*
* @APPLE_LICENSE_HEADER_START@
*
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * The contents of this file constitute Original Code as defined in and
+ * are subject to the Apple Public Source License Version 1.1 (the
+ * "License"). You may not use this file except in compliance with the
+ * License. Please obtain a copy of the License at
+ * http://www.apple.com/publicsource and read it before using this file.
*
- * This file contains Original Code and/or Modifications of Original Code
- * as defined in and that are subject to the Apple Public Source License
- * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- *
- * The Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * This Original Code and all software distributed under the License are
+ * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- * Please see the License for the specific language governing rights and
- * limitations under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
+ * License for the specific language governing rights and limitations
+ * under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
#include <cpus.h>
#include <mach_kdb.h>
#include <simple_clock.h>
-#include <power_save.h>
-#include <task_swapper.h>
#include <ddb/db_output.h>
#include <mach/machine.h>
#include <kern/mk_sp.h> /*** ??? fix so this can be removed ***/
#include <sys/kdebug.h>
-#if TASK_SWAPPER
-#include <kern/task_swap.h>
-extern int task_swap_on;
-#endif /* TASK_SWAPPER */
-
-extern int hz;
-
#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
uint32_t std_quantum_us;
+uint64_t max_unsafe_computation;
+uint32_t sched_safe_duration;
+uint64_t max_poll_computation;
+
+uint32_t std_quantum;
+uint32_t min_std_quantum;
+
+uint32_t max_rt_quantum;
+uint32_t min_rt_quantum;
+
+static uint32_t sched_tick_interval;
+
unsigned sched_tick;
#if SIMPLE_CLOCK
/* Forwards */
void wait_queues_init(void);
-thread_t choose_pset_thread(
- processor_t myprocessor,
- processor_set_t pset);
-
-thread_t choose_thread(
- processor_t myprocessor);
+static thread_t choose_thread(
+ processor_set_t pset,
+ processor_t processor);
-boolean_t run_queue_enqueue(
- run_queue_t runq,
- thread_t thread,
- boolean_t tail);
-
-void do_thread_scan(void);
+static void do_thread_scan(void);
#if DEBUG
-void dump_run_queues(
- run_queue_t rq);
-void dump_run_queue_struct(
- run_queue_t rq);
-void dump_processor(
- processor_t p);
-void dump_processor_set(
- processor_set_t ps);
-
-void checkrq(
- run_queue_t rq,
- char *msg);
-
-void thread_check(
- thread_t thread,
- run_queue_t runq);
-
static
boolean_t thread_runnable(
thread_t thread);
printf("standard timeslicing quantum is %d us\n", std_quantum_us);
+ sched_safe_duration = (2 * max_unsafe_quanta / default_preemption_rate) *
+ (1 << SCHED_TICK_SHIFT);
+
wait_queues_init();
pset_sys_bootstrap(); /* initialize processor mgmt. */
- processor_action();
sched_tick = 0;
#if SIMPLE_CLOCK
sched_usec = 0;
ast_init();
}
+void
+sched_timebase_init(void)
+{
+ uint64_t abstime;
+
+ clock_interval_to_absolutetime_interval(
+ std_quantum_us, NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ std_quantum = abstime;
+
+ /* 250 us */
+ clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ min_std_quantum = abstime;
+
+ /* 50 us */
+ clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ min_rt_quantum = abstime;
+
+ /* 50 ms */
+ clock_interval_to_absolutetime_interval(
+ 50, 1000*NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ max_rt_quantum = abstime;
+
+ clock_interval_to_absolutetime_interval(1000 >> SCHED_TICK_SHIFT,
+ USEC_PER_SEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ sched_tick_interval = abstime;
+
+ max_unsafe_computation = max_unsafe_quanta * std_quantum;
+ max_poll_computation = max_poll_quanta * std_quantum;
+}
+
void
wait_queues_init(void)
{
spl_t s;
s = splsched();
- wake_lock(thread);
+ thread_lock(thread);
if (--thread->wait_timer_active == 1) {
if (thread->wait_timer_is_set) {
thread->wait_timer_is_set = FALSE;
- thread_lock(thread);
- if (thread->active)
- clear_wait_internal(thread, THREAD_TIMED_OUT);
- thread_unlock(thread);
+ clear_wait_internal(thread, THREAD_TIMED_OUT);
}
}
- else
- if (thread->wait_timer_active == 0)
- thread_wakeup_one(&thread->wait_timer_active);
- wake_unlock(thread);
+ thread_unlock(thread);
splx(s);
}
spl_t s;
s = splsched();
- wake_lock(thread);
thread_lock(thread);
if ((thread->state & TH_WAIT) != 0) {
clock_interval_to_deadline(interval, scale_factor, &deadline);
thread->wait_timer_is_set = TRUE;
}
thread_unlock(thread);
- wake_unlock(thread);
splx(s);
}
spl_t s;
s = splsched();
- wake_lock(thread);
thread_lock(thread);
if ((thread->state & TH_WAIT) != 0) {
timer_call_enter(&thread->wait_timer, deadline);
thread->wait_timer_is_set = TRUE;
}
thread_unlock(thread);
- wake_unlock(thread);
splx(s);
}
spl_t s;
s = splsched();
- wake_lock(thread);
+ thread_lock(thread);
if (thread->wait_timer_is_set) {
if (timer_call_cancel(&thread->wait_timer))
thread->wait_timer_active--;
thread->wait_timer_is_set = FALSE;
}
- wake_unlock(thread);
+ thread_unlock(thread);
splx(s);
}
spl_t s;
s = splsched();
- wake_lock(thread);
+ thread_lock(thread);
if (thread->wait_timer_is_set) {
if (timer_call_cancel(&thread->wait_timer))
thread->wait_timer_active--;
thread->wait_timer_active--;
while (thread->wait_timer_active > 0) {
- res = assert_wait((event_t)&thread->wait_timer_active, THREAD_UNINT);
- assert(res == THREAD_WAITING);
- wake_unlock(thread);
+ thread_unlock(thread);
splx(s);
- res = thread_block(THREAD_CONTINUE_NULL);
- assert(res == THREAD_AWAKENED);
+ delay(1);
s = splsched();
- wake_lock(thread);
+ thread_lock(thread);
}
thread->depress_timer_active--;
while (thread->depress_timer_active > 0) {
- res = assert_wait((event_t)&thread->depress_timer_active, THREAD_UNINT);
- assert(res == THREAD_WAITING);
- wake_unlock(thread);
+ thread_unlock(thread);
splx(s);
- res = thread_block(THREAD_CONTINUE_NULL);
- assert(res == THREAD_AWAKENED);
+ delay(1);
s = splsched();
- wake_lock(thread);
+ thread_lock(thread);
}
- wake_unlock(thread);
+ thread_unlock(thread);
splx(s);
thread_deallocate(thread);
kern_return_t
thread_go_locked(
thread_t thread,
- wait_result_t result)
+ wait_result_t wresult)
{
assert(thread->at_safe_point == FALSE);
assert(thread->wait_event == NO_EVENT64);
assert(thread->wait_queue == WAIT_QUEUE_NULL);
if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) {
+ thread_roust_t roust_hint;
+
thread->state &= ~(TH_WAIT|TH_UNINT);
+ _mk_sp_thread_unblock(thread);
+
+ roust_hint = thread->roust;
+ thread->roust = NULL;
+ if ( roust_hint != NULL &&
+ (*roust_hint)(thread, wresult) ) {
+ if (thread->wait_timer_is_set) {
+ if (timer_call_cancel(&thread->wait_timer))
+ thread->wait_timer_active--;
+ thread->wait_timer_is_set = FALSE;
+ }
+
+ return (KERN_SUCCESS);
+ }
+
+ thread->wait_result = wresult;
+
if (!(thread->state & TH_RUN)) {
thread->state |= TH_RUN;
if (thread->active_callout)
call_thread_unblock();
- if (!(thread->state & TH_IDLE)) {
- _mk_sp_thread_unblock(thread);
- hw_atomic_add(&thread->processor_set->run_count, 1);
- }
+ pset_run_incr(thread->processor_set);
+ if (thread->sched_mode & TH_MODE_TIMESHARE)
+ pset_share_incr(thread->processor_set);
+
+ thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
}
- thread->wait_result = result;
- return KERN_SUCCESS;
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
+ (int)thread, (int)thread->sched_pri, 0, 0, 0);
+
+ return (KERN_SUCCESS);
}
- return KERN_NOT_WAITING;
+
+ return (KERN_NOT_WAITING);
}
/*
thread_t thread,
wait_interrupt_t interruptible)
{
- wait_result_t wait_result;
- boolean_t at_safe_point;
-
- assert(thread == current_thread());
+ boolean_t at_safe_point;
/*
* The thread may have certain types of interrupts/aborts masked
at_safe_point = (interruptible == THREAD_ABORTSAFE);
- if ((interruptible == THREAD_UNINT) ||
- !(thread->state & TH_ABORT) ||
- (!at_safe_point && (thread->state & TH_ABORT_SAFELY))) {
+ if ( interruptible == THREAD_UNINT ||
+ !(thread->state & TH_ABORT) ||
+ (!at_safe_point &&
+ (thread->state & TH_ABORT_SAFELY)) ) {
thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
thread->at_safe_point = at_safe_point;
thread->sleep_stamp = sched_tick;
return (thread->wait_result = THREAD_WAITING);
- } else if (thread->state & TH_ABORT_SAFELY) {
- thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY);
}
+ else
+ if (thread->state & TH_ABORT_SAFELY)
+ thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY);
+
return (thread->wait_result = THREAD_INTERRUPTED);
}
register int index;
assert(event != NO_EVENT);
- assert(assert_wait_possible());
index = wait_hash(event);
wq = &wait_queues[index];
return wait_queue_assert_wait(wq, event, interruptible);
}
+__private_extern__
+wait_queue_t
+wait_event_wait_queue(
+ event_t event)
+{
+ assert(event != NO_EVENT);
+
+ return (&wait_queues[wait_hash(event)]);
+}
