/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
- * Copyright (c) 1998-2001 Luigi Rizzo, Universita` di Pisa
+/*
+ * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
* Portions Copyright (c) 2000 Akamba Corp.
* All rights reserved
*
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
- * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.11 2001/02/09 23:18:08 luigi Exp $
+ * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
*/
-#define DEB(x)
-#define DDB(x) x
+#define DUMMYNET_DEBUG
/*
* This module implements IP dummynet, a bandwidth limiter/delay emulator
* + scheduler and dummynet functions;
* + configuration and initialization.
*
- * NOTA BENE: critical sections are protected by splimp()/splx()
- * pairs. One would think that splnet() is enough as for most of
- * the netinet code, but it is not so because when used with
- * bridging, dummynet is invoked at splimp().
+ * NOTA BENE: critical sections are protected by the "dummynet lock".
*
* Most important Changes:
*
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
+#include <net/kpi_protocol.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip_dummynet.h>
#include <netinet/ip_var.h>
-#if BRIDGE
-#include <netinet/if_ether.h> /* for struct arpcom */
-#include <net/bridge.h>
-#endif
-
/*
* We keep a private variable for the simulation time, but we could
* probably use an existing one ("softticks" in sys/kern/kern_timer.c)
*/
static dn_key curr_time = 0 ; /* current simulation time */
+/* this is for the timer that fires to call dummynet() - we only enable the timer when
+ there are packets to process, otherwise it's disabled */
+static int timer_enabled = 0;
+
static int dn_hash_size = 64 ; /* default hash size */
/* statistics on number of queue searches and search steps */
static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
static void heap_extract(struct dn_heap *h, void *obj);
-static void transmit_event(struct dn_pipe *pipe);
-static void ready_event(struct dn_flow_queue *q);
-static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */
-static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
+static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
+ struct mbuf **tail);
+
+/*
+ * Packets are retrieved from queues in Dummynet in chains instead of
+ * packet-by-packet. The entire list of packets is first dequeued and
+ * sent out by the following function.
+ */
+static void dummynet_send(struct mbuf *m);
+
+/* Flag to signify the existance of a dequeued packet chain */
+static int serialize = 0;
-#if SYSCTL_NODE
+#define HASHSIZE 16
+#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
+static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
+static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
+
+
+#ifdef SYSCTL_NODE
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
CTLFLAG_RW, 0, "Dummynet");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
-SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
- CTLFLAG_RD, &curr_time, 0, "Current tick");
+SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
+ CTLFLAG_RD, &curr_time, "Current tick");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
#endif
+#ifdef DUMMYNET_DEBUG
+int dummynet_debug = 0;
+#ifdef SYSCTL_NODE
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
+ 0, "control debugging printfs");
+#endif
+#define DPRINTF(X) if (dummynet_debug) printf X
+#else
+#define DPRINTF(X)
+#endif
+
+/* contrary to the comment above random(), it does not actually
+ * return a value [0, 2^31 - 1], which breaks plr amongst other
+ * things. Masking it should work even if the behavior of
+ * the function is fixed.
+ */
+#define MY_RANDOM (random() & 0x7FFFFFFF)
+
+/* dummynet lock */
+static lck_grp_t *dn_mutex_grp;
+static lck_grp_attr_t *dn_mutex_grp_attr;
+static lck_attr_t *dn_mutex_attr;
+static lck_mtx_t *dn_mutex;
+
static int config_pipe(struct dn_pipe *p);
static int ip_dn_ctl(struct sockopt *sopt);
-static void rt_unref(struct rtentry *);
static void dummynet(void *);
static void dummynet_flush(void);
void dummynet_drain(void);
+static ip_dn_io_t dummynet_io;
+static void dn_rule_delete(void *);
+
int if_tx_rdy(struct ifnet *ifp);
-/*
- * ip_fw_chain is used when deleting a pipe, because ipfw rules can
- * hold references to the pipe.
- */
-extern LIST_HEAD (ip_fw_head, ip_fw_chain) ip_fw_chain_head;
+static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
+static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
+static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
+static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
+static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
+
+static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
+static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
+static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
+static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
+static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
-static void
-rt_unref(struct rtentry *rt)
-{
- if (rt == NULL)
- return ;
- if (rt->rt_refcnt <= 0)
- printf("-- warning, refcnt now %ld, decreasing\n", rt->rt_refcnt);
- rtfree(rt);
-}
/*
* Heap management functions.
#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
#define HEAP_INCREMENT 15
+
+int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
+{
+ struct dn_pipe_32 user_pipe_32;
+ int error=0;
+
+ error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
+ if ( !error ){
+ p->pipe_nr = user_pipe_32.pipe_nr;
+ p->bandwidth = user_pipe_32.bandwidth;
+ p->delay = user_pipe_32.delay;
+ p->V = user_pipe_32.V;
+ p->sum = user_pipe_32.sum;
+ p->numbytes = user_pipe_32.numbytes;
+ p->sched_time = user_pipe_32.sched_time;
+ bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
+ p->ready = user_pipe_32.ready;
+
+ p->fs.fs_nr = user_pipe_32.fs.fs_nr;
+ p->fs.flags_fs = user_pipe_32.fs.flags_fs;
+ p->fs.parent_nr = user_pipe_32.fs.parent_nr;
+ p->fs.weight = user_pipe_32.fs.weight;
+ p->fs.qsize = user_pipe_32.fs.qsize;
+ p->fs.plr = user_pipe_32.fs.plr;
+ p->fs.flow_mask = user_pipe_32.fs.flow_mask;
+ p->fs.rq_size = user_pipe_32.fs.rq_size;
+ p->fs.rq_elements = user_pipe_32.fs.rq_elements;
+ p->fs.last_expired = user_pipe_32.fs.last_expired;
+ p->fs.backlogged = user_pipe_32.fs.backlogged;
+ p->fs.w_q = user_pipe_32.fs.w_q;
+ p->fs.max_th = user_pipe_32.fs.max_th;
+ p->fs.min_th = user_pipe_32.fs.min_th;
+ p->fs.max_p = user_pipe_32.fs.max_p;
+ p->fs.c_1 = user_pipe_32.fs.c_1;
+ p->fs.c_2 = user_pipe_32.fs.c_2;
+ p->fs.c_3 = user_pipe_32.fs.c_3;
+ p->fs.c_4 = user_pipe_32.fs.c_4;
+ p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
+ p->fs.lookup_step = user_pipe_32.fs.lookup_step;
+ p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
+ p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
+ p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
+ }
+ return error;
+}
+
+
+int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
+{
+ struct dn_pipe_64 user_pipe_64;
+ int error=0;
+
+ error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
+ if ( !error ){
+ p->pipe_nr = user_pipe_64.pipe_nr;
+ p->bandwidth = user_pipe_64.bandwidth;
+ p->delay = user_pipe_64.delay;
+ p->V = user_pipe_64.V;
+ p->sum = user_pipe_64.sum;
+ p->numbytes = user_pipe_64.numbytes;
+ p->sched_time = user_pipe_64.sched_time;
+ bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
+ p->ready = user_pipe_64.ready;
+
+ p->fs.fs_nr = user_pipe_64.fs.fs_nr;
+ p->fs.flags_fs = user_pipe_64.fs.flags_fs;
+ p->fs.parent_nr = user_pipe_64.fs.parent_nr;
+ p->fs.weight = user_pipe_64.fs.weight;
+ p->fs.qsize = user_pipe_64.fs.qsize;
+ p->fs.plr = user_pipe_64.fs.plr;
+ p->fs.flow_mask = user_pipe_64.fs.flow_mask;
+ p->fs.rq_size = user_pipe_64.fs.rq_size;
+ p->fs.rq_elements = user_pipe_64.fs.rq_elements;
+ p->fs.last_expired = user_pipe_64.fs.last_expired;
+ p->fs.backlogged = user_pipe_64.fs.backlogged;
+ p->fs.w_q = user_pipe_64.fs.w_q;
+ p->fs.max_th = user_pipe_64.fs.max_th;
+ p->fs.min_th = user_pipe_64.fs.min_th;
+ p->fs.max_p = user_pipe_64.fs.max_p;
+ p->fs.c_1 = user_pipe_64.fs.c_1;
+ p->fs.c_2 = user_pipe_64.fs.c_2;
+ p->fs.c_3 = user_pipe_64.fs.c_3;
+ p->fs.c_4 = user_pipe_64.fs.c_4;
+ p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
+ p->fs.lookup_step = user_pipe_64.fs.lookup_step;
+ p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
+ p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
+ p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
+ }
+ return error;
+}
+
+static void
+cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
+{
+ fs_bp->fs_nr = set->fs_nr;
+ fs_bp->flags_fs = set->flags_fs ;
+ fs_bp->parent_nr = set->parent_nr ;
+ fs_bp->weight = set->weight ;
+ fs_bp->qsize = set->qsize ;
+ fs_bp->plr = set->plr ;
+ fs_bp->flow_mask = set->flow_mask ;
+ fs_bp->rq_size = set->rq_size ;
+ fs_bp->rq_elements = set->rq_elements ;
+ fs_bp->last_expired = set->last_expired ;
+ fs_bp->backlogged = set->backlogged ;
+ fs_bp->w_q = set->w_q ;
+ fs_bp->max_th = set->max_th ;
+ fs_bp->min_th = set->min_th ;
+ fs_bp->max_p = set->max_p ;
+ fs_bp->c_1 = set->c_1 ;
+ fs_bp->c_2 = set->c_2 ;
+ fs_bp->c_3 = set->c_3 ;
+ fs_bp->c_4 = set->c_4 ;
+ fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
