/*
- * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * The contents of this file constitute Original Code as defined in and
+ * are subject to the Apple Public Source License Version 1.1 (the
+ * "License"). You may not use this file except in compliance with the
+ * License. Please obtain a copy of the License at
+ * http://www.apple.com/publicsource and read it before using this file.
*
- * This file contains Original Code and/or Modifications of Original Code
- * as defined in and that are subject to the Apple Public Source License
- * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- *
- * The Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * This Original Code and all software distributed under the License are
+ * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- * Please see the License for the specific language governing rights and
- * limitations under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
+ * License for the specific language governing rights and limitations
+ * under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
*/
#include <sys/param.h>
-#include <sys/proc.h>
-#include <sys/buf.h>
-#include <sys/vnode.h>
-#include <sys/mount.h>
+#include <sys/proc_internal.h>
+#include <sys/buf_internal.h>
+#include <sys/mount_internal.h>
+#include <sys/vnode_internal.h>
#include <sys/trace.h>
#include <sys/malloc.h>
+#include <sys/time.h>
+#include <sys/kernel.h>
#include <sys/resourcevar.h>
+#include <sys/uio_internal.h>
#include <libkern/libkern.h>
+#include <machine/machine_routines.h>
+
+#include <sys/ubc_internal.h>
-#include <sys/ubc.h>
+#include <mach/mach_types.h>
+#include <mach/memory_object_types.h>
+#include <mach/vm_map.h>
+#include <mach/upl.h>
+
+#include <vm/vm_kern.h>
+#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
#include <sys/kdebug.h>
+
#define CL_READ 0x01
#define CL_ASYNC 0x02
#define CL_COMMIT 0x04
#define CL_PAGEIN 0x100
#define CL_DEV_MEMORY 0x200
#define CL_PRESERVE 0x400
+#define CL_THROTTLE 0x800
+#define CL_KEEPCACHED 0x1000
struct clios {
int io_wanted; /* someone is sleeping waiting for a change in state */
};
+static lck_grp_t *cl_mtx_grp;
+static lck_attr_t *cl_mtx_attr;
+static lck_grp_attr_t *cl_mtx_grp_attr;
+static lck_mtx_t *cl_mtxp;
+
+
+static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
+ int flags, buf_t real_bp, struct clios *iostate);
+static int cluster_iodone(buf_t bp, void *dummy);
+static int cluster_rd_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize);
+static int cluster_hard_throttle_on(vnode_t vp);
+
+static int cluster_read_x(vnode_t vp, struct uio *uio, off_t filesize, int flags);
+static int cluster_write_x(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
+ off_t headOff, off_t tailOff, int flags);
+static int cluster_nocopy_read(vnode_t vp, struct uio *uio, off_t filesize);
+static int cluster_nocopy_write(vnode_t vp, struct uio *uio, off_t newEOF);
+static int cluster_phys_read(vnode_t vp, struct uio *uio, off_t filesize);
+static int cluster_phys_write(vnode_t vp, struct uio *uio, off_t newEOF);
+static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, int xsize, int flags);
+
+static void cluster_rd_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra);
-static void cluster_zero(upl_t upl, vm_offset_t upl_offset,
- int size, struct buf *bp);
-static int cluster_read_x(struct vnode *vp, struct uio *uio,
- off_t filesize, int devblocksize, int flags);
-static int cluster_write_x(struct vnode *vp, struct uio *uio,
- off_t oldEOF, off_t newEOF, off_t headOff,
- off_t tailOff, int devblocksize, int flags);
-static int cluster_nocopy_read(struct vnode *vp, struct uio *uio,
- off_t filesize, int devblocksize, int flags);
-static int cluster_nocopy_write(struct vnode *vp, struct uio *uio,
- off_t newEOF, int devblocksize, int flags);
-static int cluster_phys_read(struct vnode *vp, struct uio *uio,
- off_t filesize, int devblocksize, int flags);
-static int cluster_phys_write(struct vnode *vp, struct uio *uio,
- off_t newEOF, int devblocksize, int flags);
-static int cluster_align_phys_io(struct vnode *vp, struct uio *uio,
- vm_offset_t usr_paddr, int xsize, int devblocksize, int flags);
-static int cluster_push_x(struct vnode *vp, off_t EOF, daddr_t first, daddr_t last, int can_delay);
-static int cluster_try_push(struct vnode *vp, off_t newEOF, int can_delay, int push_all);
+static int cluster_push_x(vnode_t vp, struct cl_extent *, off_t EOF, int flags);
+static void cluster_push_EOF(vnode_t vp, off_t EOF);
+static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int can_delay, int push_all);
+
+static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF);
+static void sparse_cluster_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_all);
+static void sparse_cluster_add(struct cl_writebehind *, vnode_t vp, struct cl_extent *, off_t EOF);
+
+static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp);
+static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
+static kern_return_t vfs_drt_control(void **cmapp, int op_type);
+
+int is_file_clean(vnode_t, off_t);
/*
* throttle the number of async writes that
* can be outstanding on a single vnode
* before we issue a synchronous write
*/
-#define ASYNC_THROTTLE 9
+#define HARD_THROTTLE_MAXCNT 0
+#define HARD_THROTTLE_MAXSIZE (64 * 1024)
+
+int hard_throttle_on_root = 0;
+struct timeval priority_IO_timestamp_for_root;
+
+
+void
+cluster_init(void) {
+ /*
+ * allocate lock group attribute and group
+ */
+ cl_mtx_grp_attr = lck_grp_attr_alloc_init();
+ //lck_grp_attr_setstat(cl_mtx_grp_attr);
+ cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
+
+ /*
+ * allocate the lock attribute
+ */
+ cl_mtx_attr = lck_attr_alloc_init();
+ //lck_attr_setdebug(clf_mtx_attr);
+
+ /*
+ * allocate and initialize mutex's used to protect updates and waits
+ * on the cluster_io context
+ */
+ cl_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
+
+ if (cl_mtxp == NULL)
+ panic("cluster_init: failed to allocate cl_mtxp");
+}
+
+
+
+#define CLW_ALLOCATE 0x01
+#define CLW_RETURNLOCKED 0x02
+/*
+ * if the read ahead context doesn't yet exist,
+ * allocate and initialize it...
+ * the vnode lock serializes multiple callers
+ * during the actual assignment... first one
+ * to grab the lock wins... the other callers
+ * will release the now unnecessary storage
+ *
+ * once the context is present, try to grab (but don't block on)
+ * the lock associated with it... if someone
+ * else currently owns it, than the read
+ * will run without read-ahead. this allows
+ * multiple readers to run in parallel and
+ * since there's only 1 read ahead context,
+ * there's no real loss in only allowing 1
+ * reader to have read-ahead enabled.
+ */
+static struct cl_readahead *
+cluster_get_rap(vnode_t vp)
+{
+ struct ubc_info *ubc;
+ struct cl_readahead *rap;
+
+ ubc = vp->v_ubcinfo;
+
+ if ((rap = ubc->cl_rahead) == NULL) {
+ MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
+
+ bzero(rap, sizeof *rap);
+ rap->cl_lastr = -1;
+ lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
+
+ vnode_lock(vp);
+
+ if (ubc->cl_rahead == NULL)
+ ubc->cl_rahead = rap;
+ else {
+ lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
+ FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
+ rap = ubc->cl_rahead;
+ }
+ vnode_unlock(vp);
+ }
+ if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
+ return(rap);
+
+ return ((struct cl_readahead *)NULL);
+}
+
+
+/*
+ * if the write behind context doesn't yet exist,
+ * and CLW_ALLOCATE is specified, allocate and initialize it...
+ * the vnode lock serializes multiple callers
+ * during the actual assignment... first one
+ * to grab the lock wins... the other callers
+ * will release the now unnecessary storage
+ *
+ * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
+ * the lock associated with the write behind context before
+ * returning
+ */
+
+static struct cl_writebehind *
+cluster_get_wbp(vnode_t vp, int flags)
+{
+ struct ubc_info *ubc;
+ struct cl_writebehind *wbp;
+
+ ubc = vp->v_ubcinfo;
+
+ if ((wbp = ubc->cl_wbehind) == NULL) {
+
+ if ( !(flags & CLW_ALLOCATE))
+ return ((struct cl_writebehind *)NULL);
+
+ MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
+
+ bzero(wbp, sizeof *wbp);
+ lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
+
+ vnode_lock(vp);
+
+ if (ubc->cl_wbehind == NULL)
+ ubc->cl_wbehind = wbp;
+ else {
+ lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
+ FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
+ wbp = ubc->cl_wbehind;
+ }
+ vnode_unlock(vp);
+ }
+ if (flags & CLW_RETURNLOCKED)
+ lck_mtx_lock(&wbp->cl_lockw);
+
+ return (wbp);
+}
+
+
+static int
+cluster_hard_throttle_on(vnode_t vp)
+{
+ static struct timeval hard_throttle_maxelapsed = { 0, 200000 };
+
+ if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) {
+ struct timeval elapsed;
+
+ if (hard_throttle_on_root)
+ return(1);
+
+ microuptime(&elapsed);
+ timevalsub(&elapsed, &priority_IO_timestamp_for_root);
+
+ if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <))
+ return(1);
+ }
+ return(0);
+}
+
static int
-cluster_iodone(bp)
- struct buf *bp;
+cluster_iodone(buf_t bp, __unused void *dummy)
{
- int b_flags;
- int error;
- int total_size;
- int total_resid;
- int upl_offset;
- int zero_offset;
- upl_t upl;
- struct buf *cbp;
- struct buf *cbp_head;
- struct buf *cbp_next;
- struct buf *real_bp;
- struct vnode *vp;
- struct clios *iostate;
- int commit_size;
- int pg_offset;
-
-
- cbp_head = (struct buf *)(bp->b_trans_head);
+ int b_flags;
+ int error;
+ int total_size;
+ int total_resid;
+ int upl_offset;
+ int zero_offset;
+ upl_t upl;
+ buf_t cbp;
+ buf_t cbp_head;
+ buf_t cbp_next;
+ buf_t real_bp;
+ struct clios *iostate;
+ int commit_size;
+ int pg_offset;
+
+ cbp_head = (buf_t)(bp->b_trans_head);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
(int)cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
cbp = cbp_head;
upl_offset = cbp->b_uploffset;
- upl = cbp->b_pagelist;
+ upl = cbp->b_upl;
b_flags = cbp->b_flags;
real_bp = cbp->b_real_bp;
- vp = cbp->b_vp;
zero_offset= cbp->b_validend;
iostate = (struct clios *)cbp->b_iostate;
- while (cbp) {
- if (cbp->b_vectorcount > 1)
- _FREE(cbp->b_vectorlist, M_SEGMENT);
+ if (real_bp)
+ real_bp->b_dev = cbp->b_dev;
+ while (cbp) {
if ((cbp->b_flags & B_ERROR) && error == 0)
error = cbp->b_error;
if (zero_offset)
cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
- if ((vp->v_flag & VTHROTTLED) && (vp->v_numoutput <= (ASYNC_THROTTLE / 3))) {
- vp->v_flag &= ~VTHROTTLED;
- wakeup((caddr_t)&vp->v_numoutput);
- }
if (iostate) {
+ int need_wakeup = 0;
+
/*
* someone has issued multiple I/Os asynchrounsly
* and is waiting for them to complete (streaming)
*/
+ lck_mtx_lock(cl_mtxp);
+
if (error && iostate->io_error == 0)
iostate->io_error = error;
* this io stream to change
*/
iostate->io_wanted = 0;
- wakeup((caddr_t)&iostate->io_wanted);
+ need_wakeup = 1;
}
+ lck_mtx_unlock(cl_mtxp);
+
+ if (need_wakeup)
+ wakeup((caddr_t)&iostate->io_wanted);
}
if ((b_flags & B_NEED_IODONE) && real_bp) {
if (error) {
}
real_bp->b_resid = total_resid;
- biodone(real_bp);
+ buf_biodone(real_bp);
}
if (error == 0 && total_resid)
error = EIO;
if (b_flags & B_COMMIT_UPL) {
pg_offset = upl_offset & PAGE_MASK;
- commit_size = (((pg_offset + total_size) + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE;
+ commit_size = (pg_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (error || (b_flags & B_NOCACHE) || ((b_flags & B_PHYS) && !(b_flags & B_READ))) {
+ if (error || (b_flags & B_NOCACHE)) {
int upl_abort_code;
+ int page_in = 0;
+ int page_out = 0;
- if (b_flags & B_PHYS)
+ if (b_flags & B_PAGEIO) {
+ if (b_flags & B_READ)
+ page_in = 1;
+ else
+ page_out = 1;
+ }
+ if (b_flags & B_CACHE) /* leave pages in the cache unchanged on error */
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if ((b_flags & B_PAGEOUT) && (error != ENXIO)) /* transient error */
+ else if (page_out && (error != ENXIO)) /* transient error */
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if (b_flags & B_PGIN)
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
+ else if (page_in)
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
else
upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
ubc_upl_abort_range(upl, upl_offset - pg_offset, commit_size,
- upl_abort_code);
-
+ upl_abort_code);
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
(int)upl, upl_offset - pg_offset, commit_size,
0x80000000|upl_abort_code, 0);
} else {
int upl_commit_flags = UPL_COMMIT_FREE_ON_EMPTY;
- if (b_flags & B_PHYS)
+ if ((b_flags & B_PHYS) && (b_flags & B_READ))
upl_commit_flags |= UPL_COMMIT_SET_DIRTY;
- else if ( !(b_flags & B_PAGEOUT))
- upl_commit_flags |= UPL_COMMIT_CLEAR_DIRTY;
+
if (b_flags & B_AGE)
upl_commit_flags |= UPL_COMMIT_INACTIVATE;
(int)upl, upl_offset - pg_offset, commit_size,
upl_commit_flags, 0);
}
- } else
+ } else {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
(int)upl, upl_offset, 0, error, 0);
+ }
return (error);
}
-static void
-cluster_zero(upl, upl_offset, size, bp)
- upl_t upl;
- vm_offset_t upl_offset;
- int size;
- struct buf *bp;
+void
+cluster_zero(upl_t upl, vm_offset_t upl_offset, int size, buf_t bp)
{
- vm_offset_t io_addr = 0;
- int must_unmap = 0;
- kern_return_t kret;
+ upl_page_info_t *pl;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
upl_offset, size, (int)bp, 0, 0);
- if (bp == NULL || bp->b_data == NULL) {
- kret = ubc_upl_map(upl, &io_addr);
-
- if (kret != KERN_SUCCESS)
- panic("cluster_zero: ubc_upl_map() failed with (%d)", kret);
- if (io_addr == 0)
- panic("cluster_zero: ubc_upl_map() mapped 0");
+ if (bp == NULL || bp->b_datap == 0) {
- must_unmap = 1;
+ pl = ubc_upl_pageinfo(upl);
+
+ while (size) {
+ int page_offset;
+ int page_index;
+ addr64_t zero_addr;
+ int zero_cnt;
+
+ page_index = upl_offset / PAGE_SIZE;
+ page_offset = upl_offset & PAGE_MASK;
+
+ zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset;
+ zero_cnt = min(PAGE_SIZE - page_offset, size);
+
+ bzero_phys(zero_addr, zero_cnt);
+
+ size -= zero_cnt;
+ upl_offset += zero_cnt;
+ }
} else
- io_addr = (vm_offset_t)bp->b_data;
- bzero((caddr_t)(io_addr + upl_offset), size);
-
- if (must_unmap) {
- kret = ubc_upl_unmap(upl);
+ bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
- if (kret != KERN_SUCCESS)
- panic("cluster_zero: kernel_upl_unmap failed");
- }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
+ upl_offset, size, 0, 0, 0);
}
+
static int
-cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size, devblocksize, flags, real_bp, iostate)
- struct vnode *vp;
- upl_t upl;
- vm_offset_t upl_offset;
- off_t f_offset;
- int non_rounded_size;
- int devblocksize;
- int flags;
- struct buf *real_bp;
- struct clios *iostate;
+cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
+ int flags, buf_t real_bp, struct clios *iostate)
{
- struct buf *cbp;
- struct iovec *iovp;
- u_int size;
- u_int io_size;
- int io_flags;
- int error = 0;
- int retval = 0;
- struct buf *cbp_head = 0;
- struct buf *cbp_tail = 0;
- upl_page_info_t *pl;
- int buf_count = 0;
- int pg_count;
- int pg_offset;
- u_int max_iosize;
- u_int max_vectors;
- int priv;
- int zero_offset = 0;
- u_int first_lblkno;
+ buf_t cbp;
+ u_int size;
+ u_int io_size;
+ int io_flags;
+ int bmap_flags;
+ int error = 0;
+ int retval = 0;
+ buf_t cbp_head = NULL;
+ buf_t cbp_tail = NULL;
+ int trans_count = 0;
+ u_int pg_count;
+ int pg_offset;
+ u_int max_iosize;
+ u_int max_vectors;
+ int priv;
+ int zero_offset = 0;
+ int async_throttle = 0;
+ mount_t mp;
+
+ mp = vp->v_mount;
+
+ if (mp->mnt_devblocksize > 1) {
+ /*
+ * round the requested size up so that this I/O ends on a
+ * page boundary in case this is a 'write'... if the filesystem
+ * has blocks allocated to back the page beyond the EOF, we want to
+ * make sure to write out the zero's that are sitting beyond the EOF
+ * so that in case the filesystem doesn't explicitly zero this area
+ * if a hole is created via a lseek/write beyond the current EOF,
+ * it will return zeros when it's read back from the disk. If the
+ * physical allocation doesn't extend for the whole page, we'll
+ * only write/read from the disk up to the end of this allocation
+ * via the extent info returned from the VNOP_BLOCKMAP call.
+ */
+ pg_offset = upl_offset & PAGE_MASK;
+
+ size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
+ } else {
+ /*
+ * anyone advertising a blocksize of 1 byte probably
+ * can't deal with us rounding up the request size
+ * AFP is one such filesystem/device
+ */
+ size = non_rounded_size;
+ }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START,
+ (int)f_offset, size, upl_offset, flags, 0);
if (flags & CL_READ) {
- io_flags = (B_VECTORLIST | B_READ);
+ io_flags = (B_READ);
+ bmap_flags = VNODE_READ;
- vfs_io_attributes(vp, B_READ, &max_iosize, &max_vectors);
+ max_iosize = mp->mnt_maxreadcnt;
+ max_vectors = mp->mnt_segreadcnt;
} else {
- io_flags = (B_VECTORLIST | B_WRITEINPROG);
+ io_flags = 0;
+ bmap_flags = VNODE_WRITE;
- vfs_io_attributes(vp, B_WRITE, &max_iosize, &max_vectors);
+ max_iosize = mp->mnt_maxwritecnt;
+ max_vectors = mp->mnt_segwritecnt;
}
- pl = ubc_upl_pageinfo(upl);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
+ /*
+ * make sure the maximum iosize is a
+ * multiple of the page size
+ */
+ max_iosize &= ~PAGE_MASK;
+
+ if (flags & CL_THROTTLE) {
+ if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp)) {
+ if (max_iosize > HARD_THROTTLE_MAXSIZE)
+ max_iosize = HARD_THROTTLE_MAXSIZE;
+ async_throttle = HARD_THROTTLE_MAXCNT;
+ } else
+ async_throttle = VNODE_ASYNC_THROTTLE;
+ }
if (flags & CL_AGE)
io_flags |= B_AGE;
if (flags & CL_DUMP)
io_flags |= B_NOCACHE;
- if (flags & CL_PAGEIN)
- io_flags |= B_PGIN;
- if (flags & CL_PAGEOUT)
- io_flags |= B_PAGEOUT;
+ if (flags & (CL_PAGEIN | CL_PAGEOUT))
+ io_flags |= B_PAGEIO;
if (flags & CL_COMMIT)
io_flags |= B_COMMIT_UPL;
if (flags & CL_PRESERVE)
io_flags |= B_PHYS;
-
- if (devblocksize)
- size = (non_rounded_size + (devblocksize - 1)) & ~(devblocksize - 1);
- else
- size = non_rounded_size;
-
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START,
- (int)f_offset, size, upl_offset, flags, 0);
+ if (flags & CL_KEEPCACHED)
+ io_flags |= B_CACHE;
if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
/*
zero_offset = upl_offset + non_rounded_size;
}
while (size) {
- int vsize;
- int i;
- int pl_index;
- int pg_resid;
- int num_contig;
- daddr_t lblkno;
- daddr_t blkno;
+ int pg_resid;
+ daddr64_t blkno;
+ daddr64_t lblkno;
if (size > max_iosize)
io_size = max_iosize;
else
io_size = size;
-
- if (error = VOP_CMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL)) {
- if (error == EOPNOTSUPP)
- panic("VOP_CMAP Unimplemented");
+
+ if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, (size_t *)&io_size, NULL, bmap_flags, NULL))) {
break;
}
+ if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
+ real_bp->b_blkno = blkno;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
(int)f_offset, (int)blkno, io_size, zero_offset, 0);
- if ( (!(flags & CL_READ) && (long)blkno == -1) || io_size == 0) {
+ if (io_size == 0) {
+ /*
+ * vnop_blockmap didn't return an error... however, it did
+ * return an extent size of 0 which means we can't
+ * make forward progress on this I/O... a hole in the
+ * file would be returned as a blkno of -1 with a non-zero io_size
+ * a real extent is returned with a blkno != -1 and a non-zero io_size
+ */
+ error = EINVAL;
+ break;
+ }
+ if ( !(flags & CL_READ) && blkno == -1) {
+ off_t e_offset;
+
+ /*
+ * we're writing into a 'hole'
+ */
if (flags & CL_PAGEOUT) {
+ /*
+ * if we got here via cluster_pageout
+ * then just error the request and return
+ * the 'hole' should already have been covered
+ */
error = EINVAL;
break;
- };
-
- /* Try paging out the page individually before
- giving up entirely and dumping it (it could
- be mapped in a "hole" and require allocation
- before the I/O:
+ }
+ if ( !(flags & CL_COMMIT)) {
+ /*
+ * currently writes always request the commit to happen
+ * as part of the io completion... however, if the CL_COMMIT
+ * flag isn't specified, than we can't issue the abort_range
+ * since the call site is going to abort or commit the same upl..
