/*
- * Copyright (c) 2000-2002 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* Please see the License for the specific language governing rights and
* limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
/*
*
* @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
*/
+/*
+ * NOTICE: This file was modified by McAfee Research in 2004 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ */
+/*
+ * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ */
+#include <kern/assert.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
-#include <sys/proc.h>
+#include <sys/proc_internal.h>
+#include <sys/kauth.h>
#include <sys/user.h>
#include <sys/resourcevar.h>
-#include <sys/vnode.h>
-#include <sys/file.h>
+#include <sys/vnode_internal.h>
+#include <sys/file_internal.h>
#include <sys/acct.h>
-#if KTRACE
-#include <sys/ktrace.h>
+#include <sys/codesign.h>
+#include <sys/sysproto.h>
+#if CONFIG_DTRACE
+/* Do not include dtrace.h, it redefines kmem_[alloc/free] */
+extern void dtrace_fasttrap_fork(proc_t, proc_t);
+extern void (*dtrace_helpers_fork)(proc_t, proc_t);
+extern void dtrace_lazy_dofs_duplicate(proc_t, proc_t);
+
+#include <sys/dtrace_ptss.h>
#endif
+#include <bsm/audit_kernel.h>
+
#include <mach/mach_types.h>
+#include <kern/kern_types.h>
+#include <kern/kalloc.h>
#include <kern/mach_param.h>
+#include <kern/task.h>
+#include <kern/thread_call.h>
+#include <kern/zalloc.h>
#include <machine/spl.h>
-thread_act_t cloneproc(struct proc *, int);
-struct proc * forkproc(struct proc *, int);
-thread_act_t procdup();
+#if CONFIG_MACF
+#include <security/mac.h>
+#include <security/mac_mach_internal.h>
+#endif
+
+#include <vm/vm_map.h>
+#include <vm/vm_protos.h>
+#include <vm/vm_shared_region.h>
+
+#include <sys/shm_internal.h> /* for shmfork() */
+#include <mach/task.h> /* for thread_create() */
+#include <mach/thread_act.h> /* for thread_resume() */
+
+#include <sys/sdt.h>
+
+/* XXX routines which should have Mach prototypes, but don't */
+void thread_set_parent(thread_t parent, int pid);
+extern void act_thread_catt(void *ctx);
+void thread_set_child(thread_t child, int pid);
+void *act_thread_csave(void);
+
+
+thread_t cloneproc(proc_t, int);
+proc_t forkproc(proc_t, int);
+void forkproc_free(proc_t, int);
+thread_t procdup(proc_t parent, proc_t child);
+thread_t fork_create_child(task_t parent_task, proc_t child, int inherit_memory, int is64bit);
#define DOFORK 0x1 /* fork() system call */
#define DOVFORK 0x2 /* vfork() system call */
-static int fork1(struct proc *, long, register_t *);
-/*
- * fork system call.
- */
-int
-fork(p, uap, retval)
- struct proc *p;
- void *uap;
- register_t *retval;
-{
- return (fork1(p, (long)DOFORK, retval));
-}
/*
- * vfork system call
+ * vfork
+ *
+ * Description: vfork system call
+ *
+ * Parameters: void [no arguments]
+ *
+ * Retval: 0 (to child process)
+ * !0 pid of child (to parent process)
+ * -1 error (see "Returns:")
+ *
+ * Returns: EAGAIN Administrative limit reached
+ * EINVAL vfork() caled during vfork()
+ * ENOMEM Failed to allocate new process
+ *
+ * Note: After a successful call to this function, the parent process
+ * has its task, thread, and uthread lent to the child process,
+ * and control is returned to the caller; if this function is
+ * invoked as a system call, the return is to user space, and
+ * is effectively running on the child process.
+ *
+ * Subsequent calls that operate on process state are permitted,
+ * though discouraged, and will operate on the child process; any
+ * operations on the task, thread, or uthread will result in
+ * changes in the parent state, and, if inheritable, the child
+ * state, when a task, thread, and uthread are realized for the
+ * child process at execve() time, will also be effected. Given
+ * this, it's recemmended that people use the posix_spawn() call
+ * instead.
*/
int
-vfork(p, uap, retval)
- struct proc *p;
- void *uap;
- register_t *retval;
+vfork(proc_t parent, __unused struct vfork_args *uap, register_t *retval)
{
- register struct proc * newproc;
- register uid_t uid;
- thread_act_t cur_act = (thread_act_t)current_act();
+ proc_t child;
+ uid_t uid;
+ thread_t cur_act = (thread_t)current_thread();
int count;
- task_t t;
uthread_t ut;
-
+#if CONFIG_MACF
+ int err;
+#endif
+
/*
* Although process entries are dynamically created, we still keep
* a global limit on the maximum number we will create. Don't allow
* exceed the limit. The variable nprocs is the current number of
* processes, maxproc is the limit.
*/
- uid = p->p_cred->p_ruid;
+ uid = kauth_cred_get()->cr_ruid;
+ proc_list_lock();
if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
+ proc_list_unlock();
tablefull("proc");
retval[1] = 0;
return (EAGAIN);
}
+ proc_list_unlock();
/*
* Increment the count of procs running with this uid. Don't allow
- * a nonprivileged user to exceed their current limit.
+ * a nonprivileged user to exceed their current limit, which is
+ * always less than what an rlim_t can hold.
+ * (locking protection is provided by list lock held in chgproccnt)
*/
count = chgproccnt(uid, 1);
- if (uid != 0 && count > p->p_rlimit[RLIMIT_NPROC].rlim_cur) {
+ if (uid != 0 &&
+ (rlim_t)count > parent->p_rlimit[RLIMIT_NPROC].rlim_cur) {
(void)chgproccnt(uid, -1);
return (EAGAIN);
}
- ut = (struct uthread *)get_bsdthread_info(cur_act);
- if (ut->uu_flag & P_VFORK) {
- printf("vfork called recursively by %s\n", p->p_comm);
+ ut = (uthread_t)get_bsdthread_info(cur_act);
+ if (ut->uu_flag & UT_VFORK) {
+ printf("vfork called recursively by %s\n", parent->p_comm);
+ (void)chgproccnt(uid, -1);
return (EINVAL);
}
- p->p_flag |= P_VFORK;
- p->p_vforkcnt++;
+
+#if CONFIG_MACF
+ /*
+ * Determine if MAC policies applied to the process will allow
+ * it to fork.