+ fs_bp->lookup_depth = set->lookup_depth ;
+ fs_bp->lookup_step = set->lookup_step ;
+ fs_bp->lookup_weight = set->lookup_weight ;
+ fs_bp->avg_pkt_size = set->avg_pkt_size ;
+ fs_bp->max_pkt_size = set->max_pkt_size ;
+}
+
+static void
+cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
+{
+ fs_bp->fs_nr = set->fs_nr;
+ fs_bp->flags_fs = set->flags_fs ;
+ fs_bp->parent_nr = set->parent_nr ;
+ fs_bp->weight = set->weight ;
+ fs_bp->qsize = set->qsize ;
+ fs_bp->plr = set->plr ;
+ fs_bp->flow_mask = set->flow_mask ;
+ fs_bp->rq_size = set->rq_size ;
+ fs_bp->rq_elements = set->rq_elements ;
+ fs_bp->last_expired = set->last_expired ;
+ fs_bp->backlogged = set->backlogged ;
+ fs_bp->w_q = set->w_q ;
+ fs_bp->max_th = set->max_th ;
+ fs_bp->min_th = set->min_th ;
+ fs_bp->max_p = set->max_p ;
+ fs_bp->c_1 = set->c_1 ;
+ fs_bp->c_2 = set->c_2 ;
+ fs_bp->c_3 = set->c_3 ;
+ fs_bp->c_4 = set->c_4 ;
+ fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
+ fs_bp->lookup_depth = set->lookup_depth ;
+ fs_bp->lookup_step = set->lookup_step ;
+ fs_bp->lookup_weight = set->lookup_weight ;
+ fs_bp->avg_pkt_size = set->avg_pkt_size ;
+ fs_bp->max_pkt_size = set->max_pkt_size ;
+}
+
+static
+void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
+{
+ qp->id = q->id;
+ qp->len = q->len;
+ qp->len_bytes = q->len_bytes;
+ qp->numbytes = q->numbytes;
+ qp->tot_pkts = q->tot_pkts;
+ qp->tot_bytes = q->tot_bytes;
+ qp->drops = q->drops;
+ qp->hash_slot = q->hash_slot;
+ qp->avg = q->avg;
+ qp->count = q->count;
+ qp->random = q->random;
+ qp->q_time = q->q_time;
+ qp->heap_pos = q->heap_pos;
+ qp->sched_time = q->sched_time;
+ qp->S = q->S;
+ qp->F = q->F;
+}
+
+static
+void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
+{
+ qp->id = q->id;
+ qp->len = q->len;
+ qp->len_bytes = q->len_bytes;
+ qp->numbytes = q->numbytes;
+ qp->tot_pkts = q->tot_pkts;
+ qp->tot_bytes = q->tot_bytes;
+ qp->drops = q->drops;
+ qp->hash_slot = q->hash_slot;
+ qp->avg = q->avg;
+ qp->count = q->count;
+ qp->random = q->random;
+ qp->q_time = q->q_time;
+ qp->heap_pos = q->heap_pos;
+ qp->sched_time = q->sched_time;
+ qp->S = q->S;
+ qp->F = q->F;
+}
+
+static
+char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
+{
+ char *bp;
+
+ pipe_bp->pipe_nr = p->pipe_nr;
+ pipe_bp->bandwidth = p->bandwidth;
+ bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
+ pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
+ bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
+ pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
+ bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
+ pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
+ pipe_bp->V = p->V;
+ pipe_bp->sum = p->sum;
+ pipe_bp->numbytes = p->numbytes;
+ pipe_bp->sched_time = p->sched_time;
+ bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
+ pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
+ pipe_bp->ready = p->ready;
+
+ cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
+
+ pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
+ /*
+ * XXX the following is a hack based on ->next being the
+ * first field in dn_pipe and dn_flow_set. The correct
+ * solution would be to move the dn_flow_set to the beginning
+ * of struct dn_pipe.
+ */
+ pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
+ /* clean pointers */
+ pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
+ pipe_bp->fs.next = (user32_addr_t)0 ;
+ pipe_bp->fs.pipe = (user32_addr_t)0 ;
+ pipe_bp->fs.rq = (user32_addr_t)0 ;
+ bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
+ return( dn_copy_set_32( &(p->fs), bp) );
+}
+
+static
+char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
+{
+ char *bp;
+
+ pipe_bp->pipe_nr = p->pipe_nr;
+ pipe_bp->bandwidth = p->bandwidth;
+ bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
+ pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
+ bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
+ pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
+ bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
+ pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
+ pipe_bp->V = p->V;
+ pipe_bp->sum = p->sum;
+ pipe_bp->numbytes = p->numbytes;
+ pipe_bp->sched_time = p->sched_time;
+ bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
+ pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
+ pipe_bp->ready = p->ready;
+
+ cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
+
+ pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
+ /*
+ * XXX the following is a hack based on ->next being the
+ * first field in dn_pipe and dn_flow_set. The correct
+ * solution would be to move the dn_flow_set to the beginning
+ * of struct dn_pipe.
+ */
+ pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
+ /* clean pointers */
+ pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
+ pipe_bp->fs.next = USER_ADDR_NULL ;
+ pipe_bp->fs.pipe = USER_ADDR_NULL ;
+ pipe_bp->fs.rq = USER_ADDR_NULL ;
+ bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
+ return( dn_copy_set_64( &(p->fs), bp) );
+}
+
static int
heap_init(struct dn_heap *h, int new_size)
-{
+{
struct dn_heap_entry *p;
if (h->size >= new_size ) {
- printf("heap_init, Bogus call, have %d want %d\n",
+ printf("dummynet: heap_init, Bogus call, have %d want %d\n",
h->size, new_size);
return 0 ;
- }
+ }
new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
- p = _MALLOC(new_size * sizeof(*p), M_IPFW, M_DONTWAIT );
+ p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
if (p == NULL) {
- printf(" heap_init, resize %d failed\n", new_size );
+ printf("dummynet: heap_init, resize %d failed\n", new_size );
return 1 ; /* error */
}
if (h->size > 0) {
bcopy(h->p, p, h->size * sizeof(*p) );
- FREE(h->p, M_IPFW);
+ FREE(h->p, M_DUMMYNET);
}
h->p = p ;
h->size = new_size ;
*((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
static int
heap_insert(struct dn_heap *h, dn_key key1, void *p)
-{
+{
int son = h->elements ;
if (p == NULL) /* data already there, set starting point */
struct dn_heap_entry tmp ;
if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
- break ; /* found right position */
+ break ; /* found right position */
/* son smaller than father, swap and repeat */
HEAP_SWAP(h->p[son], h->p[father], tmp) ;
SET_OFFSET(h, son);
*/
static void
heap_extract(struct dn_heap *h, void *obj)
-{
- int child, father, max = h->elements - 1 ;
+{
+ int child, father, maxelt = h->elements - 1 ;
- if (max < 0) {
- printf("warning, extract from empty heap 0x%p\n", h);
+ if (maxelt < 0) {
+ printf("dummynet: warning, extract from empty heap 0x%p\n", h);
return ;
}
father = 0 ; /* default: move up smallest child */
if (obj != NULL) { /* extract specific element, index is at offset */
if (h->offset <= 0)
- panic("*** heap_extract from middle not supported on this heap!!!\n");
+ panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
father = *((int *)((char *)obj + h->offset)) ;
if (father < 0 || father >= h->elements) {
printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
father, h->elements);
- panic("heap_extract");
+ panic("dummynet: heap_extract");
}
}
RESET_OFFSET(h, father);
child = HEAP_LEFT(father) ; /* left child */
- while (child <= max) { /* valid entry */
- if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
+ while (child <= maxelt) { /* valid entry */
+ if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
child = child+1 ; /* take right child, otherwise left */
h->p[father] = h->p[child] ;
SET_OFFSET(h, father);
father = child ;
child = HEAP_LEFT(child) ; /* left child for next loop */
- }
+ }
h->elements-- ;
- if (father != max) {
+ if (father != maxelt) {
/*
* Fill hole with last entry and bubble up, reusing the insert code
*/
- h->p[father] = h->p[max] ;
+ h->p[father] = h->p[maxelt] ;
heap_insert(h, father, NULL); /* this one cannot fail */
}
-}
+}
#if 0
/*
{
int temp;
int i ;
- int max = h->elements-1 ;
+ int maxelt = h->elements-1 ;
struct dn_heap_entry buf ;
if (h->offset <= 0)
}
} else { /* must move down */
h->p[i].key = new_key ;
- while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
- if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
+ while ( (temp = HEAP_LEFT(i)) <= maxelt ) { /* found left child */
+ if ((temp != maxelt) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
temp++ ; /* select child with min key */
if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
HEAP_SWAP(h->p[i], h->p[temp], buf) ;
heap_free(struct dn_heap *h)
{
if (h->size >0 )
- FREE(h->p, M_IPFW);
- bzero(h, sizeof(*h) );
+ FREE(h->p, M_DUMMYNET);
+ bzero(h, sizeof(*h));
}
/*
* --- end of heap management functions ---
*/
+/*
+ * Return the mbuf tag holding the dummynet state. As an optimization
+ * this is assumed to be the first tag on the list. If this turns out
+ * wrong we'll need to search the list.
+ */
+static struct dn_pkt_tag *
+dn_tag_get(struct mbuf *m)
+{
+ struct m_tag *mtag = m_tag_first(m);
+/* KASSERT(mtag != NULL &&
+ mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
+ mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
+ ("packet on dummynet queue w/o dummynet tag!"));
+*/
+ return (struct dn_pkt_tag *)(mtag+1);
+}
+
/*
* Scheduler functions:
*
* invocations of the procedures.