+ * in this case we can only return an error
+ */
+ error = EINVAL;
+ break;
+ }
+ /*
+ * we can get here if the cluster code happens to
+ * pick up a page that was dirtied via mmap vs
+ * a 'write' and the page targets a 'hole'...
+ * i.e. the writes to the cluster were sparse
+ * and the file was being written for the first time
+ *
+ * we can also get here if the filesystem supports
+ * 'holes' that are less than PAGE_SIZE.... because
+ * we can't know if the range in the page that covers
+ * the 'hole' has been dirtied via an mmap or not,
+ * we have to assume the worst and try to push the
+ * entire page to storage.
+ *
+ * Try paging out the page individually before
+ * giving up entirely and dumping it (the pageout
+ * path will insure that the zero extent accounting
+ * has been taken care of before we get back into cluster_io)
*/
- ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE_64, UPL_ABORT_FREE_ON_EMPTY);
- if (ubc_pushdirty_range(vp, f_offset, PAGE_SIZE_64) == 0) {
- error = EINVAL;
+ ubc_upl_abort_range(upl, trunc_page(upl_offset), PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
+
+ e_offset = round_page_64(f_offset + 1);
+
+ if (ubc_sync_range(vp, f_offset, e_offset, UBC_PUSHDIRTY) == 0) {
+ error = EINVAL;
break;
- };
-
- upl_offset += PAGE_SIZE_64;
- f_offset += PAGE_SIZE_64;
- size -= PAGE_SIZE_64;
+ }
+ io_size = e_offset - f_offset;
+
+ f_offset += io_size;
+ upl_offset += io_size;
+
+ if (size >= io_size)
+ size -= io_size;
+ else
+ size = 0;
+ /*
+ * keep track of how much of the original request
+ * that we've actually completed... non_rounded_size
+ * may go negative due to us rounding the request
+ * to a page size multiple (i.e. size > non_rounded_size)
+ */
+ non_rounded_size -= io_size;
+
+ if (non_rounded_size <= 0) {
+ /*
+ * we've transferred all of the data in the original
+ * request, but we were unable to complete the tail
+ * of the last page because the file didn't have
+ * an allocation to back that portion... this is ok.
+ */
+ size = 0;
+ }
continue;
}
- lblkno = (daddr_t)(f_offset / PAGE_SIZE_64);
+ lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64);
/*
* we have now figured out how much I/O we can do - this is in 'io_size'
- * pl_index represents the first page in the 'upl' that the I/O will occur for
* pg_offset is the starting point in the first page for the I/O
* pg_count is the number of full and partial pages that 'io_size' encompasses
*/
- pl_index = upl_offset / PAGE_SIZE;
pg_offset = upl_offset & PAGE_MASK;
- pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
if (flags & CL_DEV_MEMORY) {
/*
* currently, can't deal with reading 'holes' in file
*/
- if ((long)blkno == -1) {
+ if (blkno == -1) {
error = EINVAL;
break;
}
* treat physical requests as one 'giant' page
*/
pg_count = 1;
- }
- if ((flags & CL_READ) && (long)blkno == -1) {
+ } else
+ pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
+
+ if ((flags & CL_READ) && blkno == -1) {
int bytes_to_zero;
/*
/*
* if this upl contains the EOF and it is not a multiple of PAGE_SIZE
* than 'zero_offset' will be non-zero
- * if the 'hole' returned by VOP_CMAP extends all the way to the eof
+ * if the 'hole' returned by vnop_blockmap extends all the way to the eof
* (indicated by the io_size finishing off the I/O request for this UPL)
* than we're not going to issue an I/O for the
* last page in this upl... we need to zero both the hole and the tail
upl_offset += io_size;
f_offset += io_size;
size -= io_size;
+ /*
+ * keep track of how much of the original request
+ * that we've actually completed... non_rounded_size
+ * may go negative due to us rounding the request
+ * to a page size multiple (i.e. size > non_rounded_size)
+ */
+ non_rounded_size -= io_size;
+ if (non_rounded_size <= 0) {
+ /*
+ * we've transferred all of the data in the original
+ * request, but we were unable to complete the tail
+ * of the last page because the file didn't have
+ * an allocation to back that portion... this is ok.
+ */
+ size = 0;
+ }
if (cbp_head && pg_count)
goto start_io;
continue;
- } else if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) {
- real_bp->b_blkno = blkno;
}
-
- if (pg_count > 1) {
- if (pg_count > max_vectors) {
- io_size -= (pg_count - max_vectors) * PAGE_SIZE;
-
- if (io_size < 0) {
- io_size = PAGE_SIZE - pg_offset;
- pg_count = 1;
- } else
- pg_count = max_vectors;
- }
- /*
- * we need to allocate space for the vector list
- */
- if (pg_count > 1) {
- iovp = (struct iovec *)_MALLOC(sizeof(struct iovec) * pg_count,
- M_SEGMENT, M_NOWAIT);
-
- if (iovp == (struct iovec *) 0) {
- /*
- * if the allocation fails, then throttle down to a single page
- */
- io_size = PAGE_SIZE - pg_offset;
- pg_count = 1;
- }
+ if (pg_count > max_vectors) {
+ if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
+ io_size = PAGE_SIZE - pg_offset;
+ pg_count = 1;
+ } else {
+ io_size -= (pg_count - max_vectors) * PAGE_SIZE;
+ pg_count = max_vectors;
}
}
- /* Throttle the speculative IO */
- if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
+ if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
+ /*
+ * if we're not targeting a virtual device i.e. a disk image
+ * it's safe to dip into the reserve pool since real devices
+ * can complete this I/O request without requiring additional
+ * bufs from the alloc_io_buf pool
+ */
+ priv = 1;
+ else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
+ /*
+ * Throttle the speculative IO
+ */
priv = 0;
else
priv = 1;
cbp = alloc_io_buf(vp, priv);
- if (pg_count == 1)
- /*
- * we use the io vector that's reserved in the buffer header
- * this insures we can always issue an I/O even in a low memory
- * condition that prevents the _MALLOC from succeeding... this
- * is necessary to prevent deadlocks with the pager
- */
- iovp = (struct iovec *)(&cbp->b_vects[0]);
-
- cbp->b_vectorlist = (void *)iovp;
- cbp->b_vectorcount = pg_count;
-
- if (flags & CL_DEV_MEMORY) {
-
- iovp->iov_len = io_size;
- iovp->iov_base = (caddr_t)upl_phys_page(pl, 0);
+ if (flags & CL_PAGEOUT) {
+ u_int i;
- if (iovp->iov_base == (caddr_t) 0) {
- free_io_buf(cbp);
- error = EINVAL;
- } else
- iovp->iov_base += upl_offset;
- } else {
-
- for (i = 0, vsize = io_size; i < pg_count; i++, iovp++) {
- int psize;
-
- psize = PAGE_SIZE - pg_offset;
-
- if (psize > vsize)
- psize = vsize;
-
- iovp->iov_len = psize;
- iovp->iov_base = (caddr_t)upl_phys_page(pl, pl_index + i);
-
- if (iovp->iov_base == (caddr_t) 0) {
- if (pg_count > 1)
- _FREE(cbp->b_vectorlist, M_SEGMENT);
- free_io_buf(cbp);
-
- error = EINVAL;
- break;
- }
- iovp->iov_base += pg_offset;
- pg_offset = 0;
-
- if (flags & CL_PAGEOUT) {
- int s;
- struct buf *bp;
-
- s = splbio();
- if (bp = incore(vp, lblkno + i)) {
- if (!ISSET(bp->b_flags, B_BUSY)) {
- bremfree(bp);
- SET(bp->b_flags, (B_BUSY | B_INVAL));
- splx(s);
- brelse(bp);
- } else
- panic("BUSY bp found in cluster_io");
- }
- splx(s);
+ for (i = 0; i < pg_count; i++) {
+ if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
+ panic("BUSY bp found in cluster_io");
}
- vsize -= psize;
- }
}
- if (error)
- break;
-
if (flags & CL_ASYNC) {
- cbp->b_flags |= (B_CALL | B_ASYNC);
- cbp->b_iodone = (void *)cluster_iodone;
+ if (buf_setcallback(cbp, (void *)cluster_iodone, NULL))
+ panic("buf_setcallback failed\n");
}
cbp->b_flags |= io_flags;
cbp->b_lblkno = lblkno;
cbp->b_blkno = blkno;
cbp->b_bcount = io_size;
- cbp->b_pagelist = upl;
- cbp->b_uploffset = upl_offset;
- cbp->b_trans_next = (struct buf *)0;
- if (cbp->b_iostate = (void *)iostate)
+ if (buf_setupl(cbp, upl, upl_offset))
+ panic("buf_setupl failed\n");
+
+ cbp->b_trans_next = (buf_t)NULL;
+
+ if ((cbp->b_iostate = (void *)iostate))
/*
* caller wants to track the state of this
* io... bump the amount issued against this stream
*/
iostate->io_issued += io_size;
- if (flags & CL_READ)
+ if (flags & CL_READ) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
- cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0);
- else
+ (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
+ }
+ else {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
- cbp->b_lblkno, cbp->b_blkno, upl_offset, io_size, 0);
+ (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
+ }
if (cbp_head) {
cbp_tail->b_trans_next = cbp;
cbp_head = cbp;
cbp_tail = cbp;
}
- (struct buf *)(cbp->b_trans_head) = cbp_head;
- buf_count++;
+ (buf_t)(cbp->b_trans_head) = cbp_head;
+ trans_count++;
upl_offset += io_size;
f_offset += io_size;
size -= io_size;
+ /*
+ * keep track of how much of the original request
+ * that we've actually completed... non_rounded_size
+ * may go negative due to us rounding the request
+ * to a page size multiple (i.e. size > non_rounded_size)
+ */
+ non_rounded_size -= io_size;
- if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || buf_count > 8)) || size == 0) {
+ if (non_rounded_size <= 0) {
+ /*
+ * we've transferred all of the data in the original
+ * request, but we were unable to complete the tail
+ * of the last page because the file didn't have
+ * an allocation to back that portion... this is ok.
+ */
+ size = 0;
+ }
+ if ( (!(upl_offset & PAGE_MASK) && !(flags & CL_DEV_MEMORY) && ((flags & CL_ASYNC) || trans_count > 8)) || size == 0) {
/*
* if we have no more I/O to issue or
* the current I/O we've prepared fully
cbp_head->b_flags |= B_NEED_IODONE;
cbp_head->b_real_bp = real_bp;
} else
- cbp_head->b_real_bp = (struct buf *)NULL;
+ cbp_head->b_real_bp = (buf_t)NULL;
if (size == 0) {
/*
} else
cbp_head->b_validend = 0;
+ if (flags & CL_THROTTLE)
+ (void)vnode_waitforwrites(vp, async_throttle, 0, 0, (char *)"cluster_io");
+
for (cbp = cbp_head; cbp;) {
- struct buf * cbp_next;
+ buf_t cbp_next;
- if (io_flags & B_WRITEINPROG)
- cbp->b_vp->v_numoutput++;
+ if ( !(io_flags & B_READ))
+ vnode_startwrite(vp);
cbp_next = cbp->b_trans_next;
- (void) VOP_STRATEGY(cbp);
+ (void) VNOP_STRATEGY(cbp);
cbp = cbp_next;
}
if ( !(flags & CL_ASYNC)) {
+ int dummy;
+
for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
- biowait(cbp);
-
- if (error = cluster_iodone(cbp_head)) {
- if ((flags & CL_PAGEOUT) && (error == ENXIO))
- retval = 0; /* drop the error */
- else
- retval = error;
- error = 0;
+ buf_biowait(cbp);
+
+ if ((error = cluster_iodone(cbp_head, (void *)&dummy))) {
+ if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) == CL_PAGEOUT) && (error == ENXIO))
+ error = 0; /* drop the error */
+ else {
+ if (retval == 0)
+ retval = error;
+ error = 0;
+ }
}
}
- cbp_head = (struct buf *)0;
- cbp_tail = (struct buf *)0;
+ cbp_head = (buf_t)NULL;
+ cbp_tail = (buf_t)NULL;
- buf_count = 0;
+ trans_count = 0;
}
}
if (error) {
io_size = 0;
for (cbp = cbp_head; cbp;) {
- struct buf * cbp_next;
+ buf_t cbp_next;
- if (cbp->b_vectorcount > 1)
- _FREE(cbp->b_vectorlist, M_SEGMENT);
upl_offset -= cbp->b_bcount;
size += cbp->b_bcount;
io_size += cbp->b_bcount;
cbp = cbp_next;
}
if (iostate) {
+ int need_wakeup = 0;
+
/*
* update the error condition for this stream
* since we never really issued the io
* just go ahead and adjust it back
*/
+ lck_mtx_lock(cl_mtxp);
+
if (iostate->io_error == 0)
iostate->io_error = error;
iostate->io_issued -= io_size;
* this io stream to change
*/
iostate->io_wanted = 0;
- wakeup((caddr_t)&iostate->io_wanted);
+ need_wakeup = 0;
}
+ lck_mtx_unlock(cl_mtxp);
+
+ if (need_wakeup)
+ wakeup((caddr_t)&iostate->io_wanted);
}
pg_offset = upl_offset & PAGE_MASK;
- abort_size = ((size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE) * PAGE_SIZE;
+ abort_size = (size + pg_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if (flags & CL_COMMIT) {
int upl_abort_code;
- if (flags & CL_PRESERVE)
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
- else if (flags & CL_PAGEIN)
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
- else
- upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
+ if (flags & CL_PRESERVE) {
+ ubc_upl_commit_range(upl, upl_offset - pg_offset, abort_size,
+ UPL_COMMIT_FREE_ON_EMPTY);
+ } else {
+ if ((flags & CL_PAGEOUT) && (error != ENXIO)) /* transient error */
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
+ else if (flags & CL_PAGEIN)
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
+ else
+ upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
- ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size,
+ ubc_upl_abort_range(upl, upl_offset - pg_offset, abort_size,
upl_abort_code);
-
+ }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
(int)upl, upl_offset - pg_offset, abort_size, error, 0);
}
real_bp->b_flags |= B_ERROR;
real_bp->b_error = error;
- biodone(real_bp);
+ buf_biodone(real_bp);
}
if (retval == 0)
retval = error;
static int
-cluster_rd_prefetch(vp, f_offset, size, filesize, devblocksize)
- struct vnode *vp;
- off_t f_offset;
- u_int size;
- off_t filesize;
- int devblocksize;
+cluster_rd_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize)
{
- int pages_to_fetch;
- int skipped_pages;
+ int pages_in_prefetch;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
(int)f_offset, size, (int)filesize, 0, 0);
return(0);
}
if (size > (MAX_UPL_TRANSFER * PAGE_SIZE))
- size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ size = (MAX_UPL_TRANSFER * PAGE_SIZE);
else
- size = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
+ size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if ((off_t)size > (filesize - f_offset))
size = filesize - f_offset;
-
- pages_to_fetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
+ pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
- for (skipped_pages = 0; skipped_pages < pages_to_fetch; skipped_pages++) {
- if (ubc_page_op(vp, f_offset, 0, 0, 0) != KERN_SUCCESS)
- break;
- f_offset += PAGE_SIZE;
- size -= PAGE_SIZE;
- }
- if (skipped_pages < pages_to_fetch)
- advisory_read(vp, filesize, f_offset, size, devblocksize);
+ advisory_read(vp, filesize, f_offset, size);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
- (int)f_offset + (pages_to_fetch * PAGE_SIZE), skipped_pages, 0, 1, 0);
+ (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
- return (pages_to_fetch);
+ return (pages_in_prefetch);
}
static void
-cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize)
- struct vnode *vp;
- daddr_t b_lblkno;
- daddr_t e_lblkno;
- off_t filesize;
- int devblocksize;
+cluster_rd_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap)
{
- daddr_t r_lblkno;
- off_t f_offset;
- int size_of_prefetch;
- int max_pages;
+ daddr64_t r_addr;
+ off_t f_offset;
+ int size_of_prefetch;
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
- b_lblkno, e_lblkno, vp->v_lastr, 0, 0);
+ (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
- if (b_lblkno == vp->v_lastr && b_lblkno == e_lblkno) {
+ if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
- vp->v_ralen, vp->v_maxra, vp->v_lastr, 0, 0);
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
return;
}
-
- if (vp->v_lastr == -1 || (b_lblkno != vp->v_lastr && b_lblkno != (vp->v_lastr + 1) &&
- (b_lblkno != (vp->v_maxra + 1) || vp->v_ralen == 0))) {
- vp->v_ralen = 0;
- vp->v_maxra = 0;
+ if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1) &&
+ (extent->b_addr != (rap->cl_maxra + 1) || rap->cl_ralen == 0))) {
+ rap->cl_ralen = 0;
+ rap->cl_maxra = 0;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
- vp->v_ralen, vp->v_maxra, vp->v_lastr, 1, 0);
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
return;
}
- max_pages = MAX_UPL_TRANSFER;
-
- vp->v_ralen = vp->v_ralen ? min(max_pages, vp->v_ralen << 1) : 1;
-
- if (((e_lblkno + 1) - b_lblkno) > vp->v_ralen)
- vp->v_ralen = min(max_pages, (e_lblkno + 1) - b_lblkno);
-
- if (e_lblkno < vp->v_maxra) {
- if ((vp->v_maxra - e_lblkno) > max(max_pages / 16, 4)) {
+ if (extent->e_addr < rap->cl_maxra) {
+ if ((rap->cl_maxra - extent->e_addr) > (MAX_UPL_TRANSFER / 4)) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
- vp->v_ralen, vp->v_maxra, vp->v_lastr, 2, 0);
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
return;
}
}
- r_lblkno = max(e_lblkno, vp->v_maxra) + 1;
- f_offset = (off_t)r_lblkno * PAGE_SIZE_64;
+ r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
+ f_offset = (off_t)(r_addr * PAGE_SIZE_64);
+
+ size_of_prefetch = 0;
+ ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
+
+ if (size_of_prefetch) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
+ return;
+ }
if (f_offset < filesize) {
- size_of_prefetch = cluster_rd_prefetch(vp, f_offset, vp->v_ralen * PAGE_SIZE, filesize, devblocksize);
+ daddr64_t read_size;
+
+ rap->cl_ralen = rap->cl_ralen ? min(MAX_UPL_TRANSFER, rap->cl_ralen << 1) : 1;
+
+ read_size = (extent->e_addr + 1) - extent->b_addr;
+
+ if (read_size > rap->cl_ralen) {
+ if (read_size > MAX_UPL_TRANSFER)
+ rap->cl_ralen = MAX_UPL_TRANSFER;
+ else
+ rap->cl_ralen = read_size;
+ }
+ size_of_prefetch = cluster_rd_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize);
if (size_of_prefetch)
- vp->v_maxra = (r_lblkno + size_of_prefetch) - 1;
+ rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
- vp->v_ralen, vp->v_maxra, vp->v_lastr, 3, 0);
+ rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
}
int
-cluster_pageout(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags)
- struct vnode *vp;
- upl_t upl;
- vm_offset_t upl_offset;
- off_t f_offset;
- int size;
- off_t filesize;
- int devblocksize;
- int flags;
+cluster_pageout(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset,
+ int size, off_t filesize, int flags)
{
int io_size;
- int pg_size;
+ int rounded_size;
off_t max_size;
- int local_flags = CL_PAGEOUT;
+ int local_flags;
+ struct cl_writebehind *wbp;
+
+ if (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)
+ /*
+ * if we know we're issuing this I/O to a virtual device (i.e. disk image)
+ * then we don't want to enforce this throttle... if we do, we can
+ * potentially deadlock since we're stalling the pageout thread at a time
+ * when the disk image might need additional memory (which won't be available
+ * if the pageout thread can't run)... instead we'll just depend on the throttle
+ * that the pageout thread now has in place to deal with external files
+ */
+ local_flags = CL_PAGEOUT;
+ else
+ local_flags = CL_PAGEOUT | CL_THROTTLE;
if ((flags & UPL_IOSYNC) == 0)
local_flags |= CL_ASYNC;
if ((flags & UPL_NOCOMMIT) == 0)
local_flags |= CL_COMMIT;
+ if ((flags & UPL_KEEPCACHED))
+ local_flags |= CL_KEEPCACHED;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
else
io_size = max_size;
- pg_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
+ rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (size > pg_size) {
+ if (size > rounded_size) {
if (local_flags & CL_COMMIT)
- ubc_upl_abort_range(upl, upl_offset + pg_size, size - pg_size,
+ ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
UPL_ABORT_FREE_ON_EMPTY);
}
- while (vp->v_numoutput >= ASYNC_THROTTLE) {
- vp->v_flag |= VTHROTTLED;
- tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_pageout", 0);
- }
+ if ((wbp = cluster_get_wbp(vp, 0)) != NULL)
+ wbp->cl_hasbeenpaged = 1;
- return (cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize,
- local_flags, (struct buf *)0, (struct clios *)0));
+ return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
+ local_flags, (buf_t)NULL, (struct clios *)NULL));
}
int
-cluster_pagein(vp, upl, upl_offset, f_offset, size, filesize, devblocksize, flags)
- struct vnode *vp;
- upl_t upl;
- vm_offset_t upl_offset;
- off_t f_offset;
- int size;
- off_t filesize;
- int devblocksize;
- int flags;
+cluster_pagein(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset,
+ int size, off_t filesize, int flags)
{
u_int io_size;
int rounded_size;
if (size > rounded_size && (local_flags & CL_COMMIT))
ubc_upl_abort_range(upl, upl_offset + rounded_size,
- size - (upl_offset + rounded_size), UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
+ size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
- retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, devblocksize,
- local_flags | CL_READ | CL_PAGEIN, (struct buf *)0, (struct clios *)0);
+ retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
+ local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL);
- if (retval == 0) {
- int b_lblkno;
- int e_lblkno;
+ if (retval == 0 && !(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF)) {
+ struct cl_readahead *rap;
- b_lblkno = (int)(f_offset / PAGE_SIZE_64);
- e_lblkno = (int)
- ((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64);
+ rap = cluster_get_rap(vp);
- if (!(flags & UPL_NORDAHEAD) && !(vp->v_flag & VRAOFF) && rounded_size == PAGE_SIZE) {
- /*
- * we haven't read the last page in of the file yet
- * so let's try to read ahead if we're in
- * a sequential access pattern
- */
- cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
+ if (rap != NULL) {
+ struct cl_extent extent;
+
+ extent.b_addr = (daddr64_t)(f_offset / PAGE_SIZE_64);
+ extent.e_addr = (daddr64_t)((f_offset + ((off_t)io_size - 1)) / PAGE_SIZE_64);
+
+ if (rounded_size == PAGE_SIZE) {
+ /*
+ * we haven't read the last page in of the file yet
+ * so let's try to read ahead if we're in
+ * a sequential access pattern
+ */
+ cluster_rd_ahead(vp, &extent, filesize, rap);
+ }
+ rap->cl_lastr = extent.e_addr;
+
+ lck_mtx_unlock(&rap->cl_lockr);
}
- vp->v_lastr = e_lblkno;
}
return (retval);
}
int
-cluster_bp(bp)
- struct buf *bp;
+cluster_bp(buf_t bp)
{
off_t f_offset;
int flags;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
- (int)bp, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
+ (int)bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
- if (bp->b_pagelist == (upl_t) 0)
- panic("cluster_bp: can't handle NULL upl yet\n");
if (bp->b_flags & B_READ)
flags = CL_ASYNC | CL_READ;
else
f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
- return (cluster_io(bp->b_vp, bp->b_pagelist, 0, f_offset, bp->b_bcount, 0, flags, bp, (struct clios *)0));
+ return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL));
}
int
-cluster_write(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t oldEOF;
- off_t newEOF;
- off_t headOff;
- off_t tailOff;
- int devblocksize;
- int flags;
+cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
{
int prev_resid;
- int clip_size;
+ u_int clip_size;
off_t max_io_size;
- struct iovec *iov;
- vm_offset_t upl_offset;
int upl_size;
- int pages_in_pl;
- upl_page_info_t *pl;
int upl_flags;
upl_t upl;
int retval = 0;
+ int flags;
+
+ flags = xflags;
+
+ if (vp->v_flag & VNOCACHE_DATA)
+ flags |= IO_NOCACHE;
+ if ( (!(flags & IO_NOCACHE)) || (!uio) || (!UIO_SEG_IS_USER_SPACE(uio->uio_segflg))) {
+ /*
+ * go do a write through the cache if one of the following is true....