+ */
+ err = mac_proc_check_fork(parent);
+ if (err != 0) {
+ (void)chgproccnt(uid, -1);
+ return (err);
+ }
+#endif
+
+ proc_lock(parent);
+ parent->p_lflag |= P_LVFORK;
+ parent->p_vforkcnt++;
+ proc_unlock(parent);
/* The newly created process comes with signal lock held */
- newproc = (struct proc *)forkproc(p,1);
-
- LIST_INSERT_AFTER(p, newproc, p_pglist);
- newproc->p_pptr = p;
- newproc->task = p->task;
- LIST_INSERT_HEAD(&p->p_children, newproc, p_sibling);
- LIST_INIT(&newproc->p_children);
- LIST_INSERT_HEAD(&allproc, newproc, p_list);
- LIST_INSERT_HEAD(PIDHASH(newproc->p_pid), newproc, p_hash);
- TAILQ_INIT(& newproc->p_evlist);
- newproc->p_stat = SRUN;
- newproc->p_flag |= P_INVFORK;
- newproc->p_vforkact = cur_act;
-
- ut->uu_flag |= P_VFORK;
- ut->uu_proc = newproc;
+ if ((child = forkproc(parent,1)) == NULL) {
+ /* Failed to allocate new process */
+ (void)chgproccnt(uid, -1);
+ /*
+ * XXX kludgy, but necessary without a full flags audit...
+ * XXX these are inherited by the child, which depends on
+ * XXX P_VFORK being set.
+ */
+ proc_lock(parent);
+ parent->p_lflag &= ~P_LVFORK;
+ parent->p_vforkcnt--;
+ proc_unlock(parent);
+ return (ENOMEM);
+ }
+
+#if CONFIG_MACF
+ /* allow policies to associate the credential/label */
+ /* that we referenced from the parent ... with the child */
+ /* JMM - this really isn't safe, as we can drop that */
+ /* association without informing the policy in other */
+ /* situations (keep long enough to get policies changed) */
+ mac_cred_label_associate_fork(child->p_ucred, child);
+#endif
+
+ AUDIT_ARG(pid, child->p_pid);
+
+ child->task = parent->task;
+
+ /* make child visible */
+ pinsertchild(parent, child);
+
+ child->p_lflag |= P_LINVFORK;
+ child->p_vforkact = cur_act;
+ child->p_stat = SRUN;
+
+ ut->uu_flag |= UT_VFORK;
+ ut->uu_proc = child;
ut->uu_userstate = (void *)act_thread_csave();
ut->uu_vforkmask = ut->uu_sigmask;
- thread_set_child(cur_act, newproc->p_pid);
+ /* temporarily drop thread-set-id state */
+ if (ut->uu_flag & UT_SETUID) {
+ ut->uu_flag |= UT_WASSETUID;
+ ut->uu_flag &= ~UT_SETUID;
+ }
+
+ thread_set_child(cur_act, child->p_pid);
- newproc->p_stats->p_start = time;
- newproc->p_acflag = AFORK;
+ microtime(&child->p_start);
+ microtime(&child->p_stats->p_start); /* for compat sake */
+ child->p_acflag = AFORK;
/*
* Preserve synchronization semantics of vfork. If waiting for
* child to exec or exit, set P_PPWAIT on child, and sleep on our
* proc (in case of exit).
*/
- newproc->p_flag |= P_PPWAIT;
+ child->p_lflag |= P_LPPWAIT;
/* drop the signal lock on the child */
- signal_unlock(newproc);
+ proc_signalend(child, 0);
+ proc_transend(child, 0);
- retval[0] = newproc->p_pid;
- retval[1] = 1; /* mark child */
+ retval[0] = child->p_pid;
+ retval[1] = 1; /* flag child return for user space */
+
+ DTRACE_PROC1(create, proc_t, child);
return (0);
}
/*
- * Return to parent vfork ehread()
+ * vfork_return
+ *
+ * Description: "Return" to parent vfork thread() following execve/_exit;
+ * this is done by reassociating the parent process structure
+ * with the task, thread, and uthread.
+ *
+ * Parameters: child Child process
+ * retval System call return value array
+ * rval Return value to present to parent
+ *
+ * Returns: void
+ *
+ * Note: The caller resumes or exits the parent, as appropriate, after
+ * callling this function.
*/
void
-vfork_return(th_act, p, p2, retval)
- thread_act_t th_act;
- struct proc * p;
- struct proc *p2;
- register_t *retval;
+vfork_return(proc_t child, register_t *retval, int rval)
{
- long flags;
- register uid_t uid;
- thread_t newth, self = current_thread();
- thread_act_t cur_act = (thread_act_t)current_act();
- int s, count;
- task_t t;
+ proc_t parent = child->p_pptr;
+ thread_t cur_act = (thread_t)current_thread();
uthread_t ut;
- ut = (struct uthread *)get_bsdthread_info(cur_act);
+ ut = (uthread_t)get_bsdthread_info(cur_act);
act_thread_catt(ut->uu_userstate);
/* Make sure only one at this time */
- p->p_vforkcnt--;
- if (p->p_vforkcnt <0)
+ proc_lock(parent);
+ parent->p_vforkcnt--;
+ if (parent->p_vforkcnt <0)
panic("vfork cnt is -ve");
- if (p->p_vforkcnt <=0)
- p->p_flag &= ~P_VFORK;
+ if (parent->p_vforkcnt <=0)
+ parent->p_lflag &= ~P_LVFORK;
+ proc_unlock(parent);
ut->uu_userstate = 0;
- ut->uu_flag &= ~P_VFORK;
+ ut->uu_flag &= ~UT_VFORK;
+ /* restore thread-set-id state */
+ if (ut->uu_flag & UT_WASSETUID) {
+ ut->uu_flag |= UT_SETUID;
+ ut->uu_flag &= UT_WASSETUID;
+ }
ut->uu_proc = 0;
ut->uu_sigmask = ut->uu_vforkmask;
- p2->p_flag &= ~P_INVFORK;
- p2->p_vforkact = (void *)0;
+ child->p_lflag &= ~P_LINVFORK;
+ child->p_vforkact = (void *)0;
- thread_set_parent(cur_act, p2->p_pid);
+ thread_set_parent(cur_act, rval);
if (retval) {
- retval[0] = p2->p_pid;
+ retval[0] = rval;
retval[1] = 0; /* mark parent */
}
return;
}
-thread_act_t
-procdup(
- struct proc *child,
- struct proc *parent)
+
+/*
+ * fork_create_child
+ *
+ * Description: Common operations associated with the creation of a child
+ * process
+ *
+ * Parameters: parent_task parent task
+ * child child process
+ * inherit_memory TRUE, if the parents address space is
+ * to be inherited by the child
+ * is64bit TRUE, if the child being created will
+ * be associated with a 64 bit process
+ * rather than a 32 bit process
+ *
+ * Note: This code is called in the fork() case, from the execve() call
+ * graph, if implementing an execve() following a vfork(), from
+ * the posix_spawn() call graph (which implicitly includes a
+ * vfork() equivalent call, and in the system bootstrap case.
