+#define INST_ALIGNMENT_MASK 0x3 // Instructions are always 4-bytes wide
+
+#ifndef USER_MODE
+#define USER_MODE(msr) ((msr) & MASK(MSR_PR) ? TRUE : FALSE)
+#endif
+
+#ifndef SUPERVISOR_MODE
+#define SUPERVISOR_MODE(msr) ((msr) & MASK(MSR_PR) ? FALSE : TRUE)
+#endif
+
+#define VALID_STACK_ADDRESS(addr) (addr>=0x1000ULL && (addr&STACK_ALIGNMENT_MASK)==0x0 && (supervisor ? (addr>=kernStackMin && addr<=kernStackMax) : TRUE))
+
+
+__private_extern__
+kern_return_t chudxnu_thread_get_callstack64( thread_t thread,
+ uint64_t *callStack,
+ mach_msg_type_number_t *count,
+ boolean_t user_only)
+{
+ kern_return_t kr;
+ task_t task = get_threadtask(thread);
+ uint64_t nextFramePointer = 0;
+ uint64_t currPC, currLR, currR0;
+ uint64_t framePointer;
+ uint64_t prevPC = 0;
+ uint64_t kernStackMin = min_valid_stack_address();
+ uint64_t kernStackMax = max_valid_stack_address();
+ uint64_t *buffer = callStack;
+ uint32_t tmpWord;
+ int bufferIndex = 0;
+ int bufferMaxIndex = *count;
+ boolean_t supervisor;
+ boolean_t is64Bit;
+ struct savearea *sv;
+
+ if(user_only) {
+ sv = find_user_regs(thread);
+ } else {
+ sv = find_kern_regs(thread);
+ }
+
+ if(!sv) {
+ *count = 0;
+ return KERN_FAILURE;
+ }
+
+ supervisor = SUPERVISOR_MODE(sv->save_srr1);
+ if(supervisor) {
+#warning assuming kernel task is always 32-bit
+ is64Bit = FALSE;
+ } else {
+ is64Bit = chudxnu_is_64bit_task(task);
+ }
+
+ bufferMaxIndex = bufferMaxIndex - 2; // allot space for saving the LR and R0 on the stack at the end.
+ if(bufferMaxIndex<2) {
+ *count = 0;
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ currPC = sv->save_srr0;
+ framePointer = sv->save_r1; /* r1 is the stack pointer (no FP on PPC) */
+ currLR = sv->save_lr;
+ currR0 = sv->save_r0;
+
+ bufferIndex = 0; // start with a stack of size zero
+ buffer[bufferIndex++] = currPC; // save PC in position 0.
+
+ // Now, fill buffer with stack backtraces.
+ while(bufferIndex<bufferMaxIndex && VALID_STACK_ADDRESS(framePointer)) {
+ uint64_t pc = 0;
+ // Above the stack pointer, the following values are saved:
+ // saved LR
+ // saved CR
+ // saved SP
+ //-> SP
+ // Here, we'll get the lr from the stack.
+ uint64_t fp_link;
+
+ if(is64Bit) {
+ fp_link = framePointer + FP_LINK_OFFSET*sizeof(uint64_t);
+ } else {
+ fp_link = framePointer + FP_LINK_OFFSET*sizeof(uint32_t);
+ }
+
+ // Note that we read the pc even for the first stack frame (which, in theory,
+ // is always empty because the callee fills it in just before it lowers the
+ // stack. However, if we catch the program in between filling in the return
+ // address and lowering the stack, we want to still have a valid backtrace.
+ // FixupStack correctly disregards this value if necessary.
