#include <sys/mount.h>
#include <sys/trace.h>
#include <sys/malloc.h>
+#include <sys/time.h>
+#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <libkern/libkern.h>
+#include <machine/machine_routines.h>
#include <sys/ubc.h>
#include <vm/vm_pageout.h>
+#include <mach/mach_types.h>
+#include <mach/memory_object_types.h>
+
#include <sys/kdebug.h>
+
#define CL_READ 0x01
#define CL_ASYNC 0x02
#define CL_COMMIT 0x04
#define CL_PAGEIN 0x100
#define CL_DEV_MEMORY 0x200
#define CL_PRESERVE 0x400
+#define CL_THROTTLE 0x800
struct clios {
static int cluster_phys_write(struct vnode *vp, struct uio *uio,
off_t newEOF, int devblocksize, int flags);
static int cluster_align_phys_io(struct vnode *vp, struct uio *uio,
- vm_offset_t usr_paddr, int xsize, int devblocksize, int flags);
+ addr64_t usr_paddr, int xsize, int devblocksize, int flags);
static int cluster_push_x(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last, int can_delay);
-static int cluster_try_push(struct vnode *vp, off_t newEOF, int can_delay, int push_all);
+static int cluster_try_push(struct vnode *vp, off_t EOF, int can_delay, int push_all);
+
+static int sparse_cluster_switch(struct vnode *vp, off_t EOF);
+static int sparse_cluster_push(struct vnode *vp, off_t EOF, int push_all);
+static int sparse_cluster_add(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last);
+
+static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp);
+static kern_return_t vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length);
+static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
+static kern_return_t vfs_drt_control(void **cmapp, int op_type);
+
+int ubc_page_op_with_control __P((memory_object_control_t, off_t, int, ppnum_t *, int *));
/*
* can be outstanding on a single vnode
* before we issue a synchronous write
*/
-#define ASYNC_THROTTLE 9
+#define ASYNC_THROTTLE 18
+#define HARD_THROTTLE_MAXCNT 1
+#define HARD_THROTTLE_MAXSIZE (64 * 1024)
+
+int hard_throttle_on_root = 0;
+struct timeval priority_IO_timestamp_for_root;
+
+
+static int
+cluster_hard_throttle_on(vp)
+ struct vnode *vp;
+{
+ static struct timeval hard_throttle_maxelapsed = { 0, 300000 };
+
+ if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) {
+ struct timeval elapsed;
+
+ if (hard_throttle_on_root)
+ return(1);
+
+ elapsed = time;
+ timevalsub(&elapsed, &priority_IO_timestamp_for_root);
+
+ if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
+ return(1);
+ }
+ return(0);
+}
+
static int
cluster_iodone(bp)
iostate = (struct clios *)cbp->b_iostate;
while (cbp) {
- if (cbp->b_vectorcount > 1)
- _FREE(cbp->b_vectorlist, M_SEGMENT);
-
if ((cbp->b_flags & B_ERROR) && error == 0)
error = cbp->b_error;
if (b_flags & B_COMMIT_UPL) {
pg_offset = upl_offset & PAGE_MASK;
- commit_size = (((pg_offset + total_size) + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE;
+ commit_size = (pg_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (error || (b_flags & B_NOCACHE) || ((b_flags & B_PHYS) && !(b_flags & B_READ))) {
+ if (error || (b_flags & B_NOCACHE)) {
int upl_abort_code;
- if (b_flags & B_PHYS)
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */
+ if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
else if (b_flags & B_PGIN)
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
} else {
int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY;
- if (b_flags & B_PHYS)
- upl_commit_flags |= UPL_COMMIT_SET_DIRTY;
- else if ( !(b_flags & B_PAGEOUT))
+ if (b_flags & B_PHYS) {
+ if (b_flags & B_READ)
+ upl_commit_flags |= UPL_COMMIT_SET_DIRTY;
+ } else if ( !(b_flags & B_PAGEOUT))
upl_commit_flags |= UPL_COMMIT_CLEAR_DIRTY;
+
if (b_flags & B_AGE)
upl_commit_flags |= UPL_COMMIT_INACTIVATE;
int size;
struct buf *bp;
{
- vm_offset_t io_addr = 0;
- int must_unmap = 0;
- kern_return_t kret;
+ upl_page_info_t *pl;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
upl_offset, size, (int)bp, 0, 0);
if (bp == NULL || bp->b_data == NULL) {
- kret = ubc_upl_map(upl, &io_addr);
-
- if (kret != KERN_SUCCESS)
- panic("cluster_zero: ubc_upl_map() failed with (%d)", kret);
- if (io_addr == 0)
- panic("cluster_zero: ubc_upl_map() mapped 0");
- must_unmap = 1;
+ pl = ubc_upl_pageinfo(upl);
+
+ while (size) {
+ int page_offset;
+ int page_index;
+ addr64_t zero_addr;
+ int zero_cnt;
+
+ page_index = upl_offset / PAGE_SIZE;
+ page_offset = upl_offset & PAGE_MASK;
+
+ zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset;
+ zero_cnt = min(PAGE_SIZE - page_offset, size);
+
+ bzero_phys(zero_addr, zero_cnt);
+
+ size -= zero_cnt;
+ upl_offset += zero_cnt;
+ }
} else
- io_addr = (vm_offset_t)bp->b_data;
- bzero((caddr_t)(io_addr + upl_offset), size);
-
- if (must_unmap) {
- kret = ubc_upl_unmap(upl);
+ bzero((caddr_t)((vm_offset_t)bp->b_data + upl_offset), size);
- if (kret != KERN_SUCCESS)
- panic("cluster_zero: kernel_upl_unmap failed");
- }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
+ upl_offset, size, 0, 0, 0);
}
static int
struct clios *iostate;
{
struct buf *cbp;
- struct iovec *iovp;
u_int size;
u_int io_size;
int io_flags;
int retval = 0;
struct buf *cbp_head = 0;
struct buf *cbp_tail = 0;
- upl_page_info_t *pl;
int buf_count = 0;
int pg_count;
int pg_offset;
u_int max_vectors;
int priv;
int zero_offset = 0;
- u_int first_lblkno;
+ int async_throttle;
+
+ if (devblocksize)
+ size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1);
+ else
+ size = non_rounded_size;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START,
+ (int)f_offset, size, upl_offset, flags, 0);
+
if (flags & CL_READ) {
io_flags = (B_VECTORLIST | B_READ);
vfs_io_attributes(vp, B_WRITE, &max_iosize, &max_vectors);
}
- pl = ubc_upl_pageinfo(upl);
-
+ /*
+ * make sure the maximum iosize are at least the size of a page
+ * and that they are multiples of the page size
+ */
+ max_iosize &= ~PAGE_MASK;
+
+ if (flags & CL_THROTTLE) {
+ if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp)) {
+ if (max_iosize > HARD_THROTTLE_MAXSIZE)
+ max_iosize = HARD_THROTTLE_MAXSIZE;
+ async_throttle = HARD_THROTTLE_MAXCNT;
+ } else
+ async_throttle = ASYNC_THROTTLE;
+ }
if (flags & CL_AGE)
io_flags |= B_AGE;
if (flags & CL_DUMP)
if (flags & CL_PRESERVE)
io_flags |= B_PHYS;
- if (devblocksize)
- size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1);
- else
- size = non_rounded_size;
-
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START,
- (int)f_offset, size, upl_offset, flags, 0);
-
if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
/*
* then we are going to end up
while (size) {
int vsize;
int i;
- int pl_index;
int pg_resid;
int num_contig;
daddr_t lblkno;
be mapped in a "hole" and require allocation
before the I/O:
*/
- ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE_64, UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
if (ubc_pushdirty_range(vp, f_offset, PAGE_SIZE_64) == 0) {
error = EINVAL;
break;
};
- upl_offset += PAGE_SIZE_64;
f_offset += PAGE_SIZE_64;
- size -= PAGE_SIZE_64;
+ upl_offset += PAGE_SIZE;
+ size -= PAGE_SIZE;
continue;
}
lblkno = (daddr_t)(f_offset / PAGE_SIZE_64);
/*
* we have now figured out how much I/O we can do - this is in 'io_size'
- * pl_index represents the first page in the 'upl' that the I/O will occur for
* pg_offset is the starting point in the first page for the I/O
* pg_count is the number of full and partial pages that 'io_size' encompasses
*/
- pl_index = upl_offset / PAGE_SIZE;
pg_offset = upl_offset & PAGE_MASK;
- pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
if (flags & CL_DEV_MEMORY) {
/*
* treat physical requests as one 'giant' page
*/
pg_count = 1;
- }
+ } else
+ pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
+
if ((flags & CL_READ) && (long)blkno == -1) {
int bytes_to_zero;
real_bp->b_blkno = blkno;
}
- if (pg_count > 1) {
- if (pg_count > max_vectors) {
- io_size -= (pg_count - max_vectors) * PAGE_SIZE;
+ if (pg_count > max_vectors) {
+ io_size -= (pg_count - max_vectors) * PAGE_SIZE;
- if (io_size < 0) {
- io_size = PAGE_SIZE - pg_offset;
- pg_count = 1;
- } else
- pg_count = max_vectors;
- }
- /*
- * we need to allocate space for the vector list
- */
- if (pg_count > 1) {
- iovp = (struct iovec *)_MALLOC(sizeof(struct iovec) * pg_count,
- M_SEGMENT, M_NOWAIT);
-
- if (iovp == (struct iovec *) 0) {
- /*
- * if the allocation fails, then throttle down to a single page
- */
- io_size = PAGE_SIZE - pg_offset;
- pg_count = 1;
- }
- }
+ if (io_size < 0) {
+ io_size = PAGE_SIZE - pg_offset;
+ pg_count = 1;
+ } else
+ pg_count = max_vectors;
}
- /* Throttle the speculative IO */
- if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
+ if ( !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV))
+ /*
+ * if we're not targeting a virtual device i.e. a disk image
+ * it's safe to dip into the reserve pool since real devices
+ * can complete this I/O request without requiring additional
+ * bufs from the alloc_io_buf pool
+ */
+ priv = 1;
+ else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
+ /*
+ * Throttle the speculative IO
+ */
priv = 0;
else
priv = 1;
cbp = alloc_io_buf(vp, priv);
- if (pg_count == 1)
- /*
- * we use the io vector that's reserved in the buffer header
- * this insures we can always issue an I/O even in a low memory
- * condition that prevents the _MALLOC from succeeding... this
- * is necessary to prevent deadlocks with the pager
- */
- iovp = (struct iovec *)(&cbp->b_vects[0]);
-
- cbp->b_vectorlist = (void *)iovp;
- cbp->b_vectorcount = pg_count;
-
- if (flags & CL_DEV_MEMORY) {
-
- iovp->iov_len = io_size;
- iovp->iov_base = (caddr_t)upl_phys_page(pl, 0);
- if (iovp->iov_base == (caddr_t) 0) {
- free_io_buf(cbp);
- error = EINVAL;
- } else
- iovp->iov_base += upl_offset;
- } else {
-
- for (i = 0, vsize = io_size; i < pg_count; i++, iovp++) {
- int psize;
-
- psize = PAGE_SIZE - pg_offset;
-
- if (psize > vsize)
- psize = vsize;
-
- iovp->iov_len = psize;
- iovp->iov_base = (caddr_t)upl_phys_page(pl, pl_index + i);
-
- if (iovp->iov_base == (caddr_t) 0) {
- if (pg_count > 1)
- _FREE(cbp->b_vectorlist, M_SEGMENT);
- free_io_buf(cbp);
-
- error = EINVAL;
- break;
- }
- iovp->iov_base += pg_offset;
- pg_offset = 0;
-
- if (flags & CL_PAGEOUT) {
+ if (flags & CL_PAGEOUT) {
+ for (i = 0; i < pg_count; i++) {
int s;
struct buf *bp;
}
splx(s);
}
- vsize -= psize;
- }
}
- if (error)
- break;
-
if (flags & CL_ASYNC) {
cbp->b_flags |= (B_CALL | B_ASYNC);
cbp->b_iodone = (void *)cluster_iodone;
} else
cbp_head->b_validend = 0;
+ if (flags & CL_THROTTLE) {
+ while (vp->v_numoutput >= async_throttle) {
+ vp->v_flag |= VTHROTTLED;
+ tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_io", 0);
+ }
+ }
for (cbp = cbp_head; cbp;) {
struct buf * cbp_next;
for (cbp = cbp_head; cbp;) {
struct buf * cbp_next;
- if (cbp->b_vectorcount > 1)
- _FREE(cbp->b_vectorlist, M_SEGMENT);
upl_offset -= cbp->b_bcount;
size += cbp->b_bcount;
io_size += cbp->b_bcount;
}
}
pg_offset = upl_offset & PAGE_MASK;
- abort_size = ((size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE;
+ abort_size = (size + pg_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if (flags & CL_COMMIT) {
int upl_abort_code;
- if (flags & CL_PRESERVE)
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if (flags & CL_PAGEIN)
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
- else
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
+ if (flags & CL_PRESERVE) {
+ ubc_upl_commit_range(upl, upl_offset - pg_offset, abort_size,
+ UPL_COMMIT_FREE_ON_EMPTY);
+ } else {
+ if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
+ else if (flags & CL_PAGEIN)
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
+ else
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
- ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size,
+ ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size,
upl_abort_code);
-