+ *
+ * It creates a new task and thread (and as a side effect of the
+ * thread creation, a uthread), which is then associated with the
+ * process 'child'. If the parent process address space is to
+ * be inherited, then a flag indicates that the newly created
+ * task should inherit this from the child task.
+ *
+ * As a special concession to bootstrapping the initial process
+ * in the system, it's possible for 'parent_task' to be TASK_NULL;
+ * in this case, 'inherit_memory' MUST be FALSE.
+ */
+thread_t
+fork_create_child(task_t parent_task, proc_t child, int inherit_memory, int is64bit)
{
- thread_act_t thread;
- task_t task;
- kern_return_t result;
- extern task_t kernel_task;
+ thread_t child_thread = NULL;
+ task_t child_task;
+ kern_return_t result;
+
+ /* Create a new task for the child process */
+ result = task_create_internal(parent_task,
+ inherit_memory,
+ is64bit,
+ &child_task);
+ if (result != KERN_SUCCESS) {
+ printf("execve: task_create_internal failed. Code: %d\n", result);
+ goto bad;
+ }
- if (parent->task == kernel_task)
- result = task_create_local(TASK_NULL, FALSE, FALSE, &task);
+ /* Set the child task to the new task */
+ child->task = child_task;
+
+ /* Set child task proc to child proc */
+ set_bsdtask_info(child_task, child);
+
+ /* Propagate CPU limit timer from parent */
+ if (timerisset(&child->p_rlim_cpu))
+ task_vtimer_set(child_task, TASK_VTIMER_RLIM);
+
+ /* Set/clear 64 bit vm_map flag */
+ if (is64bit)
+ vm_map_set_64bit(get_task_map(child_task));
else
- result = task_create_local(parent->task, TRUE, FALSE, &task);
- if (result != KERN_SUCCESS)
- printf("fork/procdup: task_create failed. Code: 0x%x\n", result);
- child->task = task;
- /* task->proc = child; */
- set_bsdtask_info(task, child);
+ vm_map_set_32bit(get_task_map(child_task));
+
+#if CONFIG_MACF
+ /* Update task for MAC framework */
+ /* valid to use p_ucred as child is still not running ... */
+ mac_task_label_update_cred(child->p_ucred, child_task);
+#endif
+
+ /* Set child scheduler priority if nice value inherited from parent */
if (child->p_nice != 0)
resetpriority(child);
- result = thread_create(task, &thread);
- if (result != KERN_SUCCESS)
- printf("fork/procdup: thread_create failed. Code: 0x%x\n", result);
- return(thread);
+ /* Create a new thread for the child process */
+ result = thread_create(child_task, &child_thread);
+ if (result != KERN_SUCCESS) {
+ printf("execve: thread_create failed. Code: %d\n", result);
+ task_deallocate(child_task);
+ child_task = NULL;
+ }
+bad:
+ thread_yield_internal(1);
+
+ return(child_thread);
}
-static int
-fork1(p1, flags, retval)
- struct proc *p1;
- long flags;
- register_t *retval;
+/*
+ * procdup
+ *
+ * Description: Givben a parent process, provide a duplicate task and thread
+ * for a child process of that parent.
+ *
+ * Parameters: parent Parent process to use as the template
+ * child Child process to duplicate into
+ *
+ * Returns: !NULL Child process thread pointer
+ * NULL Failure (unspecified)
+ *
+ * Note: Most of the heavy lifting is done by fork_create_child(); this
+ * function exists more or less to deal with the 64 bit commpage,
+ * which requires explicit inheritance, the x86 commpage, which
+ * should not need explicit mapping any more, but apparently does,
+ * and to be variant for the bootstrap process.
+ *
+ * There is a special case where the system is being bootstraped,
+ * where this function will be called from cloneproc(), called in
+ * turn from bsd_utaskbootstrap(). In this case, we are acting
+ * to create a task and thread (and uthread) for the benefit of
+ * the kernel process - the first process in the system (PID 0).
+ *
+ * In that specific case, we will *not* pass a parent task, since
+ * there is *not* parent task present to pass.
+ *
+ * XXX: This function should go away; the variance can moved into
+ * XXX: cloneproc(), and the 64bit commpage code can be moved into
+ * XXX: fork_create_child(), after the x86 commpage inheritance is
+ * XXX: corrected.
+ */
+thread_t
+procdup(proc_t parent, proc_t child)
{
- register struct proc *p2;
- register uid_t uid;
- thread_act_t newth;
- int s, count;
- task_t t;
+ thread_t child_thread;
+ task_t child_task;
+
+ if (parent->task == kernel_task)
+ child_thread = fork_create_child(TASK_NULL, child, FALSE, FALSE);
+ else
+ child_thread = fork_create_child(parent->task, child, TRUE, (parent->p_flag & P_LP64));
+
+ if (child_thread != NULL) {
+ child_task = get_threadtask(child_thread);
+ if (parent->p_flag & P_LP64) {
+ task_set_64bit(child_task, TRUE);
+ OSBitOrAtomic(P_LP64, (UInt32 *)&child->p_flag);
+#ifdef __ppc__
+ /* LP64todo - clean up hacked mapping of commpage */
+ /*
+ * PPC51: ppc64 is limited to 51-bit addresses.
+ * Memory above that limit is handled specially at
+ * the pmap level.