*/
static void
-transmit_event(struct dn_pipe *pipe)
+transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
{
- struct dn_pkt *pkt ;
-
- while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
- /*
- * first unlink, then call procedures, since ip_input() can invoke
- * ip_output() and viceversa, thus causing nested calls
- */
- pipe->head = DN_NEXT(pkt) ;
-
- /*
- * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
- * (NOT A REAL one, just a small block of malloc'ed memory) with
- * m_type = MT_DUMMYNET
- * m_next = actual mbuf to be processed by ip_input/output
- * m_data = the matching rule
- * and some other fields.
- * The block IS FREED HERE because it contains parameters passed
- * to the called routine.
- */
- switch (pkt->dn_dir) {
- case DN_TO_IP_OUT:
- (void)ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL);
- rt_unref (pkt->ro.ro_rt) ;
- break ;
-
- case DN_TO_IP_IN :
- ip_input((struct mbuf *)pkt) ;
- break ;
-
-#if BRIDGE
- case DN_TO_BDG_FWD : {
- struct mbuf *m = (struct mbuf *)pkt ;
- struct ether_header *eh;
-
- if (pkt->dn_m->m_len < ETHER_HDR_LEN
- && (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) {
- printf("dummynet/bridge: pullup fail, dropping pkt\n");
- break;
- }
- /*
- * same as ether_input, make eh be a pointer into the mbuf
- */
- eh = mtod(pkt->dn_m, struct ether_header *);
- m_adj(pkt->dn_m, ETHER_HDR_LEN);
- /*
- * bdg_forward() wants a pointer to the pseudo-mbuf-header, but
- * on return it will supply the pointer to the actual packet
- * (originally pkt->dn_m, but could be something else now) if
- * it has not consumed it.
- */
- m = bdg_forward(m, eh, pkt->ifp);
- if (m)
- m_freem(m);
- }
- break ;
-#endif
-
- default:
- printf("dummynet: bad switch %d!\n", pkt->dn_dir);
- m_freem(pkt->dn_m);
- break ;
+ struct mbuf *m ;
+ struct dn_pkt_tag *pkt ;
+
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+ /* Extract packets only if no pending chain is being currently processed */
+ if (serialize == 0) {
+ while ((m = pipe->head) != NULL) {
+ pkt = dn_tag_get(m);
+ if (!DN_KEY_LEQ(pkt->output_time, curr_time))
+ break;
+
+ pipe->head = m->m_nextpkt;
+ if (*tail != NULL)
+ (*tail)->m_nextpkt = m;
+ else
+ *head = m;
+ *tail = m;
+ }
+ if (*tail != NULL)
+ (*tail)->m_nextpkt = NULL;
}
- FREE(pkt, M_IPFW);
+
+ /* if there are leftover packets, put the pipe into the heap for next ready event */
+ if ((m = pipe->head) != NULL) {
+ pkt = dn_tag_get(m);
+ /* XXX should check errors on heap_insert, by draining the
+ * whole pipe p and hoping in the future we are more successful
+ */
+ heap_insert(&extract_heap, pkt->output_time, pipe);
}
- /* if there are leftover packets, put into the heap for next event */
- if ( (pkt = pipe->head) )
- heap_insert(&extract_heap, pkt->output_time, pipe ) ;
- /* XXX should check errors on heap_insert, by draining the
- * whole pipe p and hoping in the future we are more successful
- */
}
/*
* before being able to transmit a packet. The credit is taken from
* either a pipe (WF2Q) or a flow_queue (per-flow queueing)
*/
-#define SET_TICKS(pkt, q, p) \
- (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
+
+/* hz is 100, which gives a granularity of 10ms in the old timer.
+ * The timer has been changed to fire every 1ms, so the use of
+ * hz has been modified here. All instances of hz have been left
+ * in place but adjusted by a factor of 10 so that hz is functionally
+ * equal to 1000.
+ */
+#define SET_TICKS(_m, q, p) \
+ ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
p->bandwidth ;
/*
* and put into delay line (p_queue)
*/
static void
-move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
+move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
struct dn_pipe *p, int len)
{
- q->head = DN_NEXT(pkt) ;
+ struct dn_pkt_tag *dt = dn_tag_get(pkt);
+
+ q->head = pkt->m_nextpkt ;
q->len-- ;
q->len_bytes -= len ;
- pkt->output_time = curr_time + p->delay ;
+ dt->output_time = curr_time + p->delay ;
if (p->head == NULL)
p->head = pkt;
else
- DN_NEXT(p->tail) = pkt;
+ p->tail->m_nextpkt = pkt;
p->tail = pkt;
- DN_NEXT(p->tail) = NULL;
+ p->tail->m_nextpkt = NULL;
}
/*
* if there are leftover packets reinsert the pkt in the scheduler.
*/
static void
-ready_event(struct dn_flow_queue *q)
+ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
{
- struct dn_pkt *pkt;
+ struct mbuf *pkt;
struct dn_pipe *p = q->fs->pipe ;
int p_was_empty ;
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
if (p == NULL) {
- printf("ready_event- pipe is gone\n");
- return ;
+ printf("dummynet: ready_event pipe is gone\n");
+ return ;
}
p_was_empty = (p->head == NULL) ;
*/
q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
while ( (pkt = q->head) != NULL ) {
- int len = pkt->dn_m->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*hz : 0 ;
+ int len = pkt->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
if (len_scaled > q->numbytes )
break ;
q->numbytes -= len_scaled ;
/* XXX should check errors on heap_insert, and drain the whole
* queue on error hoping next time we are luckier.
*/
- } else /* RED needs to know when the queue becomes empty */
+ } else { /* RED needs to know when the queue becomes empty */
q->q_time = curr_time;
+ q->numbytes = 0;
+ }
/*
* If the delay line was empty call transmit_event(p) now.
* Otherwise, the scheduler will take care of it.
*/
if (p_was_empty)
- transmit_event(p);
+ transmit_event(p, head, tail);
}
/*
* there is an additional delay.
*/
static void
-ready_event_wfq(struct dn_pipe *p)
+ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
{
int p_was_empty = (p->head == NULL) ;
struct dn_heap *sch = &(p->scheduler_heap);
struct dn_heap *neh = &(p->not_eligible_heap) ;
+ int64_t p_numbytes = p->numbytes;
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
if (p->if_name[0] == 0) /* tx clock is simulated */
- p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
+ p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
else { /* tx clock is for real, the ifq must be empty or this is a NOP */
if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
return ;
else {
- DEB(printf("pipe %d ready from %s --\n",
- p->pipe_nr, p->if_name);)
+ DPRINTF(("dummynet: pipe %d ready from %s --\n",
+ p->pipe_nr, p->if_name));
}
}
* While we have backlogged traffic AND credit, we need to do
* something on the queue.
*/
- while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
+ while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
if (sch->elements > 0) { /* have some eligible pkts to send out */
struct dn_flow_queue *q = sch->p[0].object ;
- struct dn_pkt *pkt = q->head;
- struct dn_flow_set *fs = q->fs;
- u_int64_t len = pkt->dn_m->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*hz : 0 ;
+ struct mbuf *pkt = q->head;
+ struct dn_flow_set *fs = q->fs;
+ u_int64_t len = pkt->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
heap_extract(sch, NULL); /* remove queue from heap */
- p->numbytes -= len_scaled ;
+ p_numbytes -= len_scaled ;
move_pkt(pkt, q, p, len);
p->V += (len<<MY_M) / p->sum ; /* update V */
* update F and position in backlogged queue, then
* put flow in not_eligible_heap (we will fix this later).
*/
- len = (q->head)->dn_m->m_pkthdr.len;
+ len = (q->head)->m_pkthdr.len;
q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
if (DN_KEY_LEQ(q->S, p->V))
heap_insert(neh, q->S, q);
}
if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
- p->numbytes = -1 ; /* mark not ready for I/O */
+ p_numbytes = -1 ; /* mark not ready for I/O */
break ;
}
}
- if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
+ if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
&& p->idle_heap.elements > 0) {
/*
* no traffic and no events scheduled. We can get rid of idle-heap.
* If we are under credit, schedule the next ready event.
* Also fix the delivery time of the last packet.
*/
- if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
+ if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
dn_key t=0 ; /* number of ticks i have to wait */
if (p->bandwidth > 0)
- t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
- p->tail->output_time += t ;
+ t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
+ dn_tag_get(p->tail)->output_time += t ;
p->sched_time = curr_time ;
heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
/* XXX should check errors on heap_insert, and drain the whole
* queue on error hoping next time we are luckier.
*/
}
+
+ /* Fit (adjust if necessary) 64bit result into 32bit variable. */
+ if (p_numbytes > INT_MAX)
+ p->numbytes = INT_MAX;
+ else if (p_numbytes < INT_MIN)
+ p->numbytes = INT_MIN;
+ else
+ p->numbytes = p_numbytes;
+
/*
* If the delay line was empty call transmit_event(p) now.
* Otherwise, the scheduler will take care of it.
*/
if (p_was_empty)
- transmit_event(p);
+ transmit_event(p, head, tail);
+
}
/*
- * This is called once per tick, or HZ times per second. It is used to
+ * This is called every 1ms. It is used to
* increment the current tick counter and schedule expired events.
*/
static void
-dummynet(void * __unused unused)
+dummynet(__unused void * unused)
{
void *p ; /* generic parameter to handler */
struct dn_heap *h ;
- int s ;
struct dn_heap *heaps[3];
+ struct mbuf *head = NULL, *tail = NULL;
int i;
struct dn_pipe *pe ;
+ struct timespec ts;
+ struct timeval tv;
heaps[0] = &ready_heap ; /* fixed-rate queues */
heaps[1] = &wfq_ready_heap ; /* wfq queues */
heaps[2] = &extract_heap ; /* delay line */
- s = splimp(); /* see note on top, splnet() is not enough */
- curr_time++ ;
+
+ lck_mtx_lock(dn_mutex);
+
+ /* make all time measurements in milliseconds (ms) -
+ * here we convert secs and usecs to msecs (just divide the
+ * usecs and take the closest whole number).