+ * NOCACHE is not true
+ * there is no uio structure or it doesn't target USERSPACE
+ */
+ return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags));
+ }
- if ( (!(vp->v_flag & VNOCACHE_DATA)) || (!uio) || (uio->uio_segflg != UIO_USERSPACE))
- {
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- return(retval);
- }
+#if LP64_DEBUG
+ if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) {
+ panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__);
+ }
+#endif /* LP64_DEBUG */
- while (uio->uio_resid && uio->uio_offset < newEOF && retval == 0)
- {
- /* we know we have a resid, so this is safe */
- iov = uio->uio_iov;
- while (iov->iov_len == 0) {
- uio->uio_iov++;
- uio->uio_iovcnt--;
- iov = uio->uio_iov;
- }
-
- /*
- * We check every vector target and if it is physically
- * contiguous space, we skip the sanity checks.
- */
-
- upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK;
- upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK;
- pages_in_pl = 0;
- upl_flags = UPL_QUERY_OBJECT_TYPE;
- if ((vm_map_get_upl(current_map(),
- (vm_offset_t)iov->iov_base & ~PAGE_MASK,
- &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS)
- {
+ while (uio_resid(uio) && uio->uio_offset < newEOF && retval == 0) {
+ user_size_t iov_len;
+ user_addr_t iov_base;
+
/*
- * the user app must have passed in an invalid address
+ * we know we have a resid, so this is safe
+ * skip over any emtpy vectors
*/
- return (EFAULT);
- }
+ uio_update(uio, (user_size_t)0);
- if (upl_flags & UPL_PHYS_CONTIG)
- {
- if (flags & IO_HEADZEROFILL)
- {
- flags &= ~IO_HEADZEROFILL;
+ iov_len = uio_curriovlen(uio);
+ iov_base = uio_curriovbase(uio);
+
+ upl_size = PAGE_SIZE;
+ upl_flags = UPL_QUERY_OBJECT_TYPE;
+
+ // LP64todo - fix this!
+ if ((vm_map_get_upl(current_map(),
+ (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+ &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
+ /*
+ * the user app must have passed in an invalid address
+ */
+ return (EFAULT);
+ }
- if (retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, devblocksize, IO_HEADZEROFILL))
- return(retval);
- }
-
- retval = cluster_phys_write(vp, uio, newEOF, devblocksize, flags);
-
- if (uio->uio_resid == 0 && (flags & IO_TAILZEROFILL))
- {
- retval = cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, devblocksize, IO_HEADZEROFILL);
- return(retval);
- }
- }
- else if ((uio->uio_resid < 4 * PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)))
- {
/*
- * We set a threshhold of 4 pages to decide if the nocopy
- * write loop is worth the trouble...
- * we also come here if we're trying to zero the head and/or tail
- * of a partially written page, and the user source is not a physically contiguous region
- */
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- return(retval);
- }
- else if (uio->uio_offset & PAGE_MASK_64)
- {
- /* Bring the file offset write up to a pagesize boundary */
- clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64));
- if (uio->uio_resid < clip_size)
- clip_size = uio->uio_resid;
- /*
- * Fake the resid going into the cluster_write_x call
- * and restore it on the way out.
- */
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else if ((int)iov->iov_base & PAGE_MASK_64)
- {
- clip_size = iov->iov_len;
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else
- {
- /*
- * If we come in here, we know the offset into
- * the file is on a pagesize boundary
+ * We check every vector target but if it is physically
+ * contiguous space, we skip the sanity checks.
*/
+ if (upl_flags & UPL_PHYS_CONTIG) {
+ int zflags;
+
+ zflags = flags & ~IO_TAILZEROFILL;
+ zflags |= IO_HEADZEROFILL;
+
+ if (flags & IO_HEADZEROFILL) {
+ /*
+ * in case we have additional vectors, we don't want to do this again
+ */
+ flags &= ~IO_HEADZEROFILL;
+
+ if ((retval = cluster_write_x(vp, (struct uio *)0, 0, uio->uio_offset, headOff, 0, zflags)))
+ return(retval);
+ }
+ retval = cluster_phys_write(vp, uio, newEOF);
+
+ if (uio_resid(uio) == 0 && (flags & IO_TAILZEROFILL)) {
+ return (cluster_write_x(vp, (struct uio *)0, 0, tailOff, uio->uio_offset, 0, zflags));
+ }
+ }
+ else if ((uio_resid(uio) < PAGE_SIZE) || (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL))) {
+ /*
+ * we're here because we're don't have a physically contiguous target buffer
+ * go do a write through the cache if one of the following is true....
+ * the total xfer size is less than a page...
+ * we're being asked to ZEROFILL either the head or the tail of the I/O...
+ */
+ return (cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags));
+ }
+ // LP64todo - fix this!
+ else if (((int)uio->uio_offset & PAGE_MASK) || (CAST_DOWN(int, iov_base) & PAGE_MASK)) {
+ if (((int)uio->uio_offset & PAGE_MASK) == (CAST_DOWN(int, iov_base) & PAGE_MASK)) {
+ /*
+ * Bring the file offset write up to a pagesize boundary
+ * this will also bring the base address to a page boundary
+ * since they both are currently on the same offset within a page
+ * note: if we get here, uio->uio_resid is greater than PAGE_SIZE
+ * so the computed clip_size must always be less than the current uio_resid
+ */
+ clip_size = (PAGE_SIZE - (uio->uio_offset & PAGE_MASK_64));
+
+ /*
+ * Fake the resid going into the cluster_write_x call
+ * and restore it on the way out.
+ */
+ // LP64todo - fix this
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ } else {
+ /*
+ * can't get both the file offset and the buffer offset aligned to a page boundary
+ * so fire an I/O through the cache for this entire vector
+ */
+ // LP64todo - fix this
+ clip_size = iov_len;
+ // LP64todo - fix this
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ }
+ } else {
+ /*
+ * If we come in here, we know the offset into
+ * the file is on a pagesize boundary and the
+ * target buffer address is also on a page boundary
+ */
+ max_io_size = newEOF - uio->uio_offset;
+ // LP64todo - fix this
+ clip_size = uio_resid(uio);
+ if (iov_len < clip_size)
+ // LP64todo - fix this!
+ clip_size = iov_len;
+ if (max_io_size < clip_size)
+ clip_size = max_io_size;
+
+ if (clip_size < PAGE_SIZE) {
+ /*
+ * Take care of tail end of write in this vector
+ */
+ // LP64todo - fix this
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ } else {
+ /* round clip_size down to a multiple of pagesize */
+ clip_size = clip_size & ~(PAGE_MASK);
+ // LP64todo - fix this
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_nocopy_write(vp, uio, newEOF);
+
+ if ((retval == 0) && uio_resid(uio))
+ retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ }
+ } /* end else */
+ } /* end while */
- max_io_size = newEOF - uio->uio_offset;
- clip_size = uio->uio_resid;
- if (iov->iov_len < clip_size)
- clip_size = iov->iov_len;
- if (max_io_size < clip_size)
- clip_size = max_io_size;
-
- if (clip_size < PAGE_SIZE)
- {
- /*
- * Take care of tail end of write in this vector
- */
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else
- {
- /* round clip_size down to a multiple of pagesize */
- clip_size = clip_size & ~(PAGE_MASK);
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags);
- if ((retval == 0) && uio->uio_resid)
- retval = cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- } /* end else */
- } /* end while */
return(retval);
}
static int
-cluster_nocopy_write(vp, uio, newEOF, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t newEOF;
- int devblocksize;
- int flags;
+cluster_nocopy_write(vnode_t vp, struct uio *uio, off_t newEOF)
{
upl_t upl;
upl_page_info_t *pl;
- off_t upl_f_offset;
vm_offset_t upl_offset;
- off_t max_io_size;
int io_size;
int io_flag;
int upl_size;
int pages_in_pl;
int upl_flags;
kern_return_t kret;
- struct iovec *iov;
int i;
- int first = 1;
int force_data_sync;
int error = 0;
struct clios iostate;
+ struct cl_writebehind *wbp;
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
- (int)uio->uio_offset, (int)uio->uio_resid,
- (int)newEOF, devblocksize, 0);
+ (int)uio->uio_offset, (int)uio_resid(uio),
+ (int)newEOF, 0, 0);
/*
* When we enter this routine, we know
* -- the resid is a page multiple
* -- the resid will not exceed iov_len
*/
- cluster_try_push(vp, newEOF, 0, 1);
+
+ if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) != NULL) {
+ cluster_try_push(wbp, vp, newEOF, 0, 1);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
+ }
iostate.io_completed = 0;
iostate.io_issued = 0;
iostate.io_error = 0;
iostate.io_wanted = 0;
- iov = uio->uio_iov;
+ while (uio_resid(uio) && uio->uio_offset < newEOF && error == 0) {
+ user_addr_t iov_base;
- while (uio->uio_resid && uio->uio_offset < newEOF && error == 0) {
- io_size = uio->uio_resid;
+ io_size = uio_resid(uio);
if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
io_size = MAX_UPL_TRANSFER * PAGE_SIZE;
- if (first) {
- if (io_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4)
- io_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 8;
- first = 0;
- }
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ iov_base = uio_curriovbase(uio);
+
+ // LP64todo - fix this!
+ upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK;
+
upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
- (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0);
+ (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
- UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
+ // LP64todo - fix this!
kret = vm_map_get_upl(current_map(),
- (vm_offset_t)iov->iov_base & ~PAGE_MASK,
+ (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size,
&upl,
NULL,
if (kret != KERN_SUCCESS) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
0, 0, 0, kret, 0);
-
/*
* cluster_nocopy_write: failed to get pagelist
*
if (force_data_sync >= 3) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
i, pages_in_pl, upl_size, kret, 0);
-
/*
* for some reason, we couldn't acquire a hold on all
* the pages needed in the user's address space
io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
- (int)upl_offset, upl_size, (int)iov->iov_base, io_size, 0);
+ (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
if (io_size == 0) {
ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size,
UPL_ABORT_FREE_ON_EMPTY);
-
/*
* we may have already spun some portion of this request
* off as async requests... we need to wait for the I/O
/*
* Now look for pages already in the cache
* and throw them away.
+ * uio->uio_offset is page aligned within the file
+ * io_size is a multiple of PAGE_SIZE
*/
+ ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL);
- upl_f_offset = uio->uio_offset; /* this is page aligned in the file */
- max_io_size = io_size;
-
- while (max_io_size) {
- /*
- * Flag UPL_POP_DUMP says if the page is found
- * in the page cache it must be thrown away.
- */
- ubc_page_op(vp,
- upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY | UPL_POP_DUMP,
- 0, 0);
- max_io_size -= PAGE_SIZE_64;
- upl_f_offset += PAGE_SIZE_64;
- }
/*
* we want push out these writes asynchronously so that we can overlap
* the preparation of the next I/O
* if there are already too many outstanding writes
* wait until some complete before issuing the next
*/
+ lck_mtx_lock(cl_mtxp);
+
while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) {
iostate.io_wanted = 1;
- tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_write", 0);
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_write", 0);
}
+ lck_mtx_unlock(cl_mtxp);
+
if (iostate.io_error) {
/*
* one of the earlier writes we issued ran into a hard error
goto wait_for_writes;
}
- io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT;
+ io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
(int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
- io_size, devblocksize, io_flag, (struct buf *)0, &iostate);
+ io_size, io_flag, (buf_t)NULL, &iostate);
- iov->iov_len -= io_size;
- iov->iov_base += io_size;
- uio->uio_resid -= io_size;
- uio->uio_offset += io_size;
+ uio_update(uio, (user_size_t)io_size);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
- (int)upl_offset, (int)uio->uio_offset, (int)uio->uio_resid, error, 0);
+ (int)upl_offset, (int)uio->uio_offset, (int)uio_resid(uio), error, 0);
} /* end while */
* make sure all async writes issued as part of this stream
* have completed before we return
*/
+ lck_mtx_lock(cl_mtxp);
+
while (iostate.io_issued != iostate.io_completed) {
iostate.io_wanted = 1;
- tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_write", 0);
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_write", 0);
}
+ lck_mtx_unlock(cl_mtxp);
+
if (iostate.io_error)
error = iostate.io_error;
static int
-cluster_phys_write(vp, uio, newEOF, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t newEOF;
- int devblocksize;
- int flags;
+cluster_phys_write(vnode_t vp, struct uio *uio, off_t newEOF)
{
upl_page_info_t *pl;
- vm_offset_t src_paddr;
+ addr64_t src_paddr;
upl_t upl;
vm_offset_t upl_offset;
int tail_size;
int pages_in_pl;
int upl_flags;
kern_return_t kret;
- struct iovec *iov;
int error = 0;
+ user_addr_t iov_base;
+ int devblocksize;
+ struct cl_writebehind *wbp;
+ devblocksize = vp->v_mount->mnt_devblocksize;
/*
* When we enter this routine, we know
* -- the resid will not exceed iov_len
* -- the vector target address is physcially contiguous
*/
- cluster_try_push(vp, newEOF, 0, 1);
+ if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) != NULL) {
+
+ cluster_try_push(wbp, vp, newEOF, 0, 1);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
+ }
+#if LP64_DEBUG
+ if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) {
+ panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__);
+ }
+#endif /* LP64_DEBUG */
+
+ // LP64todo - fix this!
+ io_size = (int)uio_curriovlen(uio);
+ iov_base = uio_curriovbase(uio);
- iov = uio->uio_iov;
- io_size = iov->iov_len;
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ upl_offset = CAST_DOWN(upl_offset_t, iov_base) & PAGE_MASK;
upl_needed_size = upl_offset + io_size;
pages_in_pl = 0;
upl_size = upl_needed_size;
upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
- UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
+ // LP64todo - fix this!
kret = vm_map_get_upl(current_map(),
- (vm_offset_t)iov->iov_base & ~PAGE_MASK,
+ (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0);
if (kret != KERN_SUCCESS) {
* This is a failure in the physical memory case.
*/
if (upl_size < upl_needed_size) {
- kernel_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
return(EINVAL);
}
pl = ubc_upl_pageinfo(upl);
- src_paddr = (vm_offset_t)upl_phys_page(pl, 0) + ((vm_offset_t)iov->iov_base & PAGE_MASK);
+ src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
int head_size;
if (head_size > io_size)
head_size = io_size;
- error = cluster_align_phys_io(vp, uio, src_paddr, head_size, devblocksize, 0);
+ error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0);
if (error) {
ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
* issue a synchronous write to cluster_io
*/
error = cluster_io(vp, upl, upl_offset, uio->uio_offset,
- io_size, 0, CL_DEV_MEMORY, (struct buf *)0, (struct clios *)0);
+ io_size, CL_DEV_MEMORY, (buf_t)NULL, (struct clios *)NULL);
}
if (error == 0) {
/*
* The cluster_io write completed successfully,
* update the uio structure
*/
- uio->uio_resid -= io_size;
- iov->iov_len -= io_size;
- iov->iov_base += io_size;
- uio->uio_offset += io_size;
- src_paddr += io_size;
+ uio_update(uio, (user_size_t)io_size);
+
+ src_paddr += io_size;
if (tail_size)
- error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, devblocksize, 0);
+ error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0);
}
/*
* just release our hold on the physically contiguous
static int
-cluster_write_x(vp, uio, oldEOF, newEOF, headOff, tailOff, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t oldEOF;
- off_t newEOF;
- off_t headOff;
- off_t tailOff;
- int devblocksize;
- int flags;
+cluster_write_x(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int flags)
{
upl_page_info_t *pl;
upl_t upl;
- vm_offset_t upl_offset;
+ vm_offset_t upl_offset = 0;
int upl_size;
off_t upl_f_offset;
int pages_in_upl;
int start_offset;
int xfer_resid;
int io_size;
- int io_flags;
- vm_offset_t io_address;
int io_offset;
int bytes_to_zero;
int bytes_to_move;
kern_return_t kret;
int retval = 0;
- int uio_resid;
+ int io_resid;
long long total_size;
long long zero_cnt;
off_t zero_off;
long long zero_cnt1;
off_t zero_off1;
- daddr_t start_blkno;
- daddr_t last_blkno;
+ struct cl_extent cl;
+ int intersection;
+ struct cl_writebehind *wbp;
+ if ((wbp = cluster_get_wbp(vp, 0)) != NULL)
+ {
+ if (wbp->cl_hasbeenpaged) {
+ /*
+ * this vnode had pages cleaned to it by
+ * the pager which indicates that either
+ * it's not very 'hot', or the system is
+ * being overwhelmed by a lot of dirty
+ * data being delayed in the VM cache...