+
+wait_result_t
+assert_wait_prim(
+ event_t event,
+ thread_roust_t roust_hint,
+ uint64_t deadline,
+ wait_interrupt_t interruptible)
+{
+ thread_t thread = current_thread();
+ wait_result_t wresult;
+ wait_queue_t wq;
+ spl_t s;
+
+ assert(event != NO_EVENT);
+
+ wq = &wait_queues[wait_hash(event)];
+
+ s = splsched();
+ wait_queue_lock(wq);
+ thread_lock(thread);
+
+ wresult = wait_queue_assert_wait64_locked(wq, (uint32_t)event,
+ interruptible, thread);
+ if (wresult == THREAD_WAITING) {
+ if (roust_hint != NULL)
+ thread->roust = roust_hint;
+
+ if (deadline != 0) {
+ timer_call_enter(&thread->wait_timer, deadline);
+ assert(!thread->wait_timer_is_set);
+ thread->wait_timer_active++;
+ thread->wait_timer_is_set = TRUE;
+ }
+ }
+
+ thread_unlock(thread);
+ wait_queue_unlock(wq);
+ splx(s);
+
+ return (wresult);
+}
/*
* thread_sleep_fast_usimple_lock:
wait_result_t result;
processor_t processor = thread->last_processor;
- if ( processor != PROCESSOR_NULL &&
- processor->state == PROCESSOR_RUNNING &&
- processor->cpu_data->active_thread == thread )
+ if ( processor != PROCESSOR_NULL &&
+ processor->state == PROCESSOR_RUNNING &&
+ processor->active_thread == thread )
cause_ast_check(processor);
thread_unlock(thread);
thread->state &= ~TH_SUSP;
thread->state |= TH_RUN;
- assert(!(thread->state & TH_IDLE));
_mk_sp_thread_unblock(thread);
- hw_atomic_add(&thread->processor_set->run_count, 1);
+
+ pset_run_incr(thread->processor_set);
+ if (thread->sched_mode & TH_MODE_TIMESHARE)
+ pset_share_incr(thread->processor_set);
+
+ thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
+
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
+ (int)thread, (int)thread->sched_pri, 0, 0, 0);
}
else
if (thread->state & TH_SUSP) {
wait_result_t result;
processor_t processor = thread->last_processor;
- if ( processor != PROCESSOR_NULL &&
- processor->state == PROCESSOR_RUNNING &&
- processor->cpu_data->active_thread == thread )
+ if ( processor != PROCESSOR_NULL &&
+ processor->state == PROCESSOR_RUNNING &&
+ processor->active_thread == thread )
cause_ast_check(processor);
thread_unlock(thread);
__private_extern__ kern_return_t
clear_wait_internal(
thread_t thread,
- wait_result_t result)
+ wait_result_t wresult)
{
wait_queue_t wq = thread->wait_queue;
- kern_return_t ret;
- int loop_count;
+ int i = LockTimeOut;
- loop_count = 0;
do {
- if ((result == THREAD_INTERRUPTED) && (thread->state & TH_UNINT))
- return KERN_FAILURE;
+ if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT))
+ return (KERN_FAILURE);
if (wq != WAIT_QUEUE_NULL) {
if (wait_queue_lock_try(wq)) {
wait_queue_pull_thread_locked(wq, thread, TRUE);
/* wait queue unlocked, thread still locked */
- } else {
+ }
+ else {
thread_unlock(thread);
delay(1);
+
thread_lock(thread);
+ if (wq != thread->wait_queue)
+ return (KERN_NOT_WAITING);
- if (wq != thread->wait_queue) {
- return KERN_NOT_WAITING; /* we know it moved */
- }
continue;
}
}
- ret = thread_go_locked(thread, result);
- return ret;
- } while (++loop_count < LockTimeOut);
+
+ return (thread_go_locked(thread, wresult));
+ } while (--i > 0);
+
panic("clear_wait_internal: deadlock: thread=0x%x, wq=0x%x, cpu=%d\n",
thread, wq, cpu_number());
- return KERN_FAILURE;
+
+ return (KERN_FAILURE);
}
* thread_bind:
*
* Force a thread to execute on the specified processor.
- * If the thread is currently executing, it may wait until its
- * time slice is up before switching onto the specified processor.
*
- * A processor of PROCESSOR_NULL causes the thread to be unbound.
- * xxx - DO NOT export this to users.
+ * Returns the previous binding. PROCESSOR_NULL means
+ * not bound.
+ *
+ * XXX - DO NOT export this to users - XXX
*/
-void
+processor_t
thread_bind(
register thread_t thread,
processor_t processor)
{
- spl_t s;
+ processor_t prev;
+ run_queue_t runq = RUN_QUEUE_NULL;
+ spl_t s;
s = splsched();
thread_lock(thread);
- thread_bind_locked(thread, processor);
+ prev = thread->bound_processor;
+ if (prev != PROCESSOR_NULL)
+ runq = run_queue_remove(thread);
+
+ thread->bound_processor = processor;
+
+ if (runq != RUN_QUEUE_NULL)
+ thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
thread_unlock(thread);
splx(s);
+
+ return (prev);
}
+struct {
+ uint32_t idle_pset_last,
+ idle_pset_any,
+ idle_bound;
+
+ uint32_t pset_self,
+ pset_last,
+ pset_other,
+ bound_self,
+ bound_other;
+
+ uint32_t realtime_self,
+ realtime_last,
+ realtime_other;
+
+ uint32_t missed_realtime,
+ missed_other;
+} dispatch_counts;
+
/*
- * Select a thread for this processor (the current processor) to run.
- * May select the current thread, which must already be locked.
+ * Select a thread for the current processor to run.
+ *
+ * May select the current thread, which must be locked.
*/
thread_t
thread_select(
- register processor_t myprocessor)
+ register processor_t processor)
{
register thread_t thread;
processor_set_t pset;
- register run_queue_t runq = &myprocessor->runq;
boolean_t other_runnable;
/*
* Check for other non-idle runnable threads.
*/
- pset = myprocessor->processor_set;
- thread = myprocessor->cpu_data->active_thread;
+ pset = processor->processor_set;
+ thread = processor->active_thread;
/* Update the thread's priority */
if (thread->sched_stamp != sched_tick)
update_priority(thread);
- myprocessor->current_pri = thread->sched_pri;
+ processor->current_pri = thread->sched_pri;
- simple_lock(&runq->lock);
- simple_lock(&pset->runq.lock);
+ simple_lock(&pset->sched_lock);
- other_runnable = runq->count > 0 || pset->runq.count > 0;
+ other_runnable = processor->runq.count > 0 || pset->runq.count > 0;
if ( thread->state == TH_RUN &&
- (!other_runnable ||
- (runq->highq < thread->sched_pri &&
- pset->runq.highq < thread->sched_pri)) &&
thread->processor_set == pset &&
(thread->bound_processor == PROCESSOR_NULL ||
- thread->bound_processor == myprocessor) ) {
+ thread->bound_processor == processor) ) {
+ if ( thread->sched_pri >= BASEPRI_RTQUEUES &&
+ first_timeslice(processor) ) {
+ if (pset->runq.highq >= BASEPRI_RTQUEUES) {
+ register run_queue_t runq = &pset->runq;
+ register queue_t q;
+
+ q = runq->queues + runq->highq;
+ if (((thread_t)q->next)->realtime.deadline <
+ processor->deadline) {
+ thread = (thread_t)q->next;
+ ((queue_entry_t)thread)->next->prev = q;
+ q->next = ((queue_entry_t)thread)->next;
+ thread->runq = RUN_QUEUE_NULL;
+ assert(thread->sched_mode & TH_MODE_PREEMPT);
+ runq->count--; runq->urgency--;
+ if (queue_empty(q)) {
+ if (runq->highq != IDLEPRI)
+ clrbit(MAXPRI - runq->highq, runq->bitmap);
+ runq->highq = MAXPRI - ffsbit(runq->bitmap);
+ }
+ }
+ }
+
+ processor->deadline = thread->realtime.deadline;
+
+ simple_unlock(&pset->sched_lock);
+
+ return (thread);
+ }
+
+ if ( (!other_runnable ||
+ (processor->runq.highq < thread->sched_pri &&
+ pset->runq.highq < thread->sched_pri)) ) {
+
+ /* I am the highest priority runnable (non-idle) thread */
+
+ processor->deadline = UINT64_MAX;
- /* I am the highest priority runnable (non-idle) thread */
- simple_unlock(&pset->runq.lock);
- simple_unlock(&runq->lock);
+ simple_unlock(&pset->sched_lock);
- myprocessor->slice_quanta =
- (thread->sched_mode & TH_MODE_TIMESHARE)? pset->set_quanta: 1;
+ return (thread);
+ }
}
- else
+
if (other_runnable)
- thread = choose_thread(myprocessor);
+ thread = choose_thread(pset, processor);
else {
- simple_unlock(&pset->runq.lock);
- simple_unlock(&runq->lock);
-
/*
* Nothing is runnable, so set this processor idle if it
- * was running. If it was in an assignment or shutdown,
- * leave it alone. Return its idle thread.
+ * was running. Return its idle thread.
*/
- simple_lock(&pset->sched_lock);
- if (myprocessor->state == PROCESSOR_RUNNING) {
- remqueue(&pset->active_queue, (queue_entry_t)myprocessor);
- myprocessor->state = PROCESSOR_IDLE;
-
- if (myprocessor == master_processor)
- enqueue_tail(&pset->idle_queue, (queue_entry_t)myprocessor);
- else
- enqueue_head(&pset->idle_queue, (queue_entry_t)myprocessor);
+ if (processor->state == PROCESSOR_RUNNING) {
+ remqueue(&pset->active_queue, (queue_entry_t)processor);
+ processor->state = PROCESSOR_IDLE;
+ enqueue_tail(&pset->idle_queue, (queue_entry_t)processor);
pset->idle_count++;
}
- simple_unlock(&pset->sched_lock);
- thread = myprocessor->idle_thread;
+ processor->deadline = UINT64_MAX;
+
+ thread = processor->idle_thread;
}
+ simple_unlock(&pset->sched_lock);
+
return (thread);
}
-
/*
- * Stop running the current thread and start running the new thread.
- * If continuation is non-zero, and the current thread is blocked,
- * then it will resume by executing continuation on a new stack.
+ * Perform a context switch and start executing the new thread.
+ *
+ * If continuation is non-zero, resume the old (current) thread
+ * next by executing at continuation on a new stack, in lieu
+ * of returning.
+ *
* Returns TRUE if the hand-off succeeds.
*
- * Assumes splsched.
+ * Called at splsched.