+
+ if(supervisor) {
+ if(is64Bit) {
+ kr = chudxnu_kern_read(&pc, fp_link, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_kern_read(&tmpWord, fp_link, sizeof(uint32_t));
+ pc = tmpWord;
+ }
+ } else {
+ if(is64Bit) {
+ kr = chudxnu_task_read(task, &pc, fp_link, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_task_read(task, &tmpWord, fp_link, sizeof(uint32_t));
+ pc = tmpWord;
+ }
+ }
+ if(kr!=KERN_SUCCESS) {
+ pc = 0;
+ break;
+ }
+
+ // retrieve the contents of the frame pointer and advance to the next stack frame if it's valid
+ if(supervisor) {
+ if(is64Bit) {
+ kr = chudxnu_kern_read(&nextFramePointer, framePointer, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_kern_read(&tmpWord, framePointer, sizeof(uint32_t));
+ nextFramePointer = tmpWord;
+ }
+ } else {
+ if(is64Bit) {
+ kr = chudxnu_task_read(task, &nextFramePointer, framePointer, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_task_read(task, &tmpWord, framePointer, sizeof(uint32_t));
+ nextFramePointer = tmpWord;
+ }
+ }
+ if(kr!=KERN_SUCCESS) {
+ nextFramePointer = 0;
+ }
+
+ if(nextFramePointer) {
+ buffer[bufferIndex++] = pc;
+ prevPC = pc;
+ }
+
+ if(nextFramePointer<framePointer) {
+ break;
+ } else {
+ framePointer = nextFramePointer;
+ }
+ }
+
+ if(bufferIndex>=bufferMaxIndex) {
+ *count = 0;
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ // Save link register and R0 at bottom of stack (used for later fixup).
+ buffer[bufferIndex++] = currLR;
+ buffer[bufferIndex++] = currR0;
+
+ *count = bufferIndex;
+ return KERN_SUCCESS;
+}
+
+__private_extern__
+kern_return_t chudxnu_thread_get_callstack( thread_t thread,
+ uint32_t *callStack,
+ mach_msg_type_number_t *count,
+ boolean_t user_only)
+{
+ kern_return_t kr;
+ task_t task = get_threadtask(thread);
+ uint64_t nextFramePointer = 0;
+ uint64_t currPC, currLR, currR0;
+ uint64_t framePointer;
+ uint64_t prevPC = 0;
+ uint64_t kernStackMin = min_valid_stack_address();
+ uint64_t kernStackMax = max_valid_stack_address();
+ uint32_t *buffer = callStack;
+ uint32_t tmpWord;
+ int bufferIndex = 0;
+ int bufferMaxIndex = *count;
+ boolean_t supervisor;
+ boolean_t is64Bit;
+ struct savearea *sv;
+
+ if(user_only) {
+ sv = find_user_regs(thread);
+ } else {
+ sv = find_kern_regs(thread);
+ }
+
+ if(!sv) {
+ *count = 0;
+ return KERN_FAILURE;
+ }
+
+ supervisor = SUPERVISOR_MODE(sv->save_srr1);
+ if(supervisor) {
+#warning assuming kernel task is always 32-bit
+ is64Bit = FALSE;
+ } else {
+ is64Bit = chudxnu_is_64bit_task(task);
+ }
+
+ bufferMaxIndex = bufferMaxIndex - 2; // allot space for saving the LR and R0 on the stack at the end.
+ if(bufferMaxIndex<2) {
+ *count = 0;
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ currPC = sv->save_srr0;
+ framePointer = sv->save_r1; /* r1 is the stack pointer (no FP on PPC) */
+ currLR = sv->save_lr;
+ currR0 = sv->save_r0;
+
+ bufferIndex = 0; // start with a stack of size zero
+ buffer[bufferIndex++] = currPC; // save PC in position 0.
+
+ // Now, fill buffer with stack backtraces.
+ while(bufferIndex<bufferMaxIndex && VALID_STACK_ADDRESS(framePointer)) {
+ uint64_t pc = 0;
+ // Above the stack pointer, the following values are saved:
+ // saved LR
+ // saved CR
+ // saved SP
+ //-> SP
+ // Here, we'll get the lr from the stack.
+ uint64_t fp_link;
+
+ if(is64Bit) {
+ fp_link = framePointer + FP_LINK_OFFSET*sizeof(uint64_t);
+ } else {
+ fp_link = framePointer + FP_LINK_OFFSET*sizeof(uint32_t);
+ }
+
+ // Note that we read the pc even for the first stack frame (which, in theory,
+ // is always empty because the callee fills it in just before it lowers the
+ // stack. However, if we catch the program in between filling in the return
+ // address and lowering the stack, we want to still have a valid backtrace.