+ */
+ microuptime(&tv);
+ curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
+
for (i=0; i < 3 ; i++) {
h = heaps[i];
while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
- DDB(if (h->p[0].key > curr_time)
- printf("-- dummynet: warning, heap %d is %d ticks late\n",
- i, (int)(curr_time - h->p[0].key));)
- p = h->p[0].object ; /* store a copy before heap_extract */
- heap_extract(h, NULL); /* need to extract before processing */
- if (i == 0)
- ready_event(p) ;
- else if (i == 1) {
- struct dn_pipe *pipe = p;
- if (pipe->if_name[0] != '\0')
- printf("*** bad ready_event_wfq for pipe %s\n",
- pipe->if_name);
- else
- ready_event_wfq(p) ;
- } else
- transmit_event(p);
+ if (h->p[0].key > curr_time)
+ printf("dummynet: warning, heap %d is %d ticks late\n",
+ i, (int)(curr_time - h->p[0].key));
+ p = h->p[0].object ; /* store a copy before heap_extract */
+ heap_extract(h, NULL); /* need to extract before processing */
+ if (i == 0)
+ ready_event(p, &head, &tail) ;
+ else if (i == 1) {
+ struct dn_pipe *pipe = p;
+ if (pipe->if_name[0] != '\0')
+ printf("dummynet: bad ready_event_wfq for pipe %s\n",
+ pipe->if_name);
+ else
+ ready_event_wfq(p, &head, &tail) ;
+ } else {
+ transmit_event(p, &head, &tail);
+ }
}
}
/* sweep pipes trying to expire idle flow_queues */
- for (pe = all_pipes; pe ; pe = pe->next )
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(pe, &pipehash[i], next)
if (pe->idle_heap.elements > 0 &&
DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
q->S = q->F + 1 ; /* mark timestamp as invalid */
pe->sum -= q->fs->weight ;
}
- splx(s);
- timeout(dummynet, NULL, 1);
+
+ /* check the heaps to see if there's still stuff in there, and
+ * only set the timer if there are packets to process
+ */
+ timer_enabled = 0;
+ for (i=0; i < 3 ; i++) {
+ h = heaps[i];
+ if (h->elements > 0) { // set the timer
+ ts.tv_sec = 0;
+ ts.tv_nsec = 1 * 1000000; // 1ms
+ timer_enabled = 1;
+ bsd_timeout(dummynet, NULL, &ts);
+ break;
+ }
+ }
+
+ /*
+ * If a packet chain has been dequeued, set serialize=1 so that new
+ * packets don't get dispatched out of turn
+ */
+ if (head != NULL)
+ serialize = 1;
+
+ lck_mtx_unlock(dn_mutex);
+
+ /* Send out the de-queued list of ready-to-send packets */
+ if (head != NULL) {
+ dummynet_send(head);
+ lck_mtx_lock(dn_mutex);
+ serialize = 0;
+ lck_mtx_unlock(dn_mutex);
+ }
+}
+
+
+static void
+dummynet_send(struct mbuf *m)
+{
+ struct dn_pkt_tag *pkt;
+ struct mbuf *n;
+
+ for (; m != NULL; m = n) {
+ n = m->m_nextpkt;
+ m->m_nextpkt = NULL;
+ pkt = dn_tag_get(m);
+
+ switch (pkt->dn_dir) {
+ case DN_TO_IP_OUT: {
+ struct route tmp_rt = pkt->ro;
+ (void)ip_output(m, NULL, &tmp_rt, pkt->flags, NULL, NULL);
+ if (tmp_rt.ro_rt) {
+ rtfree(tmp_rt.ro_rt);
+ tmp_rt.ro_rt = NULL;
+ }
+ break ;
+ }
+ case DN_TO_IP_IN :
+ proto_inject(PF_INET, m);
+ break ;
+
+ default:
+ printf("dummynet: bad switch %d!\n", pkt->dn_dir);
+ m_freem(m);
+ break ;
+ }
+ }
}
+
+
/*
* called by an interface when tx_rdy occurs.
if_tx_rdy(struct ifnet *ifp)
{
struct dn_pipe *p;
-
- for (p = all_pipes; p ; p = p->next )
- if (p->ifp == ifp)
- break ;
+ struct mbuf *head = NULL, *tail = NULL;
+ int i;
+
+ lck_mtx_lock(dn_mutex);
+
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next)
+ if (p->ifp == ifp)
+ break ;
if (p == NULL) {
char buf[32];
- sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
- for (p = all_pipes; p ; p = p->next )
+ snprintf(buf, sizeof(buf), "%s%d",ifp->if_name, ifp->if_unit);
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next)
if (!strcmp(p->if_name, buf) ) {
p->ifp = ifp ;
- DEB(printf("++ tx rdy from %s (now found)\n", buf);)
+ DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
break ;
}
}
if (p != NULL) {
- DEB(printf("++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
- ifp->if_unit, ifp->if_snd.ifq_len);)
+ DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
+ ifp->if_unit, ifp->if_snd.ifq_len));
p->numbytes = 0 ; /* mark ready for I/O */
- ready_event_wfq(p);
+ ready_event_wfq(p, &head, &tail);
}
+ lck_mtx_unlock(dn_mutex);
+
+
+ /* Send out the de-queued list of ready-to-send packets */
+ if (head != NULL)
+ dummynet_send(head);
+
return 0;
}
{
struct dn_flow_queue *q, *prev ;
int i, initial_elements = fs->rq_elements ;
+ struct timeval timenow;
- if (fs->last_expired == time_second)
+ getmicrotime(&timenow);
+
+ if (fs->last_expired == timenow.tv_sec)
return 0 ;
- fs->last_expired = time_second ;
+ fs->last_expired = timenow.tv_sec ;
for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
if (q->head != NULL || q->S != q->F+1) {
else
fs->rq[i] = q = q->next ;
fs->rq_elements-- ;
- FREE(old_q, M_IPFW);
+ FREE(old_q, M_DUMMYNET);
}
return initial_elements - fs->rq_elements ;
}
if ( fs->rq[i] != NULL )
return fs->rq[i] ;
}
- q = _MALLOC(sizeof(*q), M_IPFW, M_DONTWAIT) ;
+ q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
if (q == NULL) {
- printf("sorry, cannot allocate queue for new flow\n");
+ printf("dummynet: sorry, cannot allocate queue for new flow\n");
return NULL ;
}
- bzero(q, sizeof(*q) ); /* needed */
q->fs = fs ;
q->hash_slot = i ;
q->next = fs->rq[i] ;
* so that further searches take less time.
*/
static struct dn_flow_queue *
-find_queue(struct dn_flow_set *fs)
+find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
{
int i = 0 ; /* we need i and q for new allocations */
struct dn_flow_queue *q, *prev;
q = fs->rq[0] ;
else {
/* first, do the masking */
- last_pkt.dst_ip &= fs->flow_mask.dst_ip ;
- last_pkt.src_ip &= fs->flow_mask.src_ip ;
- last_pkt.dst_port &= fs->flow_mask.dst_port ;
- last_pkt.src_port &= fs->flow_mask.src_port ;
- last_pkt.proto &= fs->flow_mask.proto ;
- last_pkt.flags = 0 ; /* we don't care about this one */
+ id->dst_ip &= fs->flow_mask.dst_ip ;
+ id->src_ip &= fs->flow_mask.src_ip ;
+ id->dst_port &= fs->flow_mask.dst_port ;
+ id->src_port &= fs->flow_mask.src_port ;
+ id->proto &= fs->flow_mask.proto ;
+ id->flags = 0 ; /* we don't care about this one */
/* then, hash function */
- i = ( (last_pkt.dst_ip) & 0xffff ) ^
- ( (last_pkt.dst_ip >> 15) & 0xffff ) ^
- ( (last_pkt.src_ip << 1) & 0xffff ) ^
- ( (last_pkt.src_ip >> 16 ) & 0xffff ) ^
- (last_pkt.dst_port << 1) ^ (last_pkt.src_port) ^
- (last_pkt.proto );
+ i = ( (id->dst_ip) & 0xffff ) ^
+ ( (id->dst_ip >> 15) & 0xffff ) ^
+ ( (id->src_ip << 1) & 0xffff ) ^
+ ( (id->src_ip >> 16 ) & 0xffff ) ^
+ (id->dst_port << 1) ^ (id->src_port) ^
+ (id->proto );
i = i % fs->rq_size ;
/* finally, scan the current list for a match */
searches++ ;
for (prev=NULL, q = fs->rq[i] ; q ; ) {
search_steps++;
- if (bcmp(&last_pkt, &(q->id), sizeof(q->id) ) == 0)
+ if (id->dst_ip == q->id.dst_ip &&
+ id->src_ip == q->id.src_ip &&
+ id->dst_port == q->id.dst_port &&
+ id->src_port == q->id.src_port &&
+ id->proto == q->id.proto &&
+ id->flags == q->id.flags)
break ; /* found */
else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
/* entry is idle and not in any heap, expire it */
else
fs->rq[i] = q = q->next ;
fs->rq_elements-- ;
- FREE(old_q, M_IPFW);
+ FREE(old_q, M_DUMMYNET);
continue ;
}
prev = q ;
if (q == NULL) { /* no match, need to allocate a new entry */
q = create_queue(fs, i);
if (q != NULL)
- q->id = last_pkt ;
+ q->id = *id ;
}
return q ;
}
{
/*
* RED algorithm
- *
+ *
* RED calculates the average queue size (avg) using a low-pass filter
* with an exponential weighted (w_q) moving average:
* avg <- (1-w_q) * avg + w_q * q_size
* where q_size is the queue length (measured in bytes or * packets).