+ */
+ pmap_map_sharedpage(child_task, get_map_pmap(get_task_map(child_task)));
+#endif /* __ppc__ */
+ } else {
+ task_set_64bit(child_task, FALSE);
+ OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child->p_flag);
+ }
+ }
+
+ return(child_thread);
+}
+
+
+/*
+ * fork
+ *
+ * Description: fork system call.
+ *
+ * Parameters: parent Parent process to fork
+ * uap (void) [unused]
+ * retval Return value
+ *
+ * Returns: 0 Success
+ * EAGAIN Resource unavailable, try again
+ */
+int
+fork(proc_t parent, __unused struct fork_args *uap, register_t *retval)
+{
+ proc_t child;
+ uid_t uid;
+ thread_t newth;
+ int count;
+ task_t t;
+#if CONFIG_MACF
+ int err;
+#endif
/*
* Although process entries are dynamically created, we still keep
* exceed the limit. The variable nprocs is the current number of
* processes, maxproc is the limit.
*/
- uid = p1->p_cred->p_ruid;
+ uid = kauth_cred_get()->cr_ruid;
+ proc_list_lock();
if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
+ proc_list_unlock();
tablefull("proc");
retval[1] = 0;
return (EAGAIN);
}
+ proc_list_unlock();
/*
* Increment the count of procs running with this uid. Don't allow
- * a nonprivileged user to exceed their current limit.
+ * a nonprivileged user to exceed their current limit, which is
+ * always less than what an rlim_t can hold.
+ * (locking protection is provided by list lock held in chgproccnt)
*/
count = chgproccnt(uid, 1);
- if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
+ if (uid != 0 &&
+ (rlim_t)count > parent->p_rlimit[RLIMIT_NPROC].rlim_cur) {
(void)chgproccnt(uid, -1);
return (EAGAIN);
}
+#if CONFIG_MACF
+ /*
+ * Determine if MAC policies applied to the process will allow
+ * it to fork.
+ */
+ err = mac_proc_check_fork(parent);
+ if (err != 0) {
+ (void)chgproccnt(uid, -1);
+ return (err);
+ }
+#endif
+
/* The newly created process comes with signal lock held */
- newth = cloneproc(p1, 1);
+ if ((newth = cloneproc(parent, 1)) == NULL) {
+ /* Failed to create thread */
+ (void)chgproccnt(uid, -1);
+ return (EAGAIN);
+ }
+
thread_dup(newth);
- /* p2 = newth->task->proc; */
- p2 = (struct proc *)(get_bsdtask_info(get_threadtask(newth)));
+ /* child = newth->task->proc; */
+ child = (proc_t)(get_bsdtask_info(get_threadtask(newth)));
+
+#if CONFIG_MACF
+ /* inform policies of new process sharing this cred/label */
+ /* safe to use p_ucred here since child is not running */
+ /* JMM - unsafe to assume the association will stay - as */
+ /* there are other ways it can be dropped without */
+ /* informing the policies. */
+ mac_cred_label_associate_fork(child->p_ucred, child);
+#endif
+
+ /* propogate change of PID - may get new cred if auditing */
+ set_security_token(child);
- thread_set_child(newth, p2->p_pid);
+ AUDIT_ARG(pid, child->p_pid);
- s = splhigh();
- p2->p_stats->p_start = time;
- splx(s);
- p2->p_acflag = AFORK;
+ thread_set_child(newth, child->p_pid);
+ microtime(&child->p_start);
+ microtime(&child->p_stats->p_start); /* for compat sake */
+ child->p_acflag = AFORK;
+
+#if CONFIG_DTRACE
/*
- * Preserve synchronization semantics of vfork. If waiting for
- * child to exec or exit, set P_PPWAIT on child, and sleep on our
- * proc (in case of exit).
+ * APPLE NOTE: Solaris does a sprlock() and drops the proc_lock
+ * here. We're cheating a bit and only taking the p_dtrace_sprlock
+ * lock. A full sprlock would task_suspend the parent.
+ */
+ lck_mtx_lock(&parent->p_dtrace_sprlock);
+
+ /*
+ * Remove all DTrace tracepoints from the child process. We
+ * need to do this _before_ duplicating USDT providers since
+ * any associated probes may be immediately enabled.
+ */
+ if (parent->p_dtrace_count > 0) {
+ dtrace_fasttrap_fork(parent, child);
+ }
+
+ lck_mtx_unlock(&parent->p_dtrace_sprlock);
+
+ /*
+ * Duplicate any lazy dof(s). This must be done while NOT
+ * holding the parent sprlock! Lock ordering is dtrace_dof_mode_lock,
+ * then sprlock. It is imperative we always call
+ * dtrace_lazy_dofs_duplicate, rather than null check and
+ * call if !NULL. If we NULL test, during lazy dof faulting
+ * we can race with the faulting code and proceed from here to
+ * beyond the helpers copy. The lazy dof faulting will then
+ * fail to copy the helpers to the child process.
+ */
+ dtrace_lazy_dofs_duplicate(parent, child);
+
+ /*
+ * Duplicate any helper actions and providers. The SFORKING
+ * we set above informs the code to enable USDT probes that
+ * sprlock() may fail because the child is being forked.
*/
- if (flags == DOVFORK)
- p2->p_flag |= P_PPWAIT;
+ /*
+ * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
+ * never fails to find the child. We do not set SFORKING.
+ */
+ if (parent->p_dtrace_helpers != NULL && dtrace_helpers_fork) {
+ (*dtrace_helpers_fork)(parent, child);
+ }
+
+#endif
+
/* drop the signal lock on the child */
- signal_unlock(p2);
+ proc_signalend(child, 0);
+ proc_transend(child, 0);
- (void) thread_resume(newth);
+ /* "Return" to the child */
+ (void)thread_resume(newth);
/* drop the extra references we got during the creation */
- if (t = (task_t)get_threadtask(newth)) {
+ if ((t = (task_t)get_threadtask(newth)) != NULL) {
task_deallocate(t);
}
- act_deallocate(newth);
+ thread_deallocate(newth);
- while (p2->p_flag & P_PPWAIT)
- tsleep(p1, PWAIT, "ppwait", 0);
+ proc_knote(parent, NOTE_FORK | child->p_pid);
- retval[0] = p2->p_pid;
- retval[1] = 0; /* mark parent */
+ retval[0] = child->p_pid;
+ retval[1] = 0; /* flag parent */
+
+ DTRACE_PROC1(create, proc_t, child);
return (0);
}
/*
- * cloneproc()
+ * cloneproc
+ *
+ * Description: Create a new process from a specified process.