*/
+#define funnel_release_check(thread, debug) \
+MACRO_BEGIN \
+ if ((thread)->funnel_state & TH_FN_OWNED) { \
+ (thread)->funnel_state = TH_FN_REFUNNEL; \
+ KERNEL_DEBUG(0x603242c | DBG_FUNC_NONE, \
+ (thread)->funnel_lock, (debug), 0, 0, 0); \
+ funnel_unlock((thread)->funnel_lock); \
+ } \
+MACRO_END
+
+#define funnel_refunnel_check(thread, debug) \
+MACRO_BEGIN \
+ if ((thread)->funnel_state & TH_FN_REFUNNEL) { \
+ kern_return_t result = (thread)->wait_result; \
+ \
+ (thread)->funnel_state = 0; \
+ KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, \
+ (thread)->funnel_lock, (debug), 0, 0, 0); \
+ funnel_lock((thread)->funnel_lock); \
+ KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, \
+ (thread)->funnel_lock, (debug), 0, 0, 0); \
+ (thread)->funnel_state = TH_FN_OWNED; \
+ (thread)->wait_result = result; \
+ } \
+MACRO_END
+
static thread_t
__current_thread(void)
{
* a stack.
*/
if ( (old_thread->sched_mode & TH_MODE_REALTIME) &&
- !old_thread->stack_privilege ) {
- old_thread->stack_privilege = old_thread->kernel_stack;
+ !old_thread->reserved_stack ) {
+ old_thread->reserved_stack = old_thread->kernel_stack;
}
if (old_cont != NULL) {
* check to see whether we can exchange it with
* that of the new thread.
*/
- if ( old_thread->kernel_stack == old_thread->stack_privilege &&
- !new_thread->stack_privilege)
+ if ( old_thread->kernel_stack == old_thread->reserved_stack &&
+ !new_thread->reserved_stack)
goto need_stack;
new_thread->state &= ~TH_STACK_HANDOFF;
* to its timer.
*/
processor = current_processor();
- new_thread->last_processor = processor;
+ processor->active_thread = new_thread;
processor->current_pri = new_thread->sched_pri;
+ new_thread->last_processor = processor;
ast_context(new_thread->top_act, processor->slot_num);
timer_switch(&new_thread->system_timer);
thread_unlock(new_thread);
_mk_sp_thread_done(old_thread, new_thread, processor);
- stack_handoff(old_thread, new_thread);
+ machine_stack_handoff(old_thread, new_thread);
_mk_sp_thread_begin(new_thread, processor);
case TH_RUN | TH_WAIT | TH_UNINT:
case TH_RUN | TH_WAIT:
{
- boolean_t reap, wake, callblock;
+ boolean_t term, wake, callout;
/*
* Waiting.
old_thread->sleep_stamp = sched_tick;
old_thread->state |= TH_STACK_HANDOFF;
old_thread->state &= ~TH_RUN;
- hw_atomic_sub(&old_thread->processor_set->run_count, 1);
- callblock = old_thread->active_callout;
+
+ term = (old_thread->state & TH_TERMINATE)? TRUE: FALSE;
+ callout = old_thread->active_callout;
wake = old_thread->wake_active;
old_thread->wake_active = FALSE;
- reap = (old_thread->state & TH_TERMINATE)? TRUE: FALSE;
+
+ if (old_thread->sched_mode & TH_MODE_TIMESHARE)
+ pset_share_decr(old_thread->processor_set);
+ pset_run_decr(old_thread->processor_set);
thread_unlock(old_thread);
wake_unlock(old_thread);
- if (callblock)
+ if (callout)
call_thread_block();
if (wake)
thread_wakeup((event_t)&old_thread->wake_active);
- if (reap)
+ if (term)
thread_reaper_enqueue(old_thread);
break;
}
counter_always(c_thread_invoke_hits++);
- if (new_thread->funnel_state & TH_FN_REFUNNEL) {
- kern_return_t wait_result = new_thread->wait_result;
-
- new_thread->funnel_state = 0;
- KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE,
- new_thread->funnel_lock, 2, 0, 0, 0);
- funnel_lock(new_thread->funnel_lock);
- KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE,
- new_thread->funnel_lock, 2, 0, 0, 0);
- new_thread->funnel_state = TH_FN_OWNED;
- new_thread->wait_result = wait_result;
- }
+ funnel_refunnel_check(new_thread, 2);
(void) spllo();
assert(new_cont);
counter(++c_thread_invoke_same);
thread_unlock(new_thread);
- if (new_thread->funnel_state & TH_FN_REFUNNEL) {
- kern_return_t wait_result = new_thread->wait_result;
-
- new_thread->funnel_state = 0;
- KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE,
- new_thread->funnel_lock, 3, 0, 0, 0);
- funnel_lock(new_thread->funnel_lock);
- KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE,
- new_thread->funnel_lock, 3, 0, 0, 0);
- new_thread->funnel_state = TH_FN_OWNED;
- new_thread->wait_result = wait_result;
- }
+ funnel_refunnel_check(new_thread, 3);
(void) spllo();
+
call_continuation(old_cont);
/*NOTREACHED*/
}
* Set up ast context of new thread and switch to its timer.
*/
processor = current_processor();
- new_thread->last_processor = processor;
+ processor->active_thread = new_thread;
processor->current_pri = new_thread->sched_pri;
+ new_thread->last_processor = processor;
ast_context(new_thread->top_act, processor->slot_num);
timer_switch(&new_thread->system_timer);
assert(thread_runnable(new_thread));
_mk_sp_thread_done(old_thread, new_thread, processor);
/*
- * switch_context is machine-dependent. It does the
- * machine-dependent components of a context-switch, like
- * changing address spaces. It updates active_threads.
+ * Here is where we actually change register context,
+ * and address space if required. Note that control
+ * will not return here immediately.
*/
- old_thread = switch_context(old_thread, old_cont, new_thread);
+ old_thread = machine_switch_context(old_thread, old_cont, new_thread);
/* Now on new thread's stack. Set a local variable to refer to it. */
new_thread = __current_thread();
thread_dispatch(old_thread);
if (old_cont) {
- if (new_thread->funnel_state & TH_FN_REFUNNEL) {
- kern_return_t wait_result = new_thread->wait_result;
-
- new_thread->funnel_state = 0;
- KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE,
- new_thread->funnel_lock, 3, 0, 0, 0);
- funnel_lock(new_thread->funnel_lock);
- KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE,
- new_thread->funnel_lock, 3, 0, 0, 0);
- new_thread->funnel_state = TH_FN_OWNED;
- new_thread->wait_result = wait_result;
- }
+ funnel_refunnel_check(new_thread, 3);
(void) spllo();
+
call_continuation(old_cont);
/*NOTREACHED*/
}
/*
* thread_continue:
*
- * Called when a thread gets a new stack, at splsched();
+ * Called at splsched when a thread first receives
+ * a new stack after a continuation.
*/
void
thread_continue(
if (old_thread != THREAD_NULL)
thread_dispatch(old_thread);
- if (self->funnel_state & TH_FN_REFUNNEL) {
- kern_return_t wait_result = self->wait_result;
-
- self->funnel_state = 0;
- KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, self->funnel_lock, 4, 0, 0, 0);
- funnel_lock(self->funnel_lock);
- KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, self->funnel_lock, 4, 0, 0, 0);
- self->funnel_state = TH_FN_OWNED;
- self->wait_result = wait_result;
- }
+ funnel_refunnel_check(self, 4);
(void)spllo();
- assert(continuation);
+
call_continuation(continuation);
/*NOTREACHED*/
}
-#if MACH_LDEBUG || MACH_KDB
-
-#define THREAD_LOG_SIZE 300
-
-struct t64 {
- unsigned long h;
- unsigned long l;
-};
-
-struct {
- struct t64 stamp;
- thread_t thread;
- long info1;
- long info2;
- long info3;
- char * action;
-} thread_log[THREAD_LOG_SIZE];
-
-int thread_log_index;
-
-void check_thread_time(long n);
-
-
-int check_thread_time_crash;
-
-#if 0
-void
-check_thread_time(long us)
-{
- struct t64 temp;
-
- if (!check_thread_time_crash)
- return;
-
- temp = thread_log[0].stamp;
- cyctm05_diff (&thread_log[1].stamp, &thread_log[0].stamp, &temp);
-
- if (temp.l >= us && thread_log[1].info != 0x49) /* HACK!!! */
- panic ("check_thread_time");
-}
-#endif
-
-void
-log_thread_action(char * action, long info1, long info2, long info3)
-{
- int i;
- spl_t x;
- static unsigned int tstamp;
-
- x = splhigh();
-
- for (i = THREAD_LOG_SIZE-1; i > 0; i--) {
- thread_log[i] = thread_log[i-1];
- }
-
- thread_log[0].stamp.h = 0;
- thread_log[0].stamp.l = tstamp++;
- thread_log[0].thread = current_thread();
- thread_log[0].info1 = info1;
- thread_log[0].info2 = info2;
- thread_log[0].info3 = info3;
- thread_log[0].action = action;
-/* strcpy (&thread_log[0].action[0], action);*/
-
- splx(x);
-}
-#endif /* MACH_LDEBUG || MACH_KDB */
-
-#if MACH_KDB
-#include <ddb/db_output.h>
-void db_show_thread_log(void);
-
-void
-db_show_thread_log(void)
-{
- int i;
-
- db_printf ("%s %s %s %s %s %s\n", " Thread ", " Info1 ", " Info2 ",
- " Info3 ", " Timestamp ", "Action");
-
- for (i = 0; i < THREAD_LOG_SIZE; i++) {
- db_printf ("%08x %08x %08x %08x %08x/%08x %s\n",
- thread_log[i].thread,
- thread_log[i].info1,
- thread_log[i].info2,
- thread_log[i].info3,
- thread_log[i].stamp.h,
- thread_log[i].stamp.l,
- thread_log[i].action);
- }
-}
-#endif /* MACH_KDB */
-
/*
* thread_block_reason:
*
- * Block the current thread if a wait has been asserted,
- * otherwise unconditionally yield the remainder of the
- * current quantum unless reason contains AST_BLOCK.
- *
- * If a continuation is specified, then thread_block will
+ * Forces a reschedule, blocking the caller if a wait
+ * has been asserted.