+ * in either event, we'll push our remaining
+ * delayed data at this point... this will
+ * be more efficient than paging out 1 page at
+ * a time, and will also act as a throttle
+ * by delaying this client from writing any
+ * more data until all his delayed data has
+ * at least been queued to the uderlying driver.
+ */
+ if (wbp->cl_number || wbp->cl_scmap)
+ cluster_push_EOF(vp, newEOF);
+
+ wbp->cl_hasbeenpaged = 0;
+ }
+ }
if (uio) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
- (int)uio->uio_offset, uio->uio_resid, (int)oldEOF, (int)newEOF, 0);
+ (int)uio->uio_offset, uio_resid(uio), (int)oldEOF, (int)newEOF, 0);
- uio_resid = uio->uio_resid;
+ // LP64todo - fix this
+ io_resid = uio_resid(uio);
} else {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
0, 0, (int)oldEOF, (int)newEOF, 0);
- uio_resid = 0;
+ io_resid = 0;
}
zero_cnt = 0;
zero_cnt1 = 0;
+ zero_off = 0;
+ zero_off1 = 0;
if (flags & IO_HEADZEROFILL) {
/*
}
if (flags & IO_TAILZEROFILL) {
if (uio) {
- zero_off1 = uio->uio_offset + uio->uio_resid;
+ // LP64todo - fix this
+ zero_off1 = uio->uio_offset + uio_resid(uio);
if (zero_off1 < tailOff)
zero_cnt1 = tailOff - zero_off1;
}
}
- if (zero_cnt == 0 && uio == (struct uio *) 0)
- {
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
- retval, 0, 0, 0, 0);
- return (0);
- }
+ if (zero_cnt == 0 && uio == (struct uio *) 0) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
+ retval, 0, 0, 0, 0);
+ return (0);
+ }
- while ((total_size = (uio_resid + zero_cnt + zero_cnt1)) && retval == 0) {
+ while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
/*
* for this iteration of the loop, figure out where our starting point is
*/
if (zero_cnt) {
start_offset = (int)(zero_off & PAGE_MASK_64);
upl_f_offset = zero_off - start_offset;
- } else if (uio_resid) {
+ } else if (io_resid) {
start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
upl_f_offset = uio->uio_offset - start_offset;
} else {
if (total_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
total_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
+
+ if (uio && ((flags & (IO_NOCACHE | IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
+ /*
+ * assumption... total_size <= io_resid
+ * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
+ */
+ if ((start_offset + total_size) > (MAX_UPL_TRANSFER * PAGE_SIZE))
+ total_size -= start_offset;
+ xfer_resid = total_size;
+
+ retval = cluster_copy_ubc_data(vp, uio, &xfer_resid, 1);
+
+ if (retval)
+ break;
+
+ io_resid -= (total_size - xfer_resid);
+ total_size = xfer_resid;
+ start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+ upl_f_offset = uio->uio_offset - start_offset;
+
+ if (total_size == 0) {
+ if (start_offset) {
+ /*
+ * the write did not finish on a page boundary
+ * which will leave upl_f_offset pointing to the
+ * beginning of the last page written instead of
+ * the page beyond it... bump it in this case
+ * so that the cluster code records the last page
+ * written as dirty
+ */
+ upl_f_offset += PAGE_SIZE_64;
+ }
+ upl_size = 0;
+
+ goto check_cluster;
+ }
+ }
/*
* compute the size of the upl needed to encompass
* the requested write... limit each call to cluster_io
if ((long long)io_size > total_size)
io_size = total_size;
- start_blkno = (daddr_t)(upl_f_offset / PAGE_SIZE_64);
- last_blkno = start_blkno + pages_in_upl;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
+
+ /*
+ * Gather the pages from the buffer cache.
+ * The UPL_WILL_MODIFY flag lets the UPL subsystem know
+ * that we intend to modify these pages.
+ */
kret = ubc_create_upl(vp,
- upl_f_offset,
- upl_size,
- &upl,
- &pl,
- UPL_FLAGS_NONE);
+ upl_f_offset,
+ upl_size,
+ &upl,
+ &pl,
+ UPL_SET_LITE | UPL_WILL_MODIFY);
if (kret != KERN_SUCCESS)
panic("cluster_write: failed to get pagelist");
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_NONE,
- (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
+ (int)upl, (int)upl_f_offset, start_offset, 0, 0);
if (start_offset && !upl_valid_page(pl, 0)) {
int read_size;
if ((upl_f_offset + read_size) > newEOF)
read_size = newEOF - upl_f_offset;
- retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, devblocksize,
- CL_READ, (struct buf *)0, (struct clios *)0);
+ retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
+ CL_READ, (buf_t)NULL, (struct clios *)NULL);
if (retval) {
/*
* we had an error during the read which causes us to abort
* there state and mark the failed page in error
*/
ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES);
- ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+
+ if (upl_size > PAGE_SIZE)
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
(int)upl, 0, 0, retval, 0);
if ((upl_f_offset + upl_offset + read_size) > newEOF)
read_size = newEOF - (upl_f_offset + upl_offset);
- retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, devblocksize,
- CL_READ, (struct buf *)0, (struct clios *)0);
+ retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
+ CL_READ, (buf_t)NULL, (struct clios *)NULL);
if (retval) {
/*
* we had an error during the read which causes us to abort
* modifying there state and mark the failed page in error
*/
ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES);
- ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
+
+ if (upl_size > PAGE_SIZE)
+ ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
(int)upl, 0, 0, retval, 0);
}
}
}
- if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
- panic("cluster_write: ubc_upl_map failed\n");
xfer_resid = io_size;
io_offset = start_offset;
bytes_to_zero = xfer_resid;
if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset, bytes_to_zero,
- (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else {
int zero_pg_index;
zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
if ( !upl_valid_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset, bytes_to_zero,
- (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
!upl_dirty_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset, bytes_to_zero,
- (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
}
}
xfer_resid -= bytes_to_zero;
zero_off += bytes_to_zero;
io_offset += bytes_to_zero;
}
- if (xfer_resid && uio_resid) {
- bytes_to_move = min(uio_resid, xfer_resid);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 42)) | DBG_FUNC_NONE,
- (int)uio->uio_offset, bytes_to_move, uio_resid, xfer_resid, 0);
-
- retval = uiomove((caddr_t)(io_address + io_offset), bytes_to_move, uio);
+ if (xfer_resid && io_resid) {
+ bytes_to_move = min(io_resid, xfer_resid);
+ retval = cluster_copy_upl_data(uio, upl, io_offset, bytes_to_move);
if (retval) {
- if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
- panic("cluster_write: kernel_upl_unmap failed\n");
ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
(int)upl, 0, 0, retval, 0);
} else {
- uio_resid -= bytes_to_move;
+ io_resid -= bytes_to_move;
xfer_resid -= bytes_to_move;
io_offset += bytes_to_move;
}
bytes_to_zero = xfer_resid;
if ( !(flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset,
- bytes_to_zero, (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else {
int zero_pg_index;
zero_pg_index = (int)((zero_off1 - upl_f_offset) / PAGE_SIZE_64);
if ( !upl_valid_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset,
- bytes_to_zero, (int)io_offset, xfer_resid, 0);
-
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
} else if ((flags & (IO_NOZERODIRTY | IO_NOZEROVALID)) == IO_NOZERODIRTY &&
!upl_dirty_page(pl, zero_pg_index)) {
- bzero((caddr_t)(io_address + io_offset), bytes_to_zero);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_offset,
- bytes_to_zero, (int)io_offset, xfer_resid, 0);
+ cluster_zero(upl, io_offset, bytes_to_zero, NULL);
}
}
xfer_resid -= bytes_to_zero;
* if the file gets extended again in such a way as to leave a
* hole starting at this EOF, we'll have zero's in the correct spot
*/
- bzero((caddr_t)(io_address + io_size), upl_size - io_size);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 43)) | DBG_FUNC_NONE,
- (int)upl_f_offset + io_size,
- upl_size - io_size, 0, 0, 0);
+ cluster_zero(upl, io_size, upl_size - io_size, NULL);
}
- if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
- panic("cluster_write: kernel_upl_unmap failed\n");
-
if (flags & IO_SYNC)
/*
* if the IO_SYNC flag is set than we need to
* the I/O
*/
goto issue_io;
+check_cluster:
+ /*
+ * take the lock to protect our accesses
+ * of the writebehind and sparse cluster state
+ */
+ wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
+
+ /*
+ * calculate the last logical block number
+ * that this delayed I/O encompassed
+ */
+ cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
+
+ if (wbp->cl_scmap) {
+
+ if ( !(flags & IO_NOCACHE)) {
+ /*
+ * we've fallen into the sparse
+ * cluster method of delaying dirty pages
+ * first, we need to release the upl if we hold one
+ * since pages in it may be present in the sparse cluster map
+ * and may span 2 separate buckets there... if they do and
+ * we happen to have to flush a bucket to make room and it intersects
+ * this upl, a deadlock may result on page BUSY
+ */
+ if (upl_size)
+ ubc_upl_commit_range(upl, 0, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+
+ sparse_cluster_add(wbp, vp, &cl, newEOF);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
+
+ continue;
+ }
+ /*
+ * must have done cached writes that fell into
+ * the sparse cluster mechanism... we've switched
+ * to uncached writes on the file, so go ahead
+ * and push whatever's in the sparse map
+ * and switch back to normal clustering
+ *
+ * see the comment above concerning a possible deadlock...
+ */
+ if (upl_size) {
+ ubc_upl_commit_range(upl, 0, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ /*
+ * setting upl_size to 0 keeps us from committing a
+ * second time in the start_new_cluster path
+ */
+ upl_size = 0;
+ }
+ sparse_cluster_push(wbp, vp, newEOF, 1);
+
+ wbp->cl_number = 0;
+ /*
+ * no clusters of either type present at this point
+ * so just go directly to start_new_cluster since
+ * we know we need to delay this I/O since we've
+ * already released the pages back into the cache
+ * to avoid the deadlock with sparse_cluster_push
+ */
+ goto start_new_cluster;
+ }
+ upl_offset = 0;
- if (vp->v_clen == 0)
+ if (wbp->cl_number == 0)
/*
* no clusters currently present
*/
goto start_new_cluster;
- /*
- * keep track of the overall dirty page
- * range we've developed
- * in case we have to fall back to the
- * VHASDIRTY method of flushing
- */
- if (vp->v_flag & VHASDIRTY)
- goto delay_io;
-
- for (cl_index = 0; cl_index < vp->v_clen; cl_index++) {
+ for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
/*
- * we have an existing cluster... see if this write will extend it nicely
+ * check each cluster that we currently hold
+ * try to merge some or all of this write into
+ * one or more of the existing clusters... if
+ * any portion of the write remains, start a
+ * new cluster
*/
- if (start_blkno >= vp->v_clusters[cl_index].start_pg) {
+ if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
/*
* the current write starts at or after the current cluster
*/
- if (last_blkno <= (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) {
+ if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER)) {
/*
* we have a write that fits entirely
* within the existing cluster limits
*/
- if (last_blkno > vp->v_clusters[cl_index].last_pg)
+ if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
/*
* update our idea of where the cluster ends
*/
- vp->v_clusters[cl_index].last_pg = last_blkno;
+ wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
break;
}
- if (start_blkno < (vp->v_clusters[cl_index].start_pg + MAX_UPL_TRANSFER)) {
+ if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER)) {
/*
* we have a write that starts in the middle of the current cluster
- * but extends beyond the cluster's limit
- * we'll clip the current cluster if we actually
- * overlap with the new write
- * and start a new cluster with the current write
+ * but extends beyond the cluster's limit... we know this because
+ * of the previous checks
+ * we'll extend the current cluster to the max
+ * and update the b_addr for the current write to reflect that
+ * the head of it was absorbed into this cluster...
+ * note that we'll always have a leftover tail in this case since
+ * full absorbtion would have occurred in the clause above
*/
- if (vp->v_clusters[cl_index].last_pg > start_blkno)
- vp->v_clusters[cl_index].last_pg = start_blkno;
+ wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + MAX_UPL_TRANSFER;
+
+ if (upl_size) {
+ daddr64_t start_pg_in_upl;
+
+ start_pg_in_upl = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
+
+ if (start_pg_in_upl < wbp->cl_clusters[cl_index].e_addr) {
+ intersection = (int)((wbp->cl_clusters[cl_index].e_addr - start_pg_in_upl) * PAGE_SIZE);
+
+ ubc_upl_commit_range(upl, upl_offset, intersection,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ upl_f_offset += intersection;
+ upl_offset += intersection;
+ upl_size -= intersection;
+ }
+ }
+ cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
}
/*
- * we also get here for the case where the current write starts
- * beyond the limit of the existing cluster
+ * we come here for the case where the current write starts
+ * beyond the limit of the existing cluster or we have a leftover
+ * tail after a partial absorbtion
*
* in either case, we'll check the remaining clusters before
* starting a new one
*/
} else {
/*
- * the current write starts in front of the current cluster
+ * the current write starts in front of the cluster we're currently considering
*/
- if ((vp->v_clusters[cl_index].last_pg - start_blkno) <= MAX_UPL_TRANSFER) {
+ if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= MAX_UPL_TRANSFER) {
/*
- * we can just merge the old cluster
- * with the new request and leave it
- * in the cache
+ * we can just merge the new request into
+ * this cluster and leave it in the cache
+ * since the resulting cluster is still
+ * less than the maximum allowable size
*/
- vp->v_clusters[cl_index].start_pg = start_blkno;
+ wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
- if (last_blkno > vp->v_clusters[cl_index].last_pg) {
+ if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
/*
* the current write completely
- * envelops the existing cluster
+ * envelops the existing cluster and since
+ * each write is limited to at most MAX_UPL_TRANSFER bytes
+ * we can just use the start and last blocknos of the write
+ * to generate the cluster limits
*/
- vp->v_clusters[cl_index].last_pg = last_blkno;
+ wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
}
break;
}
* if we were to combine this write with the current cluster
* we would exceed the cluster size limit.... so,
* let's see if there's any overlap of the new I/O with
- * the existing cluster...
+ * the cluster we're currently considering... in fact, we'll
+ * stretch the cluster out to it's full limit and see if we
+ * get an intersection with the current write
*
*/
- if (last_blkno > vp->v_clusters[cl_index].start_pg)
+ if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - MAX_UPL_TRANSFER) {
/*
- * the current write extends into the existing cluster
- * clip the current cluster by moving the start position
- * to where the current write ends
+ * the current write extends into the proposed cluster
+ * clip the length of the current write after first combining it's
+ * tail with the newly shaped cluster
*/
- vp->v_clusters[cl_index].start_pg = last_blkno;
+ wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - MAX_UPL_TRANSFER;
+
+ if (upl_size) {
+ intersection = (int)((cl.e_addr - wbp->cl_clusters[cl_index].b_addr) * PAGE_SIZE);
+
+ if (intersection > upl_size)
+ /*
+ * because the current write may consist of a number of pages found in the cache
+ * which are not part of the UPL, we may have an intersection that exceeds
+ * the size of the UPL that is also part of this write
+ */
+ intersection = upl_size;
+
+ ubc_upl_commit_range(upl, upl_offset + (upl_size - intersection), intersection,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+ upl_size -= intersection;
+ }
+ cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
+ }
/*
* if we get here, there was no way to merge
- * the new I/O with this cluster and
- * keep it under our maximum cluster length
+ * any portion of this write with this cluster
+ * or we could only merge part of it which
+ * will leave a tail...
* we'll check the remaining clusters before starting a new one
*/
}
}
- if (cl_index < vp->v_clen)
+ if (cl_index < wbp->cl_number)
/*
- * we found an existing cluster that we
- * could merger this I/O into
+ * we found an existing cluster(s) that we
+ * could entirely merge this I/O into
*/
goto delay_io;
- if (vp->v_clen < MAX_CLUSTERS && !(vp->v_flag & VNOCACHE_DATA))
+ if (wbp->cl_number < MAX_CLUSTERS && !(flags & IO_NOCACHE))
/*
* we didn't find an existing cluster to
* merge into, but there's room to start
/*
* no exisitng cluster to merge with and no
* room to start a new one... we'll try
- * pushing the existing ones... if none of
- * them are able to be pushed, we'll have
- * to fall back on the VHASDIRTY mechanism
- * cluster_try_push will set v_clen to the
- * number of remaining clusters if it is
- * unable to push all of them
+ * pushing one of the existing ones... if none of
+ * them are able to be pushed, we'll switch
+ * to the sparse cluster mechanism
+ * cluster_try_push updates cl_number to the
+ * number of remaining clusters... and
+ * returns the number of currently unused clusters
*/
- if (vp->v_flag & VNOCACHE_DATA)
- can_delay = 0;
- else
- can_delay = 1;
-
- if (cluster_try_push(vp, newEOF, 0, 0) == 0) {
- vp->v_flag |= VHASDIRTY;
- goto delay_io;
+ int ret_cluster_try_push = 0;
+ /* if writes are not deferred, call cluster push immediately */
+ if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
+ if (flags & IO_NOCACHE)
+ can_delay = 0;
+ else
+ can_delay = 1;
+
+ ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, can_delay, 0);
}
-start_new_cluster:
- if (vp->v_clen == 0) {
- vp->v_ciosiz = devblocksize;
- vp->v_cstart = start_blkno;
- vp->v_lastw = last_blkno;
+
+ /* execute following regardless writes are deferred or not */
+ if (ret_cluster_try_push == 0) {
+ /*
+ * no more room in the normal cluster mechanism
+ * so let's switch to the more expansive but expensive
+ * sparse mechanism....
+ * first, we need to release the upl if we hold one
+ * since pages in it may be present in the sparse cluster map (after the cluster_switch)
+ * and may span 2 separate buckets there... if they do and
+ * we happen to have to flush a bucket to make room and it intersects
+ * this upl, a deadlock may result on page BUSY
+ */
+ if (upl_size)
+ ubc_upl_commit_range(upl, upl_offset, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+
+ sparse_cluster_switch(wbp, vp, newEOF);
+ sparse_cluster_add(wbp, vp, &cl, newEOF);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
+
+ continue;
}
- vp->v_clusters[vp->v_clen].start_pg = start_blkno;
- vp->v_clusters[vp->v_clen].last_pg = last_blkno;
- vp->v_clen++;
-delay_io:
/*
- * make sure we keep v_cstart and v_lastw up to
- * date in case we have to fall back on the
- * V_HASDIRTY mechanism (or we've already entered it)
+ * we pushed one cluster successfully, so we must be sequentially writing this file
+ * otherwise, we would have failed and fallen into the sparse cluster support
+ * so let's take the opportunity to push out additional clusters as long as we
+ * remain below the throttle... this will give us better I/O locality if we're
+ * in a copy loop (i.e. we won't jump back and forth between the read and write points
+ * however, we don't want to push so much out that the write throttle kicks in and
+ * hangs this thread up until some of the I/O completes...
*/
- if (start_blkno < vp->v_cstart)
- vp->v_cstart = start_blkno;
- if (last_blkno > vp->v_lastw)
- vp->v_lastw = last_blkno;
+ if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
+ while (wbp->cl_number && (vp->v_numoutput <= (VNODE_ASYNC_THROTTLE / 2)))
+ cluster_try_push(wbp, vp, newEOF, 0, 0);
+ }
+
+start_new_cluster:
+ wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
+ wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
+
+ if (flags & IO_NOCACHE)
+ wbp->cl_clusters[wbp->cl_number].io_nocache = 1;
+ else
+ wbp->cl_clusters[wbp->cl_number].io_nocache = 0;
+ wbp->cl_number++;
+delay_io:
+ if (upl_size)
+ ubc_upl_commit_range(upl, upl_offset, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
- ubc_upl_commit_range(upl, 0, upl_size, UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
continue;
issue_io:
/*
+ * we don't hold the vnode lock at this point
+ *
+ * because we had to ask for a UPL that provides currenty non-present pages, the
+ * UPL has been automatically set to clear the dirty flags (both software and hardware)
+ * upon committing it... this is not the behavior we want since it's possible for
+ * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
* in order to maintain some semblance of coherency with mapped writes
- * we need to write the cluster back out as a multiple of the PAGESIZE
- * unless the cluster encompasses the last page of the file... in this
- * case we'll round out to the nearest device block boundary
+ * we need to drop the current upl and pick it back up with COPYOUT_FROM set
+ * so that we correctly deal with a change in state of the hardware modify bit...
