/*
- * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <vm/cpm.h>
#include <string.h>
+
+#include <libkern/OSDebug.h>
+#include <sys/kdebug.h>
+
/*
* Variables exported by this module.
*/
vm_map_t kernel_map;
vm_map_t kernel_pageable_map;
+extern boolean_t vm_kernel_ready;
+
/*
* Forward declarations for internal functions.
*/
vm_offset_t *addrp,
vm_size_t size,
vm_offset_t mask,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask,
int flags)
{
vm_object_t object;
vm_page_t m, pages;
kern_return_t kr;
- if (map == VM_MAP_NULL || (flags && (flags ^ KMA_KOBJECT)))
+ if (map == VM_MAP_NULL || (flags & ~(KMA_KOBJECT | KMA_LOMEM | KMA_NOPAGEWAIT)))
return KERN_INVALID_ARGUMENT;
if (size == 0) {
entry->object.vm_object = object;
entry->offset = offset = (object == kernel_object) ?
- map_addr - VM_MIN_KERNEL_ADDRESS : 0;
+ map_addr : 0;
/* Take an extra object ref in case the map entry gets deleted */
vm_object_reference(object);
vm_map_unlock(map);
- kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, FALSE);
+ kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, pnum_mask, FALSE, flags);
if (kr != KERN_SUCCESS) {
vm_map_remove(map, vm_map_trunc_page(map_addr),
if (object == kernel_object)
vm_map_simplify(map, map_addr);
- *addrp = map_addr;
+ *addrp = (vm_offset_t) map_addr;
+ assert((vm_map_offset_t) *addrp == map_addr);
return KERN_SUCCESS;
}
{
vm_object_t object;
vm_object_offset_t offset;
+ vm_object_offset_t pg_offset;
vm_map_entry_t entry;
- vm_map_offset_t map_addr;
+ vm_map_offset_t map_addr, fill_start;
vm_map_offset_t map_mask;
- vm_map_size_t map_size;
- vm_map_size_t i;
+ vm_map_size_t map_size, fill_size;
kern_return_t kr;
+ vm_page_t mem;
+ vm_page_t guard_page_list = NULL;
+ vm_page_t wired_page_list = NULL;
+ int guard_page_count = 0;
+ int wired_page_count = 0;
+ int i;
+ int vm_alloc_flags;
+
+ if (! vm_kernel_ready) {
+ panic("kernel_memory_allocate: VM is not ready");
+ }
if (size == 0) {
*addrp = 0;
return KERN_INVALID_ARGUMENT;
}
- if (flags & KMA_LOMEM) {
- if ( !(flags & KMA_NOPAGEWAIT) ) {
- *addrp = 0;
- return KERN_INVALID_ARGUMENT;
+ map_size = vm_map_round_page(size);
+ map_mask = (vm_map_offset_t) mask;
+ vm_alloc_flags = 0;
+
+
+ /*
+ * limit the size of a single extent of wired memory
+ * to try and limit the damage to the system if
+ * too many pages get wired down
+ */
+ if (map_size > (1 << 30)) {
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ /*
+ * Guard pages:
+ *
+ * Guard pages are implemented as ficticious pages. By placing guard pages
+ * on either end of a stack, they can help detect cases where a thread walks
+ * off either end of its stack. They are allocated and set up here and attempts
+ * to access those pages are trapped in vm_fault_page().
+ *
+ * The map_size we were passed may include extra space for
+ * guard pages. If those were requested, then back it out of fill_size
+ * since vm_map_find_space() takes just the actual size not including
+ * guard pages. Similarly, fill_start indicates where the actual pages
+ * will begin in the range.