*
- * Create a new process from a specified process.
- * On return newly created child process has signal
- * lock held to block delivery of signal to it if called with
- * lock set. fork() code needs to explicity remove this lock
- * before signals can be delivered
+ * Parameters: parent The parent process of the process to
+ * be cloned
+ * lock Whether or not the signal lock was held
+ * when calling cloneproc().
+ *
+ * Returns: !NULL pointer to new child thread
+ * NULL Failure (unspecified)
+ *
+ * Note: On return newly created child process has signal lock held
+ * to block delivery of signal to it if called with lock set.
+ * fork() code needs to explicity remove this lock before
+ * signals can be delivered
+ *
+ * In the case of bootstrap, this function can be called from
+ * bsd_utaskbootstrap() in order to bootstrap the first process;
+ * the net effect is to provide a uthread structure for the
+ * kernel process associated with the kernel task. This results
+ * in a side effect in procdup(), which is why the code is more
+ * complicated at the top of that function.
*/
-thread_act_t
-cloneproc(p1, lock)
- register struct proc *p1;
- register int lock;
+thread_t
+cloneproc(proc_t parent, int lock)
{
- register struct proc *p2;
- thread_act_t th;
+ proc_t child;
+ thread_t th = NULL;
- p2 = (struct proc *)forkproc(p1,lock);
+ if ((child = forkproc(parent,lock)) == NULL) {
+ /* Failed to allocate new process */
+ goto bad;
+ }
+ if ((th = procdup(parent, child)) == NULL) {
+ /*
+ * Failed to create thread; now we must deconstruct the new
+ * process previously obtained from forkproc().
+ */
+ forkproc_free(child, lock);
+ goto bad;
+ }
- th = procdup(p2, p1); /* child, parent */
+ /* make child visible */
+ pinsertchild(parent, child);
- LIST_INSERT_AFTER(p1, p2, p_pglist);
- p2->p_pptr = p1;
- LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
- LIST_INIT(&p2->p_children);
- LIST_INSERT_HEAD(&allproc, p2, p_list);
- LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
- TAILQ_INIT(&p2->p_evlist);
/*
* Make child runnable, set start time.
*/
- p2->p_stat = SRUN;
+ child->p_stat = SRUN;
+bad:
return(th);
}
-struct proc *
-forkproc(p1, lock)
- register struct proc *p1;
- register int lock;
+/*
+ * Destroy a process structure that resulted from a call to forkproc(), but
+ * which must be returned to the system because of a subsequent failure
+ * preventing it from becoming active.
+ *
+ * Parameters: p The incomplete process from forkproc()
+ * lock Whether or not the signal lock was held
+ * when calling forkproc().
+ *
+ * Returns: (void)
+ *
+ * Note: This function should only be used in an error handler following
+ * a call to forkproc(). The 'lock' paramenter should be the same
+ * as the lock parameter passed to forkproc().
+ *
+ * Operations occur in reverse order of those in forkproc().
+ */
+void
+forkproc_free(proc_t p, int lock)
{
- register struct proc *p2, *newproc;
- static int nextpid = 0, pidchecked = 0;
- thread_t th;
-
- /* Allocate new proc. */
- MALLOC_ZONE(newproc, struct proc *,
- sizeof *newproc, M_PROC, M_WAITOK);
- MALLOC_ZONE(newproc->p_cred, struct pcred *,
- sizeof *newproc->p_cred, M_SUBPROC, M_WAITOK);
- MALLOC_ZONE(newproc->p_stats, struct pstats *,
- sizeof *newproc->p_stats, M_SUBPROC, M_WAITOK);
- MALLOC_ZONE(newproc->p_sigacts, struct sigacts *,
- sizeof *newproc->p_sigacts, M_SUBPROC, M_WAITOK);
+
+ /* Drop the signal lock, if it was held */
+ if (lock) {
+ proc_signalend(p, 0);
+ proc_transend(p, 0);
+ }
/*
- * Find an unused process ID. We remember a range of unused IDs
- * ready to use (from nextpid+1 through pidchecked-1).
+ * If we have our own copy of the resource limits structure, we
+ * need to free it. If it's a shared copy, we need to drop our
+ * reference on it.
*/
+ proc_limitdrop(p, 0);
+ p->p_limit = NULL;
+
+#if SYSV_SHM
+ /* Need to drop references to the shared memory segment(s), if any */
+ if (p->vm_shm) {
+ /*
+ * Use shmexec(): we have no address space, so no mappings
+ *
+ * XXX Yes, the routine is badly named.
+ */
+ shmexec(p);
+ }
+#endif
+
+ /* Need to undo the effects of the fdcopy(), if any */
+ fdfree(p);
+
+ /*
+ * Drop the reference on a text vnode pointer, if any
+ * XXX This code is broken in forkproc(); see <rdar://4256419>;
+ * XXX if anyone ever uses this field, we will be extremely unhappy.
+ */
+ if (p->p_textvp) {
+ vnode_rele(p->p_textvp);
+ p->p_textvp = NULL;
+ }
+
+ /* Stop the profiling clock */
+ stopprofclock(p);
+
+ /* Release the credential reference */
+ kauth_cred_unref(&p->p_ucred);
+
+ proc_list_lock();
+ /* Decrement the count of processes in the system */
+ nprocs--;
+ proc_list_unlock();
+
+ thread_call_free(p->p_rcall);
+
+ /* Free allocated memory */
+ FREE_ZONE(p->p_sigacts, sizeof *p->p_sigacts, M_SIGACTS);
+ FREE_ZONE(p->p_stats, sizeof *p->p_stats, M_PSTATS);
+ proc_checkdeadrefs(p);
+ FREE_ZONE(p, sizeof *p, M_PROC);
+}
+
+
+/*
+ * forkproc
+ *
+ * Description: Create a new process structure, given a parent process
+ * structure.
+ *
+ * Parameters: parent The parent process
+ * lock If the signal lock should be taken on
+ * the newly created process.
+ *
+ * Returns: !NULL The new process structure
+ * NULL Error (insufficient free memory)
+ *
+ * Note: When successful, the newly created process structure is
+ * partially initialized; if a caller needs to deconstruct the
+ * returned structure, they must call forkproc_free() to do so.