+ }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
(int)upl, upl_offset - pg_offset, abort_size, error, 0);
}
off_t filesize;
int devblocksize;
{
- int pages_to_fetch;
- int skipped_pages;
+ int pages_in_prefetch;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
(int)f_offset, size, (int)filesize, 0, 0);
return(0);
}
if (size > (MAX_UPL_TRANSFER * PAGE_SIZE))
- size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ size = (MAX_UPL_TRANSFER * PAGE_SIZE);
else
- size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
+ size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if ((off_t)size > (filesize - f_offset))
size = filesize - f_offset;
-
- pages_to_fetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
+ pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
- for (skipped_pages = 0; skipped_pages < pages_to_fetch; skipped_pages++) {
- if (ubc_page_op(vp, f_offset, 0, 0, 0) != KERN_SUCCESS)
- break;
- f_offset += PAGE_SIZE;
- size -= PAGE_SIZE;
- }
- if (skipped_pages < pages_to_fetch)
- advisory_read(vp, filesize, f_offset, size, devblocksize);
+ advisory_read(vp, filesize, f_offset, size, devblocksize);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
- (int)f_offset + (pages_to_fetch * PAGE_SIZE), skipped_pages, 0, 1, 0);
+ (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
- return (pages_to_fetch);
+ return (pages_in_prefetch);
}
daddr_t r_lblkno;
off_t f_offset;
int size_of_prefetch;
- int max_pages;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
b_lblkno, e_lblkno, vp->v_lastr, 0, 0);
vp->v_ralen, vp->v_maxra, vp->v_lastr, 0, 0);
return;
}
-
if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) &&
(b_lblkno != (vp->v_maxra + 1) || vp->v_ralen == 0))) {
vp->v_ralen = 0;
return;
}
- max_pages = MAX_UPL_TRANSFER;
-
- vp->v_ralen = vp->v_ralen ? min(max_pages, vp->v_ralen << 1) : 1;
-
- if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen)
- vp->v_ralen = min(max_pages, (e_lblkno + 1) - b_lblkno);
-
if (e_lblkno < vp->v_maxra) {
- if ((vp->v_maxra - e_lblkno) > max(max_pages / 16, 4)) {
+ if ((vp->v_maxra - e_lblkno) > (MAX_UPL_TRANSFER / 4)) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0);
r_lblkno = max(e_lblkno, vp->v_maxra) + 1;
f_offset = (off_t)r_lblkno * PAGE_SIZE_64;
+ size_of_prefetch = 0;
+
+ ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
+
+ if (size_of_prefetch) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+ vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0);
+ return;
+ }
if (f_offset < filesize) {
- size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize);
+ vp->v_ralen = vp->v_ralen ? min(MAX_UPL_TRANSFER, vp->v_ralen << 1) : 1;
+
+ if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen)
+ vp->v_ralen = min(MAX_UPL_TRANSFER, (e_lblkno + 1) - b_lblkno);
+
+ size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize);
if (size_of_prefetch)
vp->v_maxra = (r_lblkno + size_of_prefetch) - 1;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
- vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0);
+ vp->v_ralen, vp->v_maxra, vp->v_lastr, 4, 0);
}
int
int flags;
{
int io_size;
- int pg_size;
+ int rounded_size;
off_t max_size;
- int local_flags = CL_PAGEOUT;
+ int local_flags;
+
+ if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)
+ /*
+ * if we know we're issuing this I/O to a virtual device (i.e. disk image)
+ * then we don't want to enforce this throttle... if we do, we can
+ * potentially deadlock since we're stalling the pageout thread at a time
+ * when the disk image might need additional memory (which won't be available
+ * if the pageout thread can't run)... instead we'll just depend on the throttle
+ * that the pageout thread now has in place to deal with external files
+ */
+ local_flags = CL_PAGEOUT;
+ else
+ local_flags = CL_PAGEOUT | CL_THROTTLE;
if ((flags & UPL_IOSYNC) == 0)
local_flags |= CL_ASYNC;
else
io_size = max_size;
- pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+ rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (size > pg_size) {
+ if (size > rounded_size) {
if (local_flags & CL_COMMIT)
- ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size,
+ ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
UPL_ABORT_FREE_ON_EMPTY);
}
- while (vp->v_numoutput >= ASYNC_THROTTLE) {
- vp->v_flag |= VTHROTTLED;
- tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_pageout", 0);
- }
+ vp->v_flag |= VHASBEENPAGED;
return (cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize,
local_flags, (struct buf *)0, (struct clios *)0));
if (size > rounded_size && (local_flags & CL_COMMIT))
ubc_upl_abort_range(upl, upl_offset + rounded_size,
- size - (upl_offset + rounded_size), UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
+ size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize,
local_flags | CL_READ | CL_PAGEIN, (struct buf *)0, (struct clios *)0);
int clip_size;
off_t max_io_size;
struct iovec *iov;
- vm_offset_t upl_offset;
int upl_size;
- int pages_in_pl;
- upl_page_info_t *pl;
int upl_flags;
upl_t upl;
int retval = 0;
+
+ if (vp->v_flag & VHASBEENPAGED)
+ {
+ /*
+ * this vnode had pages cleaned to it by
+ * the pager which indicates that either
+ * it's not very 'hot', or the system is
+ * being overwhelmed by a lot of dirty
+ * data being delayed in the VM cache...
+ * in either event, we'll push our remaining
+ * delayed data at this point... this will
+ * be more efficient than paging out 1 page at
+ * a time, and will also act as a throttle
+ * by delaying this client from writing any
+ * more data until all his delayed data has
+ * at least been queued to the uderlying driver.
+ */
+ cluster_push(vp);
+
+ vp->v_flag &= ~VHASBEENPAGED;
+ }
if ( (!(vp->v_flag & VNOCACHE_DATA)) || (!uio) || (uio->uio_segflg != UIO_USERSPACE))
{
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- return(retval);
+ /*
+ * go do a write through the cache if one of the following is true....
+ * NOCACHE is not true
+ * there is no uio structure or it doesn't target USERSPACE
+ */
+ return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags));
}
while (uio->uio_resid && uio->uio_offset < newEOF && retval == 0)
{
- /* we know we have a resid, so this is safe */
+ /*
+ * we know we have a resid, so this is safe
+ * skip over any emtpy vectors
+ */
iov = uio->uio_iov;
+
while (iov->iov_len == 0) {
uio->uio_iov++;
uio->uio_iovcnt--;
iov = uio->uio_iov;
}
-
- /*
- * We check every vector target and if it is physically
- * contiguous space, we skip the sanity checks.
- */
-
- upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK;
- upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK;
- pages_in_pl = 0;
+ upl_size = PAGE_SIZE;
upl_flags = UPL_QUERY_OBJECT_TYPE;
+
if ((vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
- &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS)
+ &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS)
{
/*
* the user app must have passed in an invalid address
return (EFAULT);
}
+ /*
+ * We check every vector target but if it is physically
+ * contiguous space, we skip the sanity checks.
+ */
if (upl_flags & UPL_PHYS_CONTIG)
{
if (flags & IO_HEADZEROFILL)
if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL))
{
- retval = cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL);
- return(retval);
+ return (cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL));
}
}
- else if ((uio->uio_resid < 4 * PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)))
+ else if ((uio->uio_resid < PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)))
{
/*
- * We set a threshhold of 4 pages to decide if the nocopy
- * write loop is worth the trouble...
- * we also come here if we're trying to zero the head and/or tail
- * of a partially written page, and the user source is not a physically contiguous region
+ * we're here because we're don't have a physically contiguous target buffer
+ * go do a write through the cache if one of the following is true....
+ * the total xfer size is less than a page...
+ * we're being asked to ZEROFILL either the head or the tail of the I/O...
*/
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- return(retval);
+ return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags));
}
- else if (uio->uio_offset & PAGE_MASK_64)
+ else if (((int)uio->uio_offset & PAGE_MASK) || ((int)iov->iov_base & PAGE_MASK))
{
- /* Bring the file offset write up to a pagesize boundary */
- clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64));
- if (uio->uio_resid < clip_size)
- clip_size = uio->uio_resid;
- /*
- * Fake the resid going into the cluster_write_x call
- * and restore it on the way out.
- */
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else if ((int)iov->iov_base & PAGE_MASK_64)
- {
- clip_size = iov->iov_len;
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ if (((int)uio->uio_offset & PAGE_MASK) == ((int)iov->iov_base & PAGE_MASK))
+ {
+ /*
+ * Bring the file offset write up to a pagesize boundary
+ * this will also bring the base address to a page boundary
+ * since they both are currently on the same offset within a page
+ * note: if we get here, uio->uio_resid is greater than PAGE_SIZE
+ * so the computed clip_size must always be less than the current uio_resid
+ */
+ clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64));
+
+ /*
+ * Fake the resid going into the cluster_write_x call
+ * and restore it on the way out.
+ */
+ prev_resid = uio->uio_resid;
+ uio->uio_resid = clip_size;
+ retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
+ uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ }
+ else
+ {
+ /*
+ * can't get both the file offset and the buffer offset aligned to a page boundary
+ * so fire an I/O through the cache for this entire vector
+ */
+ clip_size = iov->iov_len;
+ prev_resid = uio->uio_resid;
+ uio->uio_resid = clip_size;
+ retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
+ uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ }
}
else
{
/*
* If we come in here, we know the offset into
- * the file is on a pagesize boundary
+ * the file is on a pagesize boundary and the
+ * target buffer address is also on a page boundary
*/
-
max_io_size = newEOF - uio->uio_offset;
clip_size = uio->uio_resid;
if (iov->iov_len < clip_size)
kern_return_t kret;
struct iovec *iov;
int i;
- int first = 1;
int force_data_sync;
int error = 0;
struct clios iostate;
if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
io_size = MAX_UPL_TRANSFER * PAGE_SIZE;
- if (first) {
- if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4)
- io_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 8;
- first = 0;
- }
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK;
upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
- UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
if (kret != KERN_SUCCESS) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
0, 0, 0, kret, 0);
-
/*
* cluster_nocopy_write: failed to get pagelist
*
if (force_data_sync >= 3) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
i, pages_in_pl, upl_size, kret, 0);
-
/*
* for some reason, we couldn't acquire a hold on all
* the pages needed in the user's address space
if (io_size == 0) {
ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size,
UPL_ABORT_FREE_ON_EMPTY);
-
/*
* we may have already spun some portion of this request
* off as async requests... we need to wait for the I/O
/*
* Now look for pages already in the cache
* and throw them away.
+ * uio->uio_offset is page aligned within the file
+ * io_size is a multiple of PAGE_SIZE
*/
+ ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
- upl_f_offset = uio->uio_offset; /* this is page aligned in the file */
- max_io_size = io_size;
-
- while (max_io_size) {
- /*
- * Flag UPL_POP_DUMP says if the page is found
- * in the page cache it must be thrown away.