+ *
+ * If a continuation is specified, then thread_invoke will
* attempt to discard the thread's kernel stack. When the
* thread resumes, it will execute the continuation function
* on a new kernel stack.
ast_t reason)
{
register thread_t thread = current_thread();
- register processor_t myprocessor;
+ register processor_t processor;
register thread_t new_thread;
spl_t s;
check_simple_locks();
- machine_clock_assist();
-
s = splsched();
- if ((thread->funnel_state & TH_FN_OWNED) && !(reason & AST_PREEMPT)) {
- thread->funnel_state = TH_FN_REFUNNEL;
- KERNEL_DEBUG(
- 0x603242c | DBG_FUNC_NONE, thread->funnel_lock, 2, 0, 0, 0);
- funnel_unlock(thread->funnel_lock);
- }
+ if (!(reason & AST_PREEMPT))
+ funnel_release_check(thread, 2);
- myprocessor = current_processor();
+ processor = current_processor();
/* If we're explicitly yielding, force a subsequent quantum */
if (reason & AST_YIELD)
- myprocessor->slice_quanta = 0;
+ processor->timeslice = 0;
/* We're handling all scheduling AST's */
ast_off(AST_SCHEDULING);
thread_lock(thread);
- new_thread = thread_select(myprocessor);
+ new_thread = thread_select(processor);
assert(new_thread && thread_runnable(new_thread));
thread_unlock(thread);
while (!thread_invoke(thread, new_thread, reason, continuation)) {
thread_lock(thread);
- new_thread = thread_select(myprocessor);
+ new_thread = thread_select(processor);
assert(new_thread && thread_runnable(new_thread));
thread_unlock(thread);
}
- if (thread->funnel_state & TH_FN_REFUNNEL) {
- kern_return_t wait_result = thread->wait_result;
-
- thread->funnel_state = 0;
- KERNEL_DEBUG(
- 0x6032428 | DBG_FUNC_NONE, thread->funnel_lock, 5, 0, 0, 0);
- funnel_lock(thread->funnel_lock);
- KERNEL_DEBUG(
- 0x6032430 | DBG_FUNC_NONE, thread->funnel_lock, 5, 0, 0, 0);
- thread->funnel_state = TH_FN_OWNED;
- thread->wait_result = wait_result;
- }
-
+ funnel_refunnel_check(thread, 5);
splx(s);
return (thread->wait_result);
* thread_run:
*
* Switch directly from the current (old) thread to the
- * specified thread, handing off our quantum if possible.
+ * new thread, handing off our quantum if appropriate.
*
* New thread must be runnable, and not on a run queue.
*
- * Assumption:
- * at splsched.
+ * Called at splsched.
*/
int
thread_run(
assert(old_thread == current_thread());
- machine_clock_assist();
-
- if (old_thread->funnel_state & TH_FN_OWNED) {
- old_thread->funnel_state = TH_FN_REFUNNEL;
- KERNEL_DEBUG(
- 0x603242c | DBG_FUNC_NONE, old_thread->funnel_lock, 3, 0, 0, 0);
- funnel_unlock(old_thread->funnel_lock);
- }
+ funnel_release_check(old_thread, 3);
while (!thread_invoke(old_thread, new_thread, handoff, continuation)) {
- register processor_t myprocessor = current_processor();
+ register processor_t processor = current_processor();
thread_lock(old_thread);
- new_thread = thread_select(myprocessor);
+ new_thread = thread_select(processor);
thread_unlock(old_thread);
handoff = AST_NONE;
}
- /* if we fell thru */
- if (old_thread->funnel_state & TH_FN_REFUNNEL) {
- kern_return_t wait_result = old_thread->wait_result;
-
- old_thread->funnel_state = 0;
- KERNEL_DEBUG(
- 0x6032428 | DBG_FUNC_NONE, old_thread->funnel_lock, 6, 0, 0, 0);
- funnel_lock(old_thread->funnel_lock);
- KERNEL_DEBUG(
- 0x6032430 | DBG_FUNC_NONE, old_thread->funnel_lock, 6, 0, 0, 0);
- old_thread->funnel_state = TH_FN_OWNED;
- old_thread->wait_result = wait_result;
- }
+ funnel_refunnel_check(old_thread, 6);
return (old_thread->wait_result);
}
/*
- * Dispatches a running thread that is not on a runq.
+ * Dispatches a running thread that is not on a
+ * run queue.
+ *
* Called at splsched.
*/
void
case TH_RUN | TH_WAIT | TH_UNINT:
case TH_RUN | TH_WAIT:
{
- boolean_t reap, wake, callblock;
+ boolean_t term, wake, callout;
/*
* Waiting
*/
thread->sleep_stamp = sched_tick;
thread->state &= ~TH_RUN;
- hw_atomic_sub(&thread->processor_set->run_count, 1);
- callblock = thread->active_callout;
+
+ term = (thread->state & TH_TERMINATE)? TRUE: FALSE;
+ callout = thread->active_callout;
wake = thread->wake_active;
thread->wake_active = FALSE;
- reap = (thread->state & TH_TERMINATE)? TRUE: FALSE;
+
+ if (thread->sched_mode & TH_MODE_TIMESHARE)
+ pset_share_decr(thread->processor_set);
+ pset_run_decr(thread->processor_set);
thread_unlock(thread);
wake_unlock(thread);
- if (callblock)
+ if (callout)
call_thread_block();
if (wake)
thread_wakeup((event_t)&thread->wake_active);
- if (reap)
+ if (term)
thread_reaper_enqueue(thread);
return;
break;
default:
- panic("thread_dispatch: bad thread state 0x%x\n", thread->state);
+ panic("thread_dispatch: state 0x%x\n", thread->state);
}
thread_unlock(thread);
}
/*
- * Enqueue thread on run queue. Thread must be locked,
- * and not already be on a run queue. Returns TRUE iff
- * the particular queue level was empty beforehand.
+ * Enqueue thread on run queue. Thread must be locked,
+ * and not already be on a run queue. Returns TRUE
+ * if a preemption is indicated based on the state
+ * of the run queue.
+ *
+ * Run queue must be locked, see run_queue_remove()
+ * for more info.
*/
-boolean_t
+static boolean_t
run_queue_enqueue(
register run_queue_t rq,
register thread_t thread,
- boolean_t tail)
+ integer_t options)
{
register int whichq = thread->sched_pri;
register queue_t queue = &rq->queues[whichq];
assert(whichq >= MINPRI && whichq <= MAXPRI);
- simple_lock(&rq->lock);
assert(thread->runq == RUN_QUEUE_NULL);
if (queue_empty(queue)) {
enqueue_tail(queue, (queue_entry_t)thread);
setbit(MAXPRI - whichq, rq->bitmap);
- if (whichq > rq->highq)
+ if (whichq > rq->highq) {
rq->highq = whichq;
- result = TRUE;
+ result = TRUE;
+ }
}
else
- if (tail)
- enqueue_tail(queue, (queue_entry_t)thread);
- else
+ if (options & SCHED_HEADQ)
enqueue_head(queue, (queue_entry_t)thread);
+ else
+ enqueue_tail(queue, (queue_entry_t)thread);
thread->runq = rq;
if (thread->sched_mode & TH_MODE_PREEMPT)
rq->urgency++;
rq->count++;
-#if DEBUG
- thread_check(thread, rq);
-#endif /* DEBUG */
- simple_unlock(&rq->lock);
return (result);
}
-struct {
- uint32_t pset_idle_last,
- pset_idle_any,
- pset_self,
- pset_last,
- pset_other,
- bound_idle,
- bound_self,
- bound_other;
-} dispatch_counts;
-
/*
- * thread_setrun:
- *
- * Dispatch thread for execution, directly onto an idle
- * processor if possible. Else put on appropriate run
- * queue. (local if bound, else processor set)
- *
- * Thread must be locked.
- *
- * The tail parameter indicates the proper placement of
- * the thread on a run queue.
+ * Enqueue a thread for realtime execution, similar
+ * to above. Handles preemption directly.
*/
-void
-thread_setrun(
- register thread_t new_thread,
- boolean_t tail)
+static void
+realtime_schedule_insert(
+ register processor_set_t pset,
+ register thread_t thread)
{
- register processor_t processor;
- register processor_set_t pset;
- register thread_t thread;
- boolean_t try_preempt = FALSE;
- ast_t preempt = AST_BLOCK;
+ register run_queue_t rq = &pset->runq;
+ register int whichq = thread->sched_pri;
+ register queue_t queue = &rq->queues[whichq];
+ uint64_t deadline = thread->realtime.deadline;
+ boolean_t try_preempt = FALSE;
- assert(thread_runnable(new_thread));
-
- /*
- * Update priority if needed.
- */
- if (new_thread->sched_stamp != sched_tick)
- update_priority(new_thread);
+ assert(whichq >= BASEPRI_REALTIME && whichq <= MAXPRI);
+
+ assert(thread->runq == RUN_QUEUE_NULL);
+ if (queue_empty(queue)) {
+ enqueue_tail(queue, (queue_entry_t)thread);
+
+ setbit(MAXPRI - whichq, rq->bitmap);
+ if (whichq > rq->highq)
+ rq->highq = whichq;
+ try_preempt = TRUE;
+ }
+ else {
+ register thread_t entry = (thread_t)queue_first(queue);
+
+ while (TRUE) {
+ if ( queue_end(queue, (queue_entry_t)entry) ||
+ deadline < entry->realtime.deadline ) {
+ entry = (thread_t)queue_prev((queue_entry_t)entry);
+ break;
+ }
+
+ entry = (thread_t)queue_next((queue_entry_t)entry);
+ }
+
+ if ((queue_entry_t)entry == queue)
+ try_preempt = TRUE;
+
+ insque((queue_entry_t)thread, (queue_entry_t)entry);
+ }
+
+ thread->runq = rq;
+ assert(thread->sched_mode & TH_MODE_PREEMPT);
+ rq->count++; rq->urgency++;
+
+ if (try_preempt) {
+ register processor_t processor;
+
+ processor = current_processor();
+ if ( pset == processor->processor_set &&
+ (thread->sched_pri > processor->current_pri ||
+ deadline < processor->deadline ) ) {
+ dispatch_counts.realtime_self++;
+ simple_unlock(&pset->sched_lock);
+
+ ast_on(AST_PREEMPT | AST_URGENT);
+ return;
+ }
+
+ if ( pset->processor_count > 1 ||
+ pset != processor->processor_set ) {
+ processor_t myprocessor, lastprocessor;
+ queue_entry_t next;
+
+ myprocessor = processor;
+ processor = thread->last_processor;
+ if ( processor != myprocessor &&
+ processor != PROCESSOR_NULL &&
+ processor->processor_set == pset &&
+ processor->state == PROCESSOR_RUNNING &&
+ (thread->sched_pri > processor->current_pri ||
+ deadline < processor->deadline ) ) {
+ dispatch_counts.realtime_last++;
+ cause_ast_check(processor);
+ simple_unlock(&pset->sched_lock);
+ return;
+ }
+
+ lastprocessor = processor;
+ queue = &pset->active_queue;
+ processor = (processor_t)queue_first(queue);
+ while (!queue_end(queue, (queue_entry_t)processor)) {
+ next = queue_next((queue_entry_t)processor);
+
+ if ( processor != myprocessor &&
+ processor != lastprocessor &&
+ (thread->sched_pri > processor->current_pri ||
+ deadline < processor->deadline ) ) {
+ if (!queue_end(queue, next)) {
+ remqueue(queue, (queue_entry_t)processor);
+ enqueue_tail(queue, (queue_entry_t)processor);
+ }
+ dispatch_counts.realtime_other++;
+ cause_ast_check(processor);
+ simple_unlock(&pset->sched_lock);
+ return;
+ }
+
+ processor = (processor_t)next;
+ }
+ }
+ }
+
+ simple_unlock(&pset->sched_lock);
+}
+
+/*
+ * thread_setrun:
+ *
+ * Dispatch thread for execution, directly onto an idle
+ * processor if possible. Else put on appropriate run
+ * queue. (local if bound, else processor set)
+ *
+ * Thread must be locked.
