/*
- * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2003-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/i386/vm_param.h>
#include <string.h>
+#include <stdint.h>
#include <mach/vm_param.h>
#include <mach/vm_prot.h>
#include <mach/machine.h>
#include <kern/startup.h>
#include <kern/clock.h>
#include <kern/pms.h>
-#include <kern/xpr.h>
#include <kern/cpu_data.h>
#include <kern/processor.h>
#include <sys/kdebug.h>
#include <i386/pmCPU.h>
#include <i386/tsc.h>
#include <i386/locks.h> /* LcksOpts */
+#include <i386/acpi.h>
#if DEBUG
#include <machine/pal_routines.h>
#endif
-#if DEBUG
-#define DBG(x...) kprintf(x)
+extern void xcpm_bootstrap(void);
+#if DEVELOPMENT || DEBUG
+#include <i386/trap.h>
+#endif
+
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+
+#include <san/kasan.h>
+
+#if DEBUG || DEVELOPMENT
+#define DBG(x, ...) kprintf(x, ##__VA_ARGS__)
+#define dyldLogFunc(x, ...) kprintf(x, ##__VA_ARGS__)
#else
-#define DBG(x...)
+#define DBG(x ...)
#endif
-int debug_task;
+#include <libkern/kernel_mach_header.h>
+#include <mach/dyld_kernel_fixups.h>
+
-static boot_args *kernelBootArgs;
+int debug_task;
-extern int disableConsoleOutput;
-extern const char version[];
-extern const char version_variant[];
-extern int nx_enabled;
+int early_boot = 1;
-uint64_t physmap_base, physmap_max;
+bool serial_console_enabled = false;
-pd_entry_t *KPTphys;
-pd_entry_t *IdlePTD;
-pdpt_entry_t *IdlePDPT;
-pml4_entry_t *IdlePML4;
+static boot_args *kernelBootArgs;
+
+extern int disableConsoleOutput;
+extern const char version[];
+extern const char version_variant[];
+extern int nx_enabled;
+
+/*
+ * Set initial values so that ml_phys_* routines can use the booter's ID mapping
+ * to touch physical space before the kernel's physical aperture exists.
+ */
+uint64_t physmap_base = 0;
+uint64_t physmap_max = 4 * GB;
+
+pd_entry_t *KPTphys;
+pd_entry_t *IdlePTD;
+pdpt_entry_t *IdlePDPT;
+pml4_entry_t *IdlePML4;
+
+int kernPhysPML4Index;
+int kernPhysPML4EntryCount;
+
+/*
+ * These are 4K mapping page table pages from KPTphys[] that we wound
+ * up not using. They get ml_static_mfree()'d once the VM is initialized.
+ */
+ppnum_t released_PT_ppn = 0;
+uint32_t released_PT_cnt = 0;
+
+#if DEVELOPMENT || DEBUG
+int panic_on_cacheline_mismatch = -1;
+char panic_on_trap_procname[64];
+uint32_t panic_on_trap_mask;
+#endif
+bool last_branch_support_enabled;
+int insn_copyin_count;
+#if DEVELOPMENT || DEBUG
+#define DEFAULT_INSN_COPYIN_COUNT x86_INSTRUCTION_STATE_MAX_INSN_BYTES
+#else
+#define DEFAULT_INSN_COPYIN_COUNT 192
+#endif
char *physfree;
+void idt64_remap(void);
/*
* Note: ALLOCPAGES() can only be used safely within Idle_PTs_init()
fillkpt(pt_entry_t *base, int prot, uintptr_t src, int index, int count)
{
int i;
- for (i=0; i<count; i++) {
+ for (i = 0; i < count; i++) {
base[index] = src | prot | INTEL_PTE_VALID;
src += PAGE_SIZE;
index++;
// NPHYSMAP is determined by the maximum supported RAM size plus 4GB to account
// the PCI hole (which is less 4GB but not more).