- */
- ubc_page_op(vp,
- upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY | UPL_POP_DUMP,
- 0, 0);
- max_io_size -= PAGE_SIZE_64;
- upl_f_offset += PAGE_SIZE_64;
- }
/*
* we want push out these writes asynchronously so that we can overlap
* the preparation of the next I/O
goto wait_for_writes;
}
- io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT;
+ io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
(int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
int flags;
{
upl_page_info_t *pl;
- vm_offset_t src_paddr;
+ addr64_t src_paddr;
upl_t upl;
vm_offset_t upl_offset;
int tail_size;
iov = uio->uio_iov;
io_size = iov->iov_len;
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK;
upl_needed_size = upl_offset + io_size;
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
- UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
}
pl = ubc_upl_pageinfo(upl);
- src_paddr = (vm_offset_t)upl_phys_page(pl, 0) + ((vm_offset_t)iov->iov_base & PAGE_MASK);
+ src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + ((addr64_t)((u_int)iov->iov_base & PAGE_MASK));
while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
int head_size;
int xfer_resid;
int io_size;
int io_flags;
- vm_offset_t io_address;
int io_offset;
int bytes_to_zero;
int bytes_to_move;
off_t zero_off1;
daddr_t start_blkno;
daddr_t last_blkno;
+ int intersection;
+
if (uio) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
zero_cnt1 = tailOff - zero_off1;
}
}
- if (zero_cnt == 0 && uio == (struct uio *) 0)
- {
+ if (zero_cnt == 0 && uio == (struct uio *) 0) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
retval, 0, 0, 0, 0);
return (0);
- }
+ }
while ((total_size = (uio_resid + zero_cnt + zero_cnt1)) && retval == 0) {
/*
if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
total_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64);
+
+ if (uio && !(vp->v_flag & VNOCACHE_DATA) &&
+ (flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0) {
+ /*
+ * assumption... total_size <= uio_resid
+ * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
+ */
+ if ((start_offset + total_size) > (MAX_UPL_TRANSFER * PAGE_SIZE))
+ total_size -= start_offset;
+ xfer_resid = total_size;
+
+ retval = cluster_copy_ubc_data(vp, uio, &xfer_resid, 1);
+
+ if (retval)
+ break;
+
+ uio_resid -= (total_size - xfer_resid);
+ total_size = xfer_resid;
+ start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+ upl_f_offset = uio->uio_offset - start_offset;
+
+ if (total_size == 0) {
+ if (start_offset) {
+ /*
+ * the write did not finish on a page boundary
+ * which will leave upl_f_offset pointing to the
+ * beginning of the last page written instead of
+ * the page beyond it... bump it in this case
+ * so that the cluster code records the last page
+ * written as dirty
+ */
+ upl_f_offset += PAGE_SIZE_64;
+ }
+ upl_size = 0;
+
+ goto check_cluster;
+ }
+ }
/*
* compute the size of the upl needed to encompass
* the requested write... limit each call to cluster_io
if ((long long)io_size > total_size)
io_size = total_size;
- start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64);
- last_blkno = start_blkno + pages_in_upl;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
+
kret = ubc_create_upl(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_FLAGS_NONE);
+ UPL_SET_LITE);
if (kret != KERN_SUCCESS)
panic("cluster_write: failed to get pagelist");
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_NONE,
- (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
+ (int)upl, (int)upl_f_offset, start_offset, 0, 0);
if (start_offset && !upl_valid_page(pl, 0)) {
int read_size;
}
}
}
- if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
- panic("cluster_write: ubc_upl_map failed\n");
xfer_resid = io_size;
io_offset = start_offset;
bytes_to_zero = xfer_resid;
if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset, bytes_to_zero,
- (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else {
int zero_pg_index;
zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
if ( !upl_valid_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset, bytes_to_zero,
- (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
!upl_dirty_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset, bytes_to_zero,
- (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
}
}
xfer_resid -= bytes_to_zero;
if (xfer_resid && uio_resid) {
bytes_to_move = min(uio_resid, xfer_resid);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 42)) | DBG_FUNC_NONE,
- (int)uio->uio_offset, bytes_to_move, uio_resid, xfer_resid, 0);
-
- retval = uiomove((caddr_t)(io_address + io_offset), bytes_to_move, uio);
-
+ retval = cluster_copy_upl_data(uio, upl, io_offset, bytes_to_move);
if (retval) {
- if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
- panic("cluster_write: kernel_upl_unmap failed\n");
ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
bytes_to_zero = xfer_resid;
if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset,
- bytes_to_zero, (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else {
int zero_pg_index;
zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64);
if ( !upl_valid_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset,
- bytes_to_zero, (int)io_offset, xfer_resid, 0);
-
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
!upl_dirty_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset,
- bytes_to_zero, (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
}
}
xfer_resid -= bytes_to_zero;
* if the file gets extended again in such a way as to leave a
* hole starting at this EOF, we'll have zero's in the correct spot
*/
- bzero((caddr_t)(io_address + io_size), upl_size - io_size);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_size,
- upl_size - io_size, 0, 0, 0);
+ cluster_zero(upl, io_size, upl_size - io_size, NULL);
}
- if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
- panic("cluster_write: kernel_upl_unmap failed\n");
-
if (flags & IO_SYNC)
/*
* if the IO_SYNC flag is set than we need to
* the I/O
*/
goto issue_io;
+check_cluster:
+ /*
+ * calculate the last logical block number
+ * that this delayed I/O encompassed
+ */
+ last_blkno = (upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64;
+
+ if (vp->v_flag & VHASDIRTY) {
+
+ if ( !(vp->v_flag & VNOCACHE_DATA)) {
+ /*
+ * we've fallen into the sparse
+ * cluster method of delaying dirty pages
+ * first, we need to release the upl if we hold one
+ * since pages in it may be present in the sparse cluster map
+ * and may span 2 separate buckets there... if they do and
+ * we happen to have to flush a bucket to make room and it intersects
+ * this upl, a deadlock may result on page BUSY
+ */
+ if (upl_size)
+ ubc_upl_commit_range(upl, 0, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+
+ sparse_cluster_add(vp, newEOF, start_blkno, last_blkno);
+
+ continue;
+ }
+ /*
+ * must have done cached writes that fell into
+ * the sparse cluster mechanism... we've switched
+ * to uncached writes on the file, so go ahead
+ * and push whatever's in the sparse map
+ * and switch back to normal clustering
+ *
+ * see the comment above concerning a possible deadlock...
+ */
+ if (upl_size) {
+ ubc_upl_commit_range(upl, 0, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ /*
+ * setting upl_size to 0 keeps us from committing a
+ * second time in the start_new_cluster path
+ */
+ upl_size = 0;
+ }
+ sparse_cluster_push(vp, ubc_getsize(vp), 1);
+
+ /*
+ * no clusters of either type present at this point
+ * so just go directly to start_new_cluster since
+ * we know we need to delay this I/O since we've
+ * already released the pages back into the cache
+ * to avoid the deadlock with sparse_cluster_push
+ */
+ goto start_new_cluster;
+ }
+ upl_offset = 0;
if (vp->v_clen == 0)
/*
*/
goto start_new_cluster;
- /*
- * keep track of the overall dirty page
- * range we've developed
- * in case we have to fall back to the
- * VHASDIRTY method of flushing
- */
- if (vp->v_flag & VHASDIRTY)
- goto delay_io;
-
for (cl_index = 0; cl_index < vp->v_clen; cl_index++) {
/*
- * we have an existing cluster... see if this write will extend it nicely
+ * check each cluster that we currently hold
+ * try to merge some or all of this write into
+ * one or more of the existing clusters... if
+ * any portion of the write remains, start a
+ * new cluster
*/
if (start_blkno >= vp->v_clusters[cl_index].start_pg) {
/*
if (start_blkno < (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) {
/*
* we have a write that starts in the middle of the current cluster
- * but extends beyond the cluster's limit
- * we'll clip the current cluster if we actually
- * overlap with the new write
- * and start a new cluster with the current write
+ * but extends beyond the cluster's limit... we know this because
+ * of the previous checks
+ * we'll extend the current cluster to the max
+ * and update the start_blkno for the current write to reflect that
+ * the head of it was absorbed into this cluster...
+ * note that we'll always have a leftover tail in this case since
+ * full absorbtion would have occurred in the clause above
*/
- if (vp->v_clusters[cl_index].last_pg > start_blkno)
- vp->v_clusters[cl_index].last_pg = start_blkno;
+ vp->v_clusters[cl_index].last_pg = vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER;
+
+ if (upl_size) {
+ int start_pg_in_upl;
+
+ start_pg_in_upl = upl_f_offset / PAGE_SIZE_64;
+
+ if (start_pg_in_upl < vp->v_clusters[cl_index].last_pg) {
+ intersection = (vp->v_clusters[cl_index].last_pg - start_pg_in_upl) * PAGE_SIZE;
+
+ ubc_upl_commit_range(upl, upl_offset, intersection,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ upl_f_offset += intersection;
+ upl_offset += intersection;
+ upl_size -= intersection;
+ }
+ }
+ start_blkno = vp->v_clusters[cl_index].last_pg;
}
/*
- * we also get here for the case where the current write starts
- * beyond the limit of the existing cluster
+ * we come here for the case where the current write starts
+ * beyond the limit of the existing cluster or we have a leftover
+ * tail after a partial absorbtion
*
* in either case, we'll check the remaining clusters before
* starting a new one
*/
} else {
/*
- * the current write starts in front of the current cluster
+ * the current write starts in front of the cluster we're currently considering
*/
- if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) {
+ if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) {
/*
- * we can just merge the old cluster
- * with the new request and leave it
- * in the cache
+ * we can just merge the new request into
+ * this cluster and leave it in the cache
+ * since the resulting cluster is still
+ * less than the maximum allowable size
*/
vp->v_clusters[cl_index].start_pg = start_blkno;
if (last_blkno > vp->v_clusters[cl_index].last_pg) {
/*
* the current write completely
- * envelops the existing cluster
+ * envelops the existing cluster and since
+ * each write is limited to at most MAX_UPL_TRANSFER bytes
+ * we can just use the start and last blocknos of the write
+ * to generate the cluster limits
*/
vp->v_clusters[cl_index].last_pg = last_blkno;
}
* if we were to combine this write with the current cluster
* we would exceed the cluster size limit.... so,
* let's see if there's any overlap of the new I/O with
- * the existing cluster...
+ * the cluster we're currently considering... in fact, we'll
+ * stretch the cluster out to it's full limit and see if we
+ * get an intersection with the current write
*
*/
- if (last_blkno > vp->v_clusters[cl_index].start_pg)
+ if (last_blkno > vp->v_clusters[cl_index].last_pg - MAX_UPL_TRANSFER) {
/*
- * the current write extends into the existing cluster
- * clip the current cluster by moving the start position
- * to where the current write ends
+ * the current write extends into the proposed cluster
+ * clip the length of the current write after first combining it's
+ * tail with the newly shaped cluster
*/
- vp->v_clusters[cl_index].start_pg = last_blkno;
+ vp->v_clusters[cl_index].start_pg = vp->v_clusters[cl_index].last_pg - MAX_UPL_TRANSFER;
+
+ if (upl_size) {
+ intersection = (last_blkno - vp->v_clusters[cl_index].start_pg) * PAGE_SIZE;
+
+ if (intersection > upl_size)
+ /*
+ * because the current write may consist of a number of pages found in the cache
+ * which are not part of the UPL, we may have an intersection that exceeds
+ * the size of the UPL that is also part of this write
+ */
+ intersection = upl_size;
+
+ ubc_upl_commit_range(upl, upl_offset + (upl_size - intersection), intersection,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ upl_size -= intersection;
+ }
+ last_blkno = vp->v_clusters[cl_index].start_pg;
+ }
/*
* if we get here, there was no way to merge
- * the new I/O with this cluster and
- * keep it under our maximum cluster length
+ * any portion of this write with this cluster
+ * or we could only merge part of it which
+ * will leave a tail...
* we'll check the remaining clusters before starting a new one
*/
}
}
if (cl_index < vp->v_clen)
/*
- * we found an existing cluster that we
- * could merger this I/O into
+ * we found an existing cluster(s) that we
+ * could entirely merge this I/O into
*/
goto delay_io;
/*
* no exisitng cluster to merge with and no
* room to start a new one... we'll try
- * pushing the existing ones... if none of
- * them are able to be pushed, we'll have
- * to fall back on the VHASDIRTY mechanism
- * cluster_try_push will set v_clen to the
- * number of remaining clusters if it is
- * unable to push all of them
+ * pushing one of the existing ones... if none of
+ * them are able to be pushed, we'll switch
+ * to the sparse cluster mechanism
+ * cluster_try_push updates v_clen to the
+ * number of remaining clusters... and
+ * returns the number of currently unused clusters
*/
if (vp->v_flag & VNOCACHE_DATA)
can_delay = 0;
else
can_delay = 1;
- if (cluster_try_push(vp, newEOF, 0, 0) == 0) {
- vp->v_flag |= VHASDIRTY;
- goto delay_io;
+ if (cluster_try_push(vp, newEOF, can_delay, 0) == 0) {
+ /*
+ * no more room in the normal cluster mechanism
+ * so let's switch to the more expansive but expensive
+ * sparse mechanism....