+ // FixupStack correctly disregards this value if necessary.
+
+ if(supervisor) {
+ if(is64Bit) {
+ kr = chudxnu_kern_read(&pc, fp_link, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_kern_read(&tmpWord, fp_link, sizeof(uint32_t));
+ pc = tmpWord;
+ }
+ } else {
+ if(is64Bit) {
+ kr = chudxnu_task_read(task, &pc, fp_link, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_task_read(task, &tmpWord, fp_link, sizeof(uint32_t));
+ pc = tmpWord;
+ }
+ }
+ if(kr!=KERN_SUCCESS) {
+ pc = 0;
+ break;
+ }
+
+ // retrieve the contents of the frame pointer and advance to the next stack frame if it's valid
+ if(supervisor) {
+ if(is64Bit) {
+ kr = chudxnu_kern_read(&nextFramePointer, framePointer, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_kern_read(&tmpWord, framePointer, sizeof(uint32_t));
+ nextFramePointer = tmpWord;
+ }
+ } else {
+ if(is64Bit) {
+ kr = chudxnu_task_read(task, &nextFramePointer, framePointer, sizeof(uint64_t));
+ } else {
+ kr = chudxnu_task_read(task, &tmpWord, framePointer, sizeof(uint32_t));
+ nextFramePointer = tmpWord;
+ }
+ }
+ if(kr!=KERN_SUCCESS) {
+ nextFramePointer = 0;
+ }
+
+ if(nextFramePointer) {
+ buffer[bufferIndex++] = pc;
+ prevPC = pc;
+ }
+
+ if(nextFramePointer<framePointer) {
+ break;
+ } else {
+ framePointer = nextFramePointer;
+ }
+ }
+
+ if(bufferIndex>=bufferMaxIndex) {
+ *count = 0;
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ // Save link register and R0 at bottom of stack (used for later fixup).
+ buffer[bufferIndex++] = currLR;
+ buffer[bufferIndex++] = currR0;
+
+ *count = bufferIndex;
+ return KERN_SUCCESS;
+}
+
+#pragma mark **** task and thread info ****
+
+__private_extern__
+boolean_t chudxnu_is_64bit_task(task_t task)
+{
+ return (task_has_64BitAddr(task));
+}
+
+#define THING_TASK 0
+#define THING_THREAD 1
+
+// an exact copy of processor_set_things() except no mig conversion at the end!
+static kern_return_t chudxnu_private_processor_set_things( processor_set_t pset,
+ mach_port_t **thing_list,
+ mach_msg_type_number_t *count,
+ int type)
+{
+ unsigned int actual; /* this many things */
+ unsigned int maxthings;
+ unsigned int i;
+
+ vm_size_t size, size_needed;
+ void *addr;
+
+ if (pset == PROCESSOR_SET_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ size = 0; addr = 0;
+
+ for (;;) {
+ pset_lock(pset);
+ if (!pset->active) {
+ pset_unlock(pset);
+
+ return (KERN_FAILURE);
+ }
+
+ if (type == THING_TASK)
+ maxthings = pset->task_count;
+ else
+ maxthings = pset->thread_count;
+
+ /* do we have the memory we need? */
+
+ size_needed = maxthings * sizeof (mach_port_t);
+ if (size_needed <= size)
+ break;
+
+ /* unlock the pset and allocate more memory */
+ pset_unlock(pset);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ assert(size_needed > 0);
+ size = size_needed;
+
+ addr = kalloc(size);
+ if (addr == 0)
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ /* OK, have memory and the processor_set is locked & active */
+
+ actual = 0;
+ switch (type) {
+
+ case THING_TASK:
+ {
+ task_t task, *tasks = (task_t *)addr;
+
+ for (task = (task_t)queue_first(&pset->tasks);
+ !queue_end(&pset->tasks, (queue_entry_t)task);
+ task = (task_t)queue_next(&task->pset_tasks)) {