-/* Compile-time guard: NPHYSMAP is capped to 256GiB, accounting for
- * randomisation
- */
-extern int maxphymapsupported[NPHYSMAP <= (PTE_PER_PAGE/2) ? 1 : -1];
+static int
+physmap_init_L2(uint64_t *physStart, pt_entry_t **l2ptep)
+{
+ unsigned i;
+ pt_entry_t *physmapL2 = ALLOCPAGES(1);
+
+ if (physmapL2 == NULL) {
+ DBG("physmap_init_L2 page alloc failed when initting L2 for physAddr 0x%llx.\n", *physStart);
+ *l2ptep = NULL;
+ return -1;
+ }
+
+ for (i = 0; i < NPDPG; i++) {
+ physmapL2[i] = *physStart
+ | INTEL_PTE_PS
+ | INTEL_PTE_VALID
+ | INTEL_PTE_NX
+ | INTEL_PTE_WRITE;
+
+ *physStart += NBPD;
+ }
+ *l2ptep = physmapL2;
+ return 0;
+}
+
+static int
+physmap_init_L3(int startIndex, uint64_t highest_phys, uint64_t *physStart, pt_entry_t **l3ptep)
+{
+ unsigned i;
+ int ret;
+ pt_entry_t *l2pte;
+ pt_entry_t *physmapL3 = ALLOCPAGES(1); /* ALLOCPAGES bzeroes the memory */
+
+ if (physmapL3 == NULL) {
+ DBG("physmap_init_L3 page alloc failed when initting L3 for physAddr 0x%llx.\n", *physStart);
+ *l3ptep = NULL;
+ return -1;
+ }
+
+ for (i = startIndex; i < NPDPTPG && *physStart < highest_phys; i++) {
+ if ((ret = physmap_init_L2(physStart, &l2pte)) < 0) {
+ return ret;
+ }
+
+ physmapL3[i] = ((uintptr_t)ID_MAP_VTOP(l2pte))
+ | INTEL_PTE_VALID
+ | INTEL_PTE_NX
+ | INTEL_PTE_WRITE;
+ }
+
+ *l3ptep = physmapL3;
+
+ return 0;
+}
static void
-physmap_init(void)
+physmap_init(uint8_t phys_random_L3, uint64_t *new_physmap_base, uint64_t *new_physmap_max)
{
- pt_entry_t *physmapL3 = ALLOCPAGES(1);
- struct {
- pt_entry_t entries[PTE_PER_PAGE];
- } * physmapL2 = ALLOCPAGES(NPHYSMAP);
+ pt_entry_t *l3pte;
+ int pml4_index, i;
+ int L3_start_index;
+ uint64_t physAddr = 0;
+ uint64_t highest_physaddr;
+ unsigned pdpte_count;
+
+#if DEVELOPMENT || DEBUG
+ if (kernelBootArgs->PhysicalMemorySize > K64_MAXMEM) {
+ panic("Installed physical memory exceeds configured maximum.");
+ }
+#endif
+
+ /*
+ * Add 4GB to the loader-provided physical memory size to account for MMIO space
+ * XXX in a perfect world, we'd scan PCI buses and count the max memory requested in BARs by
+ * XXX all enumerated device, then add more for hot-pluggable devices.
+ */
+ highest_physaddr = kernelBootArgs->PhysicalMemorySize + 4 * GB;
+
+ /*
+ * Calculate the number of PML4 entries we'll need. The total number of entries is
+ * pdpte_count = (((highest_physaddr) >> PDPT_SHIFT) + entropy_value +
+ * ((highest_physaddr & PDPT_MASK) == 0 ? 0 : 1))
+ * pml4e_count = pdpte_count >> (PML4_SHIFT - PDPT_SHIFT)
+ */
+ assert(highest_physaddr < (UINT64_MAX - PDPTMASK));
+ pdpte_count = (unsigned) (((highest_physaddr + PDPTMASK) >> PDPTSHIFT) + phys_random_L3);
+ kernPhysPML4EntryCount = (pdpte_count + ((1U << (PML4SHIFT - PDPTSHIFT)) - 1)) >> (PML4SHIFT - PDPTSHIFT);
+ if (kernPhysPML4EntryCount == 0) {
+ kernPhysPML4EntryCount = 1;
+ }
+ if (kernPhysPML4EntryCount > KERNEL_PHYSMAP_PML4_COUNT_MAX) {
+#if DEVELOPMENT || DEBUG
+ panic("physmap too large");
+#else
+ kprintf("[pmap] Limiting physmap to %d PML4s (was %d)\n", KERNEL_PHYSMAP_PML4_COUNT_MAX,
+ kernPhysPML4EntryCount);
+ kernPhysPML4EntryCount = KERNEL_PHYSMAP_PML4_COUNT_MAX;
+#endif
+ }
+
+ kernPhysPML4Index = KERNEL_KEXTS_INDEX - kernPhysPML4EntryCount; /* utb: KERNEL_PHYSMAP_PML4_INDEX */
+
+ /*
+ * XXX: Make sure that the addresses returned for physmapL3 and physmapL2 plus their extents
+ * are in the system-available memory range
+ */
- uint64_t i;
- uint8_t phys_random_L3 = early_random() & 0xFF;
/* We assume NX support. Mark all levels of the PHYSMAP NX
* to avoid granting executability via a single bit flip.