+ */
+
+ fill_start = 0;
+ fill_size = map_size;
+
+ if (flags & KMA_GUARD_FIRST) {
+ vm_alloc_flags |= VM_FLAGS_GUARD_BEFORE;
+ fill_start += PAGE_SIZE_64;
+ fill_size -= PAGE_SIZE_64;
+ if (map_size < fill_start + fill_size) {
+ /* no space for a guard page */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+ guard_page_count++;
+ }
+ if (flags & KMA_GUARD_LAST) {
+ vm_alloc_flags |= VM_FLAGS_GUARD_AFTER;
+ fill_size -= PAGE_SIZE_64;
+ if (map_size <= fill_start + fill_size) {
+ /* no space for a guard page */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
}
+ guard_page_count++;
}
+ wired_page_count = (int) (fill_size / PAGE_SIZE_64);
+ assert(wired_page_count * PAGE_SIZE_64 == fill_size);
- map_size = vm_map_round_page(size);
- map_mask = (vm_map_offset_t) mask;
+ for (i = 0; i < guard_page_count; i++) {
+ for (;;) {
+ mem = vm_page_grab_guard();
+
+ if (mem != VM_PAGE_NULL)
+ break;
+ if (flags & KMA_NOPAGEWAIT) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ vm_page_more_fictitious();
+ }
+ mem->pageq.next = (queue_entry_t)guard_page_list;
+ guard_page_list = mem;
+ }
+
+ for (i = 0; i < wired_page_count; i++) {
+ uint64_t unavailable;
+
+ for (;;) {
+ if (flags & KMA_LOMEM)
+ mem = vm_page_grablo();
+ else
+ mem = vm_page_grab();
+
+ if (mem != VM_PAGE_NULL)
+ break;
+
+ if (flags & KMA_NOPAGEWAIT) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ unavailable = (vm_page_wire_count + vm_page_free_target) * PAGE_SIZE;
+
+ if (unavailable > max_mem || map_size > (max_mem - unavailable)) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ VM_PAGE_WAIT();
+ }
+ mem->pageq.next = (queue_entry_t)wired_page_list;
+ wired_page_list = mem;
+ }
/*
* Allocate a new object (if necessary). We must do this before
object = vm_object_allocate(map_size);
}
- kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0, &entry);
+ kr = vm_map_find_space(map, &map_addr,
+ fill_size, map_mask,
+ vm_alloc_flags, &entry);
if (KERN_SUCCESS != kr) {
vm_object_deallocate(object);
- return kr;
+ goto out;
}
+
entry->object.vm_object = object;
entry->offset = offset = (object == kernel_object) ?
- map_addr - VM_MIN_KERNEL_ADDRESS : 0;
+ map_addr : 0;
- vm_object_reference(object);
- vm_map_unlock(map);
+ entry->wired_count++;
+
+ if (flags & KMA_PERMANENT)
+ entry->permanent = TRUE;
+
+ if (object != kernel_object)
+ vm_object_reference(object);
vm_object_lock(object);
- for (i = 0; i < map_size; i += PAGE_SIZE) {
- vm_page_t mem;
+ vm_map_unlock(map);
- for (;;) {
- if (flags & KMA_LOMEM)
- mem = vm_page_alloclo(object, offset + i);
- else
- mem = vm_page_alloc(object, offset + i);
+ pg_offset = 0;
- if (mem != VM_PAGE_NULL)
- break;
+ if (fill_start) {
+ if (guard_page_list == NULL)
+ panic("kernel_memory_allocate: guard_page_list == NULL");
+
+ mem = guard_page_list;
+ guard_page_list = (vm_page_t)mem->pageq.next;
+ mem->pageq.next = NULL;
+
+ vm_page_insert(mem, object, offset + pg_offset);
- if (flags & KMA_NOPAGEWAIT) {
- if (object == kernel_object)
- vm_object_page_remove(object, offset, offset + i);
- vm_object_unlock(object);
- vm_map_remove(map, map_addr, map_addr + map_size, 0);
- vm_object_deallocate(object);
- return KERN_RESOURCE_SHORTAGE;
- }
- vm_object_unlock(object);
- VM_PAGE_WAIT();
- vm_object_lock(object);
- }
mem->busy = FALSE;
+ pg_offset += PAGE_SIZE_64;
}
- vm_object_unlock(object);
+ for (pg_offset = fill_start; pg_offset < fill_start + fill_size; pg_offset += PAGE_SIZE_64) {
+ if (wired_page_list == NULL)
+ panic("kernel_memory_allocate: wired_page_list == NULL");
- if ((kr = vm_map_wire(map, map_addr, map_addr + map_size, VM_PROT_DEFAULT, FALSE))
- != KERN_SUCCESS) {
- if (object == kernel_object) {
- vm_object_lock(object);
- vm_object_page_remove(object, offset, offset + map_size);
- vm_object_unlock(object);
+ mem = wired_page_list;
+ wired_page_list = (vm_page_t)mem->pageq.next;
+ mem->pageq.next = NULL;
+ mem->wire_count++;
+
+ vm_page_insert(mem, object, offset + pg_offset);
+
+ mem->busy = FALSE;
+ mem->pmapped = TRUE;
+ mem->wpmapped = TRUE;
+
+ PMAP_ENTER(kernel_pmap, map_addr + pg_offset, mem,
+ VM_PROT_READ | VM_PROT_WRITE, object->wimg_bits & VM_WIMG_MASK, TRUE);
+
+ if (flags & KMA_NOENCRYPT) {
+ bzero(CAST_DOWN(void *, (map_addr + pg_offset)), PAGE_SIZE);
+
+ pmap_set_noencrypt(mem->phys_page);
}
- vm_map_remove(map, map_addr, map_addr + map_size, 0);
- vm_object_deallocate(object);
- return (kr);
}
- /* now that the page is wired, we no longer have to fear coalesce */
- vm_object_deallocate(object);
+ if ((fill_start + fill_size) < map_size) {
+ if (guard_page_list == NULL)
+ panic("kernel_memory_allocate: guard_page_list == NULL");
+
+ mem = guard_page_list;
+ guard_page_list = (vm_page_t)mem->pageq.next;
+ mem->pageq.next = NULL;
+
+ vm_page_insert(mem, object, offset + pg_offset);
+
+ mem->busy = FALSE;
+ }
+ if (guard_page_list || wired_page_list)
+ panic("kernel_memory_allocate: non empty list\n");
+
+ vm_page_lockspin_queues();
+ vm_page_wire_count += wired_page_count;
+ vm_page_unlock_queues();
+
+ vm_object_unlock(object);
+
+ /*
+ * now that the pages are wired, we no longer have to fear coalesce
+ */
if (object == kernel_object)
vm_map_simplify(map, map_addr);
+ else
+ vm_object_deallocate(object);
/*
* Return the memory, not zeroed.