+ task_reference_internal(task);
+ tasks[actual++] = task;
+ }
+
+ break;
+ }
+
+ case THING_THREAD:
+ {
+ thread_t thread, *threads = (thread_t *)addr;
+
+ for (i = 0, thread = (thread_t)queue_first(&pset->threads);
+ !queue_end(&pset->threads, (queue_entry_t)thread);
+ thread = (thread_t)queue_next(&thread->pset_threads)) {
+ thread_reference_internal(thread);
+ threads[actual++] = thread;
+ }
+
+ break;
+ }
+ }
+
+ pset_unlock(pset);
+
+ if (actual < maxthings)
+ size_needed = actual * sizeof (mach_port_t);
+
+ if (actual == 0) {
+ /* no things, so return null pointer and deallocate memory */
+ *thing_list = 0;
+ *count = 0;
+
+ if (size != 0)
+ kfree(addr, size);
+ }
+ else {
+ /* if we allocated too much, must copy */
+
+ if (size_needed < size) {
+ void *newaddr;
+
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ switch (type) {
+
+ case THING_TASK:
+ {
+ task_t *tasks = (task_t *)addr;
+
+ for (i = 0; i < actual; i++)
+ task_deallocate(tasks[i]);
+ break;
+ }
+
+ case THING_THREAD:
+ {
+ thread_t *threads = (thread_t *)addr;
+
+ for (i = 0; i < actual; i++)
+ thread_deallocate(threads[i]);
+ break;
+ }
+ }
+
+ kfree(addr, size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ bcopy((void *) addr, (void *) newaddr, size_needed);
+ kfree(addr, size);
+ addr = newaddr;
+ }
+
+ *thing_list = (mach_port_t *)addr;
+ *count = actual;
+ }
+
+ return (KERN_SUCCESS);
+}
+
+// an exact copy of task_threads() except no mig conversion at the end!
+static kern_return_t chudxnu_private_task_threads(task_t task,
+ thread_act_array_t *threads_out,
+ mach_msg_type_number_t *count)
+{
+ mach_msg_type_number_t actual;
+ thread_t *threads;
+ thread_t thread;
+ vm_size_t size, size_needed;
+ void *addr;
+ unsigned int i, j;
+
+ if (task == TASK_NULL)
+ return (KERN_INVALID_ARGUMENT);
+
+ size = 0; addr = 0;
+
+ for (;;) {
+ task_lock(task);
+ if (!task->active) {
+ task_unlock(task);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ return (KERN_FAILURE);
+ }
+
+ actual = task->thread_count;
+
+ /* do we have the memory we need? */
+ size_needed = actual * sizeof (mach_port_t);
+ if (size_needed <= size)
+ break;
+
+ /* unlock the task and allocate more memory */
+ task_unlock(task);
+
+ if (size != 0)
+ kfree(addr, size);
+
+ assert(size_needed > 0);
+ size = size_needed;
+
+ addr = kalloc(size);
+ if (addr == 0)
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ /* OK, have memory and the task is locked & active */
+ threads = (thread_t *)addr;
+
+ i = j = 0;
+
+ for (thread = (thread_t)queue_first(&task->threads); i < actual;
+ ++i, thread = (thread_t)queue_next(&thread->task_threads)) {
+ thread_reference_internal(thread);
+ threads[j++] = thread;
+ }
+
+ assert(queue_end(&task->threads, (queue_entry_t)thread));
+
+ actual = j;
+ size_needed = actual * sizeof (mach_port_t);
+
+ /* can unlock task now that we've got the thread refs */
+ task_unlock(task);
+
+ if (actual == 0) {
+ /* no threads, so return null pointer and deallocate memory */
+
+ *threads_out = 0;
+ *count = 0;
+
+ if (size != 0)
+ kfree(addr, size);
+ }
+ else {
+ /* if we allocated too much, must copy */
+
+ if (size_needed < size) {
+ void *newaddr;
+