- *
+ *
* If q_size == 0, we compute the idle time for the link, and set
* avg = (1 - w_q)^(idle/s)
* where s is the time needed for transmitting a medium-sized packet.
- *
+ *
* Now, if avg < min_th the packet is enqueued.
* If avg > max_th the packet is dropped. Otherwise, the packet is
* dropped with probability P function of avg.
- *
+ *
*/
int64_t p_b = 0;
/* queue in bytes or packets ? */
u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
- DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);)
+ DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
/* average queue size estimation */
if (q_size != 0) {
SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
}
}
- DEB(printf("avg: %u ", SCALE_VAL(q->avg));)
+ DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
/* should i drop ? */
p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
} else {
q->count = -1;
- printf("- drop");
+ DPRINTF(("dummynet: - drop"));
return 1 ;
}
} else if (q->avg > fs->min_th) {
if (fs->flags_fs & DN_QSIZE_IS_BYTES)
p_b = (p_b * len) / fs->max_pkt_size;
if (++q->count == 0)
- q->random = random() & 0xffff;
+ q->random = MY_RANDOM & 0xffff;
else {
/*
* q->count counts packets arrived since last drop, so a greater
*/
if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
q->count = 0;
- DEB(printf("- red drop");)
+ DPRINTF(("dummynet: - red drop"));
/* after a drop we calculate a new random value */
- q->random = random() & 0xffff;
+ q->random = MY_RANDOM & 0xffff;
return 1; /* drop */
}
}
static __inline
struct dn_flow_set *
-locate_flowset(int pipe_nr, struct ip_fw_chain *rule)
+locate_flowset(int fs_nr)
{
- struct dn_flow_set *fs = NULL ;
+ struct dn_flow_set *fs;
+ SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
+ if (fs->fs_nr == fs_nr)
+ return fs ;
+
+ return (NULL);
+}
- if ( (rule->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
- for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
- ;
- else {
- struct dn_pipe *p1;
- for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
- ;
- if (p1 != NULL)
- fs = &(p1->fs) ;
- }
- if (fs != NULL)
- rule->rule->pipe_ptr = fs ; /* record for the future */
- return fs ;
+static __inline struct dn_pipe *
+locate_pipe(int pipe_nr)
+{
+ struct dn_pipe *pipe;
+
+ SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
+ if (pipe->pipe_nr == pipe_nr)
+ return (pipe);
+
+ return (NULL);
}
+
+
/*
* dummynet hook for packets. Below 'pipe' is a pipe or a queue
* depending on whether WF2Q or fixed bw is used.
+ *
+ * pipe_nr pipe or queue the packet is destined for.
+ * dir where shall we send the packet after dummynet.
+ * m the mbuf with the packet
+ * ifp the 'ifp' parameter from the caller.
+ * NULL in ip_input, destination interface in ip_output,
+ * real_dst in bdg_forward
+ * ro route parameter (only used in ip_output, NULL otherwise)
+ * dst destination address, only used by ip_output
+ * rule matching rule, in case of multiple passes
+ * flags flags from the caller, only used in ip_output
+ *
*/
-int
-dummynet_io(int pipe_nr, int dir, /* pipe_nr can also be a fs_nr */
- struct mbuf *m, struct ifnet *ifp, struct route *ro,
- struct sockaddr_in *dst,
- struct ip_fw_chain *rule, int flags)
+static int
+dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
{
- struct dn_pkt *pkt;
- struct dn_flow_set *fs;
+ struct mbuf *head = NULL, *tail = NULL;
+ struct dn_pkt_tag *pkt;
+ struct m_tag *mtag;
+ struct dn_flow_set *fs = NULL;
struct dn_pipe *pipe ;
u_int64_t len = m->m_pkthdr.len ;
struct dn_flow_queue *q = NULL ;
- int s ;
-
- s = splimp();
+ int is_pipe;
+ struct timespec ts;
+ struct timeval tv;
+
+#if IPFW2
+ ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
+
+ if (cmd->opcode == O_LOG)
+ cmd += F_LEN(cmd);
+ is_pipe = (cmd->opcode == O_PIPE);
+#else
+ is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
+#endif
pipe_nr &= 0xffff ;
- if ( (fs = rule->rule->pipe_ptr) == NULL ) {
- fs = locate_flowset(pipe_nr, rule);
- if (fs == NULL)
- goto dropit ; /* this queue/pipe does not exist! */
+ lck_mtx_lock(dn_mutex);
+
+ /* make all time measurements in milliseconds (ms) -
+ * here we convert secs and usecs to msecs (just divide the
+ * usecs and take the closest whole number).
+ */
+ microuptime(&tv);
+ curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
+
+ /*
+ * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
+ */
+ if (is_pipe) {
+ pipe = locate_pipe(pipe_nr);
+ if (pipe != NULL)
+ fs = &(pipe->fs);
+ } else
+ fs = locate_flowset(pipe_nr);
+
+
+ if (fs == NULL){
+ goto dropit ; /* this queue/pipe does not exist! */
}
pipe = fs->pipe ;
if (pipe == NULL) { /* must be a queue, try find a matching pipe */
- for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
- pipe = pipe->next)
- ;
+ pipe = locate_pipe(fs->parent_nr);
+
if (pipe != NULL)
fs->pipe = pipe ;
else {
- printf("No pipe %d for queue %d, drop pkt\n",
+ printf("dummynet: no pipe %d for queue %d, drop pkt\n",
fs->parent_nr, fs->fs_nr);
goto dropit ;
}
}
- q = find_queue(fs);
+ q = find_queue(fs, &(fwa->f_id));
if ( q == NULL )
goto dropit ; /* cannot allocate queue */
/*
*/
q->tot_bytes += len ;
q->tot_pkts++ ;
- if ( fs->plr && random() < fs->plr )
+ if ( fs->plr && (MY_RANDOM < fs->plr) )
goto dropit ; /* random pkt drop */
if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
if (q->len_bytes > fs->qsize)
if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
goto dropit ;
- pkt = (struct dn_pkt *)_MALLOC(sizeof (*pkt), M_IPFW, M_NOWAIT) ;
- if ( pkt == NULL )
- goto dropit ; /* cannot allocate packet header */
+ /* XXX expensive to zero, see if we can remove it*/
+ mtag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
+ sizeof(struct dn_pkt_tag), M_NOWAIT);
+ if ( mtag == NULL )
+ goto dropit ; /* cannot allocate packet header */
+ m_tag_prepend(m, mtag); /* attach to mbuf chain */
+
+ pkt = (struct dn_pkt_tag *)(mtag+1);
+ bzero(pkt, sizeof(struct dn_pkt_tag));
/* ok, i can handle the pkt now... */
- bzero(pkt, sizeof(*pkt) ); /* XXX expensive, see if we can remove it*/
/* build and enqueue packet + parameters */
- pkt->hdr.mh_type = MT_DUMMYNET ;
- (struct ip_fw_chain *)pkt->hdr.mh_data = rule ;
- DN_NEXT(pkt) = NULL;
- pkt->dn_m = m;
+ pkt->rule = fwa->rule ;
pkt->dn_dir = dir ;
- pkt->ifp = ifp;
+ pkt->ifp = fwa->oif;
if (dir == DN_TO_IP_OUT) {
/*
* We need to copy *ro because for ICMP pkts (and maybe others)
* the caller passed a pointer into the stack; dst might also be
* a pointer into *ro so it needs to be updated.
*/
- pkt->ro = *ro;
- if (ro->ro_rt)
- rtref(ro->ro_rt);
- if (dst == (struct sockaddr_in *)&ro->ro_dst) /* dst points into ro */
- dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
-
- pkt->dn_dst = dst;
- pkt->flags = flags ;
- }
+ pkt->ro = *(fwa->ro);
+ if (fwa->ro->ro_rt)
+ RT_ADDREF(fwa->ro->ro_rt);
+
+ if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
+ fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
+
+ pkt->dn_dst = fwa->dst;
+ pkt->flags = fwa->flags;
+ if (fwa->ipoa != NULL)
+ pkt->ipoa = *(fwa->ipoa);
+ }
if (q->head == NULL)
- q->head = pkt;
+ q->head = m;
else
- DN_NEXT(q->tail) = pkt;
- q->tail = pkt;
+ q->tail->m_nextpkt = m;
+ q->tail = m;
q->len++;
q->len_bytes += len ;
- if ( q->head != pkt ) /* flow was not idle, we are done */
+ if ( q->head != m ) /* flow was not idle, we are done */
goto done;
/*
* If we reach this point the flow was previously idle, so we need
* to schedule it. This involves different actions for fixed-rate or
* WF2Q queues.
*/
- if ( (rule->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE ) {
+ if (is_pipe) {
/*
* Fixed-rate queue: just insert into the ready_heap.