*/
*addrp = CAST_DOWN(vm_offset_t, map_addr);
return KERN_SUCCESS;
+
+out:
+ if (guard_page_list)
+ vm_page_free_list(guard_page_list, FALSE);
+
+ if (wired_page_list)
+ vm_page_free_list(wired_page_list, FALSE);
+
+ return kr;
}
/*
vm_offset_t *addrp,
vm_size_t size)
{
- return kernel_memory_allocate(map, addrp, size, 0, 0);
+ kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, 0);
+ TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp);
+ return kr;
}
/*
for(offset = oldmapsize;
offset < newmapsize; offset += PAGE_SIZE) {
if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
- vm_page_lock_queues();
- vm_page_free(mem);
- vm_page_unlock_queues();
+ VM_PAGE_FREE(mem);
}
}
object->size = oldmapsize;
vm_object_lock(object);
for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) {
if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
- vm_page_lock_queues();
- vm_page_free(mem);
- vm_page_unlock_queues();
+ VM_PAGE_FREE(mem);
}
}
object->size = oldmapsize;
}
/*
- * kmem_alloc_wired:
+ * kmem_alloc_kobject:
*
* Allocate wired-down memory in the kernel's address map
* or a submap. The memory is not zero-filled.
*/
kern_return_t
-kmem_alloc_wired(
+kmem_alloc_kobject(
vm_map_t map,
vm_offset_t *addrp,
vm_size_t size)
/*
* kmem_alloc_aligned:
*
- * Like kmem_alloc_wired, except that the memory is aligned.
+ * Like kmem_alloc_kobject, except that the memory is aligned.
* The size should be a power-of-2.
*/
* kmem_free:
*
* Release a region of kernel virtual memory allocated
- * with kmem_alloc, kmem_alloc_wired, or kmem_alloc_pageable,
+ * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable,
* and return the physical pages associated with that region.
*/
{
kern_return_t kr;
+ assert(addr >= VM_MIN_KERNEL_AND_KEXT_ADDRESS);
+
+ TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr);
+
+ if(size == 0) {
+#if MACH_ASSERT
+ printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n",map,(uint64_t)addr);
+#endif
+ return;
+ }
+
kr = vm_map_remove(map, vm_map_trunc_page(addr),
vm_map_round_page(addr + size),
VM_MAP_REMOVE_KUNWIRE);
/*
* Wire it down (again)
*/
- vm_page_lock_queues();
+ vm_page_lockspin_queues();
vm_page_wire(mem);
vm_page_unlock_queues();
vm_object_unlock(object);
* Enter it in the kernel pmap. The page isn't busy,
* but this shouldn't be a problem because it is wired.
*/
+
+ mem->pmapped = TRUE;
+ mem->wpmapped = TRUE;
+
PMAP_ENTER(kernel_pmap, map_start, mem, protection,
((unsigned int)(mem->object->wimg_bits))
& VM_WIMG_MASK,
return (KERN_SUCCESS);
}
+
/*
* kmem_init:
*
/*
* Reserve virtual memory allocated up to this time.
*/
-
if (start != VM_MIN_KERNEL_ADDRESS) {
vm_map_offset_t map_addr;
VM_PROT_NONE, VM_PROT_NONE,
VM_INHERIT_DEFAULT);
}
-
- /*
- * Account for kernel memory (text, data, bss, vm shenanigans).
- * This may include inaccessible "holes" as determined by what
- * the machine-dependent init code includes in max_mem.
- */
- vm_page_wire_count = (atop_64(max_mem) - (vm_page_free_count
- + vm_page_active_count
- + vm_page_inactive_count));
+ /*
+ * Set the default global user wire limit which limits the amount of
+ * memory that can be locked via mlock(). We set this to the total
+ * amount of memory that are potentially usable by a user app (max_mem)
+ * minus a certain amount. This can be overridden via a sysctl.
+ */
+ vm_global_no_user_wire_amount = MIN(max_mem*20/100,
+ VM_NOT_USER_WIREABLE);
+ vm_global_user_wire_limit = max_mem - vm_global_no_user_wire_amount;
+
+ /* the default per user limit is the same as the global limit */
+ vm_user_wire_limit = vm_global_user_wire_limit;
}