+ * we do this via cluster_push_x... by passing along the IO_SYNC flag, we force
+ * cluster_push_x to wait until all the I/Os have completed... cluster_push_x is also
+ * responsible for generating the correct sized I/O(s)
*/
- io_size = upl_size;
-
- if ((upl_f_offset + io_size) > newEOF) {
- io_size = newEOF - upl_f_offset;
- io_size = (io_size + (devblocksize - 1)) & ~(devblocksize - 1);
- }
+ ubc_upl_commit_range(upl, 0, upl_size,
+ UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
- if (flags & IO_SYNC)
- io_flags = CL_COMMIT | CL_AGE;
- else
- io_flags = CL_COMMIT | CL_AGE | CL_ASYNC;
+ cl.e_addr = (upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64;
- if (vp->v_flag & VNOCACHE_DATA)
- io_flags |= CL_DUMP;
-
- while (vp->v_numoutput >= ASYNC_THROTTLE) {
- vp->v_flag |= VTHROTTLED;
- tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_write", 0);
- }
- retval = cluster_io(vp, upl, 0, upl_f_offset, io_size, devblocksize,
- io_flags, (struct buf *)0, (struct clios *)0);
+ retval = cluster_push_x(vp, &cl, newEOF, flags);
}
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
- retval, 0, 0, 0, 0);
+ retval, 0, io_resid, 0, 0);
return (retval);
}
int
-cluster_read(vp, uio, filesize, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t filesize;
- int devblocksize;
- int flags;
+cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
{
int prev_resid;
- int clip_size;
+ u_int clip_size;
off_t max_io_size;
- struct iovec *iov;
- vm_offset_t upl_offset;
int upl_size;
- int pages_in_pl;
- upl_page_info_t *pl;
int upl_flags;
upl_t upl;
int retval = 0;
+ int flags;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
- (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
+ flags = xflags;
- /*
- * We set a threshhold of 4 pages to decide if the nocopy
- * read loop is worth the trouble...
- */
+ if (vp->v_flag & VNOCACHE_DATA)
+ flags |= IO_NOCACHE;
+ if (vp->v_flag & VRAOFF)
+ flags |= IO_RAOFF;
- if (!((vp->v_flag & VNOCACHE_DATA) && (uio->uio_segflg == UIO_USERSPACE)))
- {
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
- (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
- return(retval);
- }
-
- while (uio->uio_resid && uio->uio_offset < filesize && retval == 0)
- {
- /* we know we have a resid, so this is safe */
- iov = uio->uio_iov;
- while (iov->iov_len == 0) {
- uio->uio_iov++;
- uio->uio_iovcnt--;
- iov = uio->uio_iov;
- }
-
- /*
- * We check every vector target and if it is physically
- * contiguous space, we skip the sanity checks.
- */
-
- upl_offset = (vm_offset_t)iov->iov_base & ~PAGE_MASK;
- upl_size = (upl_offset + PAGE_SIZE +(PAGE_SIZE -1)) & ~PAGE_MASK;
- pages_in_pl = 0;
- upl_flags = UPL_QUERY_OBJECT_TYPE;
- if((vm_map_get_upl(current_map(),
- (vm_offset_t)iov->iov_base & ~PAGE_MASK,
- &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0)) != KERN_SUCCESS)
- {
- /*
- * the user app must have passed in an invalid address
+ if (!((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg))) {
+ /*
+ * go do a read through the cache if one of the following is true....
+ * NOCACHE is not true
+ * the uio request doesn't target USERSPACE
*/
- return (EFAULT);
- }
-
- if (upl_flags & UPL_PHYS_CONTIG)
- {
- retval = cluster_phys_read(vp, uio, filesize, devblocksize, flags);
- }
- else if (uio->uio_resid < 4 * PAGE_SIZE)
- {
+ return (cluster_read_x(vp, uio, filesize, flags));
+ }
+
+#if LP64_DEBUG
+ if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) {
+ panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__);
+ }
+#endif /* LP64_DEBUG */
+
+ while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) {
+ user_size_t iov_len;
+ user_addr_t iov_base;
+
/*
- * We set a threshhold of 4 pages to decide if the nocopy
- * read loop is worth the trouble...
- */
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
- (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
- return(retval);
- }
- else if (uio->uio_offset & PAGE_MASK_64)
- {
- /* Bring the file offset read up to a pagesize boundary */
- clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64));
- if (uio->uio_resid < clip_size)
- clip_size = uio->uio_resid;
- /*
- * Fake the resid going into the cluster_read_x call
- * and restore it on the way out.
+ * we know we have a resid, so this is safe
+ * skip over any emtpy vectors
*/
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else if ((int)iov->iov_base & PAGE_MASK_64)
- {
- clip_size = iov->iov_len;
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else
- {
- /*
- * If we come in here, we know the offset into
- * the file is on a pagesize boundary
+ uio_update(uio, (user_size_t)0);
+
+ iov_len = uio_curriovlen(uio);
+ iov_base = uio_curriovbase(uio);
+
+ upl_size = PAGE_SIZE;
+ upl_flags = UPL_QUERY_OBJECT_TYPE;
+
+ // LP64todo - fix this!
+ if ((vm_map_get_upl(current_map(),
+ (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+ &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
+ /*
+ * the user app must have passed in an invalid address
+ */
+ return (EFAULT);
+ }
+
+ /*
+ * We check every vector target but if it is physically
+ * contiguous space, we skip the sanity checks.
*/
+ if (upl_flags & UPL_PHYS_CONTIG) {
+ retval = cluster_phys_read(vp, uio, filesize);
+ }
+ else if (uio_resid(uio) < PAGE_SIZE) {
+ /*
+ * we're here because we're don't have a physically contiguous target buffer
+ * go do a read through the cache if
+ * the total xfer size is less than a page...
+ */
+ return (cluster_read_x(vp, uio, filesize, flags));
+ }
+ // LP64todo - fix this!
+ else if (((int)uio->uio_offset & PAGE_MASK) || (CAST_DOWN(int, iov_base) & PAGE_MASK)) {
+ if (((int)uio->uio_offset & PAGE_MASK) == (CAST_DOWN(int, iov_base) & PAGE_MASK)) {
+ /*
+ * Bring the file offset read up to a pagesize boundary
+ * this will also bring the base address to a page boundary
+ * since they both are currently on the same offset within a page
+ * note: if we get here, uio->uio_resid is greater than PAGE_SIZE
+ * so the computed clip_size must always be less than the current uio_resid
+ */
+ clip_size = (PAGE_SIZE - (int)(uio->uio_offset & PAGE_MASK_64));
+
+ /*
+ * Fake the resid going into the cluster_read_x call
+ * and restore it on the way out.
+ */
+ prev_resid = uio_resid(uio);
+ // LP64todo - fix this
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_read_x(vp, uio, filesize, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ } else {
+ /*
+ * can't get both the file offset and the buffer offset aligned to a page boundary
+ * so fire an I/O through the cache for this entire vector
+ */
+ // LP64todo - fix this!
+ clip_size = iov_len;
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_read_x(vp, uio, filesize, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ }
+ } else {
+ /*
+ * If we come in here, we know the offset into
+ * the file is on a pagesize boundary
+ */
+ max_io_size = filesize - uio->uio_offset;
+ // LP64todo - fix this
+ clip_size = uio_resid(uio);
+ if (iov_len < clip_size)
+ clip_size = iov_len;
+ if (max_io_size < clip_size)
+ clip_size = (int)max_io_size;
+
+ if (clip_size < PAGE_SIZE) {
+ /*
+ * Take care of the tail end of the read in this vector.
+ */
+ // LP64todo - fix this
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
- max_io_size = filesize - uio->uio_offset;
- clip_size = uio->uio_resid;
- if (iov->iov_len < clip_size)
- clip_size = iov->iov_len;
- if (max_io_size < clip_size)
- clip_size = (int)max_io_size;
-
- if (clip_size < PAGE_SIZE)
- {
- /*
- * Take care of the tail end of the read in this vector.
- */
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- else
- {
- /* round clip_size down to a multiple of pagesize */
- clip_size = clip_size & ~(PAGE_MASK);
- prev_resid = uio->uio_resid;
- uio->uio_resid = clip_size;
- retval = cluster_nocopy_read(vp, uio, filesize, devblocksize, flags);
- if ((retval==0) && uio->uio_resid)
- retval = cluster_read_x(vp, uio, filesize, devblocksize, flags);
- uio->uio_resid = prev_resid - (clip_size - uio->uio_resid);
- }
- } /* end else */
- } /* end while */
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
- (int)uio->uio_offset, uio->uio_resid, vp->v_lastr, retval, 0);
+ retval = cluster_read_x(vp, uio, filesize, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ } else {
+ /* round clip_size down to a multiple of pagesize */
+ clip_size = clip_size & ~(PAGE_MASK);
+ // LP64todo - fix this
+ prev_resid = uio_resid(uio);
+ uio_setresid(uio, clip_size);
+
+ retval = cluster_nocopy_read(vp, uio, filesize);
+
+ if ((retval==0) && uio_resid(uio))
+ retval = cluster_read_x(vp, uio, filesize, flags);
+
+ uio_setresid(uio, prev_resid - (clip_size - uio_resid(uio)));
+ }
+ } /* end else */
+ } /* end while */
return(retval);
}
-
static int
-cluster_read_x(vp, uio, filesize, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t filesize;
- int devblocksize;
- int flags;
+cluster_read_x(vnode_t vp, struct uio *uio, off_t filesize, int flags)
{
upl_page_info_t *pl;
upl_t upl;
int start_offset;
int start_pg;
int last_pg;
- int uio_last;
+ int uio_last = 0;
int pages_in_upl;
off_t max_size;
- int io_size;
- vm_offset_t io_address;
+ off_t last_ioread_offset;
+ off_t last_request_offset;
+ u_int size_of_prefetch;
+ u_int io_size;
kern_return_t kret;
- int segflg;
int error = 0;
int retval = 0;
- int b_lblkno;
- int e_lblkno;
+ u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ u_int rd_ahead_enabled = 1;
+ u_int prefetch_enabled = 1;
+ struct cl_readahead * rap;
+ struct clios iostate;
+ struct cl_extent extent;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
+ (int)uio->uio_offset, uio_resid(uio), (int)filesize, 0, 0);
+
+ // LP64todo - fix this
+ last_request_offset = uio->uio_offset + uio_resid(uio);
+
+ if ((flags & (IO_RAOFF|IO_NOCACHE)) ||
+ ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
+ rd_ahead_enabled = 0;
+ rap = NULL;
+ } else {
+ if (cluster_hard_throttle_on(vp)) {
+ rd_ahead_enabled = 0;
+ prefetch_enabled = 0;
+
+ max_rd_size = HARD_THROTTLE_MAXSIZE;
+ }
+ if ((rap = cluster_get_rap(vp)) == NULL)
+ rd_ahead_enabled = 0;
+ }
+ if (last_request_offset > filesize)
+ last_request_offset = filesize;
+ extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
+ extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
- b_lblkno = (int)(uio->uio_offset / PAGE_SIZE_64);
+ if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
+ /*
+ * determine if we already have a read-ahead in the pipe courtesy of the
+ * last read systemcall that was issued...
+ * if so, pick up it's extent to determine where we should start
+ * with respect to any read-ahead that might be necessary to
+ * garner all the data needed to complete this read systemcall
+ */
+ last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
+
+ if (last_ioread_offset < uio->uio_offset)
+ last_ioread_offset = (off_t)0;
+ else if (last_ioread_offset > last_request_offset)
+ last_ioread_offset = last_request_offset;
+ } else
+ last_ioread_offset = (off_t)0;
- while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) {
+ while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) {
/*
* compute the size of the upl needed to encompass
* the requested read... limit each call to cluster_io
upl_f_offset = uio->uio_offset - (off_t)start_offset;
max_size = filesize - uio->uio_offset;
- if ((off_t)((unsigned int)uio->uio_resid) < max_size)
- io_size = uio->uio_resid;
+ // LP64todo - fix this!
+ if ((off_t)((unsigned int)uio_resid(uio)) < max_size)
+ io_size = uio_resid(uio);
else
io_size = max_size;
- if (uio->uio_segflg == UIO_USERSPACE && !(vp->v_flag & VNOCACHE_DATA)) {
- segflg = uio->uio_segflg;
+ if (!(flags & IO_NOCACHE)) {
- uio->uio_segflg = UIO_PHYS_USERSPACE;
+ while (io_size) {
+ u_int io_resid;
+ u_int io_requested;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
- (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
+ /*
+ * if we keep finding the pages we need already in the cache, then
+ * don't bother to call cluster_rd_prefetch since it costs CPU cycles
+ * to determine that we have all the pages we need... once we miss in
+ * the cache and have issued an I/O, than we'll assume that we're likely
+ * to continue to miss in the cache and it's to our advantage to try and prefetch
+ */
+ if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
+ if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
+ /*
+ * we've already issued I/O for this request and
+ * there's still work to do and
+ * our prefetch stream is running dry, so issue a
+ * pre-fetch I/O... the I/O latency will overlap
+ * with the copying of the data
+ */
+ if (size_of_prefetch > max_rd_size)
+ size_of_prefetch = max_rd_size;
- while (io_size && retval == 0) {
- int xsize;
- vm_offset_t paddr;
+ size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize);
- if (ubc_page_op(vp,
- upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY,
- &paddr, 0) != KERN_SUCCESS)
- break;
+ last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
+
+ if (last_ioread_offset > last_request_offset)
+ last_ioread_offset = last_request_offset;
+ }
+ }
+ /*
+ * limit the size of the copy we're about to do so that
+ * we can notice that our I/O pipe is running dry and
+ * get the next I/O issued before it does go dry
+ */
+ if (last_ioread_offset && io_size > ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4))
+ io_resid = ((MAX_UPL_TRANSFER * PAGE_SIZE) / 4);
+ else
+ io_resid = io_size;
- xsize = PAGE_SIZE - start_offset;
-
- if (xsize > io_size)
- xsize = io_size;
+ io_requested = io_resid;
- retval = uiomove((caddr_t)(paddr + start_offset), xsize, uio);
+ retval = cluster_copy_ubc_data(vp, uio, &io_resid, 0);
- ubc_page_op(vp, upl_f_offset,
- UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
+ io_size -= (io_requested - io_resid);
- io_size -= xsize;
- start_offset = (int)
- (uio->uio_offset & PAGE_MASK_64);
- upl_f_offset = uio->uio_offset - start_offset;
+ if (retval || io_resid)
+ /*
+ * if we run into a real error or
+ * a page that is not in the cache
+ * we need to leave streaming mode
+ */
+ break;
+
+ if ((io_size == 0 || last_ioread_offset == last_request_offset) && rd_ahead_enabled) {
+ /*
+ * we're already finished the I/O for this read request
+ * let's see if we should do a read-ahead
+ */
+ cluster_rd_ahead(vp, &extent, filesize, rap);
+ }
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
- (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
-
- uio->uio_segflg = segflg;
-
if (retval)
break;
-
if (io_size == 0) {
- /*
- * we're already finished with this read request
- * let's see if we should do a read-ahead
- */
- e_lblkno = (int)
- ((uio->uio_offset - 1) / PAGE_SIZE_64);
-
- if (!(vp->v_flag & VRAOFF))
- /*
- * let's try to read ahead if we're in
- * a sequential access pattern
- */
- cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
- vp->v_lastr = e_lblkno;
-
+ if (rap != NULL) {
+ if (extent.e_addr < rap->cl_lastr)
+ rap->cl_maxra = 0;
+ rap->cl_lastr = extent.e_addr;
+ }
break;
}
- max_size = filesize - uio->uio_offset;
+ start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+ upl_f_offset = uio->uio_offset - (off_t)start_offset;
+ max_size = filesize - uio->uio_offset;
}
+ if (io_size > max_rd_size)
+ io_size = max_rd_size;
+
upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
- if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
- upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+
+ if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4)
+ upl_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 4;
pages_in_upl = upl_size / PAGE_SIZE;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
(int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
kret = ubc_create_upl(vp,
- upl_f_offset,
- upl_size,
- &upl,
- &pl,
- UPL_FLAGS_NONE);
+ upl_f_offset,
+ upl_size,
+ &upl,
+ &pl,
+ UPL_SET_LITE);
if (kret != KERN_SUCCESS)
panic("cluster_read: failed to get pagelist");
if (upl_valid_page(pl, last_pg))
break;
}
+ iostate.io_completed = 0;
+ iostate.io_issued = 0;
+ iostate.io_error = 0;
+ iostate.io_wanted = 0;
if (start_pg < last_pg) {
/*
io_size = filesize - (upl_f_offset + upl_offset);
/*
- * issue a synchronous read to cluster_io
+ * issue an asynchronous read to cluster_io
*/
error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
- io_size, devblocksize, CL_READ, (struct buf *)0, (struct clios *)0);
+ io_size, CL_READ | CL_ASYNC, (buf_t)NULL, &iostate);
}
if (error == 0) {
/*
* if the read completed successfully, or there was no I/O request
- * issued, than map the upl into kernel address space and
- * move the data into user land.... we'll first add on any 'valid'
+ * issued, than copy the data into user land via 'cluster_upl_copy_data'
+ * we'll first add on any 'valid'
* pages that were present in the upl when we acquired it.
*/
u_int val_size;
- u_int size_of_prefetch;
for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
if (!upl_valid_page(pl, uio_last))
}
/*
* compute size to transfer this round, if uio->uio_resid is
- * still non-zero after this uiomove, we'll loop around and
+ * still non-zero after this attempt, we'll loop around and
* set up for another I/O.
*/
val_size = (uio_last * PAGE_SIZE) - start_offset;
- if (max_size < val_size)
+ if (val_size > max_size)
val_size = max_size;
- if (uio->uio_resid < val_size)
- val_size = uio->uio_resid;
+ if (val_size > uio_resid(uio))
+ // LP64todo - fix this
+ val_size = uio_resid(uio);
- e_lblkno = (int)((uio->uio_offset + ((off_t)val_size - 1)) / PAGE_SIZE_64);
+ if (last_ioread_offset == 0)
+ last_ioread_offset = uio->uio_offset + val_size;
- if (size_of_prefetch = (uio->uio_resid - val_size)) {
+ if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
/*
- * if there's still I/O left to do for this request, then issue a
- * pre-fetch I/O... the I/O wait time will overlap
+ * if there's still I/O left to do for this request, and...
+ * we're not in hard throttle mode, then issue a
+ * pre-fetch I/O... the I/O latency will overlap
* with the copying of the data
*/
- cluster_rd_prefetch(vp, uio->uio_offset + val_size, size_of_prefetch, filesize, devblocksize);
- } else {
- if (!(vp->v_flag & VRAOFF) && !(vp->v_flag & VNOCACHE_DATA))
- /*
- * let's try to read ahead if we're in
- * a sequential access pattern
- */
- cluster_rd_ahead(vp, b_lblkno, e_lblkno, filesize, devblocksize);
- vp->v_lastr = e_lblkno;
- }
- if (uio->uio_segflg == UIO_USERSPACE) {
- int offset;
-
- segflg = uio->uio_segflg;
-
- uio->uio_segflg = UIO_PHYS_USERSPACE;
-
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
- (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
+ size_of_prefetch = cluster_rd_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize);
- offset = start_offset;
-
- while (val_size && retval == 0) {
- int csize;
- int i;
- caddr_t paddr;
-
- i = offset / PAGE_SIZE;
- csize = min(PAGE_SIZE - start_offset, val_size);
-
- paddr = (caddr_t)upl_phys_page(pl, i) + start_offset;
-
- retval = uiomove(paddr, csize, uio);
+ last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
+
+ if (last_ioread_offset > last_request_offset)
+ last_ioread_offset = last_request_offset;
- val_size -= csize;
- offset += csize;
- start_offset = offset & PAGE_MASK;
+ } else if ((uio->uio_offset + val_size) == last_request_offset) {
+ /*
+ * this transfer will finish this request, so...