+ */
+void
+thread_setrun(
+ register thread_t new_thread,
+ integer_t options)
+{
+ register processor_t processor;
+ register processor_set_t pset;
+ register thread_t thread;
+ ast_t preempt = (options & SCHED_PREEMPT)?
+ AST_PREEMPT: AST_NONE;
+
+ assert(thread_runnable(new_thread));
+
+ /*
+ * Update priority if needed.
+ */
+ if (new_thread->sched_stamp != sched_tick)
+ update_priority(new_thread);
/*
* Check for urgent preemption.
*/
if (new_thread->sched_mode & TH_MODE_PREEMPT)
- preempt |= AST_URGENT;
+ preempt = (AST_PREEMPT | AST_URGENT);
assert(new_thread->runq == RUN_QUEUE_NULL);
if ( pset->processor_count > 1 &&
processor != PROCESSOR_NULL &&
processor->state == PROCESSOR_IDLE ) {
- simple_lock(&processor->lock);
+ processor_lock(processor);
simple_lock(&pset->sched_lock);
if ( processor->processor_set == pset &&
processor->state == PROCESSOR_IDLE ) {
remqueue(&pset->idle_queue, (queue_entry_t)processor);
pset->idle_count--;
processor->next_thread = new_thread;
+ if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
+ processor->deadline = new_thread->realtime.deadline;
+ else
+ processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
+ dispatch_counts.idle_pset_last++;
simple_unlock(&pset->sched_lock);
- simple_unlock(&processor->lock);
+ processor_unlock(processor);
if (processor != current_processor())
machine_signal_idle(processor);
- dispatch_counts.pset_idle_last++;
return;
}
- simple_unlock(&processor->lock);
+ processor_unlock(processor);
}
else
simple_lock(&pset->sched_lock);
processor = (processor_t)dequeue_head(&pset->idle_queue);
pset->idle_count--;
processor->next_thread = new_thread;
+ if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
+ processor->deadline = new_thread->realtime.deadline;
+ else
+ processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
+ dispatch_counts.idle_pset_any++;
simple_unlock(&pset->sched_lock);
if (processor != current_processor())
machine_signal_idle(processor);
- dispatch_counts.pset_idle_any++;
return;
}
- /*
- * Place thread on run queue.
- */
- if (run_queue_enqueue(&pset->runq, new_thread, tail))
- try_preempt = TRUE;
+ if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
+ realtime_schedule_insert(pset, new_thread);
+ else {
+ if (!run_queue_enqueue(&pset->runq, new_thread, options))
+ preempt = AST_NONE;
- /*
- * Update the timesharing quanta.
- */
- pset_quanta_update(pset);
-
- /*
- * Preempt check.
- */
- processor = current_processor();
- thread = processor->cpu_data->active_thread;
- if (try_preempt) {
/*
- * First try the current processor
- * if it is a member of the correct
- * processor set.
+ * Update the timesharing quanta.
*/
- if ( pset == processor->processor_set &&
- csw_needed(thread, processor) ) {
- simple_unlock(&pset->sched_lock);
-
- ast_on(preempt);
- dispatch_counts.pset_self++;
- return;
- }
-
+ timeshare_quanta_update(pset);
+
/*
- * If that failed and we have other
- * processors available keep trying.
+ * Preempt check.
*/
- if ( pset->processor_count > 1 ||
- pset != processor->processor_set ) {
- queue_t active = &pset->active_queue;
- processor_t myprocessor, lastprocessor;
- queue_entry_t next;
-
+ if (preempt != AST_NONE) {
/*
- * Next try the last processor
- * dispatched on.
+ * First try the current processor
+ * if it is a member of the correct
+ * processor set.
*/
- myprocessor = processor;
- processor = new_thread->last_processor;
- if ( processor != myprocessor &&
- processor != PROCESSOR_NULL &&
- processor->processor_set == pset &&
- processor->state == PROCESSOR_RUNNING &&
- new_thread->sched_pri > processor->current_pri ) {
- cause_ast_check(processor);
+ processor = current_processor();
+ thread = processor->active_thread;
+ if ( pset == processor->processor_set &&
+ csw_needed(thread, processor) ) {
+ dispatch_counts.pset_self++;
simple_unlock(&pset->sched_lock);
- dispatch_counts.pset_last++;
+
+ ast_on(preempt);
return;
}
/*
- * Lastly, pick any other
- * available processor.
+ * If that failed and we have other
+ * processors available keep trying.
*/
- lastprocessor = processor;
- processor = (processor_t)queue_first(active);
- while (!queue_end(active, (queue_entry_t)processor)) {
- next = queue_next((queue_entry_t)processor);
-
+ if ( pset->processor_count > 1 ||
+ pset != processor->processor_set ) {
+ queue_t queue = &pset->active_queue;
+ processor_t myprocessor, lastprocessor;
+ queue_entry_t next;
+
+ /*
+ * Next try the last processor
+ * dispatched on.
+ */
+ myprocessor = processor;
+ processor = new_thread->last_processor;
if ( processor != myprocessor &&
- processor != lastprocessor &&
+ processor != PROCESSOR_NULL &&
+ processor->processor_set == pset &&
+ processor->state == PROCESSOR_RUNNING &&
new_thread->sched_pri > processor->current_pri ) {
- if (!queue_end(active, next)) {
- remqueue(active, (queue_entry_t)processor);
- enqueue_tail(active, (queue_entry_t)processor);
- }
+ dispatch_counts.pset_last++;
cause_ast_check(processor);
simple_unlock(&pset->sched_lock);
- dispatch_counts.pset_other++;
return;
}
- processor = (processor_t)next;
+ /*
+ * Lastly, pick any other
+ * available processor.
+ */
+ lastprocessor = processor;
+ processor = (processor_t)queue_first(queue);
+ while (!queue_end(queue, (queue_entry_t)processor)) {
+ next = queue_next((queue_entry_t)processor);
+
+ if ( processor != myprocessor &&
+ processor != lastprocessor &&
+ new_thread->sched_pri >
+ processor->current_pri ) {
+ if (!queue_end(queue, next)) {
+ remqueue(queue, (queue_entry_t)processor);
+ enqueue_tail(queue, (queue_entry_t)processor);
+ }
+ dispatch_counts.pset_other++;
+ cause_ast_check(processor);
+ simple_unlock(&pset->sched_lock);
+ return;
+ }
+
+ processor = (processor_t)next;
+ }
}
}
- }
- simple_unlock(&pset->sched_lock);
+ simple_unlock(&pset->sched_lock);
+ }
}
else {
/*
* Bound, can only run on bound processor. Have to lock
* processor here because it may not be the current one.
*/
- if (processor->state == PROCESSOR_IDLE) {
- simple_lock(&processor->lock);
- pset = processor->processor_set;
+ processor_lock(processor);
+ pset = processor->processor_set;
+ if (pset != PROCESSOR_SET_NULL) {
simple_lock(&pset->sched_lock);
if (processor->state == PROCESSOR_IDLE) {
remqueue(&pset->idle_queue, (queue_entry_t)processor);
pset->idle_count--;
processor->next_thread = new_thread;
+ processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
+ dispatch_counts.idle_bound++;
simple_unlock(&pset->sched_lock);
- simple_unlock(&processor->lock);
+ processor_unlock(processor);
if (processor != current_processor())
machine_signal_idle(processor);
- dispatch_counts.bound_idle++;
return;
}
- simple_unlock(&pset->sched_lock);
- simple_unlock(&processor->lock);
}
- if (run_queue_enqueue(&processor->runq, new_thread, tail))
- try_preempt = TRUE;
+ if (!run_queue_enqueue(&processor->runq, new_thread, options))
+ preempt = AST_NONE;
- if (processor == current_processor()) {
- if (try_preempt) {
- thread = processor->cpu_data->active_thread;
+ if (preempt != AST_NONE) {
+ if (processor == current_processor()) {
+ thread = processor->active_thread;
if (csw_needed(thread, processor)) {
- ast_on(preempt);
dispatch_counts.bound_self++;
+ ast_on(preempt);
}
}
- }
- else {
- if (try_preempt) {
- if ( processor->state == PROCESSOR_RUNNING &&
- new_thread->sched_pri > processor->current_pri ) {
- cause_ast_check(processor);
- dispatch_counts.bound_other++;
- return;
- }
- }
-
- if (processor->state == PROCESSOR_IDLE) {
- machine_signal_idle(processor);
- dispatch_counts.bound_idle++;
+ else
+ if ( processor->state == PROCESSOR_RUNNING &&
+ new_thread->sched_pri > processor->current_pri ) {
+ dispatch_counts.bound_other++;
+ cause_ast_check(processor);
}
}
+
+ if (pset != PROCESSOR_SET_NULL)
+ simple_unlock(&pset->sched_lock);
+
+ processor_unlock(processor);
}
}
/*
- * Called at splsched by a thread on itself.
+ * Check for a possible preemption point in
+ * the (current) thread.
+ *
+ * Called at splsched.