*/
dn_key t = 0 ;
- if (pipe->bandwidth)
- t = SET_TICKS(pkt, q, pipe);
+ if (pipe->bandwidth)
+ t = SET_TICKS(m, q, pipe);
q->sched_time = curr_time ;
if (t == 0) /* must process it now */
- ready_event( q );
+ ready_event( q , &head, &tail );
else
heap_insert(&ready_heap, curr_time + t , q );
} else {
*/
if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
if (pipe->scheduler_heap.elements == 0)
- printf("++ ouch! not eligible but empty scheduler!\n");
+ printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
heap_insert(&(pipe->not_eligible_heap), q->S, q);
} else {
heap_insert(&(pipe->scheduler_heap), q->F, q);
if (pipe->numbytes >= 0) { /* pipe is idle */
if (pipe->scheduler_heap.elements != 1)
- printf("*** OUCH! pipe should have been idle!\n");
- DEB(printf("Waking up pipe %d at %d\n",
- pipe->pipe_nr, (int)(q->F >> MY_M)); )
+ printf("dummynet: OUCH! pipe should have been idle!\n");
+ DPRINTF(("dummynet: waking up pipe %d at %d\n",
+ pipe->pipe_nr, (int)(q->F >> MY_M)));
pipe->sched_time = curr_time ;
- ready_event_wfq(pipe);
+ ready_event_wfq(pipe, &head, &tail);
}
}
}
done:
- splx(s);
+ /* start the timer and set global if not already set */
+ if (!timer_enabled) {
+ ts.tv_sec = 0;
+ ts.tv_nsec = 1 * 1000000; // 1ms
+ timer_enabled = 1;
+ bsd_timeout(dummynet, NULL, &ts);
+ }
+
+ lck_mtx_unlock(dn_mutex);
+ if (head != NULL)
+ dummynet_send(head);
+
return 0;
dropit:
- splx(s);
if (q)
q->drops++ ;
+ lck_mtx_unlock(dn_mutex);
m_freem(m);
- return ENOBUFS ;
+ return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
}
/*
- * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
+ * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
* Doing this would probably save us the initial bzero of dn_pkt
*/
-#define DN_FREE_PKT(pkt) { \
- struct dn_pkt *n = pkt ; \
- rt_unref ( n->ro.ro_rt ) ; \
- m_freem(n->dn_m); \
- pkt = DN_NEXT(n) ; \
- FREE(n, M_IPFW) ; }
+#define DN_FREE_PKT(_m) do { \
+ struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
+ if (tag) { \
+ struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
+ if (n->ro.ro_rt != NULL) { \
+ rtfree(n->ro.ro_rt); \
+ n->ro.ro_rt = NULL; \
+ } \
+ } \
+ m_tag_delete(_m, tag); \
+ m_freem(_m); \
+} while (0)
/*
* Dispose all packets and flow_queues on a flow_set.
static void
purge_flow_set(struct dn_flow_set *fs, int all)
{
- struct dn_pkt *pkt ;
struct dn_flow_queue *q, *qn ;
int i ;
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
for (i = 0 ; i <= fs->rq_size ; i++ ) {
for (q = fs->rq[i] ; q ; q = qn ) {
- for (pkt = q->head ; pkt ; )
- DN_FREE_PKT(pkt) ;
+ struct mbuf *m, *mnext;
+
+ mnext = q->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
qn = q->next ;
- FREE(q, M_IPFW);
+ FREE(q, M_DUMMYNET);
}
fs->rq[i] = NULL ;
}
if (all) {
/* RED - free lookup table */
if (fs->w_q_lookup)
- FREE(fs->w_q_lookup, M_IPFW);
+ FREE(fs->w_q_lookup, M_DUMMYNET);
if (fs->rq)
- FREE(fs->rq, M_IPFW);
+ FREE(fs->rq, M_DUMMYNET);
/* if this fs is not part of a pipe, free it */
if (fs->pipe && fs != &(fs->pipe->fs) )
- FREE(fs, M_IPFW);
+ FREE(fs, M_DUMMYNET);
}
}
static void
purge_pipe(struct dn_pipe *pipe)
{
- struct dn_pkt *pkt ;
+ struct mbuf *m, *mnext;
purge_flow_set( &(pipe->fs), 1 );
- for (pkt = pipe->head ; pkt ; )
- DN_FREE_PKT(pkt) ;
+ mnext = pipe->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
heap_free( &(pipe->scheduler_heap) );
heap_free( &(pipe->not_eligible_heap) );
* remove references from all ipfw rules to all pipes.
*/
static void
-dummynet_flush()
+dummynet_flush(void)
{
- struct dn_pipe *curr_p, *p ;
- struct ip_fw_chain *chain ;
- struct dn_flow_set *fs, *curr_fs;
- int s ;
+ struct dn_pipe *pipe, *pipe1;
+ struct dn_flow_set *fs, *fs1;
+ int i;
- s = splimp() ;
+ lck_mtx_lock(dn_mutex);
/* remove all references to pipes ...*/
- LIST_FOREACH(chain, &ip_fw_chain_head, next)
- chain->rule->pipe_ptr = NULL ;
- /* prevent future matches... */
- p = all_pipes ;
- all_pipes = NULL ;
- fs = all_flow_sets ;
- all_flow_sets = NULL ;
- /* and free heaps so we don't have unwanted events */
- heap_free(&ready_heap);
- heap_free(&wfq_ready_heap);
- heap_free(&extract_heap);
- splx(s) ;
- /*
- * Now purge all queued pkts and delete all pipes
- */
- /* scan and purge all flow_sets. */
- for ( ; fs ; ) {
- curr_fs = fs ;
- fs = fs->next ;
- purge_flow_set(curr_fs, 1);
- }
- for ( ; p ; ) {
- purge_pipe(p);
- curr_p = p ;
- p = p->next ;
- FREE(q, M_IPFW);
- }
+ flush_pipe_ptrs(NULL);
+
+ /* Free heaps so we don't have unwanted events. */
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
+
+ /*
+ * Now purge all queued pkts and delete all pipes.
+ *
+ * XXXGL: can we merge the for(;;) cycles into one or not?
+ */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
+ SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
+ purge_flow_set(fs, 1);
+ }
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
+ SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
+ purge_pipe(pipe);
+ FREE(pipe, M_DUMMYNET);
+ }
+ lck_mtx_unlock(dn_mutex);
}
-extern struct ip_fw_chain *ip_fw_default_rule ;
+extern struct ip_fw *ip_fw_default_rule ;
static void
dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
{
int i ;
struct dn_flow_queue *q ;
- struct dn_pkt *pkt ;
+ struct mbuf *m ;
for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
for (q = fs->rq[i] ; q ; q = q->next )
- for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
- if (pkt->hdr.mh_data == r)
- pkt->hdr.mh_data = (void *)ip_fw_default_rule ;
+ for (m = q->head ; m ; m = m->m_nextpkt ) {
+ struct dn_pkt_tag *pkt = dn_tag_get(m) ;
+ if (pkt->rule == r)
+ pkt->rule = ip_fw_default_rule ;
+ }
}
/*
* when a firewall rule is deleted, scan all queues and remove the flow-id
dn_rule_delete(void *r)
{
struct dn_pipe *p ;
- struct dn_pkt *pkt ;
struct dn_flow_set *fs ;
+ struct dn_pkt_tag *pkt ;
+ struct mbuf *m ;
+ int i;
+
+ lck_mtx_lock(dn_mutex);
/*
* If the rule references a queue (dn_flow_set), then scan
* the flow set, otherwise scan pipes. Should do either, but doing
* both does not harm.
*/
- for ( fs = all_flow_sets ; fs ; fs = fs->next )
- dn_rule_delete_fs(fs, r);
- for ( p = all_pipes ; p ; p = p->next ) {
- fs = &(p->fs) ;
- dn_rule_delete_fs(fs, r);
- for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
- if (pkt->hdr.mh_data == r)
- pkt->hdr.mh_data = (void *)ip_fw_default_rule ;
- }
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ dn_rule_delete_fs(fs, r);
+
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ fs = &(p->fs);
+ dn_rule_delete_fs(fs, r);
+ for (m = p->head ; m ; m = m->m_nextpkt ) {
+ pkt = dn_tag_get(m);
+ if (pkt->rule == r)
+ pkt->rule = ip_fw_default_rule;
+ }
+ }
+ lck_mtx_unlock(dn_mutex);
}
/*
* setup RED parameters
*/
static int
-config_red(struct dn_flow_set *p, struct dn_flow_set * x)
+config_red(struct dn_flow_set *p, struct dn_flow_set * x)
{
int i;
}
/* if the lookup table already exist, free and create it again */
- if (x->w_q_lookup)
- FREE(x->w_q_lookup, M_IPFW);
+ if (x->w_q_lookup) {
+ FREE(x->w_q_lookup, M_DUMMYNET);
+ x->w_q_lookup = NULL ;
+ }
if (red_lookup_depth == 0) {
- printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0");
- FREE(x, M_IPFW);
+ printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
+ FREE(x, M_DUMMYNET);
return EINVAL;
}
x->lookup_depth = red_lookup_depth;
x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
- M_IPFW, M_DONTWAIT);
+ M_DUMMYNET, M_DONTWAIT);
if (x->w_q_lookup == NULL) {
- printf("sorry, cannot allocate red lookup table\n");
- FREE(x, M_IPFW);
+ printf("dummynet: sorry, cannot allocate red lookup table\n");
+ FREE(x, M_DUMMYNET);
return ENOSPC;
}
l = dn_hash_size;
if (l < 4)
l = 4;
- else if (l > 1024)
- l = 1024;
+ else if (l > DN_MAX_HASH_SIZE)
+ l = DN_MAX_HASH_SIZE;
x->rq_size = l;
} else /* one is enough for null mask */
x->rq_size = 1;
x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
- M_IPFW, M_DONTWAIT);
+ M_DUMMYNET, M_DONTWAIT | M_ZERO);
if (x->rq == NULL) {
- printf("sorry, cannot allocate queue\n");
+ printf("dummynet: sorry, cannot allocate queue\n");
return ENOSPC;
}
- bzero(x->rq, (1+x->rq_size) * sizeof(struct dn_flow_queue *));
x->rq_elements = 0;
return 0 ;
}
* setup pipe or queue parameters.
*/
-static int
+static int
config_pipe(struct dn_pipe *p)
{
- int s ;
+ int i, r;
struct dn_flow_set *pfs = &(p->fs);
+ struct dn_flow_queue *q;
- /*
- * The config program passes parameters as follows:
+ /*
+ * The config program passes parameters as follows:
* bw = bits/second (0 means no limits),
* delay = ms, must be translated into ticks.