+ * let's try to read ahead if we're in
+ * a sequential access pattern and we haven't
+ * explicitly disabled it
+ */
+ if (rd_ahead_enabled)
+ cluster_rd_ahead(vp, &extent, filesize, rap);
+
+ if (rap != NULL) {
+ if (extent.e_addr < rap->cl_lastr)
+ rap->cl_maxra = 0;
+ rap->cl_lastr = extent.e_addr;
}
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
- (int)uio->uio_offset, val_size, uio->uio_resid, 0, 0);
-
- uio->uio_segflg = segflg;
}
- else
- {
- if ((kret = ubc_upl_map(upl, &io_address)) != KERN_SUCCESS)
- panic("cluster_read: ubc_upl_map() failed\n");
+ lck_mtx_lock(cl_mtxp);
- retval = uiomove((caddr_t)(io_address + start_offset), val_size, uio);
+ while (iostate.io_issued != iostate.io_completed) {
+ iostate.io_wanted = 1;
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_read_x", 0);
+ }
+ lck_mtx_unlock(cl_mtxp);
- if ((kret = ubc_upl_unmap(upl)) != KERN_SUCCESS)
- panic("cluster_read: ubc_upl_unmap() failed\n");
- }
+ if (iostate.io_error)
+ error = iostate.io_error;
+ else
+ retval = cluster_copy_upl_data(uio, upl, start_offset, val_size);
}
if (start_pg < last_pg) {
/*
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
(int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
- if (error || (vp->v_flag & VNOCACHE_DATA))
+ if (error || (flags & IO_NOCACHE))
ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
else
ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size,
- UPL_COMMIT_CLEAR_DIRTY
- | UPL_COMMIT_FREE_ON_EMPTY
- | UPL_COMMIT_INACTIVATE);
+ UPL_COMMIT_CLEAR_DIRTY |
+ UPL_COMMIT_FREE_ON_EMPTY |
+ UPL_COMMIT_INACTIVATE);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END,
(int)upl, start_pg * PAGE_SIZE, io_size, error, 0);
/*
* the set of pages that we issued an I/O for did not encompass
* the entire upl... so just release these without modifying
- * there state
+ * their state
*/
if (error)
ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
if (upl_dirty_page(pl, cur_pg))
commit_flags |= UPL_COMMIT_SET_DIRTY;
- if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA))
+ if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (flags & IO_NOCACHE))
ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE,
UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
else
if (upl_dirty_page(pl, cur_pg))
commit_flags |= UPL_COMMIT_SET_DIRTY;
- if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (vp->v_flag & VNOCACHE_DATA))
+ if ( !(commit_flags & UPL_COMMIT_SET_DIRTY) && (flags & IO_NOCACHE))
ubc_upl_abort_range(upl, cur_pg * PAGE_SIZE, PAGE_SIZE,
UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
else
}
if (retval == 0)
retval = error;
+
+ if ( uio_resid(uio) ) {
+ if (cluster_hard_throttle_on(vp)) {
+ rd_ahead_enabled = 0;
+ prefetch_enabled = 0;
+
+ max_rd_size = HARD_THROTTLE_MAXSIZE;
+ } else {
+ if (rap != NULL)
+ rd_ahead_enabled = 1;
+ prefetch_enabled = 1;
+
+ max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ }
+ }
+ }
+ if (rap != NULL) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio_resid(uio), rap->cl_lastr, retval, 0);
+
+ lck_mtx_unlock(&rap->cl_lockr);
+ } else {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio_resid(uio), 0, retval, 0);
}
return (retval);
static int
-cluster_nocopy_read(vp, uio, filesize, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t filesize;
- int devblocksize;
- int flags;
+cluster_nocopy_read(vnode_t vp, struct uio *uio, off_t filesize)
{
upl_t upl;
upl_page_info_t *pl;
- off_t upl_f_offset;
vm_offset_t upl_offset;
- off_t start_upl_f_offset;
off_t max_io_size;
int io_size;
int upl_size;
int upl_needed_size;
int pages_in_pl;
- vm_offset_t paddr;
int upl_flags;
kern_return_t kret;
- int segflg;
- struct iovec *iov;
int i;
int force_data_sync;
int retval = 0;
- int first = 1;
+ int no_zero_fill = 0;
+ int abort_flag = 0;
struct clios iostate;
+ u_int max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ u_int max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 2;
+
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
- (int)uio->uio_offset, uio->uio_resid, (int)filesize, devblocksize, 0);
+ (int)uio->uio_offset, uio_resid(uio), (int)filesize, 0, 0);
/*
* When we enter this routine, we know
iostate.io_error = 0;
iostate.io_wanted = 0;
- iov = uio->uio_iov;
-
- while (uio->uio_resid && uio->uio_offset < filesize && retval == 0) {
+ while (uio_resid(uio) && uio->uio_offset < filesize && retval == 0) {
+ user_addr_t iov_base;
+ if (cluster_hard_throttle_on(vp)) {
+ max_rd_size = HARD_THROTTLE_MAXSIZE;
+ max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1;
+ } else {
+ max_rd_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+ max_rd_ahead = MAX_UPL_TRANSFER * PAGE_SIZE * 8;
+ }
max_io_size = filesize - uio->uio_offset;
- if (max_io_size < (off_t)((unsigned int)uio->uio_resid))
+ // LP64todo - fix this
+ if (max_io_size < (off_t)((unsigned int)uio_resid(uio)))
io_size = max_io_size;
else
- io_size = uio->uio_resid;
-
- /*
- * We don't come into this routine unless
- * UIO_USERSPACE is set.
- */
- segflg = uio->uio_segflg;
-
- uio->uio_segflg = UIO_PHYS_USERSPACE;
+ io_size = uio_resid(uio);
/*
* First look for pages already in the cache
* and move them to user space.
*/
- while (io_size && (retval == 0)) {
- upl_f_offset = uio->uio_offset;
-
- /*
- * If this call fails, it means the page is not
- * in the page cache.
- */
- if (ubc_page_op(vp, upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) != KERN_SUCCESS)
- break;
-
- retval = uiomove((caddr_t)(paddr), PAGE_SIZE, uio);
-
- ubc_page_op(vp, upl_f_offset,
- UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
-
- io_size -= PAGE_SIZE;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 71)) | DBG_FUNC_NONE,
- (int)uio->uio_offset, io_size, uio->uio_resid, 0, 0);
- }
- uio->uio_segflg = segflg;
+ retval = cluster_copy_ubc_data(vp, uio, &io_size, 0);
if (retval) {
/*
}
max_io_size = io_size;
- if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
- max_io_size = MAX_UPL_TRANSFER * PAGE_SIZE;
- if (first) {
- if (max_io_size > (MAX_UPL_TRANSFER * PAGE_SIZE) / 4)
- max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE) / 8;
- first = 0;
- }
- start_upl_f_offset = uio->uio_offset; /* this is page aligned in the file */
- upl_f_offset = start_upl_f_offset;
+ if (max_io_size > max_rd_size)
+ max_io_size = max_rd_size;
+
io_size = 0;
- while (io_size < max_io_size) {
- if (ubc_page_op(vp, upl_f_offset,
- UPL_POP_SET | UPL_POP_BUSY, &paddr, 0) == KERN_SUCCESS) {
- ubc_page_op(vp, upl_f_offset,
- UPL_POP_CLR | UPL_POP_BUSY, 0, 0);
- break;
- }
- /*
- * Build up the io request parameters.
- */
- io_size += PAGE_SIZE_64;
- upl_f_offset += PAGE_SIZE_64;
- }
+ ubc_range_op(vp, uio->uio_offset, uio->uio_offset + max_io_size, UPL_ROP_ABSENT, &io_size);
+
if (io_size == 0)
/*
* we may have already spun some portion of this request
* to complete before returning
*/
goto wait_for_reads;
+
+ iov_base = uio_curriovbase(uio);
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ // LP64todo - fix this!
+ upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK;
upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
- (int)upl_offset, upl_needed_size, (int)iov->iov_base, io_size, 0);
+ (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
+ if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) {
+ no_zero_fill = 1;
+ abort_flag = UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY;
+ } else {
+ no_zero_fill = 0;
+ abort_flag = UPL_ABORT_FREE_ON_EMPTY;
+ }
for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
- kret = vm_map_get_upl(current_map(),
- (vm_offset_t)iov->iov_base & ~PAGE_MASK,
- &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, force_data_sync);
+ if (no_zero_fill)
+ upl_flags |= UPL_NOZEROFILL;
+ if (force_data_sync)
+ upl_flags |= UPL_FORCE_DATA_SYNC;
+
+ // LP64todo - fix this!
+ kret = vm_map_create_upl(current_map(),
+ (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
+ &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
if (kret != KERN_SUCCESS) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
(int)upl_offset, upl_size, io_size, kret, 0);
-
/*
* cluster_nocopy_read: failed to get pagelist
*
if (i == pages_in_pl)
break;
- ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size,
- UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag);
}
if (force_data_sync >= 3) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
io_size = (upl_size - (int)upl_offset) & ~PAGE_MASK;
if (io_size == 0) {
- ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size,
- UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag);
goto wait_for_reads;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
* if there are already too many outstanding reads
* wait until some have completed before issuing the next read
*/
- while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) {
+ lck_mtx_lock(cl_mtxp);
+
+ while ((iostate.io_issued - iostate.io_completed) > max_rd_ahead) {
iostate.io_wanted = 1;
- tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0);
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_read", 0);
}
+ lck_mtx_unlock(cl_mtxp);
+
if (iostate.io_error) {
/*
* one of the earlier reads we issued ran into a hard error
* go wait for any other reads to complete before
* returning the error to the caller
*/
- ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size,
- UPL_ABORT_FREE_ON_EMPTY);
+ ubc_upl_abort_range(upl, (upl_offset & ~PAGE_MASK), upl_size, abort_flag);
goto wait_for_reads;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
- (int)upl, (int)upl_offset, (int)start_upl_f_offset, io_size, 0);
+ (int)upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
- retval = cluster_io(vp, upl, upl_offset, start_upl_f_offset,
- io_size, devblocksize,
+ retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size,
CL_PRESERVE | CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO,
- (struct buf *)0, &iostate);
+ (buf_t)NULL, &iostate);
/*
* update the uio structure
*/
- iov->iov_base += io_size;
- iov->iov_len -= io_size;
- uio->uio_resid -= io_size;
- uio->uio_offset += io_size;
+ uio_update(uio, (user_size_t)io_size);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
- (int)upl, (int)uio->uio_offset, (int)uio->uio_resid, retval, 0);
+ (int)upl, (int)uio->uio_offset, (int)uio_resid(uio), retval, 0);
} /* end while */
* make sure all async reads that are part of this stream
* have completed before we return
*/
+ lck_mtx_lock(cl_mtxp);
+
while (iostate.io_issued != iostate.io_completed) {
iostate.io_wanted = 1;
- tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_nocopy_read", 0);
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_nocopy_read", 0);
}
+ lck_mtx_unlock(cl_mtxp);
+
if (iostate.io_error)
retval = iostate.io_error;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
- (int)uio->uio_offset, (int)uio->uio_resid, 6, retval, 0);
+ (int)uio->uio_offset, (int)uio_resid(uio), 6, retval, 0);
return (retval);
}
static int
-cluster_phys_read(vp, uio, filesize, devblocksize, flags)
- struct vnode *vp;
- struct uio *uio;
- off_t filesize;
- int devblocksize;
- int flags;
+cluster_phys_read(vnode_t vp, struct uio *uio, off_t filesize)
{
upl_page_info_t *pl;
upl_t upl;
vm_offset_t upl_offset;
- vm_offset_t dst_paddr;
+ addr64_t dst_paddr;
off_t max_size;
- int io_size;
+ int io_size;
+ user_size_t iov_len;
+ user_addr_t iov_base;
int tail_size;
int upl_size;
int upl_needed_size;
int pages_in_pl;
int upl_flags;
kern_return_t kret;
- struct iovec *iov;
struct clios iostate;
int error;
+ int devblocksize;
+ devblocksize = vp->v_mount->mnt_devblocksize;
/*
* When we enter this routine, we know
* -- the resid will not exceed iov_len
* -- the target address is physically contiguous
*/
- iov = uio->uio_iov;
+#if LP64_DEBUG
+ if (IS_VALID_UIO_SEGFLG(uio->uio_segflg) == 0) {
+ panic("%s :%d - invalid uio_segflg\n", __FILE__, __LINE__);
+ }
+#endif /* LP64_DEBUG */
+
+ iov_len = uio_curriovlen(uio);
+ iov_base = uio_curriovbase(uio);
max_size = filesize - uio->uio_offset;
- if (max_size > (off_t)((unsigned int)iov->iov_len))
- io_size = iov->iov_len;
+ // LP64todo - fix this!
+ if (max_size < 0 || (u_int64_t)max_size > iov_len)
+ io_size = iov_len;
else
io_size = max_size;
- upl_offset = (vm_offset_t)iov->iov_base & PAGE_MASK_64;
+ // LP64todo - fix this!
+ upl_offset = CAST_DOWN(vm_offset_t, iov_base) & PAGE_MASK;
upl_needed_size = upl_offset + io_size;
error = 0;
pages_in_pl = 0;
upl_size = upl_needed_size;
- upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL;
+ upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
kret = vm_map_get_upl(current_map(),
- (vm_offset_t)iov->iov_base & ~PAGE_MASK,
+ (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
&upl_size, &upl, NULL, &pages_in_pl, &upl_flags, 0);
if (kret != KERN_SUCCESS) {
}
pl = ubc_upl_pageinfo(upl);
- dst_paddr = (vm_offset_t)upl_phys_page(pl, 0) + ((vm_offset_t)iov->iov_base & PAGE_MASK);
+ dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset;
while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
int head_size;
if (head_size > io_size)
head_size = io_size;
- error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, devblocksize, CL_READ);
+ error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ);
if (error) {
ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
* if there are already too many outstanding reads
* wait until some have completed before issuing the next
*/
- while ((iostate.io_issued - iostate.io_completed) > (2 * MAX_UPL_TRANSFER * PAGE_SIZE)) {
+ lck_mtx_lock(cl_mtxp);
+
+ while ((iostate.io_issued - iostate.io_completed) > (8 * MAX_UPL_TRANSFER * PAGE_SIZE)) {
iostate.io_wanted = 1;
- tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_phys_read", 0);
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_phys_read", 0);
}
+ lck_mtx_unlock(cl_mtxp);
- error = cluster_io(vp, upl, upl_offset, uio->uio_offset, xsize, 0,
+ error = cluster_io(vp, upl, upl_offset, uio->uio_offset, xsize,
CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC,
- (struct buf *)0, &iostate);
+ (buf_t)NULL, &iostate);
/*
* The cluster_io read was issued successfully,
* update the uio structure
*/
if (error == 0) {
- uio->uio_resid -= xsize;
- iov->iov_len -= xsize;
- iov->iov_base += xsize;
- uio->uio_offset += xsize;
- dst_paddr += xsize;
- upl_offset += xsize;
- io_size -= xsize;
+ uio_update(uio, (user_size_t)xsize);
+
+ dst_paddr += xsize;
+ upl_offset += xsize;
+ io_size -= xsize;
}
}
/*
* make sure all async reads that are part of this stream
* have completed before we proceed
*/
+ lck_mtx_lock(cl_mtxp);
+
while (iostate.io_issued != iostate.io_completed) {
iostate.io_wanted = 1;
- tsleep((caddr_t)&iostate.io_wanted, PRIBIO + 1, "cluster_phys_read", 0);
+ msleep((caddr_t)&iostate.io_wanted, cl_mtxp, PRIBIO + 1, "cluster_phys_read", 0);
}
- if (iostate.io_error) {
+ lck_mtx_unlock(cl_mtxp);
+
+ if (iostate.io_error)
error = iostate.io_error;
- }
+
if (error == 0 && tail_size)
- error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, devblocksize, CL_READ);
+ error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ);
/*
* just release our hold on the physically contiguous
* the completed pages will be released into the VM cache
*/
int
-advisory_read(vp, filesize, f_offset, resid, devblocksize)
- struct vnode *vp;
- off_t filesize;
- off_t f_offset;
- int resid;
- int devblocksize;
+advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
{
upl_page_info_t *pl;
upl_t upl;
kern_return_t kret;
int retval = 0;
int issued_io;
+ int skip_range;
- if (!UBCINFOEXISTS(vp))
+ if ( !UBCINFOEXISTS(vp))
return(EINVAL);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
- (int)f_offset, resid, (int)filesize, devblocksize, 0);
+ (int)f_offset, resid, (int)filesize, 0, 0);
while (resid && f_offset < filesize && retval == 0) {
/*
upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
if (upl_size > (MAX_UPL_TRANSFER * PAGE_SIZE))
upl_size = MAX_UPL_TRANSFER * PAGE_SIZE;
+
+ skip_range = 0;
+ /*
+ * return the number of contiguously present pages in the cache
+ * starting at upl_f_offset within the file
+ */
+ ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
+
+ if (skip_range) {
+ /*
+ * skip over pages already present in the cache
+ */
+ io_size = skip_range - start_offset;
+
+ f_offset += io_size;
+ resid -= io_size;
+
+ if (skip_range == upl_size)
+ continue;
+ /*
+ * have to issue some real I/O
+ * at this point, we know it's starting on a page boundary
+ * because we've skipped over at least the first page in the request
+ */
+ start_offset = 0;
+ upl_f_offset += skip_range;
+ upl_size -= skip_range;
+ }
pages_in_upl = upl_size / PAGE_SIZE;
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
+ (int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
+
kret = ubc_create_upl(vp,
- upl_f_offset,
- upl_size,
- &upl,
- &pl,
- UPL_RET_ONLY_ABSENT);
+ upl_f_offset,
+ upl_size,
+ &upl,
+ &pl,
+ UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
if (kret != KERN_SUCCESS)
return(retval);
issued_io = 0;
pages_in_upl = last_pg + 1;
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_NONE,
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
(int)upl, (int)upl_f_offset, upl_size, start_offset, 0);
/*
* issue an asynchronous read to cluster_io
*/
- retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, devblocksize,
- CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (struct buf *)0, (struct clios *)0);
+ retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
+ CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE, (buf_t)NULL, (struct clios *)NULL);
issued_io = 1;
}
int
-cluster_push(vp)
- struct vnode *vp;
+cluster_push(vnode_t vp, int flags)
{
- int retval;
+ int retval;
+ struct cl_writebehind *wbp;
- if (!UBCINFOEXISTS(vp) || vp->v_clen == 0) {
- vp->v_flag &= ~VHASDIRTY;
- return(0);
+ if ( !UBCINFOEXISTS(vp)) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -1, 0);
+ return (0);
+ }
+ /* return if deferred write is set */
+ if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
+ return (0);
+ }
+ if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -2, 0);
+ return (0);
}
+ if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
+ lck_mtx_unlock(&wbp->cl_lockw);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, (int)vp, flags, 0, -3, 0);
+ return(0);
+ }
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
- vp->v_flag & VHASDIRTY, vp->v_clen, 0, 0, 0);
+ (int)wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
+
+ if (wbp->cl_scmap) {
+ sparse_cluster_push(wbp, vp, ubc_getsize(vp), 1);
+
+ retval = 1;
+ } else
+ retval = cluster_try_push(wbp, vp, ubc_getsize(vp), 0, 1);
+
+ lck_mtx_unlock(&wbp->cl_lockw);
- if (vp->v_flag & VHASDIRTY) {
- daddr_t start_pg;
- daddr_t last_pg;
- daddr_t end_pg;
+ if (flags & IO_SYNC)
+ (void)vnode_waitforwrites(vp, 0, 0, 0, (char *)"cluster_push");
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
+ (int)wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
- start_pg = vp->v_cstart;
- end_pg = vp->v_lastw;
+ return (retval);
+}
- vp->v_flag &= ~VHASDIRTY;
- vp->v_clen = 0;
- while (start_pg < end_pg) {
- last_pg = start_pg + MAX_UPL_TRANSFER;
+__private_extern__ void
+cluster_release(struct ubc_info *ubc)
+{
+ struct cl_writebehind *wbp;
+ struct cl_readahead *rap;
- if (last_pg > end_pg)
- last_pg = end_pg;
+ if ((wbp = ubc->cl_wbehind)) {
- cluster_push_x(vp, ubc_getsize(vp), start_pg, last_pg, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
- start_pg = last_pg;
- }
- return (1);
+ if (wbp->cl_scmap)
+ vfs_drt_control(&(wbp->cl_scmap), 0);
+ } else {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, (int)ubc, 0, 0, 0, 0);
+ }
+
+ rap = ubc->cl_rahead;
+
+ if (wbp != NULL) {
+ lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
+ FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
}
- retval = cluster_try_push(vp, ubc_getsize(vp), 0, 1);
+ if ((rap = ubc->cl_rahead)) {
+ lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
+ FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
+ }
+ ubc->cl_rahead = NULL;
+ ubc->cl_wbehind = NULL;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, (int)ubc, (int)rap, (int)wbp, 0, 0);
+}
+
+
+static void
+cluster_push_EOF(vnode_t vp, off_t EOF)
+{
+ struct cl_writebehind *wbp;
+
+ wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
+ (int)wbp->cl_scmap, wbp->cl_number, (int)EOF, 0, 0);
+
+ if (wbp->cl_scmap)
+ sparse_cluster_push(wbp, vp, EOF, 1);
+ else
+ cluster_try_push(wbp, vp, EOF, 0, 1);
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
- vp->v_flag & VHASDIRTY, vp->v_clen, retval, 0, 0);
+ (int)wbp->cl_scmap, wbp->cl_number, 0, 0, 0);
- return (retval);
+ lck_mtx_unlock(&wbp->cl_lockw);
}
static int
-cluster_try_push(vp, EOF, can_delay, push_all)
- struct vnode *vp;
- off_t EOF;
- int can_delay;
- int push_all;
+cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int can_delay, int push_all)
{
int cl_index;
int cl_index1;
int min_index;
int cl_len;
- int cl_total;
- int cl_pushed;
- struct v_cluster l_clusters[MAX_CLUSTERS];
+ int cl_pushed = 0;
+ struct cl_wextent l_clusters[MAX_CLUSTERS];
/*
+ * the write behind context exists and has
+ * already been locked...
