/*
- * Copyright (c) 2003 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+
+/*
+ * Here's what to do if you want to add a new routine to the comm page:
+ *
+ * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
+ * being careful to reserve room for future expansion.
+ *
+ * 2. Write one or more versions of the routine, each with it's own
+ * commpage_descriptor. The tricky part is getting the "special",
+ * "musthave", and "canthave" fields right, so that exactly one
+ * version of the routine is selected for every machine.
+ * The source files should be in osfmk/i386/commpage/.
+ *
+ * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
+ * array in osfmk/i386/commpage/commpage_asm.s. There are two
+ * arrays, one for the 32-bit and one for the 64-bit commpage.
+ *
+ * 4. Write the code in Libc to use the new routine.
*/
+#include <mach/mach_types.h>
+#include <mach/machine.h>
+#include <mach/vm_map.h>
+#include <mach/mach_vm.h>
+#include <mach/machine.h>
+#include <i386/cpuid.h>
+#include <i386/tsc.h>
+#include <i386/rtclock_protos.h>
+#include <i386/cpu_data.h>
+#include <i386/machine_routines.h>
+#include <i386/misc_protos.h>
+#include <i386/cpuid.h>
#include <machine/cpu_capabilities.h>
#include <machine/commpage.h>
+#include <machine/pmap.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_map.h>
+
+#include <ipc/ipc_port.h>
+
+#include <kern/page_decrypt.h>
+#include <kern/processor.h>
+
+/* the lists of commpage routines are in commpage_asm.s */
+extern commpage_descriptor* commpage_32_routines[];
+extern commpage_descriptor* commpage_64_routines[];
+
+extern vm_map_t commpage32_map; // the shared submap, set up in vm init
+extern vm_map_t commpage64_map; // the shared submap, set up in vm init
+
+char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
+char *commPagePtr64 = NULL; // ...and of 64-bit commpage
+uint32_t _cpu_capabilities = 0; // define the capability vector
+
+int noVMX = 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
+
+typedef uint32_t commpage_address_t;
-int _cpu_capabilities = 0; /* define the capability vector */
+static commpage_address_t next; // next available address in comm page
+static commpage_address_t cur_routine; // comm page address of "current" routine
+static boolean_t matched; // true if we've found a match for "current" routine
+
+static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
+static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
+
+static commpage_time_data *time_data32 = NULL;
+static commpage_time_data *time_data64 = NULL;
+
+decl_simple_lock_data(static,commpage_active_cpus_lock);
+
+/* Allocate the commpage and add to the shared submap created by vm:
+ * 1. allocate a page in the kernel map (RW)
+ * 2. wire it down
+ * 3. make a memory entry out of it
+ * 4. map that entry into the shared comm region map (R-only)
+ */
+
+static void*
+commpage_allocate(
+ vm_map_t submap, // commpage32_map or commpage_map64
+ size_t area_used ) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
+{
+ vm_offset_t kernel_addr = 0; // address of commpage in kernel map
+ vm_offset_t zero = 0;
+ vm_size_t size = area_used; // size actually populated
+ vm_map_entry_t entry;
+ ipc_port_t handle;
+
+ if (submap == NULL)
+ panic("commpage submap is null");
+
+ if (vm_map(kernel_map,&kernel_addr,area_used,0,VM_FLAGS_ANYWHERE,NULL,0,FALSE,VM_PROT_ALL,VM_PROT_ALL,VM_INHERIT_NONE))
+ panic("cannot allocate commpage");
+
+ if (vm_map_wire(kernel_map,kernel_addr,kernel_addr+area_used,VM_PROT_DEFAULT,FALSE))
+ panic("cannot wire commpage");
+
+ /*
+ * Now that the object is created and wired into the kernel map, mark it so that no delay
+ * copy-on-write will ever be performed on it as a result of mapping it into user-space.
+ * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
+ * that would be a real disaster.
+ *
+ * JMM - What we really need is a way to create it like this in the first place.
+ */
+ if (!vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr), &entry) || entry->is_sub_map)
+ panic("cannot find commpage entry");
+ entry->object.vm_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
+
+ if (mach_make_memory_entry( kernel_map, // target map
+ &size, // size
+ kernel_addr, // offset (address in kernel map)
+ VM_PROT_ALL, // map it RWX
+ &handle, // this is the object handle we get
+ NULL )) // parent_entry (what is this?)