+ * first, we need to release the upl if we hold one
+ * since pages in it may be present in the sparse cluster map (after the cluster_switch)
+ * and may span 2 separate buckets there... if they do and
+ * we happen to have to flush a bucket to make room and it intersects
+ * this upl, a deadlock may result on page BUSY
+ */
+ if (upl_size)
+ ubc_upl_commit_range(upl, upl_offset, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+
+ sparse_cluster_switch(vp, newEOF);
+ sparse_cluster_add(vp, newEOF, start_blkno, last_blkno);
+
+ continue;
}
+ /*
+ * we pushed one cluster successfully, so we must be sequentially writing this file
+ * otherwise, we would have failed and fallen into the sparse cluster support
+ * so let's take the opportunity to push out additional clusters as long as we
+ * remain below the throttle... this will give us better I/O locality if we're
+ * in a copy loop (i.e. we won't jump back and forth between the read and write points
+ * however, we don't want to push so much out that the write throttle kicks in and
+ * hangs this thread up until some of the I/O completes...
+ */
+ while (vp->v_clen && (vp->v_numoutput <= (ASYNC_THROTTLE / 2)))
+ cluster_try_push(vp, newEOF, 0, 0);
+
start_new_cluster:
- if (vp->v_clen == 0) {
+ if (vp->v_clen == 0)
vp->v_ciosiz = devblocksize;
- vp->v_cstart = start_blkno;
- vp->v_lastw = last_blkno;
- }
+
vp->v_clusters[vp->v_clen].start_pg = start_blkno;
vp->v_clusters[vp->v_clen].last_pg = last_blkno;
vp->v_clen++;
-delay_io:
- /*
- * make sure we keep v_cstart and v_lastw up to
- * date in case we have to fall back on the
- * V_HASDIRTY mechanism (or we've already entered it)
- */
- if (start_blkno < vp->v_cstart)
- vp->v_cstart = start_blkno;
- if (last_blkno > vp->v_lastw)
- vp->v_lastw = last_blkno;
- ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+delay_io:
+ if (upl_size)
+ ubc_upl_commit_range(upl, upl_offset, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
continue;
issue_io:
/*
}
if (flags & IO_SYNC)
- io_flags = CL_COMMIT | CL_AGE;
+ io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE;
else
- io_flags = CL_COMMIT | CL_AGE | CL_ASYNC;
+ io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | CL_ASYNC;
if (vp->v_flag & VNOCACHE_DATA)
io_flags |= CL_DUMP;
- while (vp->v_numoutput >= ASYNC_THROTTLE) {
- vp->v_flag |= VTHROTTLED;
- tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_write", 0);
- }
retval = cluster_io(vp, upl, 0, upl_f_offset, io_size, devblocksize,
io_flags, (struct buf *)0, (struct clios *)0);
}
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
- retval, 0, 0, 0, 0);
+ retval, 0, uio_resid, 0, 0);
return (retval);
}
int clip_size;
off_t max_io_size;
struct iovec *iov;
- vm_offset_t upl_offset;
int upl_size;
- int pages_in_pl;
- upl_page_info_t *pl;
int upl_flags;
upl_t upl;
int retval = 0;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
- (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
-
- /*
- * We set a threshhold of 4 pages to decide if the nocopy
- * read loop is worth the trouble...
- */
if (!((vp->v_flag & VNOCACHE_DATA) && (uio->uio_segflg == UIO_USERSPACE)))
{
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
- (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
- return(retval);
+ /*
+ * go do a read through the cache if one of the following is true....
+ * NOCACHE is not true
+ * the uio request doesn't target USERSPACE
+ */
+ return (cluster_read_x(vp, uio, filesize, devblocksize, flags));
}
while (uio->uio_resid && uio->uio_offset < filesize && retval == 0)
{
- /* we know we have a resid, so this is safe */
+ /*
+ * we know we have a resid, so this is safe
+ * skip over any emtpy vectors
+ */
iov = uio->uio_iov;
+
while (iov->iov_len == 0) {
uio->uio_iov++;
uio->uio_iovcnt--;
iov = uio->uio_iov;
}
-
- /*
- * We check every vector target and if it is physically
- * contiguous space, we skip the sanity checks.
- */
-
- upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK;
- upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK;
- pages_in_pl = 0;
+ upl_size = PAGE_SIZE;
upl_flags = UPL_QUERY_OBJECT_TYPE;
- if((vm_map_get_upl(current_map(),
+
+ if ((vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
- &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS)
+ &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS)
{
/*
* the user app must have passed in an invalid address
return (EFAULT);
}
+ /*
+ * We check every vector target but if it is physically
+ * contiguous space, we skip the sanity checks.
+ */
if (upl_flags & UPL_PHYS_CONTIG)
{
retval = cluster_phys_read(vp, uio, filesize, devblocksize, flags);
}
- else if (uio->uio_resid < 4 * PAGE_SIZE)
+ else if (uio->uio_resid < PAGE_SIZE)
{
/*
- * We set a threshhold of 4 pages to decide if the nocopy
- * read loop is worth the trouble...
- */
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
- (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
- return(retval);
- }
- else if (uio->uio_offset & PAGE_MASK_64)
- {
- /* Bring the file offset read up to a pagesize boundary */
- clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64));
- if (uio->uio_resid < clip_size)
- clip_size = uio->uio_resid;
- /*
- * Fake the resid going into the cluster_read_x call
- * and restore it on the way out.
+ * we're here because we're don't have a physically contiguous target buffer
+ * go do a read through the cache if
+ * the total xfer size is less than a page...
*/
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ return (cluster_read_x(vp, uio, filesize, devblocksize, flags));
}
- else if ((int)iov->iov_base & PAGE_MASK_64)
+ else if (((int)uio->uio_offset & PAGE_MASK) || ((int)iov->iov_base & PAGE_MASK))
{
- clip_size = iov->iov_len;
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ if (((int)uio->uio_offset & PAGE_MASK) == ((int)iov->iov_base & PAGE_MASK))
+ {
+ /*
+ * Bring the file offset read up to a pagesize boundary
+ * this will also bring the base address to a page boundary
+ * since they both are currently on the same offset within a page
+ * note: if we get here, uio->uio_resid is greater than PAGE_SIZE
+ * so the computed clip_size must always be less than the current uio_resid
+ */
+ clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64));
+
+ /*
+ * Fake the resid going into the cluster_read_x call
+ * and restore it on the way out.
+ */
+ prev_resid = uio->uio_resid;
+ uio->uio_resid = clip_size;
+ retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
+ uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ }
+ else
+ {
+ /*
+ * can't get both the file offset and the buffer offset aligned to a page boundary
+ * so fire an I/O through the cache for this entire vector
+ */
+ clip_size = iov->iov_len;
+ prev_resid = uio->uio_resid;
+ uio->uio_resid = clip_size;
+ retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
+ uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
+ }
}
else
{
} /* end else */
} /* end while */
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
- (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
-
return(retval);
}
-
static int
cluster_read_x(vp, uio, filesize, devblocksize, flags)
struct vnode *vp;
int uio_last;
int pages_in_upl;
off_t max_size;
+ off_t last_ioread_offset;
+ off_t last_request_offset;
+ u_int size_of_prefetch;
int io_size;
- vm_offset_t io_address;
kern_return_t kret;
- int segflg;
int error = 0;
int retval = 0;
- int b_lblkno;
- int e_lblkno;
+ u_int b_lblkno;
+ u_int e_lblkno;
+ struct clios iostate;
+ u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ u_int rd_ahead_enabled = 1;
+ u_int prefetch_enabled = 1;
+
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
+ (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
+
+ if (cluster_hard_throttle_on(vp)) {
+ rd_ahead_enabled = 0;
+ prefetch_enabled = 0;
+
+ max_rd_size = HARD_THROTTLE_MAXSIZE;
+ }
+ if (vp->v_flag & (VRAOFF|VNOCACHE_DATA))
+ rd_ahead_enabled = 0;
+
+ last_request_offset = uio->uio_offset + uio->uio_resid;
+
+ if (last_request_offset > filesize)
+ last_request_offset = filesize;
+ b_lblkno = (u_int)(uio->uio_offset / PAGE_SIZE_64);
+ e_lblkno = (u_int)((last_request_offset - 1) / PAGE_SIZE_64);
+
+ if (vp->v_ralen && (vp->v_lastr == b_lblkno || (vp->v_lastr + 1) == b_lblkno)) {
+ /*
+ * determine if we already have a read-ahead in the pipe courtesy of the
+ * last read systemcall that was issued...
+ * if so, pick up it's extent to determine where we should start
+ * with respect to any read-ahead that might be necessary to
+ * garner all the data needed to complete this read systemcall
+ */
+ last_ioread_offset = (vp->v_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
- b_lblkno = (int)(uio->uio_offset / PAGE_SIZE_64);
+ if (last_ioread_offset < uio->uio_offset)
+ last_ioread_offset = (off_t)0;
+ else if (last_ioread_offset > last_request_offset)
+ last_ioread_offset = last_request_offset;
+ } else
+ last_ioread_offset = (off_t)0;
while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) {
/*
else
io_size = max_size;
- if (uio->uio_segflg == UIO_USERSPACE && !(vp->v_flag & VNOCACHE_DATA)) {
- segflg = uio->uio_segflg;
+ if (!(vp->v_flag & VNOCACHE_DATA)) {
- uio->uio_segflg = UIO_PHYS_USERSPACE;
+ while (io_size) {
+ u_int io_resid;
+ u_int io_requested;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
- (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
+ /*
+ * if we keep finding the pages we need already in the cache, then
+ * don't bother to call cluster_rd_prefetch since it costs CPU cycles
+ * to determine that we have all the pages we need... once we miss in
+ * the cache and have issued an I/O, than we'll assume that we're likely
+ * to continue to miss in the cache and it's to our advantage to try and prefetch
+ */
+ if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
+ if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
+ /*
+ * we've already issued I/O for this request and
+ * there's still work to do and
+ * our prefetch stream is running dry, so issue a
+ * pre-fetch I/O... the I/O latency will overlap
+ * with the copying of the data
+ */
+ if (size_of_prefetch > max_rd_size)
+ size_of_prefetch = max_rd_size;
- while (io_size && retval == 0) {
- int xsize;
- vm_offset_t paddr;
+ size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, devblocksize);
- if (ubc_page_op(vp,
- upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY,
- &paddr, 0) != KERN_SUCCESS)
- break;
+ last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
+
+ if (last_ioread_offset > last_request_offset)
+ last_ioread_offset = last_request_offset;
+ }
+ }
+ /*
+ * limit the size of the copy we're about to do so that
+ * we can notice that our I/O pipe is running dry and
+ * get the next I/O issued before it does go dry
+ */
+ if (last_ioread_offset && io_size > ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4))
+ io_resid = ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4);
+ else
+ io_resid = io_size;
- xsize = PAGE_SIZE - start_offset;
-
- if (xsize > io_size)
- xsize = io_size;
+ io_requested = io_resid;
- retval = uiomove((caddr_t)(paddr + start_offset), xsize, uio);
+ retval = cluster_copy_ubc_data(vp, uio, &io_resid, 0);
- ubc_page_op(vp, upl_f_offset,
- UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
+ io_size -= (io_requested - io_resid);
- io_size -= xsize;
- start_offset = (int)
- (uio->uio_offset & PAGE_MASK_64);
- upl_f_offset = uio->uio_offset - start_offset;
+ if (retval || io_resid)
+ /*
+ * if we run into a real error or
+ * a page that is not in the cache
+ * we need to leave streaming mode
+ */
+ break;
+
+ if ((io_size == 0 || last_ioread_offset == last_request_offset) && rd_ahead_enabled) {
+ /*
+ * we're already finished the I/O for this read request
+ * let's see if we should do a read-ahead
+ */
+ cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
+ }
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
- (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
-
- uio->uio_segflg = segflg;
-
if (retval)
break;
-
if (io_size == 0) {
- /*
- * we're already finished with this read request
- * let's see if we should do a read-ahead
- */
- e_lblkno = (int)
- ((uio->uio_offset - 1) / PAGE_SIZE_64);
-
- if (!(vp->v_flag & VRAOFF))
- /*
- * let's try to read ahead if we're in
- * a sequential access pattern
- */
- cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
- vp->v_lastr = e_lblkno;
+ if (e_lblkno < vp->v_lastr)
+ vp->v_maxra = 0;
+ vp->v_lastr = e_lblkno;
break;
}
- max_size = filesize - uio->uio_offset;
+ start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+ upl_f_offset = uio->uio_offset - (off_t)start_offset;
+ max_size = filesize - uio->uio_offset;
}
+ if (io_size > max_rd_size)
+ io_size = max_rd_size;
+
upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
- upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+
+ if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4)
+ upl_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 4;
pages_in_upl = upl_size / PAGE_SIZE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
upl_size,
&upl,
&pl,
- UPL_FLAGS_NONE);
+ UPL_SET_LITE);
if (kret != KERN_SUCCESS)
panic("cluster_read: failed to get pagelist");
if (upl_valid_page(pl, last_pg))
break;
}
+ iostate.io_completed = 0;
+ iostate.io_issued = 0;
+ iostate.io_error = 0;
+ iostate.io_wanted = 0;
if (start_pg < last_pg) {
/*
io_size = filesize - (upl_f_offset + upl_offset);
/*
- * issue a synchronous read to cluster_io
+ * issue an asynchronous read to cluster_io
*/
error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
- io_size, devblocksize, CL_READ, (struct buf *)0, (struct clios *)0);
+ io_size, devblocksize, CL_READ | CL_ASYNC, (struct buf *)0, &iostate);
}
if (error == 0) {
/*
* if the read completed successfully, or there was no I/O request
- * issued, than map the upl into kernel address space and
- * move the data into user land.... we'll first add on any 'valid'
+ * issued, than copy the data into user land via 'cluster_upl_copy_data'
+ * we'll first add on any 'valid'
* pages that were present in the upl when we acquired it.