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ for (i = 0; i < actual; ++i)
+ thread_deallocate(threads[i]);
+ kfree(addr, size);
+ return (KERN_RESOURCE_SHORTAGE);
+ }
+
+ bcopy(addr, newaddr, size_needed);
+ kfree(addr, size);
+ threads = (thread_t *)newaddr;
+ }
+
+ *threads_out = threads;
+ *count = actual;
+ }
+
+ return (KERN_SUCCESS);
+}
+
+
+__private_extern__
+kern_return_t chudxnu_all_tasks(task_array_t *task_list,
+ mach_msg_type_number_t *count)
+{
+ return chudxnu_private_processor_set_things(&default_pset, (mach_port_t **)task_list, count, THING_TASK);
+}
+
+__private_extern__
+kern_return_t chudxnu_free_task_list(task_array_t *task_list,
+ mach_msg_type_number_t *count)
+{
+ vm_size_t size = (*count)*sizeof(mach_port_t);
+ void *addr = *task_list;
+
+ if(addr) {
+ int i, maxCount = *count;
+ for(i=0; i<maxCount; i++) {
+ task_deallocate((*task_list)[i]);
+ }
+ kfree(addr, size);
+ *task_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }
+}
+
+__private_extern__
+kern_return_t chudxnu_all_threads( thread_array_t *thread_list,
+ mach_msg_type_number_t *count)
+{
+ return chudxnu_private_processor_set_things(&default_pset, (mach_port_t **)thread_list, count, THING_THREAD);
+}
+
+__private_extern__
+kern_return_t chudxnu_task_threads( task_t task,
+ thread_array_t *thread_list,
+ mach_msg_type_number_t *count)
+{
+ return chudxnu_private_task_threads(task, thread_list, count);
+}
+
+__private_extern__
+kern_return_t chudxnu_free_thread_list(thread_array_t *thread_list,
+ mach_msg_type_number_t *count)
+{
+ vm_size_t size = (*count)*sizeof(mach_port_t);
+ void *addr = *thread_list;
+
+ if(addr) {
+ int i, maxCount = *count;
+ for(i=0; i<maxCount; i++) {
+ thread_deallocate((*thread_list)[i]);
+ }
+ kfree(addr, size);
+ *thread_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }
+}
+
+__private_extern__
+task_t chudxnu_current_task(void)
+{
+ return current_task();
+}
+
+__private_extern__
+thread_t chudxnu_current_thread(void)
+{
+ return current_thread();
+}
+
+__private_extern__
+task_t chudxnu_task_for_thread(thread_t thread)
+{
+ return get_threadtask(thread);
+}
+
+__private_extern__
+kern_return_t chudxnu_thread_info(thread_t thread,
+ thread_flavor_t flavor,
+ thread_info_t thread_info_out,
+ mach_msg_type_number_t *thread_info_count)
+{
+ return thread_info(thread, flavor, thread_info_out, thread_info_count);
+}
+
+__private_extern__
+kern_return_t chudxnu_thread_last_context_switch(thread_t thread, uint64_t *timestamp)
+{
+ *timestamp = thread->last_switch;
+ return KERN_SUCCESS;
+}
+
+#pragma mark **** DEPRECATED ****
+
+// DEPRECATED
+__private_extern__
+kern_return_t chudxnu_bind_current_thread(int cpu)
+{
+ return chudxnu_bind_thread(current_thread(), cpu);
+}
+
+// DEPRECATED
+kern_return_t chudxnu_unbind_current_thread(void)
+{
+ return chudxnu_unbind_thread(current_thread());
+}
+
+// DEPRECATED
+__private_extern__
+kern_return_t chudxnu_current_thread_get_callstack( uint32_t *callStack,
+ mach_msg_type_number_t *count,
+ boolean_t user_only)
+{
+ return chudxnu_thread_get_callstack(current_thread(), callStack, count, user_only);
+}
+
+// DEPRECATED
+__private_extern__
+thread_t chudxnu_current_act(void)
+{
+ return chudxnu_current_thread();
+}