*/
ast_t
csw_check(
ast_t result = AST_NONE;
run_queue_t runq;
- if (first_quantum(processor)) {
+ if (first_timeslice(processor)) {
runq = &processor->processor_set->runq;
+ if (runq->highq >= BASEPRI_RTQUEUES)
+ return (AST_PREEMPT | AST_URGENT);
+
if (runq->highq > current_pri) {
if (runq->urgency > 0)
- return (AST_BLOCK | AST_URGENT);
+ return (AST_PREEMPT | AST_URGENT);
- result |= AST_BLOCK;
+ result |= AST_PREEMPT;
}
runq = &processor->runq;
if (runq->highq > current_pri) {
if (runq->urgency > 0)
- return (AST_BLOCK | AST_URGENT);
+ return (AST_PREEMPT | AST_URGENT);
- result |= AST_BLOCK;
+ result |= AST_PREEMPT;
}
}
else {
runq = &processor->processor_set->runq;
if (runq->highq >= current_pri) {
if (runq->urgency > 0)
- return (AST_BLOCK | AST_URGENT);
+ return (AST_PREEMPT | AST_URGENT);
- result |= AST_BLOCK;
+ result |= AST_PREEMPT;
}
runq = &processor->runq;
if (runq->highq >= current_pri) {
if (runq->urgency > 0)
- return (AST_BLOCK | AST_URGENT);
+ return (AST_PREEMPT | AST_URGENT);
- result |= AST_BLOCK;
+ result |= AST_PREEMPT;
}
}
return (result);
if (thread->state & TH_SUSP)
- result |= AST_BLOCK;
+ result |= AST_PREEMPT;
return (result);
}
/*
* set_sched_pri:
*
- * Set the current scheduled priority of the specified thread.
+ * Set the scheduled priority of the specified thread.
+ *
* This may cause the thread to change queues.
*
- * The thread *must* be locked by the caller.
+ * Thread must be locked.
*/
void
set_sched_pri(
thread_t thread,
int priority)
{
- register struct run_queue *rq = rem_runq(thread);
+ register struct run_queue *rq = run_queue_remove(thread);
if ( !(thread->sched_mode & TH_MODE_TIMESHARE) &&
(priority >= BASEPRI_PREEMPT ||
thread->sched_pri = priority;
if (rq != RUN_QUEUE_NULL)
- thread_setrun(thread, TAIL_Q);
+ thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
else
- if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) {
+ if (thread->state & TH_RUN) {
processor_t processor = thread->last_processor;
if (thread == current_thread()) {
}
else
if ( processor != PROCESSOR_NULL &&
- processor->cpu_data->active_thread == thread )
+ processor->active_thread == thread )
cause_ast_check(processor);
}
}
/*
- * rem_runq:
+ * run_queue_remove:
+ *
+ * Remove a thread from its current run queue and
+ * return the run queue if successful.
*
- * Remove a thread from its run queue.
- * The run queue that the process was on is returned
- * (or RUN_QUEUE_NULL if not on a run queue). Thread *must* be locked
- * before calling this routine. Unusual locking protocol on runq
- * field in thread structure makes this code interesting; see thread.h.
+ * Thread must be locked.
*/
run_queue_t
-rem_runq(
+run_queue_remove(
thread_t thread)
{
- register struct run_queue *rq;
+ register run_queue_t rq = thread->runq;
- rq = thread->runq;
/*
* If rq is RUN_QUEUE_NULL, the thread will stay out of the
- * run_queues because the caller locked the thread. Otherwise
- * the thread is on a runq, but could leave.
+ * run queues because the caller locked the thread. Otherwise
+ * the thread is on a run queue, but could be chosen for dispatch
+ * and removed.
*/
if (rq != RUN_QUEUE_NULL) {
- simple_lock(&rq->lock);
+ processor_set_t pset = thread->processor_set;
+ processor_t processor = thread->bound_processor;
+
+ /*
+ * The run queues are locked by the pset scheduling
+ * lock, except when a processor is off-line the
+ * local run queue is locked by the processor lock.
+ */
+ if (processor != PROCESSOR_NULL) {
+ processor_lock(processor);
+ pset = processor->processor_set;
+ }
+
+ if (pset != PROCESSOR_SET_NULL)
+ simple_lock(&pset->sched_lock);
+
if (rq == thread->runq) {
/*
- * Thread is in a runq and we have a lock on
- * that runq.
+ * Thread is on a run queue and we have a lock on
+ * that run queue.
*/
-#if DEBUG
- thread_check(thread, rq);
-#endif /* DEBUG */
remqueue(&rq->queues[0], (queue_entry_t)thread);
rq->count--;
if (thread->sched_mode & TH_MODE_PREEMPT)
clrbit(MAXPRI - thread->sched_pri, rq->bitmap);
rq->highq = MAXPRI - ffsbit(rq->bitmap);
}
+
thread->runq = RUN_QUEUE_NULL;
- simple_unlock(&rq->lock);
}
else {
/*
- * The thread left the runq before we could
- * lock the runq. It is not on a runq now, and
- * can't move again because this routine's
- * caller locked the thread.
+ * The thread left the run queue before we could
+ * lock the run queue.
*/
assert(thread->runq == RUN_QUEUE_NULL);
- simple_unlock(&rq->lock);
rq = RUN_QUEUE_NULL;
}
+
+ if (pset != PROCESSOR_SET_NULL)
+ simple_unlock(&pset->sched_lock);
+
+ if (processor != PROCESSOR_NULL)
+ processor_unlock(processor);
}
return (rq);
/*
* choose_thread:
*
- * Choose a thread to execute. The thread chosen is removed
- * from its run queue. Note that this requires only that the runq
- * lock be held.
- *
- * Strategy:
- * Check processor runq first; if anything found, run it.
- * Else check pset runq; if nothing found, return idle thread.
+ * Remove a thread to execute from the run queues
+ * and return it.
*
- * Second line of strategy is implemented by choose_pset_thread.
- *
- * Called with both the local & pset run queues locked, returned
- * unlocked.
+ * Called with pset scheduling lock held.
*/
-thread_t
+static thread_t
choose_thread(
- processor_t myprocessor)
+ processor_set_t pset,
+ processor_t processor)
{
- thread_t thread;
- register queue_t q;
register run_queue_t runq;
- processor_set_t pset;
+ register thread_t thread;
+ register queue_t q;
- runq = &myprocessor->runq;
- pset = myprocessor->processor_set;
+ runq = &processor->runq;
if (runq->count > 0 && runq->highq >= pset->runq.highq) {
- simple_unlock(&pset->runq.lock);
q = runq->queues + runq->highq;
-#if MACH_ASSERT
- if (!queue_empty(q)) {
-#endif /*MACH_ASSERT*/
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
- thread->runq = RUN_QUEUE_NULL;
- runq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- runq->urgency--;
- assert(runq->urgency >= 0);
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
- }
- simple_unlock(&runq->lock);
- return (thread);
-#if MACH_ASSERT
+
+ thread = (thread_t)q->next;
+ ((queue_entry_t)thread)->next->prev = q;
+ q->next = ((queue_entry_t)thread)->next;
+ thread->runq = RUN_QUEUE_NULL;
+ runq->count--;
+ if (thread->sched_mode & TH_MODE_PREEMPT)
+ runq->urgency--;
+ assert(runq->urgency >= 0);
+ if (queue_empty(q)) {
+ if (runq->highq != IDLEPRI)
+ clrbit(MAXPRI - runq->highq, runq->bitmap);
+ runq->highq = MAXPRI - ffsbit(runq->bitmap);
}
- panic("choose_thread");
-#endif /*MACH_ASSERT*/
- /*NOTREACHED*/
- }
- simple_unlock(&myprocessor->runq.lock);
- return (choose_pset_thread(myprocessor, pset));
-}
+ processor->deadline = UINT64_MAX;
-/*
- * choose_pset_thread: choose a thread from processor_set runq or
- * set processor idle and choose its idle thread.
- *
- * This routine chooses and removes a thread from the runq if there
- * is one (and returns it), else it sets the processor idle and
- * returns its idle thread.
- *
- * Called with both local & pset run queues locked, returned
- * unlocked.
- */
-thread_t
-choose_pset_thread(
- register processor_t myprocessor,
- processor_set_t pset)
-{
- register run_queue_t runq;
- register thread_t thread;
- register queue_t q;
-
- runq = &pset->runq;
- if (runq->count > 0) {
- q = runq->queues + runq->highq;
-#if MACH_ASSERT
- if (!queue_empty(q)) {
-#endif /*MACH_ASSERT*/
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
- thread->runq = RUN_QUEUE_NULL;
- runq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- runq->urgency--;
- assert(runq->urgency >= 0);
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
- }
- pset_quanta_update(pset);
- simple_unlock(&runq->lock);
- return (thread);
-#if MACH_ASSERT
- }
- panic("choose_pset_thread");
-#endif /*MACH_ASSERT*/
- /*NOTREACHED*/
+ return (thread);
}
- simple_unlock(&runq->lock);
- /*
- * Nothing is runnable, so set this processor idle if it
- * was running. If it was in an assignment or shutdown,
- * leave it alone. Return its idle thread.