*/
u_int val_size;
- u_int size_of_prefetch;
for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
if (!upl_valid_page(pl, uio_last))
}
/*
* compute size to transfer this round, if uio->uio_resid is
- * still non-zero after this uiomove, we'll loop around and
+ * still non-zero after this attempt, we'll loop around and
* set up for another I/O.
*/
val_size = (uio_last * PAGE_SIZE) - start_offset;
- if (max_size < val_size)
+ if (val_size > max_size)
val_size = max_size;
- if (uio->uio_resid < val_size)
+ if (val_size > uio->uio_resid)
val_size = uio->uio_resid;
- e_lblkno = (int)((uio->uio_offset + ((off_t)val_size - 1)) / PAGE_SIZE_64);
+ if (last_ioread_offset == 0)
+ last_ioread_offset = uio->uio_offset + val_size;
- if (size_of_prefetch = (uio->uio_resid - val_size)) {
+ if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
/*
- * if there's still I/O left to do for this request, then issue a
- * pre-fetch I/O... the I/O wait time will overlap
+ * if there's still I/O left to do for this request, and...
+ * we're not in hard throttle mode, then issue a
+ * pre-fetch I/O... the I/O latency will overlap
* with the copying of the data
*/
- cluster_rd_prefetch(vp, uio->uio_offset + val_size, size_of_prefetch, filesize, devblocksize);
- } else {
- if (!(vp->v_flag & VRAOFF) && !(vp->v_flag & VNOCACHE_DATA))
- /*
- * let's try to read ahead if we're in
- * a sequential access pattern
- */
- cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
- vp->v_lastr = e_lblkno;
- }
- if (uio->uio_segflg == UIO_USERSPACE) {
- int offset;
-
- segflg = uio->uio_segflg;
+ size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, devblocksize);
- uio->uio_segflg = UIO_PHYS_USERSPACE;
-
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
- (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
-
- offset = start_offset;
-
- while (val_size && retval == 0) {
- int csize;
- int i;
- caddr_t paddr;
-
- i = offset / PAGE_SIZE;
- csize = min(PAGE_SIZE - start_offset, val_size);
-
- paddr = (caddr_t)upl_phys_page(pl, i) + start_offset;
-
- retval = uiomove(paddr, csize, uio);
+ last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
+
+ if (last_ioread_offset > last_request_offset)
+ last_ioread_offset = last_request_offset;
- val_size -= csize;
- offset += csize;
- start_offset = offset & PAGE_MASK;
- }
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
- (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
+ } else if ((uio->uio_offset + val_size) == last_request_offset) {
+ /*
+ * this transfer will finish this request, so...
+ * let's try to read ahead if we're in
+ * a sequential access pattern and we haven't
+ * explicitly disabled it
+ */
+ if (rd_ahead_enabled)
+ cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
- uio->uio_segflg = segflg;
+ if (e_lblkno < vp->v_lastr)
+ vp->v_maxra = 0;
+ vp->v_lastr = e_lblkno;
}
+ while (iostate.io_issued != iostate.io_completed) {
+ iostate.io_wanted = 1;
+ tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_read_x", 0);
+ }
+ if (iostate.io_error)
+ error = iostate.io_error;
else
- {
- if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
- panic("cluster_read: ubc_upl_map() failed\n");
-
- retval = uiomove((caddr_t)(io_address + start_offset), val_size, uio);
-
- if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
- panic("cluster_read: ubc_upl_unmap() failed\n");
- }
+ retval = cluster_copy_upl_data(uio, upl, start_offset, val_size);
}
if (start_pg < last_pg) {
/*
UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
else
ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size,
- UPL_COMMIT_CLEAR_DIRTY
- | UPL_COMMIT_FREE_ON_EMPTY
- | UPL_COMMIT_INACTIVATE);
+ UPL_COMMIT_CLEAR_DIRTY |
+ UPL_COMMIT_FREE_ON_EMPTY |
+ UPL_COMMIT_INACTIVATE);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END,
(int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
/*
* the set of pages that we issued an I/O for did not encompass
* the entire upl... so just release these without modifying
- * there state
+ * their state
*/
if (error)
ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
if (retval == 0)
retval = error;
}
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
return (retval);
}
{
upl_t upl;
upl_page_info_t *pl;
- off_t upl_f_offset;
vm_offset_t upl_offset;
- off_t start_upl_f_offset;
off_t max_io_size;
int io_size;
int upl_size;
int upl_needed_size;
int pages_in_pl;
- vm_offset_t paddr;
int upl_flags;
kern_return_t kret;
- int segflg;
struct iovec *iov;
int i;
int force_data_sync;
int retval = 0;
- int first = 1;
struct clios iostate;
+ u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ u_int max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 2;
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
(int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
iov = uio->uio_iov;
+ if (cluster_hard_throttle_on(vp)) {
+ max_rd_size = HARD_THROTTLE_MAXSIZE;
+ max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1;
+ }
while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) {
max_io_size = filesize - uio->uio_offset;
else
io_size = uio->uio_resid;
- /*
- * We don't come into this routine unless
- * UIO_USERSPACE is set.
- */
- segflg = uio->uio_segflg;
-
- uio->uio_segflg = UIO_PHYS_USERSPACE;
-
/*
* First look for pages already in the cache
* and move them to user space.
*/
- while (io_size && (retval == 0)) {
- upl_f_offset = uio->uio_offset;
-
- /*
- * If this call fails, it means the page is not
- * in the page cache.
- */
- if (ubc_page_op(vp, upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) != KERN_SUCCESS)
- break;
-
- retval = uiomove((caddr_t)(paddr), PAGE_SIZE, uio);
-
- ubc_page_op(vp, upl_f_offset,
- UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
-
- io_size -= PAGE_SIZE;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 71)) | DBG_FUNC_NONE,
- (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
- }
- uio->uio_segflg = segflg;
+ retval = cluster_copy_ubc_data(vp, uio, &io_size, 0);
if (retval) {
/*
}
max_io_size = io_size;
- if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
- max_io_size = MAX_UPL_TRANSFER * PAGE_SIZE;
- if (first) {
- if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4)
- max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 8;
- first = 0;
- }
- start_upl_f_offset = uio->uio_offset; /* this is page aligned in the file */
- upl_f_offset = start_upl_f_offset;
+ if (max_io_size > max_rd_size)
+ max_io_size = max_rd_size;
+
io_size = 0;
- while (io_size < max_io_size) {
- if (ubc_page_op(vp, upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) == KERN_SUCCESS) {
- ubc_page_op(vp, upl_f_offset,
- UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
- break;
- }
- /*
- * Build up the io request parameters.
- */
- io_size += PAGE_SIZE_64;
- upl_f_offset += PAGE_SIZE_64;
- }
+ ubc_range_op(vp, uio->uio_offset, uio->uio_offset + max_io_size, UPL_ROP_ABSENT, &io_size);
+
if (io_size == 0)
/*
* we may have already spun some portion of this request
*/
goto wait_for_reads;
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK;
upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
if (kret != KERN_SUCCESS) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
(int)upl_offset, upl_size, io_size, kret, 0);
-
/*
* cluster_nocopy_read: failed to get pagelist
*
* if there are already too many outstanding reads
* wait until some have completed before issuing the next read
*/
- while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) {
+ while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) {
iostate.io_wanted = 1;
tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0);
}
goto wait_for_reads;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
- (int)upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0);
+ (int)upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
- retval = cluster_io(vp, upl, upl_offset, start_upl_f_offset,
+ retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
io_size, devblocksize,
CL_PRESERVE | CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO,
(struct buf *)0, &iostate);
upl_page_info_t *pl;
upl_t upl;
vm_offset_t upl_offset;
- vm_offset_t dst_paddr;
+ addr64_t dst_paddr;
off_t max_size;
int io_size;
int tail_size;
else
io_size = max_size;
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK;
upl_needed_size = upl_offset + io_size;
error = 0;
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
kret = vm_map_get_upl(current_map(),
(vm_offset_t)iov->iov_base & ~PAGE_MASK,
}
pl = ubc_upl_pageinfo(upl);
- dst_paddr = (vm_offset_t)upl_phys_page(pl, 0) + ((vm_offset_t)iov->iov_base & PAGE_MASK);
+ dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + ((addr64_t)((u_int)iov->iov_base & PAGE_MASK));
while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
int head_size;
kern_return_t kret;
int retval = 0;
int issued_io;
+ int skip_range;
if (!UBCINFOEXISTS(vp))
return(EINVAL);
upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+
+ skip_range = 0;
+ /*
+ * return the number of contiguously present pages in the cache
+ * starting at upl_f_offset within the file
+ */
+ ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
+
+ if (skip_range) {
+ /*
+ * skip over pages already present in the cache
+ */
+ io_size = skip_range - start_offset;
+
+ f_offset += io_size;
+ resid -= io_size;
+
+ if (skip_range == upl_size)
+ continue;
+ /*
+ * have to issue some real I/O
+ * at this point, we know it's starting on a page boundary
+ * because we've skipped over at least the first page in the request
+ */
+ start_offset = 0;
+ upl_f_offset += skip_range;
+ upl_size -= skip_range;
+ }
pages_in_upl = upl_size / PAGE_SIZE;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
+ (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
kret = ubc_create_upl(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_RET_ONLY_ABSENT);
+ UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
if (kret != KERN_SUCCESS)
return(retval);
issued_io = 0;
pages_in_upl = last_pg + 1;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
(int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
{
int retval;
- if (!UBCINFOEXISTS(vp) || vp->v_clen == 0) {
- vp->v_flag &= ~VHASDIRTY;
+ if (!UBCINFOEXISTS(vp) || (vp->v_clen == 0 && !(vp->v_flag & VHASDIRTY)))
return(0);
- }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
vp->v_flag & VHASDIRTY, vp->v_clen, 0, 0, 0);
if (vp->v_flag & VHASDIRTY) {
- daddr_t start_pg;
- daddr_t last_pg;
- daddr_t end_pg;
-
- start_pg = vp->v_cstart;
- end_pg = vp->v_lastw;
+ sparse_cluster_push(vp, ubc_getsize(vp), 1);
- vp->v_flag &= ~VHASDIRTY;
vp->v_clen = 0;
+ retval = 1;
+ } else
+ retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1);
- while (start_pg < end_pg) {
- last_pg = start_pg + MAX_UPL_TRANSFER;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
+ vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0);
- if (last_pg > end_pg)
- last_pg = end_pg;
+ return (retval);
+}
- cluster_push_x(vp, ubc_getsize(vp), start_pg, last_pg, 0);
- start_pg = last_pg;
- }
- return (1);
- }
- retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1);
+int
+cluster_release(vp)
+ struct vnode *vp;
+{
+ off_t offset;
+ u_int length;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
- vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0);
- return (retval);
+ if (vp->v_flag & VHASDIRTY) {
+ vfs_drt_control(&(vp->v_scmap), 0);
+
+ vp->v_flag &= ~VHASDIRTY;
+ }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0);
}
int min_index;
int cl_len;
int cl_total;
- int cl_pushed;
+ int cl_pushed = 0;
struct v_cluster l_clusters[MAX_CLUSTERS];
/*
cl_len = cl_index;
vp->v_clen = 0;
- for (cl_pushed = 0, cl_index = 0; cl_index < cl_len; cl_index++) {
+ if (can_delay && cl_len == MAX_CLUSTERS) {
+ int i;
+
+ /*
+ * determine if we appear to be writing the file sequentially
+ * if not, by returning without having pushed any clusters
+ * we will cause this vnode to be pushed into the sparse cluster mechanism
+ * used for managing more random I/O patterns
+ *
+ * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
+ * that's why we're in try_push with can_delay true...