+ panic("cannot make entry for commpage");
+
+ if (vm_map_64( submap, // target map (shared submap)
+ &zero, // address (map into 1st page in submap)
+ area_used, // size
+ 0, // mask
+ VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
+ handle, // port is the memory entry we just made
+ 0, // offset (map 1st page in memory entry)
+ FALSE, // copy
+ VM_PROT_READ|VM_PROT_EXECUTE, // cur_protection (R-only in user map)
+ VM_PROT_READ|VM_PROT_EXECUTE, // max_protection
+ VM_INHERIT_SHARE )) // inheritance
+ panic("cannot map commpage");
+
+ ipc_port_release(handle);
+
+ // Initialize the text section of the commpage with INT3
+ char *commpage_ptr = (char*)(intptr_t)kernel_addr;
+ vm_size_t i;
+ for( i = _COMM_PAGE_TEXT_START - _COMM_PAGE_START_ADDRESS; i < size; i++ )
+ // This is the hex for the X86 opcode INT3
+ commpage_ptr[i] = 0xCC;
+
+ return (void*)(intptr_t)kernel_addr; // return address in kernel map
+}
-void commpage_populate( void ) {
+/* Get address (in kernel map) of a commpage field. */
- /* no commpage on Intel yet */
+static void*
+commpage_addr_of(
+ commpage_address_t addr_at_runtime )
+{
+ return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
+}
+
+/* Determine number of CPUs on this system. We cannot rely on
+ * machine_info.max_cpus this early in the boot.
+ */
+static int
+commpage_cpus( void )
+{
+ int cpus;
+
+ cpus = ml_get_max_cpus(); // NB: this call can block
+
+ if (cpus == 0)
+ panic("commpage cpus==0");
+ if (cpus > 0xFF)
+ cpus = 0xFF;
+
+ return cpus;
+}
+
+/* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
+
+static void
+commpage_init_cpu_capabilities( void )
+{
+ uint32_t bits;
+ int cpus;
+ ml_cpu_info_t cpu_info;
+
+ bits = 0;
+ ml_cpu_get_info(&cpu_info);
+
+ switch (cpu_info.vector_unit) {
+ case 9:
+ bits |= kHasAVX1_0;
+ /* fall thru */
+ case 8:
+ bits |= kHasSSE4_2;
+ /* fall thru */
+ case 7:
+ bits |= kHasSSE4_1;
+ /* fall thru */
+ case 6:
+ bits |= kHasSupplementalSSE3;
+ /* fall thru */
+ case 5:
+ bits |= kHasSSE3;
+ /* fall thru */
+ case 4:
+ bits |= kHasSSE2;
+ /* fall thru */
+ case 3:
+ bits |= kHasSSE;
+ /* fall thru */
+ case 2:
+ bits |= kHasMMX;
+ default:
+ break;
+ }
+ switch (cpu_info.cache_line_size) {
+ case 128:
+ bits |= kCache128;
+ break;
+ case 64:
+ bits |= kCache64;
+ break;
+ case 32:
+ bits |= kCache32;
+ break;
+ default:
+ break;
+ }
+ cpus = commpage_cpus(); // how many CPUs do we have
+
+ if (cpus == 1)
+ bits |= kUP;
+
+ bits |= (cpus << kNumCPUsShift);
+
+ bits |= kFastThreadLocalStorage; // we use %gs for TLS
+
+ if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
+ bits |= k64Bit;
+
+ if (tscFreq <= SLOW_TSC_THRESHOLD) /* is TSC too slow for _commpage_nanotime? */
+ bits |= kSlow;
+
+ if (cpuid_features() & CPUID_FEATURE_AES)
+ bits |= kHasAES;
+
+ _cpu_capabilities = bits; // set kernel version for use by drivers etc
+}
+
+int
+_get_cpu_capabilities(void)
+{
+ return _cpu_capabilities;
+}
+
+/* Copy data into commpage. */
+
+static void
+commpage_stuff(
+ commpage_address_t address,
+ const void *source,
+ int length )
+{
+ void *dest = commpage_addr_of(address);
+
+ if (address < next)
+ panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
+
+ bcopy(source,dest,length);
+
+ next = address + length;
+}
+
+/* Copy a routine into comm page if it matches running machine.