- */
- simple_lock(&pset->sched_lock);
- if (myprocessor->state == PROCESSOR_RUNNING) {
- remqueue(&pset->active_queue, (queue_entry_t)myprocessor);
- myprocessor->state = PROCESSOR_IDLE;
+ runq = &pset->runq;
- if (myprocessor == master_processor)
- enqueue_tail(&pset->idle_queue, (queue_entry_t)myprocessor);
- else
- enqueue_head(&pset->idle_queue, (queue_entry_t)myprocessor);
+ assert(runq->count > 0);
+ q = runq->queues + runq->highq;
- pset->idle_count++;
+ thread = (thread_t)q->next;
+ ((queue_entry_t)thread)->next->prev = q;
+ q->next = ((queue_entry_t)thread)->next;
+ thread->runq = RUN_QUEUE_NULL;
+ runq->count--;
+ if (runq->highq >= BASEPRI_RTQUEUES)
+ processor->deadline = thread->realtime.deadline;
+ else
+ processor->deadline = UINT64_MAX;
+ if (thread->sched_mode & TH_MODE_PREEMPT)
+ runq->urgency--;
+ assert(runq->urgency >= 0);
+ if (queue_empty(q)) {
+ if (runq->highq != IDLEPRI)
+ clrbit(MAXPRI - runq->highq, runq->bitmap);
+ runq->highq = MAXPRI - ffsbit(runq->bitmap);
}
- simple_unlock(&pset->sched_lock);
- return (myprocessor->idle_thread);
+ timeshare_quanta_update(pset);
+
+ return (thread);
}
/*
void
idle_thread_continue(void)
{
- register processor_t myprocessor;
+ register processor_t processor;
register volatile thread_t *threadp;
register volatile int *gcount;
register volatile int *lcount;
int mycpu;
mycpu = cpu_number();
- myprocessor = cpu_to_processor(mycpu);
- threadp = (volatile thread_t *) &myprocessor->next_thread;
- lcount = (volatile int *) &myprocessor->runq.count;
+ processor = cpu_to_processor(mycpu);
+ threadp = (volatile thread_t *) &processor->next_thread;
+ lcount = (volatile int *) &processor->runq.count;
- for (;;) {
- gcount = (volatile int *)&myprocessor->processor_set->runq.count;
+ gcount = (volatile int *)&processor->processor_set->runq.count;
- (void)splsched();
- while ( (*threadp == (volatile thread_t)THREAD_NULL) &&
- (*gcount == 0) && (*lcount == 0) ) {
-
- /* check for ASTs while we wait */
- if (need_ast[mycpu] &~ ( AST_SCHEDULING | AST_BSD )) {
- /* don't allow scheduling ASTs */
- need_ast[mycpu] &= ~( AST_SCHEDULING | AST_BSD );
- ast_taken(AST_ALL, TRUE); /* back at spllo */
- }
- else
-#ifdef __ppc__
- machine_idle();
-#else
- (void)spllo();
-#endif
- machine_clock_assist();
+ (void)splsched();
+ while ( (*threadp == (volatile thread_t)THREAD_NULL) &&
+ (*gcount == 0) && (*lcount == 0) ) {
- (void)splsched();
+ /* check for ASTs while we wait */
+ if (need_ast[mycpu] &~ ( AST_SCHEDULING | AST_BSD )) {
+ /* no ASTs for us */
+ need_ast[mycpu] &= AST_NONE;
+ (void)spllo();
}
+ else
+ machine_idle();
+
+ (void)splsched();
+ }
+
+ /*
+ * This is not a switch statement to avoid the
+ * bounds checking code in the common case.
+ */
+ pset = processor->processor_set;
+ simple_lock(&pset->sched_lock);
+ state = processor->state;
+ if (state == PROCESSOR_DISPATCHING) {
/*
- * This is not a switch statement to avoid the
- * bounds checking code in the common case.
+ * Commmon case -- cpu dispatched.
*/
- pset = myprocessor->processor_set;
- simple_lock(&pset->sched_lock);
-retry:
- state = myprocessor->state;
- if (state == PROCESSOR_DISPATCHING) {
- /*
- * Commmon case -- cpu dispatched.
- */
- new_thread = *threadp;
- *threadp = (volatile thread_t) THREAD_NULL;
- myprocessor->state = PROCESSOR_RUNNING;
- enqueue_tail(&pset->active_queue, (queue_entry_t)myprocessor);
- simple_unlock(&pset->sched_lock);
+ new_thread = *threadp;
+ *threadp = (volatile thread_t) THREAD_NULL;
+ processor->state = PROCESSOR_RUNNING;
+ enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
+
+ if ( pset->runq.highq >= BASEPRI_RTQUEUES &&
+ new_thread->sched_pri >= BASEPRI_RTQUEUES ) {
+ register run_queue_t runq = &pset->runq;
+ register queue_t q;
+
+ q = runq->queues + runq->highq;
+ if (((thread_t)q->next)->realtime.deadline <
+ processor->deadline) {
+ thread_t thread = new_thread;
+
+ new_thread = (thread_t)q->next;
+ ((queue_entry_t)new_thread)->next->prev = q;
+ q->next = ((queue_entry_t)new_thread)->next;
+ new_thread->runq = RUN_QUEUE_NULL;
+ processor->deadline = new_thread->realtime.deadline;
+ assert(new_thread->sched_mode & TH_MODE_PREEMPT);
+ runq->count--; runq->urgency--;
+ if (queue_empty(q)) {
+ if (runq->highq != IDLEPRI)
+ clrbit(MAXPRI - runq->highq, runq->bitmap);
+ runq->highq = MAXPRI - ffsbit(runq->bitmap);
+ }
+ dispatch_counts.missed_realtime++;
+ simple_unlock(&pset->sched_lock);
- if ( myprocessor->runq.highq > new_thread->sched_pri ||
- pset->runq.highq > new_thread->sched_pri ) {
- thread_lock(new_thread);
- thread_setrun(new_thread, HEAD_Q);
- thread_unlock(new_thread);
+ thread_lock(thread);
+ thread_setrun(thread, SCHED_HEADQ);
+ thread_unlock(thread);
- counter(c_idle_thread_block++);
- thread_block(idle_thread_continue);
- /* NOTREACHED */
- }
- else {
counter(c_idle_thread_handoff++);
- thread_run(myprocessor->idle_thread,
+ thread_run(processor->idle_thread,
idle_thread_continue, new_thread);
- /* NOTREACHED */
+ /*NOTREACHED*/
}
- }
- else
- if (state == PROCESSOR_IDLE) {
- if (myprocessor->state != PROCESSOR_IDLE) {
- /*
- * Something happened, try again.
- */
- goto retry;
- }
- /*
- * Processor was not dispatched (Rare).
- * Set it running again.
- */
- no_dispatch_count++;
- pset->idle_count--;
- remqueue(&pset->idle_queue, (queue_entry_t)myprocessor);
- myprocessor->state = PROCESSOR_RUNNING;
- enqueue_tail(&pset->active_queue, (queue_entry_t)myprocessor);
simple_unlock(&pset->sched_lock);
- counter(c_idle_thread_block++);
- thread_block(idle_thread_continue);
- /* NOTREACHED */
+ counter(c_idle_thread_handoff++);
+ thread_run(processor->idle_thread,
+ idle_thread_continue, new_thread);
+ /*NOTREACHED*/
}
- else
- if ( state == PROCESSOR_ASSIGN ||
- state == PROCESSOR_SHUTDOWN ) {
- /*
- * Changing processor sets, or going off-line.
- * Release next_thread if there is one. Actual
- * thread to run is on a runq.
- */
- if ((new_thread = (thread_t)*threadp) != THREAD_NULL) {
- *threadp = (volatile thread_t) THREAD_NULL;
- simple_unlock(&pset->sched_lock);
- thread_lock(new_thread);
- thread_setrun(new_thread, TAIL_Q);
- thread_unlock(new_thread);
- }
- else
- simple_unlock(&pset->sched_lock);
+ if ( processor->runq.highq > new_thread->sched_pri ||
+ pset->runq.highq > new_thread->sched_pri ) {
+ thread_t thread = new_thread;
+
+ new_thread = choose_thread(pset, processor);
+ dispatch_counts.missed_other++;
+ simple_unlock(&pset->sched_lock);
+
+ thread_lock(thread);
+ thread_setrun(thread, SCHED_HEADQ);
+ thread_unlock(thread);
- counter(c_idle_thread_block++);
- thread_block(idle_thread_continue);
+ counter(c_idle_thread_handoff++);
+ thread_run(processor->idle_thread,
+ idle_thread_continue, new_thread);
/* NOTREACHED */
}
else {
simple_unlock(&pset->sched_lock);
- panic("idle_thread: bad processor state %d\n", cpu_state(mycpu));
+ counter(c_idle_thread_handoff++);
+ thread_run(processor->idle_thread,
+ idle_thread_continue, new_thread);
+ /* NOTREACHED */
}
+ }
+ else
+ if (state == PROCESSOR_IDLE) {
+ /*
+ * Processor was not dispatched (Rare).
+ * Set it running again and force a
+ * reschedule.
+ */
+ no_dispatch_count++;
+ pset->idle_count--;
+ remqueue(&pset->idle_queue, (queue_entry_t)processor);
+ processor->state = PROCESSOR_RUNNING;
+ enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
+ simple_unlock(&pset->sched_lock);
- (void)spllo();
+ counter(c_idle_thread_block++);
+ thread_block(idle_thread_continue);
+ /* NOTREACHED */
}
+ else
+ if (state == PROCESSOR_SHUTDOWN) {
+ /*
+ * Going off-line. Force a
+ * reschedule.
+ */
+ if ((new_thread = (thread_t)*threadp) != THREAD_NULL) {
+ *threadp = (volatile thread_t) THREAD_NULL;
+ processor->deadline = UINT64_MAX;
+ simple_unlock(&pset->sched_lock);
+
+ thread_lock(new_thread);
+ thread_setrun(new_thread, SCHED_HEADQ);
+ thread_unlock(new_thread);
+ }
+ else
+ simple_unlock(&pset->sched_lock);
+
+ counter(c_idle_thread_block++);
+ thread_block(idle_thread_continue);
+ /* NOTREACHED */
+ }
+
+ simple_unlock(&pset->sched_lock);
+
+ panic("idle_thread: state %d\n", cpu_state(mycpu));
+ /*NOTREACHED*/
}
void
idle_thread(void)
{
- thread_t self = current_thread();
- spl_t s;
-
- stack_privilege(self);
-
- s = splsched();
- thread_lock(self);
- self->priority = IDLEPRI;
- set_sched_pri(self, self->priority);
- thread_unlock(self);
- splx(s);
-
counter(c_idle_thread_block++);
thread_block(idle_thread_continue);
/*NOTREACHED*/
}
-static uint64_t sched_tick_interval, sched_tick_deadline;
+static uint64_t sched_tick_deadline;
void sched_tick_thread(void);
void
sched_tick_init(void)
{
- kernel_thread_with_priority(
- kernel_task, MAXPRI_STANDARD,
- sched_tick_thread, TRUE, TRUE);
+ kernel_thread_with_priority(sched_tick_thread, MAXPRI_STANDARD);
}
/*
* sched_tick_thread
*
- * Update the priorities of all threads periodically.
+ * Perform periodic bookkeeping functions about ten
+ * times per second.
*/
void
sched_tick_thread_continue(void)
int new_usec;
#endif /* SIMPLE_CLOCK */
- clock_get_uptime(&abstime);
+ abstime = mach_absolute_time();
sched_tick++; /* age usage one more time */
#if SIMPLE_CLOCK
compute_mach_factor();
/*
- * Scan the run queues for runnable threads that need to
- * have their priorities recalculated.
+ * Scan the run queues for timesharing threads which
+ * may need to have their priorities recalculated.