+ *
+ * check to make sure that all the clusters except the last one are 'full'... and that each cluster
+ * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
+ * so we can just make a simple pass through up, to but not including the last one...
+ * note that last_pg is not inclusive, so it will be equal to the start_pg of the next cluster if they
+ * are sequential
+ *
+ * we let the last one be partial as long as it was adjacent to the previous one...
+ * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
+ * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
+ */
+ for (i = 0; i < MAX_CLUSTERS - 1; i++) {
+ if ((l_clusters[i].last_pg - l_clusters[i].start_pg) != MAX_UPL_TRANSFER)
+ goto dont_try;
+ if (l_clusters[i].last_pg != l_clusters[i+1].start_pg)
+ goto dont_try;
+ }
+ }
+ for (cl_index = 0; cl_index < cl_len; cl_index++) {
/*
* try to push each cluster in turn... cluster_push_x may not
* push the cluster if can_delay is TRUE and the cluster doesn't
break;
}
}
+dont_try:
if (cl_len > cl_pushed) {
/*
* we didn't push all of the clusters, so
* push the old ones (I don't think this can happen because
* I'm holding the lock, but just in case)... the sum of the
* leftovers plus the new cluster count exceeds our ability
- * to represent them, so fall back to the VHASDIRTY mechanism
+ * to represent them, so switch to the sparse cluster mechanism
*/
- for (cl_index = 0; cl_index < cl_len; cl_index++) {
+
+ /*
+ * first collect the new clusters sitting in the vp
+ */
+ sparse_cluster_switch(vp, EOF);
+
+ for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg)
continue;
+ vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg;
+ vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg;
- if (l_clusters[cl_index].start_pg < vp->v_cstart)
- vp->v_cstart = l_clusters[cl_index].start_pg;
- if (l_clusters[cl_index].last_pg > vp->v_lastw)
- vp->v_lastw = l_clusters[cl_index].last_pg;
+ cl_index1++;
}
- vp->v_flag |= VHASDIRTY;
+ /*
+ * update the cluster count
+ */
+ vp->v_clen = cl_index1;
+
+ /*
+ * and collect the original clusters that were moved into the
+ * local storage for sorting purposes
+ */
+ sparse_cluster_switch(vp, EOF);
+
} else {
/*
* we've got room to merge the leftovers back in
vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg;
vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg;
- if (cl_index1 == 0) {
- vp->v_cstart = l_clusters[cl_index].start_pg;
- vp->v_lastw = l_clusters[cl_index].last_pg;
- } else {
- if (l_clusters[cl_index].start_pg < vp->v_cstart)
- vp->v_cstart = l_clusters[cl_index].start_pg;
- if (l_clusters[cl_index].last_pg > vp->v_lastw)
- vp->v_lastw = l_clusters[cl_index].last_pg;
- }
cl_index1++;
}
/*
int last_pg;
int io_size;
int io_flags;
+ int upl_flags;
int size;
kern_return_t kret;
}
size = EOF - upl_f_offset;
- upl_size = (size + (PAGE_SIZE - 1) ) & ~(PAGE_SIZE - 1);
+ upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
pages_in_upl = upl_size / PAGE_SIZE;
- } else {
- if (can_delay && (pages_in_upl < (MAX_UPL_TRANSFER - (MAX_UPL_TRANSFER / 2))))
- return(0);
+ } else
size = upl_size;
- }
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
+
+ if (vp->v_flag & VNOCACHE_DATA)
+ upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
+ else
+ upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
+
kret = ubc_create_upl(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_RET_ONLY_DIRTY);
+ upl_flags);
if (kret != KERN_SUCCESS)
panic("cluster_push: failed to get pagelist");
- if (can_delay) {
- int num_of_dirty;
-
- for (num_of_dirty = 0, start_pg = 0; start_pg < pages_in_upl; start_pg++) {
- if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg))
- num_of_dirty++;
- }
- if (num_of_dirty < pages_in_upl / 2) {
- ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 0, 2, num_of_dirty, (pages_in_upl / 2), 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, (int)upl, upl_f_offset, 0, 0, 0);
- return(0);
- }
+ /*
+ * since we only asked for the dirty pages back
+ * it's possible that we may only get a few or even none, so...
+ * before we start marching forward, we must make sure we know
+ * where the last present page is in the UPL, otherwise we could
+ * end up working with a freed upl due to the FREE_ON_EMPTY semantics
+ * employed by commit_range and abort_range.
+ */
+ for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
+ if (upl_page_present(pl, last_pg))
+ break;
}
- last_pg = 0;
+ pages_in_upl = last_pg + 1;
- while (size) {
+ if (pages_in_upl == 0) {
+ ubc_upl_abort(upl, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
+ return(1);
+ }
+
+ for (last_pg = 0; last_pg < pages_in_upl; ) {
+ /*
+ * find the next dirty page in the UPL
+ * this will become the first page in the
+ * next I/O to generate
+ */
for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
- if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg))
+ if (upl_dirty_page(pl, start_pg))
break;
+ if (upl_page_present(pl, start_pg))
+ /*
+ * RET_ONLY_DIRTY will return non-dirty 'precious' pages
+ * just release these unchanged since we're not going
+ * to steal them or change their state
+ */
+ ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
}
- if (start_pg > last_pg) {
- io_size = (start_pg - last_pg) * PAGE_SIZE;
-
- ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, io_size,
- UPL_ABORT_FREE_ON_EMPTY);
+ if (start_pg >= pages_in_upl)
+ /*
+ * done... no more dirty pages to push
+ */
+ break;
+ if (start_pg > last_pg)
+ /*
+ * skipped over some non-dirty pages
+ */
+ size -= ((start_pg - last_pg) * PAGE_SIZE);
- if (io_size < size)
- size -= io_size;
- else
- break;
- }
+ /*
+ * find a range of dirty pages to write
+ */
for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
- if (!upl_valid_page(pl, last_pg) || !upl_dirty_page(pl, last_pg))
+ if (!upl_dirty_page(pl, last_pg))
break;
}
upl_offset = start_pg * PAGE_SIZE;
io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
if (vp->v_flag & VNOCACHE_DATA)
- io_flags = CL_COMMIT | CL_AGE | CL_ASYNC | CL_DUMP;
+ io_flags = CL_THROTTLE | CL_COMMIT | CL_ASYNC | CL_DUMP;
else
- io_flags = CL_COMMIT | CL_AGE | CL_ASYNC;
+ io_flags = CL_THROTTLE | CL_COMMIT | CL_ASYNC;
- while (vp->v_numoutput >= ASYNC_THROTTLE) {
- vp->v_flag |= VTHROTTLED;
- tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_push", 0);
- }
cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, vp->v_ciosiz, io_flags, (struct buf *)0, (struct clios *)0);
size -= io_size;
}
-
static int
-cluster_align_phys_io(struct vnode *vp, struct uio *uio, vm_offset_t usr_paddr, int xsize, int devblocksize, int flags)
+sparse_cluster_switch(struct vnode *vp, off_t EOF)
{
- struct iovec *iov;
- upl_page_info_t *pl;
- upl_t upl;
- vm_offset_t ubc_paddr;
- kern_return_t kret;
- int error = 0;
+ int cl_index;
- iov = uio->uio_iov;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0);
- kret = ubc_create_upl(vp,
- uio->uio_offset & ~PAGE_MASK_64,
- PAGE_SIZE,
- &upl,
- &pl,
- UPL_FLAGS_NONE);
+ if ( !(vp->v_flag & VHASDIRTY)) {
+ vp->v_flag |= VHASDIRTY;
+ vp->v_scdirty = 0;
+ vp->v_scmap = 0;
+ }
+ for (cl_index = 0; cl_index < vp->v_clen; cl_index++) {
+ int flags;
+ int start_pg;
+ int last_pg;
- if (kret != KERN_SUCCESS)
- return(EINVAL);
+ for (start_pg = vp->v_clusters[cl_index].start_pg; start_pg < vp->v_clusters[cl_index].last_pg; start_pg++) {
- if (!upl_valid_page(pl, 0)) {
- /*
- * issue a synchronous read to cluster_io
- */
- error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize,
- CL_READ, (struct buf *)0, (struct clios *)0);
- if (error) {
+ if (ubc_page_op(vp, (off_t)(((off_t)start_pg) * PAGE_SIZE_64), 0, 0, &flags) == KERN_SUCCESS) {
+ if (flags & UPL_POP_DIRTY)
+ sparse_cluster_add(vp, EOF, start_pg, start_pg + 1);
+ }
+ }
+ }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0);
+}
+
+
+static int
+sparse_cluster_push(struct vnode *vp, off_t EOF, int push_all)
+{
+ daddr_t first;
+ daddr_t last;
+ off_t offset;
+ u_int length;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, (int)vp, (int)vp->v_scmap, vp->v_scdirty, push_all, 0);
+
+ if (push_all)
+ vfs_drt_control(&(vp->v_scmap), 1);
+
+ for (;;) {
+ if (vfs_drt_get_cluster(&(vp->v_scmap), &offset, &length) != KERN_SUCCESS) {
+ vp->v_flag &= ~VHASDIRTY;
+ vp->v_clen = 0;
+ break;
+ }
+ first = (daddr_t)(offset / PAGE_SIZE_64);
+ last = (daddr_t)((offset + length) / PAGE_SIZE_64);
+
+ cluster_push_x(vp, EOF, first, last, 0);
+
+ vp->v_scdirty -= (last - first);
+
+ if (push_all == 0)
+ break;
+ }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0);
+}
+
+
+static int
+sparse_cluster_add(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last)
+{
+ u_int new_dirty;
+ u_int length;
+ off_t offset;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (int)vp->v_scmap, vp->v_scdirty, first, last, 0);
+
+ offset = (off_t)first * PAGE_SIZE_64;
+ length = (last - first) * PAGE_SIZE;
+
+ while (vfs_drt_mark_pages(&(vp->v_scmap), offset, length, &new_dirty) != KERN_SUCCESS) {
+ /*
+ * no room left in the map
+ * only a partial update was done
+ * push out some pages and try again
+ */
+ vp->v_scdirty += new_dirty;
+
+ sparse_cluster_push(vp, EOF, 0);
+
+ offset += (new_dirty * PAGE_SIZE_64);
+ length -= (new_dirty * PAGE_SIZE);
+ }
+ vp->v_scdirty += new_dirty;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, (int)vp, (int)vp->v_scmap, vp->v_scdirty, 0, 0);
+}
+
+
+static int
+cluster_align_phys_io(struct vnode *vp, struct uio *uio, addr64_t usr_paddr, int xsize, int devblocksize, int flags)
+{
+ struct iovec *iov;
+ upl_page_info_t *pl;
+ upl_t upl;
+ addr64_t ubc_paddr;
+ kern_return_t kret;
+ int error = 0;
+
+ iov = uio->uio_iov;
+
+ kret = ubc_create_upl(vp,
+ uio->uio_offset & ~PAGE_MASK_64,
+ PAGE_SIZE,
+ &upl,
+ &pl,
+ UPL_SET_LITE);
+
+ if (kret != KERN_SUCCESS)
+ return(EINVAL);
+
+ if (!upl_valid_page(pl, 0)) {
+ /*
+ * issue a synchronous read to cluster_io
+ */
+ error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize,
+ CL_READ, (struct buf *)0, (struct clios *)0);
+ if (error) {
ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
return(error);
}
}
- ubc_paddr = (vm_offset_t)upl_phys_page(pl, 0) + (int)(uio->uio_offset & PAGE_MASK_64);
+ ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
+/*
+ * NOTE: There is no prototype for the following in BSD. It, and the definitions
+ * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
+ * osfmk/ppc/mappings.h. They are not included here because there appears to be no
+ * way to do so without exporting them to kexts as well.