* qsize = slots/bytes
- */
- p->delay = ( p->delay * hz ) / 1000 ;
+ */
+ p->delay = ( p->delay * (hz*10) ) / 1000 ;
/* We need either a pipe number or a flow_set number */
if (p->pipe_nr == 0 && pfs->fs_nr == 0)
return EINVAL ;
if (p->pipe_nr != 0 && pfs->fs_nr != 0)
return EINVAL ;
if (p->pipe_nr != 0) { /* this is a pipe */
- struct dn_pipe *x, *a, *b;
- /* locate pipe */
- for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
- a = b , b = b->next) ;
+ struct dn_pipe *x, *b;
+
+ lck_mtx_lock(dn_mutex);
+ /* locate pipe */
+ b = locate_pipe(p->pipe_nr);
+
if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
- x = _MALLOC(sizeof(struct dn_pipe), M_IPFW, M_DONTWAIT) ;
+ x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
if (x == NULL) {
- printf("ip_dummynet.c: no memory for new pipe\n");
+ lck_mtx_unlock(dn_mutex);
+ printf("dummynet: no memory for new pipe\n");
return ENOSPC;
}
- bzero(x, sizeof(struct dn_pipe));
x->pipe_nr = p->pipe_nr;
x->fs.pipe = x ;
/* idle_heap is the only one from which we extract from the middle.
*/
x->idle_heap.size = x->idle_heap.elements = 0 ;
- x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
- } else
+ x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
+ } else {
x = b;
+ /* Flush accumulated credit for all queues */
+ for (i = 0; i <= x->fs.rq_size; i++)
+ for (q = x->fs.rq[i]; q; q = q->next)
+ q->numbytes = 0;
+ }
- x->bandwidth = p->bandwidth ;
+ x->bandwidth = p->bandwidth ;
x->numbytes = 0; /* just in case... */
bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
x->ifp = NULL ; /* reset interface ptr */
- x->delay = p->delay ;
+ x->delay = p->delay ;
set_fs_parms(&(x->fs), pfs);
if ( x->fs.rq == NULL ) { /* a new pipe */
- s = alloc_hash(&(x->fs), pfs) ;
- if (s) {
- FREE(x, M_IPFW);
- return s ;
+ r = alloc_hash(&(x->fs), pfs) ;
+ if (r) {
+ lck_mtx_unlock(dn_mutex);
+ FREE(x, M_DUMMYNET);
+ return r ;
}
- s = splimp() ;
- x->next = b ;
- if (a == NULL)
- all_pipes = x ;
- else
- a->next = x ;
- splx(s);
+ SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
+ x, next);
}
+ lck_mtx_unlock(dn_mutex);
} else { /* config queue */
- struct dn_flow_set *x, *a, *b ;
+ struct dn_flow_set *x, *b ;
+ lck_mtx_lock(dn_mutex);
/* locate flow_set */
- for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
- a = b , b = b->next) ;
+ b = locate_flowset(pfs->fs_nr);
if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
- if (pfs->parent_nr == 0) /* need link to a pipe */
- return EINVAL ;
- x = _MALLOC(sizeof(struct dn_flow_set), M_IPFW, M_DONTWAIT);
+ if (pfs->parent_nr == 0) { /* need link to a pipe */
+ lck_mtx_unlock(dn_mutex);
+ return EINVAL ;
+ }
+ x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
if (x == NULL) {
- printf("ip_dummynet.c: no memory for new flow_set\n");
- return ENOSPC;
+ lck_mtx_unlock(dn_mutex);
+ printf("dummynet: no memory for new flow_set\n");
+ return ENOSPC;
}
- bzero(x, sizeof(struct dn_flow_set));
x->fs_nr = pfs->fs_nr;
x->parent_nr = pfs->parent_nr;
x->weight = pfs->weight ;
x->weight = 100 ;
} else {
/* Change parent pipe not allowed; must delete and recreate */
- if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
- return EINVAL ;
+ if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
+ lck_mtx_unlock(dn_mutex);
+ return EINVAL ;
+ }
x = b;
}
set_fs_parms(x, pfs);
if ( x->rq == NULL ) { /* a new flow_set */
- s = alloc_hash(x, pfs) ;
- if (s) {
- FREE(x, M_IPFW);
- return s ;
+ r = alloc_hash(x, pfs) ;
+ if (r) {
+ lck_mtx_unlock(dn_mutex);
+ FREE(x, M_DUMMYNET);
+ return r ;
}
- s = splimp() ;
- x->next = b;
- if (a == NULL)
- all_flow_sets = x;
- else
- a->next = x;
- splx(s);
+ SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
+ x, next);
}
+ lck_mtx_unlock(dn_mutex);
}
return 0 ;
}
* drain all queues. Called in case of severe mbuf shortage.
*/
void
-dummynet_drain()
+dummynet_drain(void)
{
struct dn_flow_set *fs;
struct dn_pipe *p;
- struct dn_pkt *pkt;
+ struct mbuf *m, *mnext;
+ int i;
+
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
heap_free(&ready_heap);
heap_free(&wfq_ready_heap);
heap_free(&extract_heap);
/* remove all references to this pipe from flow_sets */
- for (fs = all_flow_sets; fs; fs= fs->next )
- purge_flow_set(fs, 0);
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ purge_flow_set(fs, 0);
- for (p = all_pipes; p; p= p->next ) {
- purge_flow_set(&(p->fs), 0);
- for (pkt = p->head ; pkt ; )
- DN_FREE_PKT(pkt) ;
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ purge_flow_set(&(p->fs), 0);
+
+ mnext = p->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
p->head = p->tail = NULL ;
}
}
/*
* Fully delete a pipe or a queue, cleaning up associated info.
*/
-static int
+static int
delete_pipe(struct dn_pipe *p)
{
- int s ;
- struct ip_fw_chain *chain ;
-
if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
return EINVAL ;
if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
return EINVAL ;
if (p->pipe_nr != 0) { /* this is an old-style pipe */
- struct dn_pipe *a, *b;
+ struct dn_pipe *b;
struct dn_flow_set *fs;
+ int i;
+ lck_mtx_lock(dn_mutex);
/* locate pipe */
- for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
- a = b , b = b->next) ;
- if (b == NULL || (b->pipe_nr != p->pipe_nr) )
+ b = locate_pipe(p->pipe_nr);
+ if(b == NULL){
+ lck_mtx_unlock(dn_mutex);
return EINVAL ; /* not found */
+ }
- s = splimp() ;
+ /* Unlink from list of pipes. */
+ SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
- /* unlink from list of pipes */
- if (a == NULL)
- all_pipes = b->next ;
- else
- a->next = b->next ;
/* remove references to this pipe from the ip_fw rules. */
- LIST_FOREACH(chain, &ip_fw_chain_head, next)
- if (chain->rule->pipe_ptr == &(b->fs))
- chain->rule->pipe_ptr = NULL ;
-
- /* remove all references to this pipe from flow_sets */
- for (fs = all_flow_sets; fs; fs= fs->next )
- if (fs->pipe == b) {
- printf("++ ref to pipe %d from fs %d\n",
- p->pipe_nr, fs->fs_nr);
- fs->pipe = NULL ;
- purge_flow_set(fs, 0);
- }
+ flush_pipe_ptrs(&(b->fs));
+
+ /* Remove all references to this pipe from flow_sets. */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ if (fs->pipe == b) {
+ printf("dummynet: ++ ref to pipe %d from fs %d\n",
+ p->pipe_nr, fs->fs_nr);
+ fs->pipe = NULL ;
+ purge_flow_set(fs, 0);
+ }
fs_remove_from_heap(&ready_heap, &(b->fs));
+
purge_pipe(b); /* remove all data associated to this pipe */
/* remove reference to here from extract_heap and wfq_ready_heap */
pipe_remove_from_heap(&extract_heap, b);
pipe_remove_from_heap(&wfq_ready_heap, b);
- splx(s);
- FREE(b, M_IPFW);
+ lck_mtx_unlock(dn_mutex);
+
+ FREE(b, M_DUMMYNET);
} else { /* this is a WF2Q queue (dn_flow_set) */
- struct dn_flow_set *a, *b;
+ struct dn_flow_set *b;
+ lck_mtx_lock(dn_mutex);
/* locate set */
- for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
- a = b , b = b->next) ;
- if (b == NULL || (b->fs_nr != p->fs.fs_nr) )
+ b = locate_flowset(p->fs.fs_nr);
+ if (b == NULL) {
+ lck_mtx_unlock(dn_mutex);
return EINVAL ; /* not found */
+ }
- s = splimp() ;
- if (a == NULL)
- all_flow_sets = b->next ;
- else
- a->next = b->next ;
/* remove references to this flow_set from the ip_fw rules. */
- LIST_FOREACH(chain, &ip_fw_chain_head, next)
- if (chain->rule->pipe_ptr == b)
- chain->rule->pipe_ptr = NULL ;
+ flush_pipe_ptrs(b);
+
+ /* Unlink from list of flowsets. */
+ SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
if (b->pipe != NULL) {
/* Update total weight on parent pipe and cleanup parent heaps */
#endif
}
purge_flow_set(b, 1);
- splx(s);
+ lck_mtx_unlock(dn_mutex);
}
return 0 ;
}
/*
* helper function used to copy data from kernel in DUMMYNET_GET
*/
-static char *
-dn_copy_set(struct dn_flow_set *set, char *bp)
+static
+char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
{
int i, copied = 0 ;
- struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
+ struct dn_flow_queue *q;
+ struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
+
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+ for (i = 0 ; i <= set->rq_size ; i++)
+ for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+ if (q->hash_slot != i)
+ printf("dummynet: ++ at %d: wrong slot (have %d, "
+ "should be %d)\n", copied, q->hash_slot, i);
+ if (q->fs != set)
+ printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
+ i, q->fs, set);
+ copied++ ;
+ cp_queue_to_32_user( q, qp );
+ /* cleanup pointers */
+ qp->next = (user32_addr_t)0 ;
+ qp->head = qp->tail = (user32_addr_t)0 ;
+ qp->fs = (user32_addr_t)0 ;
+ }
+ if (copied != set->rq_elements)
+ printf("dummynet: ++ wrong count, have %d should be %d\n",
+ copied, set->rq_elements);
+ return (char *)qp ;
+}
+static
+char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
+{
+ int i, copied = 0 ;
+ struct dn_flow_queue *q;
+ struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
+
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
for (i = 0 ; i <= set->rq_size ; i++)
- for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
- if (q->hash_slot != i)
- printf("++ at %d: wrong slot (have %d, "
- "should be %d)\n", copied, q->hash_slot, i);
- if (q->fs != set)
- printf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
- i, q->fs, set);
- copied++ ;
- bcopy(q, qp, sizeof( *q ) );
- /* cleanup pointers */
- qp->next = NULL ;
- qp->head = qp->tail = NULL ;
- qp->fs = NULL ;
- }
+ for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+ if (q->hash_slot != i)
+ printf("dummynet: ++ at %d: wrong slot (have %d, "
+ "should be %d)\n", copied, q->hash_slot, i);
+ if (q->fs != set)
+ printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
+ i, q->fs, set);
+ copied++ ;
+ //bcopy(q, qp, sizeof(*q));
+ cp_queue_to_64_user( q, qp );
+ /* cleanup pointers */
+ qp->next = USER_ADDR_NULL ;
+ qp->head = qp->tail = USER_ADDR_NULL ;
+ qp->fs = USER_ADDR_NULL ;
+ }
if (copied != set->rq_elements)
- printf("++ wrong count, have %d should be %d\n",
- copied, set->rq_elements);
+ printf("dummynet: ++ wrong count, have %d should be %d\n",
+ copied, set->rq_elements);
return (char *)qp ;
}
+static size_t
+dn_calc_size(int is64user)
+{
+ struct dn_flow_set *set ;
+ struct dn_pipe *p ;
+ size_t size = 0 ;
+ size_t pipesize;
+ size_t queuesize;
+ size_t setsize;
+ int i;
+
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+ if ( is64user ){
+ pipesize = sizeof(struct dn_pipe_64);
+ queuesize = sizeof(struct dn_flow_queue_64);
+ setsize = sizeof(struct dn_flow_set_64);
+ }
+ else {
+ pipesize = sizeof(struct dn_pipe_32);
+ queuesize = sizeof( struct dn_flow_queue_32 );
+ setsize = sizeof(struct dn_flow_set_32);
+ }
+ /*
+ * compute size of data structures: list of pipes and flow_sets.