*/
do_thread_scan();
void
sched_tick_thread(void)
{
- thread_t self = current_thread();
- natural_t rate;
- spl_t s;
-
- stack_privilege(self);
-
- rate = (1000 >> SCHED_TICK_SHIFT);
- clock_interval_to_absolutetime_interval(rate, USEC_PER_SEC,
- &sched_tick_interval);
- clock_get_uptime(&sched_tick_deadline);
+ sched_tick_deadline = mach_absolute_time();
thread_block(sched_tick_thread_continue);
/*NOTREACHED*/
}
-#define MAX_STUCK_THREADS 128
-
/*
- * do_thread_scan: scan for stuck threads. A thread is stuck if
- * it is runnable but its priority is so low that it has not
- * run for several seconds. Its priority should be higher, but
- * won't be until it runs and calls update_priority. The scanner
- * finds these threads and does the updates.
+ * do_thread_scan:
+ *
+ * Scan the run queues for timesharing threads which need
+ * to be aged, possibily adjusting their priorities upwards.
*
* Scanner runs in two passes. Pass one squirrels likely
- * thread ids away in an array (takes out references for them).
+ * thread away in an array (takes out references for them).
* Pass two does the priority updates. This is necessary because
* the run queue lock is required for the candidate scan, but
* cannot be held during updates.
* but restart logic is included.
*
*/
-thread_t stuck_threads[MAX_STUCK_THREADS];
-int stuck_count = 0;
+
+#define MAX_STUCK_THREADS 128
+
+static thread_t stuck_threads[MAX_STUCK_THREADS];
+static int stuck_count = 0;
/*
* do_runq_scan is the guts of pass 1. It scans a runq for
* stuck threads. A boolean is returned indicating whether
* a retry is needed.
*/
-boolean_t
+static boolean_t
do_runq_scan(
run_queue_t runq)
{
register queue_t q;
register thread_t thread;
register int count;
- spl_t s;
boolean_t result = FALSE;
- s = splsched();
- simple_lock(&runq->lock);
if ((count = runq->count) > 0) {
q = runq->queues + runq->highq;
while (count > 0) {
queue_iterate(q, thread, thread_t, links) {
- if ( !(thread->state & (TH_WAIT|TH_SUSP)) &&
+ if ( thread->sched_stamp != sched_tick &&
(thread->sched_mode & TH_MODE_TIMESHARE) ) {
- if (thread->sched_stamp != sched_tick) {
+ /*
+ * Stuck, save its id for later.
+ */
+ if (stuck_count == MAX_STUCK_THREADS) {
/*
- * Stuck, save its id for later.
+ * !@#$% No more room.
*/
- if (stuck_count == MAX_STUCK_THREADS) {
- /*
- * !@#$% No more room.
- */
- simple_unlock(&runq->lock);
- splx(s);
-
- return (TRUE);
- }
+ return (TRUE);
+ }
- /*
- * Inline version of thread_reference
- * XXX - lock ordering problem here:
- * thread locks should be taken before runq
- * locks: just try and get the thread's locks
- * and ignore this thread if we fail, we might
- * have better luck next time.
- */
- if (thread_lock_try(thread)) {
- thread->ref_count++;
- thread_unlock(thread);
- stuck_threads[stuck_count++] = thread;
- }
- else
- result = TRUE;
+ if (thread_lock_try(thread)) {
+ thread->ref_count++;
+ thread_unlock(thread);
+ stuck_threads[stuck_count++] = thread;
}
+ else
+ result = TRUE;
}
count--;
q--;
}
}
- simple_unlock(&runq->lock);
- splx(s);
return (result);
}
boolean_t thread_scan_enabled = TRUE;
-void
+static void
do_thread_scan(void)
{
register boolean_t restart_needed = FALSE;
return;
do {
+ s = splsched();
+ simple_lock(&pset->sched_lock);
restart_needed = do_runq_scan(&pset->runq);
+ simple_unlock(&pset->sched_lock);
+
if (!restart_needed) {
- simple_lock(&pset->processors_lock);
+ simple_lock(&pset->sched_lock);
processor = (processor_t)queue_first(&pset->processors);
while (!queue_end(&pset->processors, (queue_entry_t)processor)) {
if (restart_needed = do_runq_scan(&processor->runq))
processor = (processor_t)queue_next(&processor->processors);
}
- simple_unlock(&pset->processors_lock);
+ simple_unlock(&pset->sched_lock);
}
+ splx(s);
/*
* Ok, we now have a collection of candidates -- fix them.
*/
while (stuck_count > 0) {
+ boolean_t idle_thread;
+
thread = stuck_threads[--stuck_count];
stuck_threads[stuck_count] = THREAD_NULL;
+
s = splsched();
thread_lock(thread);
- if ( (thread->sched_mode & TH_MODE_TIMESHARE) ||
- (thread->state & TH_IDLE) ) {
- if ( !(thread->state & (TH_WAIT|TH_SUSP)) &&
- thread->sched_stamp != sched_tick )
- update_priority(thread);
- }
+ idle_thread = (thread->state & TH_IDLE) != 0;
+ if ( !(thread->state & (TH_WAIT|TH_SUSP)) &&
+ thread->sched_stamp != sched_tick )
+ update_priority(thread);
thread_unlock(thread);
splx(s);
- if (!(thread->state & TH_IDLE))
+
+ if (!idle_thread)
thread_deallocate(thread);
}
#if DEBUG
-
static boolean_t
thread_runnable(
thread_t thread)
{
return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN);
}
-
-void
-dump_processor_set(
- processor_set_t ps)
-{
- printf("processor_set: %08x\n",ps);
- printf("idle_queue: %08x %08x, idle_count: 0x%x\n",
- ps->idle_queue.next,ps->idle_queue.prev,ps->idle_count);
- printf("processors: %08x %08x, processor_count: 0x%x\n",
- ps->processors.next,ps->processors.prev,ps->processor_count);
- printf("tasks: %08x %08x, task_count: 0x%x\n",
- ps->tasks.next,ps->tasks.prev,ps->task_count);
- printf("threads: %08x %08x, thread_count: 0x%x\n",
- ps->threads.next,ps->threads.prev,ps->thread_count);
- printf("ref_count: 0x%x, active: %x\n",
- ps->ref_count,ps->active);
- printf("pset_self: %08x, pset_name_self: %08x\n",ps->pset_self, ps->pset_name_self);
- printf("set_quanta: 0x%x\n", ps->set_quanta);
-}
-
-#define processor_state(s) (((s)>PROCESSOR_SHUTDOWN)?"*unknown*":states[s])
-
-void
-dump_processor(
- processor_t p)
-{
- char *states[]={"OFF_LINE","RUNNING","IDLE","DISPATCHING",
- "ASSIGN","SHUTDOWN"};
-
- printf("processor: %08x\n",p);
- printf("processor_queue: %08x %08x\n",
- p->processor_queue.next,p->processor_queue.prev);
- printf("state: %8s, next_thread: %08x, idle_thread: %08x\n",
- processor_state(p->state), p->next_thread, p->idle_thread);
- printf("slice_quanta: %x\n", p->slice_quanta);
- printf("processor_set: %08x, processor_set_next: %08x\n",
- p->processor_set, p->processor_set_next);
- printf("processors: %08x %08x\n", p->processors.next,p->processors.prev);
- printf("processor_self: %08x, slot_num: 0x%x\n", p->processor_self, p->slot_num);
-}
-
-void
-dump_run_queue_struct(
- run_queue_t rq)
-{
- char dump_buf[80];
- int i;
-
- for( i=0; i < NRQS; ) {
- int j;
-
- printf("%6s",(i==0)?"runq:":"");
- for( j=0; (j<8) && (i < NRQS); j++,i++ ) {
- if( rq->queues[i].next == &rq->queues[i] )
- printf( " --------");
- else
- printf(" %08x",rq->queues[i].next);
- }
- printf("\n");
- }
- for( i=0; i < NRQBM; ) {
- register unsigned int mask;
- char *d=dump_buf;
-
- mask = ~0;
- mask ^= (mask>>1);
-
- do {
- *d++ = ((rq->bitmap[i]&mask)?'r':'e');
- mask >>=1;
- } while( mask );
- *d = '\0';
- printf("%8s%s\n",((i==0)?"bitmap:":""),dump_buf);
- i++;
- }
- printf("highq: 0x%x, count: %u\n", rq->highq, rq->count);
-}
-
-void
-dump_run_queues(
- run_queue_t runq)
-{
- register queue_t q1;
- register int i;
- register queue_entry_t e;
-
- q1 = runq->queues;
- for (i = 0; i < NRQS; i++) {
- if (q1->next != q1) {
- int t_cnt;
-
- printf("[%u]",i);
- for (t_cnt=0, e = q1->next; e != q1; e = e->next) {
- printf("\t0x%08x",e);
- if( (t_cnt = ++t_cnt%4) == 0 )
- printf("\n");
- }
- if( t_cnt )
- printf("\n");
- }
- /* else
- printf("[%u]\t<empty>\n",i);
- */
- q1++;
- }
-}
-
-void
-checkrq(
- run_queue_t rq,
- char *msg)
-{
- register queue_t q1;
- register int i, j;
- register queue_entry_t e;
- register int highq;
-
- highq = NRQS;
- j = 0;
- q1 = rq->queues;
- for (i = MAXPRI; i >= 0; i--) {
- if (q1->next == q1) {
- if (q1->prev != q1) {
- panic("checkrq: empty at %s", msg);
- }
- }
- else {
- if (highq == -1)
- highq = i;
-
- for (e = q1->next; e != q1; e = e->next) {
- j++;
- if (e->next->prev != e)
- panic("checkrq-2 at %s", msg);
- if (e->prev->next != e)
- panic("checkrq-3 at %s", msg);
- }
- }
- q1++;
- }
- if (j != rq->count)
- panic("checkrq: count wrong at %s", msg);
- if (rq->count != 0 && highq > rq->highq)
- panic("checkrq: highq wrong at %s", msg);
-}
-
-void
-thread_check(
- register thread_t thread,
- register run_queue_t rq)
-{
- register int whichq = thread->sched_pri;
- register queue_entry_t queue, entry;
-
- if (whichq < MINPRI || whichq > MAXPRI)
- panic("thread_check: bad pri");
-
- queue = &rq->queues[whichq];
- entry = queue_first(queue);
- while (!queue_end(queue, entry)) {
- if (entry == (queue_entry_t)thread)
- return;
-
- entry = queue_next(entry);
- }
-
- panic("thread_check: not found");
-}
-
#endif /* DEBUG */
#if MACH_KDB
#endif /* MACH_COUNTERS */
db_indent -= 2;
}
+
+#include <ddb/db_output.h>
+void db_show_thread_log(void);
+
+void
+db_show_thread_log(void)
+{
+}
#endif /* MACH_KDB */