}
#endif /* DEVELOPMENT || DEBUG */
- for(i = 0; i < NPHYSMAP; i++) {
- physmapL3[i + phys_random_L3] =
- ((uintptr_t)ID_MAP_VTOP(&physmapL2[i]))
- | INTEL_PTE_VALID
- | INTEL_PTE_NX
- | INTEL_PTE_WRITE;
-
- uint64_t j;
- for(j = 0; j < PTE_PER_PAGE; j++) {
- physmapL2[i].entries[j] =
- ((i * PTE_PER_PAGE + j) << PDSHIFT)
- | INTEL_PTE_PS
- | INTEL_PTE_VALID
- | INTEL_PTE_NX
- | INTEL_PTE_WRITE;
+ L3_start_index = phys_random_L3;
+
+ for (pml4_index = kernPhysPML4Index;
+ pml4_index < (kernPhysPML4Index + kernPhysPML4EntryCount) && physAddr < highest_physaddr;
+ pml4_index++) {
+ if (physmap_init_L3(L3_start_index, highest_physaddr, &physAddr, &l3pte) < 0) {
+ panic("Physmap page table initialization failed");
+ /* NOTREACHED */
}
+
+ L3_start_index = 0;
+
+ IdlePML4[pml4_index] = ((uintptr_t)ID_MAP_VTOP(l3pte))
+ | INTEL_PTE_VALID
+ | INTEL_PTE_NX
+ | INTEL_PTE_WRITE;
}
- IdlePML4[KERNEL_PHYSMAP_PML4_INDEX] =
- ((uintptr_t)ID_MAP_VTOP(physmapL3))
- | INTEL_PTE_VALID
- | INTEL_PTE_NX
- | INTEL_PTE_WRITE;
+ *new_physmap_base = KVADDR(kernPhysPML4Index, phys_random_L3, 0, 0);
+ /*
+ * physAddr contains the last-mapped physical address, so that's what we
+ * add to physmap_base to derive the ending VA for the physmap.
+ */
+ *new_physmap_max = *new_physmap_base + physAddr;
- physmap_base = KVADDR(KERNEL_PHYSMAP_PML4_INDEX, phys_random_L3, 0, 0);
- physmap_max = physmap_base + NPHYSMAP * GB;
- DBG("Physical address map base: 0x%qx\n", physmap_base);
- DBG("Physical map idlepml4[%d]: 0x%llx\n",
- KERNEL_PHYSMAP_PML4_INDEX, IdlePML4[KERNEL_PHYSMAP_PML4_INDEX]);
+ DBG("Physical address map base: 0x%qx\n", *new_physmap_base);
+ for (i = kernPhysPML4Index; i < (kernPhysPML4Index + kernPhysPML4EntryCount); i++) {
+ DBG("Physical map idlepml4[%d]: 0x%llx\n", i, IdlePML4[i]);
+ }
}
-static void
-descriptor_alias_init()
-{
- vm_offset_t master_gdt_phys;
- vm_offset_t master_gdt_alias_phys;
- vm_offset_t master_idt_phys;
- vm_offset_t master_idt_alias_phys;
-
- assert(((vm_offset_t)master_gdt & PAGE_MASK) == 0);
- assert(((vm_offset_t)master_idt64 & PAGE_MASK) == 0);
-
- master_gdt_phys = (vm_offset_t) ID_MAP_VTOP(master_gdt);
- master_idt_phys = (vm_offset_t) ID_MAP_VTOP(master_idt64);
- master_gdt_alias_phys = (vm_offset_t) ID_MAP_VTOP(MASTER_GDT_ALIAS);
- master_idt_alias_phys = (vm_offset_t) ID_MAP_VTOP(MASTER_IDT_ALIAS);
-
- DBG("master_gdt_phys: %p\n", (void *) master_gdt_phys);
- DBG("master_idt_phys: %p\n", (void *) master_idt_phys);
- DBG("master_gdt_alias_phys: %p\n", (void *) master_gdt_alias_phys);
- DBG("master_idt_alias_phys: %p\n", (void *) master_idt_alias_phys);
-
- KPTphys[atop_kernel(master_gdt_alias_phys)] = master_gdt_phys |