+ */
+static void
+commpage_stuff_routine(
+ commpage_descriptor *rd )
+{
+ uint32_t must,cant;
+
+ if (rd->commpage_address != cur_routine) {
+ if ((cur_routine!=0) && (matched==0))
+ panic("commpage no match for last, next address %08x", rd->commpage_address);
+ cur_routine = rd->commpage_address;
+ matched = 0;
+ }
+
+ must = _cpu_capabilities & rd->musthave;
+ cant = _cpu_capabilities & rd->canthave;
+ if ((must == rd->musthave) && (cant == 0)) {
+ if (matched)
+ panic("commpage multiple matches for address %08x", rd->commpage_address);
+ matched = 1;
+
+ commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
+ }
}
+
+/* Fill in the 32- or 64-bit commpage. Called once for each.
+ */
+
+static void
+commpage_populate_one(
+ vm_map_t submap, // commpage32_map or compage64_map
+ char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
+ size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
+ commpage_address_t base_offset, // will become commPageBaseOffset
+ commpage_descriptor** commpage_routines, // list of routine ptrs for this commpage
+ commpage_time_data** time_data, // &time_data32 or &time_data64
+ const char* signature ) // "commpage 32-bit" or "commpage 64-bit"
+{
+ uint8_t c1;
+ short c2;
+ int c4;
+ uint64_t c8;
+ uint32_t cfamily;
+ commpage_descriptor **rd;
+ short version = _COMM_PAGE_THIS_VERSION;
+
+ next = 0;
+ cur_routine = 0;
+ commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used );
+ *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
+ commPageBaseOffset = base_offset;
+
+ *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
+
+ /* Stuff in the constants. We move things into the comm page in strictly
+ * ascending order, so we can check for overlap and panic if so.
+ */
+ commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)strlen(signature));
+ commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
+ commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(int));
+
+ c2 = 32; // default
+ if (_cpu_capabilities & kCache64)
+ c2 = 64;
+ else if (_cpu_capabilities & kCache128)
+ c2 = 128;
+ commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
+
+ c4 = MP_SPIN_TRIES;
+ commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
+
+ /* machine_info valid after ml_get_max_cpus() */
+ c1 = machine_info.physical_cpu_max;
+ commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
+ c1 = machine_info.logical_cpu_max;
+ commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
+
+ c8 = ml_cpu_cache_size(0);
+ commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
+
+ cfamily = cpuid_info()->cpuid_cpufamily;
+ commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
+
+ for( rd = commpage_routines; *rd != NULL ; rd++ )
+ commpage_stuff_routine(*rd);
+
+ if (!matched)
+ panic("commpage no match on last routine");
+
+ if (next > _COMM_PAGE_END)
+ panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
+
+}
+
+
+/* Fill in commpages: called once, during kernel initialization, from the
+ * startup thread before user-mode code is running.
+ *
+ * See the top of this file for a list of what you have to do to add
+ * a new routine to the commpage.
+ */
+
+void
+commpage_populate( void )
+{
+ commpage_init_cpu_capabilities();
+
+ commpage_populate_one( commpage32_map,
+ &commPagePtr32,
+ _COMM_PAGE32_AREA_USED,
+ _COMM_PAGE32_BASE_ADDRESS,
+ commpage_32_routines,
+ &time_data32,
+ "commpage 32-bit");
+#ifndef __LP64__
+ pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
+ _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
+#endif
+ time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
+
+ if (_cpu_capabilities & k64Bit) {
+ commpage_populate_one( commpage64_map,
+ &commPagePtr64,
+ _COMM_PAGE64_AREA_USED,
+ _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
+ commpage_64_routines,
+ &time_data64,
+ "commpage 64-bit");
+#ifndef __LP64__
+ pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
+ _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
+#endif
+ }
+
+ simple_lock_init(&commpage_active_cpus_lock, 0);
+
+ commpage_update_active_cpus();
+ rtc_nanotime_init_commpage();
+}
+
+
+/* Update commpage nanotime information. Note that we interleave
+ * setting the 32- and 64-bit commpages, in order to keep nanotime more
+ * nearly in sync between the two environments.
+ *
+ * This routine must be serialized by some external means, ie a lock.