+ */
+proc_t
+forkproc(proc_t parent, int lock)
+{
+ struct proc * child; /* Our new process */
+ static int nextpid = 0, pidwrap = 0;
+ int error = 0;
+ struct session *sessp;
+ uthread_t uth_parent = (uthread_t)get_bsdthread_info(current_thread());
+
+ MALLOC_ZONE(child, proc_t , sizeof *child, M_PROC, M_WAITOK);
+ if (child == NULL) {
+ printf("forkproc: M_PROC zone exhausted\n");
+ goto bad;
+ }
+ /* zero it out as we need to insert in hash */
+ bzero(child, sizeof *child);
+
+ MALLOC_ZONE(child->p_stats, struct pstats *,
+ sizeof *child->p_stats, M_PSTATS, M_WAITOK);
+ if (child->p_stats == NULL) {
+ printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
+ FREE_ZONE(child, sizeof *child, M_PROC);
+ child = NULL;
+ goto bad;
+ }
+ MALLOC_ZONE(child->p_sigacts, struct sigacts *,
+ sizeof *child->p_sigacts, M_SIGACTS, M_WAITOK);
+ if (child->p_sigacts == NULL) {
+ printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
+ FREE_ZONE(child->p_stats, sizeof *child->p_stats, M_PSTATS);
+ FREE_ZONE(child, sizeof *child, M_PROC);
+ child = NULL;
+ goto bad;
+ }
+ child->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child);
+ if (child->p_rcall == NULL) {
+ FREE_ZONE(child->p_sigacts, sizeof *child->p_sigacts, M_SIGACTS);
+ FREE_ZONE(child->p_stats, sizeof *child->p_stats, M_PSTATS);
+ FREE_ZONE(child, sizeof *child, M_PROC);
+ child = NULL;
+ goto bad;
+ }
+
+
+ /*
+ * Find an unused PID.
+ */
+
+ proc_list_lock();
+
nextpid++;
retry:
/*
*/
if (nextpid >= PID_MAX) {
nextpid = 100;
- pidchecked = 0;
+ pidwrap = 1;
}
- if (nextpid >= pidchecked) {
- int doingzomb = 0;
+ if (pidwrap != 0) {
- pidchecked = PID_MAX;
- /*
- * Scan the active and zombie procs to check whether this pid
- * is in use. Remember the lowest pid that's greater
- * than nextpid, so we can avoid checking for a while.
- */
- p2 = allproc.lh_first;
-again:
- for (; p2 != 0; p2 = p2->p_list.le_next) {
- while (p2->p_pid == nextpid ||
- p2->p_pgrp->pg_id == nextpid ||
- p2->p_session->s_sid == nextpid) {
- nextpid++;
- if (nextpid >= pidchecked)
- goto retry;
- }
- if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
- pidchecked = p2->p_pid;
- if (p2->p_pgrp && p2->p_pgrp->pg_id > nextpid &&
- pidchecked > p2->p_pgrp->pg_id)
- pidchecked = p2->p_pgrp->pg_id;
- if (p2->p_session->s_sid > nextpid &&
- pidchecked > p2->p_session->s_sid)
- pidchecked = p2->p_session->s_sid;
- }
- if (!doingzomb) {
- doingzomb = 1;
- p2 = zombproc.lh_first;
- goto again;
+ /* if the pid stays in hash both for zombie and runniing state */
+ if (pfind_locked(nextpid) != PROC_NULL) {
+ nextpid++;
+ goto retry;
}
- }
+ if (pgfind_internal(nextpid) != PGRP_NULL) {
+ nextpid++;
+ goto retry;
+ }
+ if (session_find_internal(nextpid) != SESSION_NULL) {
+ nextpid++;
+ goto retry;
+ }
+ }
nprocs++;
- p2 = newproc;
- p2->p_stat = SIDL;
- p2->p_pid = nextpid;
+ child->p_pid = nextpid;
+#if 1
+ if (child->p_pid != 0) {
+ if (pfind_locked(child->p_pid) != PROC_NULL)
+ panic("proc in the list already\n");
+ }
+#endif
+ /* Insert in the hash */
+ child->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE);
+ LIST_INSERT_HEAD(PIDHASH(child->p_pid), child, p_hash);
+ proc_list_unlock();
+
/*
- * Make a proc table entry for the new process.
- * Start by zeroing the section of proc that is zero-initialized,
- * then copy the section that is copied directly from the parent.
+ * We've identified the PID we are going to use; initialize the new
+ * process structure.
*/
- bzero(&p2->p_startzero,
- (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
- bcopy(&p1->p_startcopy, &p2->p_startcopy,
- (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
- p2->vm_shm = (void *)NULL; /* Make sure it is zero */
+ child->p_stat = SIDL;
+ child->p_pgrpid = PGRPID_DEAD;
/*
+ * The zero'ing of the proc was at the allocation time due to need for insertion
+ * to hash. Copy the section that is to be copied directly from the parent.
+ */
+ bcopy(&parent->p_startcopy, &child->p_startcopy,
+ (unsigned) ((caddr_t)&child->p_endcopy - (caddr_t)&child->p_startcopy));
+
+ /*
+ * Some flags are inherited from the parent.
* Duplicate sub-structures as needed.
* Increase reference counts on shared objects.
* The p_stats and p_sigacts substructs are set in vm_fork.
*/
- p2->p_flag = P_INMEM;
- if (p1->p_flag & P_PROFIL)
- startprofclock(p2);
- bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
- p2->p_cred->p_refcnt = 1;
- crhold(p1->p_ucred);
- lockinit(&p2->p_cred->pc_lock, PLOCK, "proc cred", 0, 0);
-
- /* bump references to the text vnode */
- p2->p_textvp = p1->p_textvp;
- if (p2->p_textvp)
- VREF(p2->p_textvp);
-
- p2->p_fd = fdcopy(p1);
- if (p1->vm_shm) {
- shmfork(p1,p2);
- }
+ child->p_flag = (parent->p_flag & (P_LP64 | P_TRANSLATED | P_AFFINITY));
+ if (parent->p_flag & P_PROFIL)
+ startprofclock(child);
/*
- * If p_limit is still copy-on-write, bump refcnt,
- * otherwise get a copy that won't be modified.