+ */
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(p, &pipehash[i], next)
+ size += sizeof(*p) +
+ p->fs.rq_elements * sizeof(struct dn_flow_queue);
+ SLIST_FOREACH(set, &flowsethash[i], next)
+ size += sizeof (*set) +
+ set->rq_elements * sizeof(struct dn_flow_queue);
+ }
+ return size;
+}
+
static int
dummynet_get(struct sockopt *sopt)
{
- char *buf, *bp ; /* bp is the "copy-pointer" */
+ char *buf, *bp=NULL; /* bp is the "copy-pointer" */
size_t size ;
struct dn_flow_set *set ;
struct dn_pipe *p ;
- int s, error=0 ;
+ int error=0, i ;
+ int is64user = 0;
- s = splimp();
+ /* XXX lock held too long */
+ lck_mtx_lock(dn_mutex);
/*
- * compute size of data structures: list of pipes and flow_sets.
+ * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
+ * cannot use this flag while holding a mutex.
*/
- for (p = all_pipes, size = 0 ; p ; p = p->next )
- size += sizeof( *p ) +
- p->fs.rq_elements * sizeof(struct dn_flow_queue);
- for (set = all_flow_sets ; set ; set = set->next )
- size += sizeof ( *set ) +
- set->rq_elements * sizeof(struct dn_flow_queue);
- buf = _MALLOC(size, M_TEMP, M_DONTWAIT);
- if (buf == 0) {
- splx(s);
- return ENOBUFS ;
+ if (proc_is64bit(sopt->sopt_p))
+ is64user = 1;
+ for (i = 0; i < 10; i++) {
+ size = dn_calc_size(is64user);
+ lck_mtx_unlock(dn_mutex);
+ buf = _MALLOC(size, M_TEMP, M_WAITOK);
+ if (buf == NULL)
+ return ENOBUFS;
+ lck_mtx_lock(dn_mutex);
+ if (size == dn_calc_size(is64user))
+ break;
+ FREE(buf, M_TEMP);
+ buf = NULL;
+ }
+ if (buf == NULL) {
+ lck_mtx_unlock(dn_mutex);
+ return ENOBUFS ;
}
- for (p = all_pipes, bp = buf ; p ; p = p->next ) {
- struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
- /*
- * copy pipe descriptor into *bp, convert delay back to ms,
- * then copy the flow_set descriptor(s) one at a time.
- * After each flow_set, copy the queue descriptor it owns.
- */
- bcopy(p, bp, sizeof( *p ) );
- pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
- /*
- * XXX the following is a hack based on ->next being the
- * first field in dn_pipe and dn_flow_set. The correct
- * solution would be to move the dn_flow_set to the beginning
- * of struct dn_pipe.
- */
- pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
- /* clean pointers */
- pipe_bp->head = pipe_bp->tail = NULL ;
- pipe_bp->fs.next = NULL ;
- pipe_bp->fs.pipe = NULL ;
- pipe_bp->fs.rq = NULL ;
- bp += sizeof( *p ) ;
- bp = dn_copy_set( &(p->fs), bp );
+ bp = buf;
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ /*
+ * copy pipe descriptor into *bp, convert delay back to ms,
+ * then copy the flow_set descriptor(s) one at a time.
+ * After each flow_set, copy the queue descriptor it owns.
+ */
+ if ( is64user ){
+ bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
+ }
+ else{
+ bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
+ }
}
- for (set = all_flow_sets ; set ; set = set->next ) {
- struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
- bcopy(set, bp, sizeof( *set ) );
- /* XXX same hack as above */
- fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
- fs_bp->pipe = NULL ;
- fs_bp->rq = NULL ;
- bp += sizeof( *set ) ;
- bp = dn_copy_set( set, bp );
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(set, &flowsethash[i], next) {
+ struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
+ cp_flow_set_to_64_user(set, fs_bp);
+ /* XXX same hack as above */
+ fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
+ fs_bp->pipe = USER_ADDR_NULL;
+ fs_bp->rq = USER_ADDR_NULL ;
+ bp += sizeof(struct dn_flow_set_64);
+ bp = dn_copy_set_64( set, bp );
}
- splx(s);
+ lck_mtx_unlock(dn_mutex);
+
error = sooptcopyout(sopt, buf, size);
FREE(buf, M_TEMP);
return error ;
switch (sopt->sopt_name) {
default :
- printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name);
+ printf("dummynet: -- unknown option %d", sopt->sopt_name);
return EINVAL ;
case IP_DUMMYNET_GET :
case IP_DUMMYNET_FLUSH :
dummynet_flush() ;
break ;
+
case IP_DUMMYNET_CONFIGURE :
p = &tmp_pipe ;
- error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (proc_is64bit(sopt->sopt_p))
+ error = cp_pipe_from_user_64( sopt, p );
+ else
+ error = cp_pipe_from_user_32( sopt, p );
+
if (error)
break ;
error = config_pipe(p);
case IP_DUMMYNET_DEL : /* remove a pipe or queue */
p = &tmp_pipe ;
- error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (proc_is64bit(sopt->sopt_p))
+ error = cp_pipe_from_user_64( sopt, p );
+ else
+ error = cp_pipe_from_user_32( sopt, p );
if (error)
break ;
return error ;
}
-static void
+void
ip_dn_init(void)
{
- printf("DUMMYNET initialized (010124)\n");
- all_pipes = NULL ;
- all_flow_sets = NULL ;
- ready_heap.size = ready_heap.elements = 0 ;
+ /* setup locks */
+ dn_mutex_grp_attr = lck_grp_attr_alloc_init();
+ dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
+ dn_mutex_attr = lck_attr_alloc_init();
+
+ if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) {
+ printf("ip_dn_init: can't alloc dn_mutex\n");
+ return;
+ }
+
+ ready_heap.size = ready_heap.elements = 0 ;
ready_heap.offset = 0 ;
wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
extract_heap.size = extract_heap.elements = 0 ;
extract_heap.offset = 0 ;
ip_dn_ctl_ptr = ip_dn_ctl;
- timeout(dummynet, NULL, 1);
-}
-
-static ip_dn_ctl_t *old_dn_ctl_ptr ;
-
-static int
-dummynet_modevent(module_t mod, int type, void *data)
-{
- int s ;
- switch (type) {
- case MOD_LOAD:
- s = splimp();
- old_dn_ctl_ptr = ip_dn_ctl_ptr;
- ip_dn_init();
- splx(s);
- break;
- case MOD_UNLOAD:
- s = splimp();
- ip_dn_ctl_ptr = old_dn_ctl_ptr;
- splx(s);
- dummynet_flush();
- break ;
- default:
- break ;
- }
- return 0 ;
+ ip_dn_io_ptr = dummynet_io;
+ ip_dn_ruledel_ptr = dn_rule_delete;
}
-
-static moduledata_t dummynet_mod = {
- "dummynet",
- dummynet_modevent,
- NULL
-} ;
-DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);