+ */
+
+void
+commpage_set_nanotime(
+ uint64_t tsc_base,
+ uint64_t ns_base,
+ uint32_t scale,
+ uint32_t shift )
+{
+ commpage_time_data *p32 = time_data32;
+ commpage_time_data *p64 = time_data64;
+ static uint32_t generation = 0;
+ uint32_t next_gen;
+
+ if (p32 == NULL) /* have commpages been allocated yet? */
+ return;
+
+ if ( generation != p32->nt_generation )
+ panic("nanotime trouble 1"); /* possibly not serialized */
+ if ( ns_base < p32->nt_ns_base )
+ panic("nanotime trouble 2");
+ if ((shift != 32) && ((_cpu_capabilities & kSlow)==0) )
+ panic("nanotime trouble 3");
+
+ next_gen = ++generation;
+ if (next_gen == 0)
+ next_gen = ++generation;
+
+ p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
+ p64->nt_generation = 0;
+
+ p32->nt_tsc_base = tsc_base;
+ p64->nt_tsc_base = tsc_base;
+
+ p32->nt_ns_base = ns_base;
+ p64->nt_ns_base = ns_base;
+
+ p32->nt_scale = scale;
+ p64->nt_scale = scale;
+
+ p32->nt_shift = shift;
+ p64->nt_shift = shift;
+
+ p32->nt_generation = next_gen; /* mark data as valid */
+ p64->nt_generation = next_gen;
+}
+
+
+/* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
+
+void
+commpage_disable_timestamp( void )
+{
+ time_data32->gtod_generation = 0;
+ time_data64->gtod_generation = 0;
+}
+
+
+/* Update commpage gettimeofday() information. As with nanotime(), we interleave
+ * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
+ * between the two environments.
+ *
+ * This routine must be serializeed by some external means, ie a lock.
+ */
+
+ void
+ commpage_set_timestamp(
+ uint64_t abstime,
+ uint64_t secs )
+{
+ commpage_time_data *p32 = time_data32;
+ commpage_time_data *p64 = time_data64;
+ static uint32_t generation = 0;
+ uint32_t next_gen;
+
+ next_gen = ++generation;
+ if (next_gen == 0)
+ next_gen = ++generation;
+
+ p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
+ p64->gtod_generation = 0;
+
+ p32->gtod_ns_base = abstime;
+ p64->gtod_ns_base = abstime;
+
+ p32->gtod_sec_base = secs;
+ p64->gtod_sec_base = secs;
+
+ p32->gtod_generation = next_gen; /* mark data as valid */
+ p64->gtod_generation = next_gen;
+}
+
+
+/* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
+
+void
+commpage_set_memory_pressure(
+ unsigned int pressure )
+{
+ char *cp;
+ uint32_t *ip;
+
+ cp = commPagePtr32;
+ if ( cp ) {
+ cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
+ ip = (uint32_t*) cp;
+ *ip = (uint32_t) pressure;
+ }
+
+ cp = commPagePtr64;
+ if ( cp ) {
+ cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
+ ip = (uint32_t*) cp;
+ *ip = (uint32_t) pressure;
+ }
+
+}
+
+
+/* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
+
+void
+commpage_set_spin_count(
+ unsigned int count )
+{
+ char *cp;
+ uint32_t *ip;
+
+ if (count == 0) /* we test for 0 after decrement, not before */
+ count = 1;
+
+ cp = commPagePtr32;
+ if ( cp ) {
+ cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
+ ip = (uint32_t*) cp;
+ *ip = (uint32_t) count;
+ }
+
+ cp = commPagePtr64;
+ if ( cp ) {
+ cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
+ ip = (uint32_t*) cp;
+ *ip = (uint32_t) count;
+ }
+
+}
+
+/* Updated every time a logical CPU goes offline/online */
+void
+commpage_update_active_cpus(void)
+{
+ char *cp;
+ volatile uint8_t *ip;
+
+ /* At least 32-bit commpage must be initialized */
+ if (!commPagePtr32)
+ return;
+
+ simple_lock(&commpage_active_cpus_lock);
+
+ cp = commPagePtr32;
+ cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
+ ip = (volatile uint8_t*) cp;
+ *ip = (uint8_t) processor_avail_count;
+
+ cp = commPagePtr64;
+ if ( cp ) {
+ cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
+ ip = (volatile uint8_t*) cp;
+ *ip = (uint8_t) processor_avail_count;
+ }
+
+ simple_unlock(&commpage_active_cpus_lock);
+}
+
+
+/* Check to see if a given address is in the Preemption Free Zone (PFZ) */
+
+uint32_t
+commpage_is_in_pfz32(uint32_t addr32)
+{
+ if ( (addr32 >= _COMM_PAGE_PFZ_START) && (addr32 < _COMM_PAGE_PFZ_END)) {
+ return 1;
+ }
+ else
+ return 0;
+}
+
+uint32_t
+commpage_is_in_pfz64(addr64_t addr64)
+{
+ if ( (addr64 >= _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_START))
+ && (addr64 < _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_END))) {
+ return 1;
+ }
+ else
+ return 0;
+}
+