- * (If PL_SHAREMOD is clear, the structure is shared
- * copy-on-write.)
+ * Note that if the current thread has an assumed identity, this
+ * credential will be granted to the new process.
*/
- if (p1->p_limit->p_lflags & PL_SHAREMOD)
- p2->p_limit = limcopy(p1->p_limit);
- else {
- p2->p_limit = p1->p_limit;
- p2->p_limit->p_refcnt++;
- }
-
- bzero(&p2->p_stats->pstat_startzero,
- (unsigned) ((caddr_t)&p2->p_stats->pstat_endzero -
- (caddr_t)&p2->p_stats->pstat_startzero));
- bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
- ((caddr_t)&p2->p_stats->pstat_endcopy -
- (caddr_t)&p2->p_stats->pstat_startcopy));
-
- if (p1->p_sigacts != NULL)
- (void)memcpy(p2->p_sigacts,
- p1->p_sigacts, sizeof *p2->p_sigacts);
- else
- (void)memset(p2->p_sigacts, 0, sizeof *p2->p_sigacts);
+ child->p_ucred = kauth_cred_get_with_ref();
- if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
- p2->p_flag |= P_CONTROLT;
+ lck_mtx_init(&child->p_mlock, proc_lck_grp, proc_lck_attr);
+ lck_mtx_init(&child->p_fdmlock, proc_lck_grp, proc_lck_attr);
+#if CONFIG_DTRACE
+ lck_mtx_init(&child->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
+#endif
+ lck_spin_init(&child->p_slock, proc_lck_grp, proc_lck_attr);
+ klist_init(&child->p_klist);
+
+ if (child->p_textvp != NULLVP) {
+ /* bump references to the text vnode */
+ /* Need to hold iocount across the ref call */
+ if (vnode_getwithref(child->p_textvp) == 0) {
+ error = vnode_ref(child->p_textvp);
+ vnode_put(child->p_textvp);
+ if (error != 0)
+ child->p_textvp = NULLVP;
+ }
+ }
- p2->p_xstat = 0;
- p2->p_ru = NULL;
+ /* XXX may fail to copy descriptors to child */
+ child->p_fd = fdcopy(parent, uth_parent->uu_cdir);
- p2->p_debugger = 0; /* don't inherit */
- lockinit(&p2->signal_lock, PVM, "signal", 0, 0);
- /* block all signals to reach the process */
- if (lock)
- signal_lock(p2);
- p2->sigwait = FALSE;
- p2->sigwait_thread = NULL;
- p2->exit_thread = NULL;
- p2->user_stack = p1->user_stack;
- p2->p_xxxsigpending = 0;
- p2->p_vforkcnt = 0;
- p2->p_vforkact = 0;
- TAILQ_INIT(&p2->p_uthlist);
-
-#if KTRACE
+#if SYSV_SHM
+ if (parent->vm_shm) {
+ /* XXX may fail to attach shm to child */
+ (void)shmfork(parent,child);
+ }
+#endif
/*
- * Copy traceflag and tracefile if enabled.
- * If not inherited, these were zeroed above.
+ * inherit the limit structure to child
*/
- if (p1->p_traceflag&KTRFAC_INHERIT) {
- p2->p_traceflag = p1->p_traceflag;
- if ((p2->p_tracep = p1->p_tracep) != NULL)
- VREF(p2->p_tracep);
+ proc_limitfork(parent, child);
+
+ if (child->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
+ uint64_t rlim_cur = child->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur;
+ child->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur;
+ }
+
+ bzero(&child->p_stats->pstat_startzero,
+ (unsigned) ((caddr_t)&child->p_stats->pstat_endzero -
+ (caddr_t)&child->p_stats->pstat_startzero));
+
+ bzero(&child->p_stats->user_p_prof, sizeof(struct user_uprof));
+
+ if (parent->p_sigacts != NULL)
+ (void)memcpy(child->p_sigacts,
+ parent->p_sigacts, sizeof *child->p_sigacts);
+ else
+ (void)memset(child->p_sigacts, 0, sizeof *child->p_sigacts);
+
+ sessp = proc_session(parent);
+ if (sessp->s_ttyvp != NULL && parent->p_flag & P_CONTROLT)
+ OSBitOrAtomic(P_CONTROLT, (UInt32 *)&child->p_flag);
+ session_rele(sessp);
+
+ /* block all signals to reach the process */
+ if (lock) {
+ proc_signalstart(child, 0);
+ proc_transstart(child, 0);
+ }
+
+ TAILQ_INIT(&child->p_uthlist);
+ TAILQ_INIT(&child->aio_activeq);
+ TAILQ_INIT(&child->aio_doneq);
+ /* Inherit the parent flags for code sign */
+ child->p_csflags = parent->p_csflags;
+ child->p_wqthread = parent->p_wqthread;
+ child->p_threadstart = parent->p_threadstart;
+ child->p_pthsize = parent->p_pthsize;
+ workqueue_init_lock(child);
+
+#if CONFIG_LCTX
+ child->p_lctx = NULL;
+ /* Add new process to login context (if any). */
+ if (parent->p_lctx != NULL) {
+ LCTX_LOCK(parent->p_lctx);
+ enterlctx(child, parent->p_lctx, 0);
}
#endif
- return(p2);
+bad:
+ return(child);
+}
+
+void
+proc_lock(proc_t p)
+{
+ lck_mtx_lock(&p->p_mlock);
+}
+
+void
+proc_unlock(proc_t p)
+{
+ lck_mtx_unlock(&p->p_mlock);
+}
+
+void
+proc_spinlock(proc_t p)
+{
+ lck_spin_lock(&p->p_slock);
+}
+
+void
+proc_spinunlock(proc_t p)
+{
+ lck_spin_unlock(&p->p_slock);
+}
+
+void
+proc_list_lock(void)
+{
+ lck_mtx_lock(proc_list_mlock);
+}
+
+void
+proc_list_unlock(void)
+{
+ lck_mtx_unlock(proc_list_mlock);
}
#include <kern/zalloc.h>
struct zone *uthread_zone;
-int uthread_zone_inited = 0;
+static int uthread_zone_inited = 0;
-void
-uthread_zone_init()
+static void
+uthread_zone_init(void)
{
if (!uthread_zone_inited) {
uthread_zone = zinit(sizeof(struct uthread),
- THREAD_MAX * sizeof(struct uthread),
- THREAD_CHUNK * sizeof(struct uthread),
- "uthreads");
+ THREAD_MAX * sizeof(struct uthread),
+ THREAD_CHUNK * sizeof(struct uthread),
+ "uthreads");
uthread_zone_inited = 1;
}
}
void *
-uthread_alloc(task_t task, thread_act_t thr_act )
+uthread_alloc(task_t task, thread_t thread)
{
- struct proc *p;
- struct uthread *uth, *uth_parent;
+ proc_t p;
+ uthread_t uth;
+ uthread_t uth_parent;
void *ut;
- extern task_t kernel_task;
- boolean_t funnel_state;
if (!uthread_zone_inited)
uthread_zone_init();
ut = (void *)zalloc(uthread_zone);
bzero(ut, sizeof(struct uthread));
- if (task != kernel_task) {
- uth = (struct uthread *)ut;
- p = get_bsdtask_info(task);
+ p = (proc_t) get_bsdtask_info(task);
+ uth = (uthread_t)ut;
- funnel_state = thread_funnel_set(kernel_flock, TRUE);
- uth_parent = (struct uthread *)get_bsdthread_info(current_act());
+ /*
+ * Thread inherits credential from the creating thread, if both
+ * are in the same task.