+ */
if (flags & CL_READ)
- copyp2p(ubc_paddr, usr_paddr, xsize, 2);
+// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
+ copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
else
- copyp2p(usr_paddr, ubc_paddr, xsize, 1);
-
- if ( !(flags & CL_READ) || upl_dirty_page(pl, 0)) {
- /*
- * issue a synchronous write to cluster_io
- */
- error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize,
- 0, (struct buf *)0, (struct clios *)0);
+// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
+ copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
+
+ if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
+ /*
+ * issue a synchronous write to cluster_io
+ */
+ error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize,
+ 0, (struct buf *)0, (struct clios *)0);
}
if (error == 0) {
- uio->uio_offset += xsize;
+ uio->uio_offset += xsize;
iov->iov_base += xsize;
iov->iov_len -= xsize;
uio->uio_resid -= xsize;
}
ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+
+ return (error);
+}
+
+
+
+int
+cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int xsize)
+{
+ int pg_offset;
+ int pg_index;
+ int csize;
+ int segflg;
+ int retval = 0;
+ upl_page_info_t *pl;
+ boolean_t funnel_state = FALSE;
+
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
+ (int)uio->uio_offset, uio->uio_resid, upl_offset, xsize, 0);
+
+ if (xsize >= (16 * 1024))
+ funnel_state = thread_funnel_set(kernel_flock, FALSE);
+
+ segflg = uio->uio_segflg;
+
+ switch(segflg) {
+
+ case UIO_USERSPACE:
+ case UIO_USERISPACE:
+ uio->uio_segflg = UIO_PHYS_USERSPACE;
+ break;
+
+ case UIO_SYSSPACE:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE;
+ break;
+ }
+ pl = ubc_upl_pageinfo(upl);
+
+ pg_index = upl_offset / PAGE_SIZE;
+ pg_offset = upl_offset & PAGE_MASK;
+ csize = min(PAGE_SIZE - pg_offset, xsize);
+
+ while (xsize && retval == 0) {
+ addr64_t paddr;
+
+ paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset;
- return (error);
+ retval = uiomove64(paddr, csize, uio);
+
+ pg_index += 1;
+ pg_offset = 0;
+ xsize -= csize;
+ csize = min(PAGE_SIZE, xsize);
+ }
+ uio->uio_segflg = segflg;
+
+ if (funnel_state == TRUE)
+ thread_funnel_set(kernel_flock, TRUE);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio->uio_resid, retval, segflg, 0);
+
+ return (retval);
+}
+
+
+int
+cluster_copy_ubc_data(struct vnode *vp, struct uio *uio, int *io_resid, int mark_dirty)
+{
+ int segflg;
+ int io_size;
+ int xsize;
+ int start_offset;
+ off_t f_offset;
+ int retval = 0;
+ memory_object_control_t control;
+ int op_flags = UPL_POP_SET | UPL_POP_BUSY;
+ boolean_t funnel_state = FALSE;
+
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
+ (int)uio->uio_offset, uio->uio_resid, 0, *io_resid, 0);
+
+ control = ubc_getobject(vp, UBC_FLAGS_NONE);
+ if (control == MEMORY_OBJECT_CONTROL_NULL) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio->uio_resid, retval, 3, 0);
+
+ return(0);
+ }
+ if (mark_dirty)
+ op_flags |= UPL_POP_DIRTY;
+
+ segflg = uio->uio_segflg;
+
+ switch(segflg) {
+
+ case UIO_USERSPACE:
+ case UIO_USERISPACE:
+ uio->uio_segflg = UIO_PHYS_USERSPACE;
+ break;
+
+ case UIO_SYSSPACE:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE;
+ break;
+ }
+ io_size = *io_resid;
+ start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+ f_offset = uio->uio_offset - start_offset;
+ xsize = min(PAGE_SIZE - start_offset, io_size);
+
+ while (io_size && retval == 0) {
+ ppnum_t pgframe;
+
+ if (ubc_page_op_with_control(control, f_offset, op_flags, &pgframe, 0) != KERN_SUCCESS)
+ break;
+
+ if (funnel_state == FALSE && io_size >= (16 * 1024))
+ funnel_state = thread_funnel_set(kernel_flock, FALSE);
+
+ retval = uiomove64((addr64_t)(((addr64_t)pgframe << 12) + start_offset), xsize, uio);
+
+ ubc_page_op_with_control(control, f_offset, UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
+
+ io_size -= xsize;
+ start_offset = 0;
+ f_offset = uio->uio_offset;
+ xsize = min(PAGE_SIZE, io_size);
+ }
+ uio->uio_segflg = segflg;
+ *io_resid = io_size;
+
+ if (funnel_state == TRUE)
+ thread_funnel_set(kernel_flock, TRUE);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio->uio_resid, retval, 0x80000000 | segflg, 0);
+
+ return(retval);
+}
+
+
+int
+is_file_clean(struct vnode *vp, off_t filesize)
+{
+ off_t f_offset;
+ int flags;
+ int total_dirty = 0;
+
+ for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
+ if (ubc_page_op(vp, f_offset, 0, 0, &flags) == KERN_SUCCESS) {
+ if (flags & UPL_POP_DIRTY) {
+ total_dirty++;
+ }
+ }
+ }
+ if (total_dirty)
+ return(EINVAL);
+
+ return (0);
+}
+
+
+
+/*
+ * Dirty region tracking/clustering mechanism.
+ *
+ * This code (vfs_drt_*) provides a mechanism for tracking and clustering
+ * dirty regions within a larger space (file). It is primarily intended to
+ * support clustering in large files with many dirty areas.
+ *
+ * The implementation assumes that the dirty regions are pages.
+ *
+ * To represent dirty pages within the file, we store bit vectors in a
+ * variable-size circular hash.
+ */
+
+/*
+ * Bitvector size. This determines the number of pages we group in a
+ * single hashtable entry. Each hashtable entry is aligned to this
+ * size within the file.
+ */
+#define DRT_BITVECTOR_PAGES 256
+
+/*
+ * File offset handling.
+ *
+ * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
+ * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
+ */
+#define DRT_ADDRESS_MASK (~((1 << 20) - 1))
+#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
+
+/*
+ * Hashtable address field handling.
+ *
+ * The low-order bits of the hashtable address are used to conserve
+ * space.
+ *
+ * DRT_HASH_COUNT_MASK must be large enough to store the range
+ * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
+ * to indicate that the bucket is actually unoccupied.
+ */
+#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
+#define DRT_HASH_SET_ADDRESS(scm, i, a) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = \
+ ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
+ } while (0)
+#define DRT_HASH_COUNT_MASK 0x1ff
+#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
+#define DRT_HASH_SET_COUNT(scm, i, c) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = \
+ ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
+ } while (0)
+#define DRT_HASH_CLEAR(scm, i) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = 0; \
+ } while (0)
+#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
+#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
+#define DRT_HASH_COPY(oscm, oi, scm, i) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
+ DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
+ } while(0);
+
+
+/*
+ * Hash table moduli.
+ *
+ * Since the hashtable entry's size is dependent on the size of
+ * the bitvector, and since the hashtable size is constrained to
+ * both being prime and fitting within the desired allocation
+ * size, these values need to be manually determined.
+ *
+ * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
+ *
+ * The small hashtable allocation is 1024 bytes, so the modulus is 23.
+ * The large hashtable allocation is 16384 bytes, so the modulus is 401.
+ */
+#define DRT_HASH_SMALL_MODULUS 23
+#define DRT_HASH_LARGE_MODULUS 401
+
+#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
+#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
+
+/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
+
+/*
+ * Hashtable bitvector handling.
+ *
+ * Bitvector fields are 32 bits long.
+ */
+
+#define DRT_HASH_SET_BIT(scm, i, bit) \
+ (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
+
+#define DRT_HASH_CLEAR_BIT(scm, i, bit) \
+ (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
+
+#define DRT_HASH_TEST_BIT(scm, i, bit) \
+ ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
+
+#define DRT_BITVECTOR_CLEAR(scm, i) \
+ bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+
+#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
+ bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
+ &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
+ (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+
+
+
+/*
+ * Hashtable entry.
+ */
+struct vfs_drt_hashentry {
+ u_int64_t dhe_control;
+ u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
+};
+
+/*
+ * Dirty Region Tracking structure.
+ *
+ * The hashtable is allocated entirely inside the DRT structure.
+ *
+ * The hash is a simple circular prime modulus arrangement, the structure
+ * is resized from small to large if it overflows.
+ */
+
+struct vfs_drt_clustermap {
+ u_int32_t scm_magic; /* sanity/detection */
+#define DRT_SCM_MAGIC 0x12020003
+ u_int32_t scm_modulus; /* current ring size */
+ u_int32_t scm_buckets; /* number of occupied buckets */
+ u_int32_t scm_lastclean; /* last entry we cleaned */
+ u_int32_t scm_iskips; /* number of slot skips */
+
+ struct vfs_drt_hashentry scm_hashtable[0];
+};
+
+
+#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
+#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
+
+/*
+ * Debugging codes and arguments.
+ */
+#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
+#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
+#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
+#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
+#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
+ * dirty */
+ /* 0, setcount */
+ /* 1 (clean, no map) */
+ /* 2 (map alloc fail) */
+ /* 3, resid (partial) */
+#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
+#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
+ * lastclean, iskips */
+
+
+static void vfs_drt_sanity(struct vfs_drt_clustermap *cmap);
+static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
+static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
+static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
+ u_int64_t offset, int *indexp);
+static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
+ u_int64_t offset,
+ int *indexp,
+ int recursed);
+static kern_return_t vfs_drt_do_mark_pages(
+ void **cmapp,
+ u_int64_t offset,
+ u_int length,
+ int *setcountp,
+ int dirty);
+static void vfs_drt_trace(
+ struct vfs_drt_clustermap *cmap,
+ int code,
+ int arg1,
+ int arg2,
+ int arg3,
+ int arg4);
+
+
+/*
+ * Allocate and initialise a sparse cluster map.
+ *
+ * Will allocate a new map, resize or compact an existing map.
+ *
+ * XXX we should probably have at least one intermediate map size,
+ * as the 1:16 ratio seems a bit drastic.
+ */
+static kern_return_t
+vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
+{
+ struct vfs_drt_clustermap *cmap, *ocmap;
+ kern_return_t kret;
+ u_int64_t offset;
+ int nsize, i, active_buckets, index, copycount;
+
+ ocmap = NULL;
+ if (cmapp != NULL)
+ ocmap = *cmapp;
+
+ /*
+ * Decide on the size of the new map.
+ */
+ if (ocmap == NULL) {
+ nsize = DRT_HASH_SMALL_MODULUS;
+ } else {
+ /* count the number of active buckets in the old map */
+ active_buckets = 0;
+ for (i = 0; i < ocmap->scm_modulus; i++) {
+ if (!DRT_HASH_VACANT(ocmap, i) &&
+ (DRT_HASH_GET_COUNT(ocmap, i) != 0))
+ active_buckets++;
+ }
+ /*
+ * If we're currently using the small allocation, check to
+ * see whether we should grow to the large one.
+ */
+ if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
+ /* if the ring is nearly full */
+ if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) {
+ nsize = DRT_HASH_LARGE_MODULUS;
+ } else {
+ nsize = DRT_HASH_SMALL_MODULUS;
+ }
+ } else {
+ /* already using the large modulus */
+ nsize = DRT_HASH_LARGE_MODULUS;
+ /*
+ * If the ring is completely full, there's
+ * nothing useful for us to do. Behave as
+ * though we had compacted into the new
+ * array and return.
+ */
+ if (active_buckets >= DRT_HASH_LARGE_MODULUS)
+ return(KERN_SUCCESS);
+ }
+ }
+
+ /*
+ * Allocate and initialise the new map.