+ *
* make a local 'sorted' copy of the clusters
- * and clear vp->v_clen so that new clusters can
+ * and clear wbp->cl_number so that new clusters can
* be developed
*/
- for (cl_index = 0; cl_index < vp->v_clen; cl_index++) {
- for (min_index = -1, cl_index1 = 0; cl_index1 < vp->v_clen; cl_index1++) {
- if (vp->v_clusters[cl_index1].start_pg == vp->v_clusters[cl_index1].last_pg)
+ for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
+ for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
+ if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
continue;
if (min_index == -1)
min_index = cl_index1;
- else if (vp->v_clusters[cl_index1].start_pg < vp->v_clusters[min_index].start_pg)
+ else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
min_index = cl_index1;
}
if (min_index == -1)
break;
- l_clusters[cl_index].start_pg = vp->v_clusters[min_index].start_pg;
- l_clusters[cl_index].last_pg = vp->v_clusters[min_index].last_pg;
+ l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
+ l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
+ l_clusters[cl_index].io_nocache = wbp->cl_clusters[min_index].io_nocache;
- vp->v_clusters[min_index].start_pg = vp->v_clusters[min_index].last_pg;
+ wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
}
- cl_len = cl_index;
- vp->v_clen = 0;
+ wbp->cl_number = 0;
+
+ cl_len = cl_index;
+
+ if (can_delay && cl_len == MAX_CLUSTERS) {
+ int i;
+
+ /*
+ * determine if we appear to be writing the file sequentially
+ * if not, by returning without having pushed any clusters
+ * we will cause this vnode to be pushed into the sparse cluster mechanism
+ * used for managing more random I/O patterns
+ *
+ * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
+ * that's why we're in try_push with can_delay true...
+ *
+ * check to make sure that all the clusters except the last one are 'full'... and that each cluster
+ * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
+ * so we can just make a simple pass through, up to, but not including the last one...
+ * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
+ * are sequential
+ *
+ * we let the last one be partial as long as it was adjacent to the previous one...
+ * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
+ * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
+ */
+ for (i = 0; i < MAX_CLUSTERS - 1; i++) {
+ if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != MAX_UPL_TRANSFER)
+ goto dont_try;
+ if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
+ goto dont_try;
+ }
+ }
+ /*
+ * drop the lock while we're firing off the I/Os...
+ * this is safe since I'm working off of a private sorted copy
+ * of the clusters, and I'm going to re-evaluate the public
+ * state after I retake the lock
+ */
+ lck_mtx_unlock(&wbp->cl_lockw);
+
+ for (cl_index = 0; cl_index < cl_len; cl_index++) {
+ int flags;
+ struct cl_extent cl;
- for (cl_pushed = 0, cl_index = 0; cl_index < cl_len; cl_index++) {
/*
- * try to push each cluster in turn... cluster_push_x may not
- * push the cluster if can_delay is TRUE and the cluster doesn't
- * meet the critera for an immediate push
+ * try to push each cluster in turn...
*/
- if (cluster_push_x(vp, EOF, l_clusters[cl_index].start_pg, l_clusters[cl_index].last_pg, can_delay)) {
- l_clusters[cl_index].start_pg = 0;
- l_clusters[cl_index].last_pg = 0;
+ if (l_clusters[cl_index].io_nocache)
+ flags = IO_NOCACHE;
+ else
+ flags = 0;
+ cl.b_addr = l_clusters[cl_index].b_addr;
+ cl.e_addr = l_clusters[cl_index].e_addr;
- cl_pushed++;
+ cluster_push_x(vp, &cl, EOF, flags);
- if (push_all == 0)
- break;
- }
+ l_clusters[cl_index].b_addr = 0;
+ l_clusters[cl_index].e_addr = 0;
+
+ cl_pushed++;
+
+ if (push_all == 0)
+ break;
}
+ lck_mtx_lock(&wbp->cl_lockw);
+
+dont_try:
if (cl_len > cl_pushed) {
/*
* we didn't push all of the clusters, so
* lets try to merge them back in to the vnode
*/
- if ((MAX_CLUSTERS - vp->v_clen) < (cl_len - cl_pushed)) {
+ if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
/*
* we picked up some new clusters while we were trying to
- * push the old ones (I don't think this can happen because
- * I'm holding the lock, but just in case)... the sum of the
+ * push the old ones... this can happen because I've dropped
+ * the vnode lock... the sum of the
* leftovers plus the new cluster count exceeds our ability
- * to represent them, so fall back to the VHASDIRTY mechanism
+ * to represent them, so switch to the sparse cluster mechanism
+ *
+ * collect the active public clusters...
*/
- for (cl_index = 0; cl_index < cl_len; cl_index++) {
- if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg)
+ sparse_cluster_switch(wbp, vp, EOF);
+
+ for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
+ if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
continue;
+ wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
+ wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
+ wbp->cl_clusters[cl_index1].io_nocache = l_clusters[cl_index].io_nocache;
- if (l_clusters[cl_index].start_pg < vp->v_cstart)
- vp->v_cstart = l_clusters[cl_index].start_pg;
- if (l_clusters[cl_index].last_pg > vp->v_lastw)
- vp->v_lastw = l_clusters[cl_index].last_pg;
+ cl_index1++;
}
- vp->v_flag |= VHASDIRTY;
+ /*
+ * update the cluster count
+ */
+ wbp->cl_number = cl_index1;
+
+ /*
+ * and collect the original clusters that were moved into the
+ * local storage for sorting purposes
+ */
+ sparse_cluster_switch(wbp, vp, EOF);
+
} else {
/*
* we've got room to merge the leftovers back in
* just append them starting at the next 'hole'
- * represented by vp->v_clen
+ * represented by wbp->cl_number
*/
- for (cl_index = 0, cl_index1 = vp->v_clen; cl_index < cl_len; cl_index++) {
- if (l_clusters[cl_index].start_pg == l_clusters[cl_index].last_pg)
+ for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
+ if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
continue;
- vp->v_clusters[cl_index1].start_pg = l_clusters[cl_index].start_pg;
- vp->v_clusters[cl_index1].last_pg = l_clusters[cl_index].last_pg;
+ wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
+ wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
+ wbp->cl_clusters[cl_index1].io_nocache = l_clusters[cl_index].io_nocache;
- if (cl_index1 == 0) {
- vp->v_cstart = l_clusters[cl_index].start_pg;
- vp->v_lastw = l_clusters[cl_index].last_pg;
- } else {
- if (l_clusters[cl_index].start_pg < vp->v_cstart)
- vp->v_cstart = l_clusters[cl_index].start_pg;
- if (l_clusters[cl_index].last_pg > vp->v_lastw)
- vp->v_lastw = l_clusters[cl_index].last_pg;
- }
cl_index1++;
}
/*
* update the cluster count
*/
- vp->v_clen = cl_index1;
+ wbp->cl_number = cl_index1;
}
}
- return(MAX_CLUSTERS - vp->v_clen);
+ return(MAX_CLUSTERS - wbp->cl_number);
}
static int
-cluster_push_x(vp, EOF, first, last, can_delay)
- struct vnode *vp;
- off_t EOF;
- daddr_t first;
- daddr_t last;
- int can_delay;
+cluster_push_x(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags)
{
upl_page_info_t *pl;
upl_t upl;
int last_pg;
int io_size;
int io_flags;
+ int upl_flags;
int size;
+ int error = 0;
+ int retval;
kern_return_t kret;
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
- vp->v_clen, first, last, EOF, 0);
+ (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
- if ((pages_in_upl = last - first) == 0) {
+ if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
- return (1);
+ return (0);
}
upl_size = pages_in_upl * PAGE_SIZE;
- upl_f_offset = ((off_t)first) * PAGE_SIZE_64;
+ upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
if (upl_f_offset + upl_size >= EOF) {
*/
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
- return(1);
+ return(0);
}
size = EOF - upl_f_offset;
- upl_size = (size + (PAGE_SIZE - 1) ) & ~(PAGE_SIZE - 1);
+ upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
pages_in_upl = upl_size / PAGE_SIZE;
- } else {
- if (can_delay && (pages_in_upl < (MAX_UPL_TRANSFER - (MAX_UPL_TRANSFER / 2))))
- return(0);
+ } else
size = upl_size;
- }
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
+
+ /*
+ * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
+ *
+ * - only pages that are currently dirty are returned... these are the ones we need to clean
+ * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
+ * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
+ * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
+ * someone dirties this page while the I/O is in progress, we don't lose track of the new state
+ *
+ * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
+ */
+
+ if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
+ upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
+ else
+ upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
+
kret = ubc_create_upl(vp,
upl_f_offset,
upl_size,
&upl,
&pl,
- UPL_RET_ONLY_DIRTY);
+ upl_flags);
if (kret != KERN_SUCCESS)
panic("cluster_push: failed to get pagelist");
- if (can_delay) {
- int num_of_dirty;
-
- for (num_of_dirty = 0, start_pg = 0; start_pg < pages_in_upl; start_pg++) {
- if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg))
- num_of_dirty++;
- }
- if (num_of_dirty < pages_in_upl / 2) {
- ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
-
- KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 0, 2, num_of_dirty, (pages_in_upl / 2), 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, (int)upl, upl_f_offset, 0, 0, 0);
- return(0);
- }
+ /*
+ * since we only asked for the dirty pages back
+ * it's possible that we may only get a few or even none, so...
+ * before we start marching forward, we must make sure we know
+ * where the last present page is in the UPL, otherwise we could
+ * end up working with a freed upl due to the FREE_ON_EMPTY semantics
+ * employed by commit_range and abort_range.
+ */
+ for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
+ if (upl_page_present(pl, last_pg))
+ break;
}
- last_pg = 0;
+ pages_in_upl = last_pg + 1;
- while (size) {
+ if (pages_in_upl == 0) {
+ ubc_upl_abort(upl, 0);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
+ return(0);
+ }
+
+ for (last_pg = 0; last_pg < pages_in_upl; ) {
+ /*
+ * find the next dirty page in the UPL
+ * this will become the first page in the
+ * next I/O to generate
+ */
for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
- if (upl_valid_page(pl, start_pg) && upl_dirty_page(pl, start_pg))
+ if (upl_dirty_page(pl, start_pg))
break;
+ if (upl_page_present(pl, start_pg))
+ /*
+ * RET_ONLY_DIRTY will return non-dirty 'precious' pages
+ * just release these unchanged since we're not going
+ * to steal them or change their state
+ */
+ ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
}
- if (start_pg > last_pg) {
- io_size = (start_pg - last_pg) * PAGE_SIZE;
-
- ubc_upl_abort_range(upl, last_pg * PAGE_SIZE, io_size,
- UPL_ABORT_FREE_ON_EMPTY);
+ if (start_pg >= pages_in_upl)
+ /*
+ * done... no more dirty pages to push
+ */
+ break;
+ if (start_pg > last_pg)
+ /*
+ * skipped over some non-dirty pages
+ */
+ size -= ((start_pg - last_pg) * PAGE_SIZE);
- if (io_size < size)
- size -= io_size;
- else
- break;
- }
+ /*
+ * find a range of dirty pages to write
+ */
for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
- if (!upl_valid_page(pl, last_pg) || !upl_dirty_page(pl, last_pg))
+ if (!upl_dirty_page(pl, last_pg))
break;
}
upl_offset = start_pg * PAGE_SIZE;
io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
- if (vp->v_flag & VNOCACHE_DATA)
- io_flags = CL_COMMIT | CL_AGE | CL_ASYNC | CL_DUMP;
- else
- io_flags = CL_COMMIT | CL_AGE | CL_ASYNC;
+ io_flags = CL_THROTTLE | CL_COMMIT;
- while (vp->v_numoutput >= ASYNC_THROTTLE) {
- vp->v_flag |= VTHROTTLED;
- tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "cluster_push", 0);
- }
- cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, vp->v_ciosiz, io_flags, (struct buf *)0, (struct clios *)0);
+ if ( !(flags & IO_SYNC))
+ io_flags |= CL_ASYNC;
+
+ retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
+ io_flags, (buf_t)NULL, (struct clios *)NULL);
+
+ if (error == 0 && retval)
+ error = retval;
size -= io_size;
}
KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
- return(1);
+ return(error);
}
-
-static int
-cluster_align_phys_io(struct vnode *vp, struct uio *uio, vm_offset_t usr_paddr, int xsize, int devblocksize, int flags)
+/*
+ * sparse_cluster_switch is called with the write behind lock held
+ */
+static void
+sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF)
{
- struct iovec *iov;
- upl_page_info_t *pl;
- upl_t upl;
- vm_offset_t ubc_paddr;
- kern_return_t kret;
- int error = 0;
+ int cl_index;
- iov = uio->uio_iov;
-
- kret = ubc_create_upl(vp,
- uio->uio_offset & ~PAGE_MASK_64,
- PAGE_SIZE,
- &upl,
- &pl,
- UPL_FLAGS_NONE);
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
- if (kret != KERN_SUCCESS)
- return(EINVAL);
+ if (wbp->cl_scmap == NULL)
+ wbp->cl_scdirty = 0;
- if (!upl_valid_page(pl, 0)) {
- /*
- * issue a synchronous read to cluster_io
- */
- error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize,
- CL_READ, (struct buf *)0, (struct clios *)0);
- if (error) {
- ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+ for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
+ int flags;
+ struct cl_extent cl;
- return(error);
- }
- }
- ubc_paddr = (vm_offset_t)upl_phys_page(pl, 0) + (int)(uio->uio_offset & PAGE_MASK_64);
+ for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
- if (flags & CL_READ)
- copyp2p(ubc_paddr, usr_paddr, xsize, 2);
- else
- copyp2p(usr_paddr, ubc_paddr, xsize, 1);
+ if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, 0, &flags) == KERN_SUCCESS) {
+ if (flags & UPL_POP_DIRTY) {
+ cl.e_addr = cl.b_addr + 1;
- if ( !(flags & CL_READ) || upl_dirty_page(pl, 0)) {
- /*
- * issue a synchronous write to cluster_io
- */
- error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, devblocksize,
- 0, (struct buf *)0, (struct clios *)0);
- }
- if (error == 0) {
- uio->uio_offset += xsize;
- iov->iov_base += xsize;
- iov->iov_len -= xsize;
- uio->uio_resid -= xsize;
+ sparse_cluster_add(wbp, vp, &cl, EOF);
+ }
+ }
+ }
}
- ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+ wbp->cl_number = 0;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
+}
+
+
+/*
+ * sparse_cluster_push is called with the write behind lock held
+ */
+static void
+sparse_cluster_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_all)
+{
+ struct cl_extent cl;
+ off_t offset;
+ u_int length;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, push_all, 0);
+
+ if (push_all)
+ vfs_drt_control(&(wbp->cl_scmap), 1);
- return (error);
+ for (;;) {
+ if (vfs_drt_get_cluster(&(wbp->cl_scmap), &offset, &length) != KERN_SUCCESS)
+ break;
+
+ cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
+ cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
+
+ wbp->cl_scdirty -= (int)(cl.e_addr - cl.b_addr);
+
+ cluster_push_x(vp, &cl, EOF, 0);
+
+ if (push_all == 0)
+ break;
+ }
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
+}
+
+
+/*
+ * sparse_cluster_add is called with the write behind lock held
+ */
+static void
+sparse_cluster_add(struct cl_writebehind *wbp, vnode_t vp, struct cl_extent *cl, off_t EOF)
+{
+ u_int new_dirty;
+ u_int length;
+ off_t offset;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (int)wbp->cl_scmap, wbp->cl_scdirty, (int)cl->b_addr, (int)cl->e_addr, 0);
+
+ offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
+ length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
+
+ while (vfs_drt_mark_pages(&(wbp->cl_scmap), offset, length, &new_dirty) != KERN_SUCCESS) {
+ /*
+ * no room left in the map
+ * only a partial update was done
+ * push out some pages and try again
+ */
+ wbp->cl_scdirty += new_dirty;
+
+ sparse_cluster_push(wbp, vp, EOF, 0);
+
+ offset += (new_dirty * PAGE_SIZE_64);
+ length -= (new_dirty * PAGE_SIZE);
+ }
+ wbp->cl_scdirty += new_dirty;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, (int)vp, (int)wbp->cl_scmap, wbp->cl_scdirty, 0, 0);
+}
+
+
+static int
+cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, int xsize, int flags)
+{
+ upl_page_info_t *pl;
+ upl_t upl;
+ addr64_t ubc_paddr;
+ kern_return_t kret;
+ int error = 0;
+ int did_read = 0;
+ int abort_flags;
+ int upl_flags;
+
+ upl_flags = UPL_SET_LITE;
+ if (! (flags & CL_READ)) {
+ /*
+ * "write" operation: let the UPL subsystem know
+ * that we intend to modify the buffer cache pages
+ * we're gathering.
+ */
+ upl_flags |= UPL_WILL_MODIFY;
+ }
+
+ kret = ubc_create_upl(vp,
+ uio->uio_offset & ~PAGE_MASK_64,
+ PAGE_SIZE,
+ &upl,
+ &pl,
+ upl_flags);
+
+ if (kret != KERN_SUCCESS)
+ return(EINVAL);
+
+ if (!upl_valid_page(pl, 0)) {
+ /*
+ * issue a synchronous read to cluster_io
+ */
+ error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
+ CL_READ, (buf_t)NULL, (struct clios *)NULL);
+ if (error) {
+ ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
+
+ return(error);
+ }
+ did_read = 1;
+ }
+ ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
+
+/*
+ * NOTE: There is no prototype for the following in BSD. It, and the definitions
+ * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
+ * osfmk/ppc/mappings.h. They are not included here because there appears to be no
+ * way to do so without exporting them to kexts as well.
+ */
+ if (flags & CL_READ)
+// copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
+ copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
+ else
+// copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
+ copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
+
+ if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
+ /*
+ * issue a synchronous write to cluster_io
+ */
+ error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
+ 0, (buf_t)NULL, (struct clios *)NULL);
+ }
+ if (error == 0)
+ uio_update(uio, (user_size_t)xsize);
+
+ if (did_read)
+ abort_flags = UPL_ABORT_FREE_ON_EMPTY;
+ else
+ abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
+
+ ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
+
+ return (error);
+}
+
+
+
+int
+cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int xsize)
+{
+ int pg_offset;
+ int pg_index;
+ int csize;
+ int segflg;
+ int retval = 0;
+ upl_page_info_t *pl;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
+ (int)uio->uio_offset, uio_resid(uio), upl_offset, xsize, 0);
+
+ segflg = uio->uio_segflg;
+
+ switch(segflg) {
+
+ case UIO_USERSPACE32:
+ case UIO_USERISPACE32:
+ uio->uio_segflg = UIO_PHYS_USERSPACE32;
+ break;
+
+ case UIO_USERSPACE:
+ case UIO_USERISPACE:
+ uio->uio_segflg = UIO_PHYS_USERSPACE;
+ break;
+
+ case UIO_USERSPACE64:
+ case UIO_USERISPACE64:
+ uio->uio_segflg = UIO_PHYS_USERSPACE64;
+ break;
+
+ case UIO_SYSSPACE32:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE32;
+ break;
+
+ case UIO_SYSSPACE:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE;
+ break;
+
+ case UIO_SYSSPACE64:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE64;
+ break;
+ }
+ pl = ubc_upl_pageinfo(upl);
+
+ pg_index = upl_offset / PAGE_SIZE;
+ pg_offset = upl_offset & PAGE_MASK;
+ csize = min(PAGE_SIZE - pg_offset, xsize);
+
+ while (xsize && retval == 0) {
+ addr64_t paddr;
+
+ paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset;
+
+ retval = uiomove64(paddr, csize, uio);
+
+ pg_index += 1;
+ pg_offset = 0;
+ xsize -= csize;
+ csize = min(PAGE_SIZE, xsize);
+ }
+ uio->uio_segflg = segflg;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio_resid(uio), retval, segflg, 0);
+
+ return (retval);
+}
+
+
+int
+cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
+{
+ int segflg;
+ int io_size;
+ int xsize;
+ int start_offset;
+ int retval = 0;
+ memory_object_control_t control;
+
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
+ (int)uio->uio_offset, uio_resid(uio), 0, *io_resid, 0);
+
+ control = ubc_getobject(vp, UBC_FLAGS_NONE);
+ if (control == MEMORY_OBJECT_CONTROL_NULL) {
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio_resid(uio), retval, 3, 0);
+
+ return(0);
+ }
+ segflg = uio->uio_segflg;
+
+ switch(segflg) {
+
+ case UIO_USERSPACE32:
+ case UIO_USERISPACE32:
+ uio->uio_segflg = UIO_PHYS_USERSPACE32;
+ break;
+
+ case UIO_USERSPACE64:
+ case UIO_USERISPACE64:
+ uio->uio_segflg = UIO_PHYS_USERSPACE64;
+ break;
+
+ case UIO_SYSSPACE32:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE32;
+ break;
+
+ case UIO_SYSSPACE64:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE64;
+ break;
+
+ case UIO_USERSPACE:
+ case UIO_USERISPACE:
+ uio->uio_segflg = UIO_PHYS_USERSPACE;
+ break;
+
+ case UIO_SYSSPACE:
+ uio->uio_segflg = UIO_PHYS_SYSSPACE;
+ break;
+ }
+
+ if ( (io_size = *io_resid) ) {
+ start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
+ xsize = uio_resid(uio);
+
+ retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset,
+ uio, start_offset, io_size, mark_dirty);
+ xsize -= uio_resid(uio);
+ io_size -= xsize;
+ }
+ uio->uio_segflg = segflg;
+ *io_resid = io_size;
+
+ KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
+ (int)uio->uio_offset, uio_resid(uio), retval, 0x80000000 | segflg, 0);
+
+ return(retval);
+}
+
+
+int
+is_file_clean(vnode_t vp, off_t filesize)
+{
+ off_t f_offset;
+ int flags;
+ int total_dirty = 0;
+
+ for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
+ if (ubc_page_op(vp, f_offset, 0, 0, &flags) == KERN_SUCCESS) {
+ if (flags & UPL_POP_DIRTY) {
+ total_dirty++;
+ }
+ }
+ }
+ if (total_dirty)
+ return(EINVAL);
+
+ return (0);
+}
+
+
+
+/*
+ * Dirty region tracking/clustering mechanism.