+ *
+ * If the creating thread has no credential or is from another
+ * task we can leave the new thread credential NULL. If it needs
+ * one later, it will be lazily assigned from the task's process.
+ */
+ uth_parent = (uthread_t)get_bsdthread_info(current_thread());
+ if (task == current_task() &&
+ uth_parent != NULL &&
+ IS_VALID_CRED(uth_parent->uu_ucred)) {
+ /*
+ * XXX The new thread is, in theory, being created in context
+ * XXX of parent thread, so a direct reference to the parent
+ * XXX is OK.
+ */
+ kauth_cred_ref(uth_parent->uu_ucred);
+ uth->uu_ucred = uth_parent->uu_ucred;
+ /* the credential we just inherited is an assumed credential */
+ if (uth_parent->uu_flag & UT_SETUID)
+ uth->uu_flag |= UT_SETUID;
+ } else {
+ uth->uu_ucred = NOCRED;
+ }
+
+
+ if ((task != kernel_task) && p) {
+
+ proc_lock(p);
if (uth_parent) {
- if (uth_parent->uu_flag & USAS_OLDMASK)
+ if (uth_parent->uu_flag & UT_SAS_OLDMASK)
uth->uu_sigmask = uth_parent->uu_oldmask;
else
uth->uu_sigmask = uth_parent->uu_sigmask;
}
- uth->uu_act = thr_act;
- //signal_lock(p);
- if (p)
- TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
- //signal_unlock(p);
- (void)thread_funnel_set(kernel_flock, funnel_state);
+ uth->uu_context.vc_thread = thread;
+ TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
+ proc_unlock(p);
+
+#if CONFIG_DTRACE
+ if (p->p_dtrace_ptss_pages != NULL) {
+ uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p);
+ }
+#endif
}
return (ut);
}
+/*
+ * This routine frees all the BSD context in uthread except the credential.
+ * It does not free the uthread structure as well
+ */
void
-uthread_free(task_t task, void *uthread, void * bsd_info)
+uthread_cleanup(task_t task, void *uthread, void * bsd_info)
{
struct _select *sel;
- struct uthread *uth = (struct uthread *)uthread;
- struct proc * p = (struct proc *)bsd_info;
- extern task_t kernel_task;
- int size;
- boolean_t funnel_state;
+ uthread_t uth = (uthread_t)uthread;
+ proc_t p = (proc_t)bsd_info;
+
+ /*
+ * Per-thread audit state should never last beyond system
+ * call return. Since we don't audit the thread creation/
+ * removal, the thread state pointer should never be
+ * non-NULL when we get here.
+ */
+ assert(uth->uu_ar == NULL);
- sel = &uth->uu_state.ss_select;
+ sel = &uth->uu_select;
/* cleanup the select bit space */
if (sel->nbytes) {
FREE(sel->ibits, M_TEMP);
FREE(sel->obits, M_TEMP);
+ sel->nbytes = 0;
+ }
+
+ if (uth->uu_cdir) {
+ vnode_rele(uth->uu_cdir);
+ uth->uu_cdir = NULLVP;
}
- if (sel->allocsize && uth->uu_wqsub){
- kfree(uth->uu_wqsub, sel->allocsize);
- sel->count = sel->nfcount = 0;
- sel->allocsize = 0;
- uth->uu_wqsub = 0;
+ if (uth->uu_allocsize && uth->uu_wqset){
+ kfree(uth->uu_wqset, uth->uu_allocsize);
+ sel->count = 0;
+ uth->uu_allocsize = 0;
+ uth->uu_wqset = 0;
sel->wql = 0;
}
+
if ((task != kernel_task) && p) {
- funnel_state = thread_funnel_set(kernel_flock, TRUE);
- //signal_lock(p);
- TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
- //signal_unlock(p);
- (void)thread_funnel_set(kernel_flock, funnel_state);
+
+ if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL)) {
+ vfork_exit_internal(uth->uu_proc, 0, 1);
+ }
+ if (get_bsdtask_info(task) == p) {
+ proc_lock(p);
+ TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
+ proc_unlock(p);
+ }
+#if CONFIG_DTRACE
+ if (uth->t_dtrace_scratch != NULL) {
+ dtrace_ptss_release_entry(p, uth->t_dtrace_scratch);
+ }
+#endif
}
+}
+
+/* This routine releases the credential stored in uthread */
+void
+uthread_cred_free(void *uthread)
+{
+ uthread_t uth = (uthread_t)uthread;
+
+ /* and free the uthread itself */
+ if (IS_VALID_CRED(uth->uu_ucred)) {
+ kauth_cred_t oldcred = uth->uu_ucred;
+ uth->uu_ucred = NOCRED;
+ kauth_cred_unref(&oldcred);
+ }
+}
+
+/* This routine frees the uthread structure held in thread structure */
+void
+uthread_zone_free(void *uthread)
+{
/* and free the uthread itself */
- zfree(uthread_zone, (vm_offset_t)uthread);
+ zfree(uthread_zone, uthread);
}