+ */
+
+ kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
+ (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+ if (kret != KERN_SUCCESS)
+ return(kret);
+ cmap->scm_magic = DRT_SCM_MAGIC;
+ cmap->scm_modulus = nsize;
+ cmap->scm_buckets = 0;
+ cmap->scm_lastclean = 0;
+ cmap->scm_iskips = 0;
+ for (i = 0; i < cmap->scm_modulus; i++) {
+ DRT_HASH_CLEAR(cmap, i);
+ DRT_HASH_VACATE(cmap, i);
+ DRT_BITVECTOR_CLEAR(cmap, i);
+ }
+
+ /*
+ * If there's an old map, re-hash entries from it into the new map.
+ */
+ copycount = 0;
+ if (ocmap != NULL) {
+ for (i = 0; i < ocmap->scm_modulus; i++) {
+ /* skip empty buckets */
+ if (DRT_HASH_VACANT(ocmap, i) ||
+ (DRT_HASH_GET_COUNT(ocmap, i) == 0))
+ continue;
+ /* get new index */
+ offset = DRT_HASH_GET_ADDRESS(ocmap, i);
+ kret = vfs_drt_get_index(&cmap, offset, &index, 1);
+ if (kret != KERN_SUCCESS) {
+ /* XXX need to bail out gracefully here */
+ panic("vfs_drt: new cluster map mysteriously too small");
+ }
+ /* copy */
+ DRT_HASH_COPY(ocmap, i, cmap, index);
+ copycount++;
+ }
+ }
+
+ /* log what we've done */
+ vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
+
+ /*
+ * It's important to ensure that *cmapp always points to
+ * a valid map, so we must overwrite it before freeing
+ * the old map.
+ */
+ *cmapp = cmap;
+ if (ocmap != NULL) {
+ /* emit stats into trace buffer */
+ vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
+ ocmap->scm_modulus,
+ ocmap->scm_buckets,
+ ocmap->scm_lastclean,
+ ocmap->scm_iskips);
+
+ vfs_drt_free_map(ocmap);
+ }
+ return(KERN_SUCCESS);
+}
+
+
+/*
+ * Free a sparse cluster map.
+ */
+static kern_return_t
+vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
+{
+ kern_return_t ret;
+
+ kmem_free(kernel_map, (vm_offset_t)cmap,
+ (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+ return(KERN_SUCCESS);
+}
+
+
+/*
+ * Find the hashtable slot currently occupied by an entry for the supplied offset.
+ */
+static kern_return_t
+vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
+{
+ kern_return_t kret;
+ int index, i, tries;
+
+ offset = DRT_ALIGN_ADDRESS(offset);
+ index = DRT_HASH(cmap, offset);
+
+ /* traverse the hashtable */
+ for (i = 0; i < cmap->scm_modulus; i++) {
+
+ /*
+ * If the slot is vacant, we can stop.
+ */
+ if (DRT_HASH_VACANT(cmap, index))
+ break;
+
+ /*
+ * If the address matches our offset, we have success.
+ */
+ if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
+ *indexp = index;
+ return(KERN_SUCCESS);
+ }
+
+ /*
+ * Move to the next slot, try again.
+ */
+ index = DRT_HASH_NEXT(cmap, index);
+ }
+ /*
+ * It's not there.
+ */
+ return(KERN_FAILURE);
+}
+
+/*
+ * Find the hashtable slot for the supplied offset. If we haven't allocated
+ * one yet, allocate one and populate the address field. Note that it will
+ * not have a nonzero page count and thus will still technically be free, so
+ * in the case where we are called to clean pages, the slot will remain free.
+ */
+static kern_return_t
+vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
+{
+ struct vfs_drt_clustermap *cmap;
+ kern_return_t kret;
+ int index, i;
+
+ cmap = *cmapp;
+
+ /* look for an existing entry */
+ kret = vfs_drt_search_index(cmap, offset, indexp);
+ if (kret == KERN_SUCCESS)
+ return(kret);
+
+ /* need to allocate an entry */
+ offset = DRT_ALIGN_ADDRESS(offset);
+ index = DRT_HASH(cmap, offset);
+
+ /* scan from the index forwards looking for a vacant slot */
+ for (i = 0; i < cmap->scm_modulus; i++) {
+ /* slot vacant? */
+ if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
+ cmap->scm_buckets++;
+ if (index < cmap->scm_lastclean)
+ cmap->scm_lastclean = index;
+ DRT_HASH_SET_ADDRESS(cmap, index, offset);
+ DRT_HASH_SET_COUNT(cmap, index, 0);
+ DRT_BITVECTOR_CLEAR(cmap, index);
+ *indexp = index;
+ vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
+ return(KERN_SUCCESS);
+ }
+ cmap->scm_iskips += i;
+ index = DRT_HASH_NEXT(cmap, index);
+ }
+
+ /*
+ * We haven't found a vacant slot, so the map is full. If we're not
+ * already recursed, try reallocating/compacting it.
+ */
+ if (recursed)
+ return(KERN_FAILURE);
+ kret = vfs_drt_alloc_map(cmapp);
+ if (kret == KERN_SUCCESS) {
+ /* now try to insert again */
+ kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
+ }
+ return(kret);
+}
+
+/*
+ * Implementation of set dirty/clean.
+ *
+ * In the 'clean' case, not finding a map is OK.
+ */
+static kern_return_t
+vfs_drt_do_mark_pages(
+ void **private,
+ u_int64_t offset,
+ u_int length,
+ int *setcountp,
+ int dirty)
+{
+ struct vfs_drt_clustermap *cmap, **cmapp;
+ kern_return_t kret;
+ int i, index, pgoff, pgcount, setcount, ecount;
+
+ cmapp = (struct vfs_drt_clustermap **)private;
+ cmap = *cmapp;
+
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
+
+ if (setcountp != NULL)
+ *setcountp = 0;
+
+ /* allocate a cluster map if we don't already have one */
+ if (cmap == NULL) {
+ /* no cluster map, nothing to clean */
+ if (!dirty) {
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
+ return(KERN_SUCCESS);
+ }
+ kret = vfs_drt_alloc_map(cmapp);
+ if (kret != KERN_SUCCESS) {
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
+ return(kret);
+ }
+ }
+ setcount = 0;
+
+ /*
+ * Iterate over the length of the region.
+ */
+ while (length > 0) {
+ /*
+ * Get the hashtable index for this offset.
+ *
+ * XXX this will add blank entries if we are clearing a range
+ * that hasn't been dirtied.
+ */
+ kret = vfs_drt_get_index(cmapp, offset, &index, 0);
+ cmap = *cmapp; /* may have changed! */
+ /* this may be a partial-success return */
+ if (kret != KERN_SUCCESS) {
+ if (setcountp != NULL)
+ *setcountp = setcount;
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
+
+ return(kret);
+ }
+
+ /*
+ * Work out how many pages we're modifying in this
+ * hashtable entry.
+ */
+ pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
+ pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
+
+ /*
+ * Iterate over pages, dirty/clearing as we go.
+ */
+ ecount = DRT_HASH_GET_COUNT(cmap, index);
+ for (i = 0; i < pgcount; i++) {
+ if (dirty) {
+ if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+ DRT_HASH_SET_BIT(cmap, index, pgoff + i);
+ ecount++;
+ setcount++;
+ }
+ } else {
+ if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+ DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
+ ecount--;
+ setcount++;
+ }
+ }
+ }
+ DRT_HASH_SET_COUNT(cmap, index, ecount);
+next:
+ offset += pgcount * PAGE_SIZE;
+ length -= pgcount * PAGE_SIZE;
+ }
+ if (setcountp != NULL)
+ *setcountp = setcount;
+
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
+
+ return(KERN_SUCCESS);
+}
+
+/*
+ * Mark a set of pages as dirty/clean.
+ *
+ * This is a public interface.
+ *
+ * cmapp
+ * Pointer to storage suitable for holding a pointer. Note that
+ * this must either be NULL or a value set by this function.
+ *
+ * size
+ * Current file size in bytes.
+ *
+ * offset
+ * Offset of the first page to be marked as dirty, in bytes. Must be
+ * page-aligned.
+ *
+ * length
+ * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
+ *
+ * setcountp
+ * Number of pages newly marked dirty by this call (optional).
+ *
+ * Returns KERN_SUCCESS if all the pages were successfully marked.
+ */
+static kern_return_t
+vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp)
+{
+ /* XXX size unused, drop from interface */
+ return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
+}
+
+static kern_return_t
+vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
+{
+ return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
+}
+
+/*
+ * Get a cluster of dirty pages.
+ *
+ * This is a public interface.
+ *
+ * cmapp
+ * Pointer to storage managed by drt_mark_pages. Note that this must
+ * be NULL or a value set by drt_mark_pages.
+ *
+ * offsetp
+ * Returns the byte offset into the file of the first page in the cluster.
+ *
+ * lengthp
+ * Returns the length in bytes of the cluster of dirty pages.
+ *
+ * Returns success if a cluster was found. If KERN_FAILURE is returned, there
+ * are no dirty pages meeting the minmum size criteria. Private storage will
+ * be released if there are no more dirty pages left in the map
+ *
+ */
+static kern_return_t
+vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
+{
+ struct vfs_drt_clustermap *cmap;
+ u_int64_t offset;
+ u_int length;
+ int index, i, j, fs, ls;
+
+ /* sanity */
+ if ((cmapp == NULL) || (*cmapp == NULL))
+ return(KERN_FAILURE);
+ cmap = *cmapp;
+
+ /* walk the hashtable */
+ for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
+ index = DRT_HASH(cmap, offset);
+
+ if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
+ continue;
+
+ /* scan the bitfield for a string of bits */
+ fs = -1;
+
+ for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
+ if (DRT_HASH_TEST_BIT(cmap, index, i)) {
+ fs = i;
+ break;
+ }
+ }
+ if (fs == -1) {
+ /* didn't find any bits set */
+ panic("vfs_drt: entry summary count > 0 but no bits set in map");
+ }
+ for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
+ if (!DRT_HASH_TEST_BIT(cmap, index, i))
+ break;
+ }
+
+ /* compute offset and length, mark pages clean */
+ offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
+ length = ls * PAGE_SIZE;
+ vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
+ cmap->scm_lastclean = index;
+
+ /* return successful */
+ *offsetp = (off_t)offset;
+ *lengthp = length;
+
+ vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
+ return(KERN_SUCCESS);
+ }
+ /*
+ * We didn't find anything... hashtable is empty
+ * emit stats into trace buffer and
+ * then free it
+ */
+ vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
+ cmap->scm_modulus,
+ cmap->scm_buckets,
+ cmap->scm_lastclean,
+ cmap->scm_iskips);
+
+ vfs_drt_free_map(cmap);
+ *cmapp = NULL;
+
+ return(KERN_FAILURE);
+}
+
+
+static kern_return_t
+vfs_drt_control(void **cmapp, int op_type)
+{
+ struct vfs_drt_clustermap *cmap;
+
+ /* sanity */
+ if ((cmapp == NULL) || (*cmapp == NULL))
+ return(KERN_FAILURE);
+ cmap = *cmapp;
+
+ switch (op_type) {
+ case 0:
+ /* emit stats into trace buffer */
+ vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
+ cmap->scm_modulus,
+ cmap->scm_buckets,
+ cmap->scm_lastclean,
+ cmap->scm_iskips);
+
+ vfs_drt_free_map(cmap);
+ *cmapp = NULL;
+ break;
+
+ case 1:
+ cmap->scm_lastclean = 0;
+ break;
+ }
+ return(KERN_SUCCESS);
+}
+
+
+
+/*
+ * Emit a summary of the state of the clustermap into the trace buffer
+ * along with some caller-provided data.
+ */
+static void
+vfs_drt_trace(struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
+{
+ KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
+}
+
+/*
+ * Perform basic sanity check on the hash entry summary count
+ * vs. the actual bits set in the entry.
+ */
+static void
+vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
+{
+ int index, i;
+ int bits_on;
+
+ for (index = 0; index < cmap->scm_modulus; index++) {
+ if (DRT_HASH_VACANT(cmap, index))
+ continue;
+
+ for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
+ if (DRT_HASH_TEST_BIT(cmap, index, i))
+ bits_on++;
+ }
+ if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
+ panic("bits_on = %d, index = %d\n", bits_on, index);
+ }
}