+ *
+ * This code (vfs_drt_*) provides a mechanism for tracking and clustering
+ * dirty regions within a larger space (file). It is primarily intended to
+ * support clustering in large files with many dirty areas.
+ *
+ * The implementation assumes that the dirty regions are pages.
+ *
+ * To represent dirty pages within the file, we store bit vectors in a
+ * variable-size circular hash.
+ */
+
+/*
+ * Bitvector size. This determines the number of pages we group in a
+ * single hashtable entry. Each hashtable entry is aligned to this
+ * size within the file.
+ */
+#define DRT_BITVECTOR_PAGES 256
+
+/*
+ * File offset handling.
+ *
+ * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
+ * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
+ */
+#define DRT_ADDRESS_MASK (~((1 << 20) - 1))
+#define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
+
+/*
+ * Hashtable address field handling.
+ *
+ * The low-order bits of the hashtable address are used to conserve
+ * space.
+ *
+ * DRT_HASH_COUNT_MASK must be large enough to store the range
+ * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
+ * to indicate that the bucket is actually unoccupied.
+ */
+#define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
+#define DRT_HASH_SET_ADDRESS(scm, i, a) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = \
+ ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
+ } while (0)
+#define DRT_HASH_COUNT_MASK 0x1ff
+#define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
+#define DRT_HASH_SET_COUNT(scm, i, c) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = \
+ ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
+ } while (0)
+#define DRT_HASH_CLEAR(scm, i) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = 0; \
+ } while (0)
+#define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
+#define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
+#define DRT_HASH_COPY(oscm, oi, scm, i) \
+ do { \
+ (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
+ DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
+ } while(0);
+
+
+/*
+ * Hash table moduli.
+ *
+ * Since the hashtable entry's size is dependent on the size of
+ * the bitvector, and since the hashtable size is constrained to
+ * both being prime and fitting within the desired allocation
+ * size, these values need to be manually determined.
+ *
+ * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
+ *
+ * The small hashtable allocation is 1024 bytes, so the modulus is 23.
+ * The large hashtable allocation is 16384 bytes, so the modulus is 401.
+ */
+#define DRT_HASH_SMALL_MODULUS 23
+#define DRT_HASH_LARGE_MODULUS 401
+
+#define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
+#define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
+
+/* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
+
+/*
+ * Hashtable bitvector handling.
+ *
+ * Bitvector fields are 32 bits long.
+ */
+
+#define DRT_HASH_SET_BIT(scm, i, bit) \
+ (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
+
+#define DRT_HASH_CLEAR_BIT(scm, i, bit) \
+ (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
+
+#define DRT_HASH_TEST_BIT(scm, i, bit) \
+ ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
+
+#define DRT_BITVECTOR_CLEAR(scm, i) \
+ bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+
+#define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
+ bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
+ &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
+ (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
+
+
+
+/*
+ * Hashtable entry.
+ */
+struct vfs_drt_hashentry {
+ u_int64_t dhe_control;
+ u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
+};
+
+/*
+ * Dirty Region Tracking structure.
+ *
+ * The hashtable is allocated entirely inside the DRT structure.
+ *
+ * The hash is a simple circular prime modulus arrangement, the structure
+ * is resized from small to large if it overflows.
+ */
+
+struct vfs_drt_clustermap {
+ u_int32_t scm_magic; /* sanity/detection */
+#define DRT_SCM_MAGIC 0x12020003
+ u_int32_t scm_modulus; /* current ring size */
+ u_int32_t scm_buckets; /* number of occupied buckets */
+ u_int32_t scm_lastclean; /* last entry we cleaned */
+ u_int32_t scm_iskips; /* number of slot skips */
+
+ struct vfs_drt_hashentry scm_hashtable[0];
+};
+
+
+#define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
+#define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
+
+/*
+ * Debugging codes and arguments.
+ */
+#define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
+#define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
+#define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
+#define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
+#define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
+ * dirty */
+ /* 0, setcount */
+ /* 1 (clean, no map) */
+ /* 2 (map alloc fail) */
+ /* 3, resid (partial) */
+#define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
+#define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
+ * lastclean, iskips */
+
+
+static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
+static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
+static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
+ u_int64_t offset, int *indexp);
+static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
+ u_int64_t offset,
+ int *indexp,
+ int recursed);
+static kern_return_t vfs_drt_do_mark_pages(
+ void **cmapp,
+ u_int64_t offset,
+ u_int length,
+ int *setcountp,
+ int dirty);
+static void vfs_drt_trace(
+ struct vfs_drt_clustermap *cmap,
+ int code,
+ int arg1,
+ int arg2,
+ int arg3,
+ int arg4);
+
+
+/*
+ * Allocate and initialise a sparse cluster map.
+ *
+ * Will allocate a new map, resize or compact an existing map.
+ *
+ * XXX we should probably have at least one intermediate map size,
+ * as the 1:16 ratio seems a bit drastic.
+ */
+static kern_return_t
+vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
+{
+ struct vfs_drt_clustermap *cmap, *ocmap;
+ kern_return_t kret;
+ u_int64_t offset;
+ int nsize, i, active_buckets, index, copycount;
+
+ ocmap = NULL;
+ if (cmapp != NULL)
+ ocmap = *cmapp;
+
+ /*
+ * Decide on the size of the new map.
+ */
+ if (ocmap == NULL) {
+ nsize = DRT_HASH_SMALL_MODULUS;
+ } else {
+ /* count the number of active buckets in the old map */
+ active_buckets = 0;
+ for (i = 0; i < ocmap->scm_modulus; i++) {
+ if (!DRT_HASH_VACANT(ocmap, i) &&
+ (DRT_HASH_GET_COUNT(ocmap, i) != 0))
+ active_buckets++;
+ }
+ /*
+ * If we're currently using the small allocation, check to
+ * see whether we should grow to the large one.
+ */
+ if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
+ /* if the ring is nearly full */
+ if (active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) {
+ nsize = DRT_HASH_LARGE_MODULUS;
+ } else {
+ nsize = DRT_HASH_SMALL_MODULUS;
+ }
+ } else {
+ /* already using the large modulus */
+ nsize = DRT_HASH_LARGE_MODULUS;
+ /*
+ * If the ring is completely full, there's
+ * nothing useful for us to do. Behave as
+ * though we had compacted into the new
+ * array and return.
+ */
+ if (active_buckets >= DRT_HASH_LARGE_MODULUS)
+ return(KERN_SUCCESS);
+ }
+ }
+
+ /*
+ * Allocate and initialise the new map.
+ */
+
+ kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
+ (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+ if (kret != KERN_SUCCESS)
+ return(kret);
+ cmap->scm_magic = DRT_SCM_MAGIC;
+ cmap->scm_modulus = nsize;
+ cmap->scm_buckets = 0;
+ cmap->scm_lastclean = 0;
+ cmap->scm_iskips = 0;
+ for (i = 0; i < cmap->scm_modulus; i++) {
+ DRT_HASH_CLEAR(cmap, i);
+ DRT_HASH_VACATE(cmap, i);
+ DRT_BITVECTOR_CLEAR(cmap, i);
+ }
+
+ /*
+ * If there's an old map, re-hash entries from it into the new map.
+ */
+ copycount = 0;
+ if (ocmap != NULL) {
+ for (i = 0; i < ocmap->scm_modulus; i++) {
+ /* skip empty buckets */
+ if (DRT_HASH_VACANT(ocmap, i) ||
+ (DRT_HASH_GET_COUNT(ocmap, i) == 0))
+ continue;
+ /* get new index */
+ offset = DRT_HASH_GET_ADDRESS(ocmap, i);
+ kret = vfs_drt_get_index(&cmap, offset, &index, 1);
+ if (kret != KERN_SUCCESS) {
+ /* XXX need to bail out gracefully here */
+ panic("vfs_drt: new cluster map mysteriously too small");
+ }
+ /* copy */
+ DRT_HASH_COPY(ocmap, i, cmap, index);
+ copycount++;
+ }
+ }
+
+ /* log what we've done */
+ vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
+
+ /*
+ * It's important to ensure that *cmapp always points to
+ * a valid map, so we must overwrite it before freeing
+ * the old map.
+ */
+ *cmapp = cmap;
+ if (ocmap != NULL) {
+ /* emit stats into trace buffer */
+ vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
+ ocmap->scm_modulus,
+ ocmap->scm_buckets,
+ ocmap->scm_lastclean,
+ ocmap->scm_iskips);
+
+ vfs_drt_free_map(ocmap);
+ }
+ return(KERN_SUCCESS);
+}
+
+
+/*
+ * Free a sparse cluster map.
+ */
+static kern_return_t
+vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
+{
+ kmem_free(kernel_map, (vm_offset_t)cmap,
+ (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
+ return(KERN_SUCCESS);
+}
+
+
+/*
+ * Find the hashtable slot currently occupied by an entry for the supplied offset.
+ */
+static kern_return_t
+vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
+{
+ int index, i;
+
+ offset = DRT_ALIGN_ADDRESS(offset);
+ index = DRT_HASH(cmap, offset);
+
+ /* traverse the hashtable */
+ for (i = 0; i < cmap->scm_modulus; i++) {
+
+ /*
+ * If the slot is vacant, we can stop.
+ */
+ if (DRT_HASH_VACANT(cmap, index))
+ break;
+
+ /*
+ * If the address matches our offset, we have success.
+ */
+ if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
+ *indexp = index;
+ return(KERN_SUCCESS);
+ }
+
+ /*
+ * Move to the next slot, try again.
+ */
+ index = DRT_HASH_NEXT(cmap, index);
+ }
+ /*
+ * It's not there.
+ */
+ return(KERN_FAILURE);
+}
+
+/*
+ * Find the hashtable slot for the supplied offset. If we haven't allocated
+ * one yet, allocate one and populate the address field. Note that it will
+ * not have a nonzero page count and thus will still technically be free, so
+ * in the case where we are called to clean pages, the slot will remain free.
+ */
+static kern_return_t
+vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
+{
+ struct vfs_drt_clustermap *cmap;
+ kern_return_t kret;
+ int index, i;
+
+ cmap = *cmapp;
+
+ /* look for an existing entry */
+ kret = vfs_drt_search_index(cmap, offset, indexp);
+ if (kret == KERN_SUCCESS)
+ return(kret);
+
+ /* need to allocate an entry */
+ offset = DRT_ALIGN_ADDRESS(offset);
+ index = DRT_HASH(cmap, offset);
+
+ /* scan from the index forwards looking for a vacant slot */
+ for (i = 0; i < cmap->scm_modulus; i++) {
+ /* slot vacant? */
+ if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
+ cmap->scm_buckets++;
+ if (index < cmap->scm_lastclean)
+ cmap->scm_lastclean = index;
+ DRT_HASH_SET_ADDRESS(cmap, index, offset);
+ DRT_HASH_SET_COUNT(cmap, index, 0);
+ DRT_BITVECTOR_CLEAR(cmap, index);
+ *indexp = index;
+ vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
+ return(KERN_SUCCESS);
+ }
+ cmap->scm_iskips += i;
+ index = DRT_HASH_NEXT(cmap, index);
+ }
+
+ /*
+ * We haven't found a vacant slot, so the map is full. If we're not
+ * already recursed, try reallocating/compacting it.
+ */
+ if (recursed)
+ return(KERN_FAILURE);
+ kret = vfs_drt_alloc_map(cmapp);
+ if (kret == KERN_SUCCESS) {
+ /* now try to insert again */
+ kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
+ }
+ return(kret);
+}
+
+/*
+ * Implementation of set dirty/clean.
+ *
+ * In the 'clean' case, not finding a map is OK.
+ */
+static kern_return_t
+vfs_drt_do_mark_pages(
+ void **private,
+ u_int64_t offset,
+ u_int length,
+ int *setcountp,
+ int dirty)
+{
+ struct vfs_drt_clustermap *cmap, **cmapp;
+ kern_return_t kret;
+ int i, index, pgoff, pgcount, setcount, ecount;
+
+ cmapp = (struct vfs_drt_clustermap **)private;
+ cmap = *cmapp;
+
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
+
+ if (setcountp != NULL)
+ *setcountp = 0;
+
+ /* allocate a cluster map if we don't already have one */
+ if (cmap == NULL) {
+ /* no cluster map, nothing to clean */
+ if (!dirty) {
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
+ return(KERN_SUCCESS);
+ }
+ kret = vfs_drt_alloc_map(cmapp);
+ if (kret != KERN_SUCCESS) {
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
+ return(kret);
+ }
+ }
+ setcount = 0;
+
+ /*
+ * Iterate over the length of the region.
+ */
+ while (length > 0) {
+ /*
+ * Get the hashtable index for this offset.
+ *
+ * XXX this will add blank entries if we are clearing a range
+ * that hasn't been dirtied.
+ */
+ kret = vfs_drt_get_index(cmapp, offset, &index, 0);
+ cmap = *cmapp; /* may have changed! */
+ /* this may be a partial-success return */
+ if (kret != KERN_SUCCESS) {
+ if (setcountp != NULL)
+ *setcountp = setcount;
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
+
+ return(kret);
+ }
+
+ /*
+ * Work out how many pages we're modifying in this
+ * hashtable entry.
+ */
+ pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
+ pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
+
+ /*
+ * Iterate over pages, dirty/clearing as we go.
+ */
+ ecount = DRT_HASH_GET_COUNT(cmap, index);
+ for (i = 0; i < pgcount; i++) {
+ if (dirty) {
+ if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+ DRT_HASH_SET_BIT(cmap, index, pgoff + i);
+ ecount++;
+ setcount++;
+ }
+ } else {
+ if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
+ DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
+ ecount--;
+ setcount++;
+ }
+ }
+ }
+ DRT_HASH_SET_COUNT(cmap, index, ecount);
+
+ offset += pgcount * PAGE_SIZE;
+ length -= pgcount * PAGE_SIZE;
+ }
+ if (setcountp != NULL)
+ *setcountp = setcount;
+
+ vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
+
+ return(KERN_SUCCESS);
+}
+
+/*
+ * Mark a set of pages as dirty/clean.
+ *
+ * This is a public interface.
+ *
+ * cmapp
+ * Pointer to storage suitable for holding a pointer. Note that
+ * this must either be NULL or a value set by this function.
+ *
+ * size
+ * Current file size in bytes.
+ *
+ * offset
+ * Offset of the first page to be marked as dirty, in bytes. Must be
+ * page-aligned.
+ *
+ * length
+ * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
+ *
+ * setcountp
+ * Number of pages newly marked dirty by this call (optional).
+ *
+ * Returns KERN_SUCCESS if all the pages were successfully marked.
+ */
+static kern_return_t
+vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, int *setcountp)
+{
+ /* XXX size unused, drop from interface */
+ return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
+}
+
+#if 0
+static kern_return_t
+vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
+{
+ return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
+}
+#endif
+
+/*
+ * Get a cluster of dirty pages.
+ *
+ * This is a public interface.
+ *
+ * cmapp
+ * Pointer to storage managed by drt_mark_pages. Note that this must
+ * be NULL or a value set by drt_mark_pages.
+ *
+ * offsetp
+ * Returns the byte offset into the file of the first page in the cluster.
+ *
+ * lengthp
+ * Returns the length in bytes of the cluster of dirty pages.
+ *
+ * Returns success if a cluster was found. If KERN_FAILURE is returned, there
+ * are no dirty pages meeting the minmum size criteria. Private storage will
+ * be released if there are no more dirty pages left in the map
+ *
+ */
+static kern_return_t
+vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
+{
+ struct vfs_drt_clustermap *cmap;
+ u_int64_t offset;
+ u_int length;
+ int index, i, j, fs, ls;
+
+ /* sanity */
+ if ((cmapp == NULL) || (*cmapp == NULL))
+ return(KERN_FAILURE);
+ cmap = *cmapp;
+
+ /* walk the hashtable */
+ for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
+ index = DRT_HASH(cmap, offset);
+
+ if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
+ continue;
+
+ /* scan the bitfield for a string of bits */
+ fs = -1;
+
+ for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
+ if (DRT_HASH_TEST_BIT(cmap, index, i)) {
+ fs = i;
+ break;
+ }
+ }
+ if (fs == -1) {
+ /* didn't find any bits set */
+ panic("vfs_drt: entry summary count > 0 but no bits set in map");
+ }
+ for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
+ if (!DRT_HASH_TEST_BIT(cmap, index, i))
+ break;
+ }
+
+ /* compute offset and length, mark pages clean */
+ offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
+ length = ls * PAGE_SIZE;
+ vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
+ cmap->scm_lastclean = index;
+
+ /* return successful */
+ *offsetp = (off_t)offset;
+ *lengthp = length;
+
+ vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
+ return(KERN_SUCCESS);
+ }
+ /*
+ * We didn't find anything... hashtable is empty
+ * emit stats into trace buffer and
+ * then free it
+ */
+ vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
+ cmap->scm_modulus,
+ cmap->scm_buckets,
+ cmap->scm_lastclean,
+ cmap->scm_iskips);
+
+ vfs_drt_free_map(cmap);
+ *cmapp = NULL;
+
+ return(KERN_FAILURE);
+}
+
+
+static kern_return_t
+vfs_drt_control(void **cmapp, int op_type)
+{
+ struct vfs_drt_clustermap *cmap;
+
+ /* sanity */
+ if ((cmapp == NULL) || (*cmapp == NULL))
+ return(KERN_FAILURE);
+ cmap = *cmapp;
+
+ switch (op_type) {
+ case 0:
+ /* emit stats into trace buffer */
+ vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
+ cmap->scm_modulus,
+ cmap->scm_buckets,
+ cmap->scm_lastclean,
+ cmap->scm_iskips);
+
+ vfs_drt_free_map(cmap);
+ *cmapp = NULL;
+ break;
+
+ case 1:
+ cmap->scm_lastclean = 0;
+ break;
+ }
+ return(KERN_SUCCESS);
+}
+
+
+
+/*
+ * Emit a summary of the state of the clustermap into the trace buffer
+ * along with some caller-provided data.
+ */
+#if KDEBUG
+static void
+vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
+{
+ KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
+}
+#else
+static void
+vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
+ __unused int arg1, __unused int arg2, __unused int arg3,
+ __unused int arg4)
+{
+}
+#endif
+
+#if 0
+/*
+ * Perform basic sanity check on the hash entry summary count
+ * vs. the actual bits set in the entry.
+ */
+static void
+vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
+{
+ int index, i;
+ int bits_on;
+
+ for (index = 0; index < cmap->scm_modulus; index++) {
+ if (DRT_HASH_VACANT(cmap, index))
+ continue;
+
+ for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
+ if (DRT_HASH_TEST_BIT(cmap, index, i))
+ bits_on++;
+ }
+ if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
+ panic("bits_on = %d, index = %d\n", bits_on, index);
+ }
}
+#endif