- INTEL_PTE_VALID | INTEL_PTE_NX | INTEL_PTE_WRITE;
- KPTphys[atop_kernel(master_idt_alias_phys)] = master_idt_phys |
- INTEL_PTE_VALID | INTEL_PTE_NX; /* read-only */
-}
+void doublemap_init(uint8_t);
static void
Idle_PTs_init(void)
{
+ uint64_t rand64;
+ uint64_t new_physmap_base, new_physmap_max;
+
/* Allocate the "idle" kernel page tables: */
- KPTphys = ALLOCPAGES(NKPT); /* level 1 */
- IdlePTD = ALLOCPAGES(NPGPTD); /* level 2 */
- IdlePDPT = ALLOCPAGES(1); /* level 3 */
- IdlePML4 = ALLOCPAGES(1); /* level 4 */
+ KPTphys = ALLOCPAGES(NKPT); /* level 1 */
+ IdlePTD = ALLOCPAGES(NPGPTD); /* level 2 */
+ IdlePDPT = ALLOCPAGES(1); /* level 3 */
+ IdlePML4 = ALLOCPAGES(1); /* level 4 */
// Fill the lowest level with everything up to physfree
fillkpt(KPTphys,
- INTEL_PTE_WRITE, 0, 0, (int)(((uintptr_t)physfree) >> PAGE_SHIFT));
+ INTEL_PTE_WRITE, 0, 0, (int)(((uintptr_t)physfree) >> PAGE_SHIFT));
/* IdlePTD */
fillkpt(IdlePTD,
- INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(KPTphys), 0, NKPT);
+ INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(KPTphys), 0, NKPT);
// IdlePDPT entries
fillkpt(IdlePDPT,
- INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(IdlePTD), 0, NPGPTD);
+ INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(IdlePTD), 0, NPGPTD);
// IdlePML4 single entry for kernel space.
fillkpt(IdlePML4 + KERNEL_PML4_INDEX,
- INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(IdlePDPT), 0, 1);
-
- postcode(VSTART_PHYSMAP_INIT);
+ INTEL_PTE_WRITE, (uintptr_t)ID_MAP_VTOP(IdlePDPT), 0, 1);
- physmap_init();
-
- postcode(VSTART_DESC_ALIAS_INIT);
+ postcode(VSTART_PHYSMAP_INIT);
- descriptor_alias_init();
+ /*
+ * early_random() cannot be called more than one time before the cpu's
+ * gsbase is initialized, so use the full 64-bit value to extract the
+ * two 8-bit entropy values needed for address randomization.
+ */
+ rand64 = early_random();
+ physmap_init(rand64 & 0xFF, &new_physmap_base, &new_physmap_max);
+ doublemap_init((rand64 >> 8) & 0xFF);
+ idt64_remap();
postcode(VSTART_SET_CR3);
- // Switch to the page tables..
+ /*
+ * Switch to the page tables. We set physmap_base and physmap_max just
+ * before switching to the new page tables to avoid someone calling
+ * kprintf() or otherwise using physical memory in between.
+ * This is needed because kprintf() writes to physical memory using
+ * ml_phys_read_data and PHYSMAP_PTOV, which requires physmap_base to be
+ * set correctly.
+ */
+ physmap_base = new_physmap_base;
+ physmap_max = new_physmap_max;
set_cr3_raw((uintptr_t)ID_MAP_VTOP(IdlePML4));
+}
+
+/*
+ * Release any still unused, preallocated boot kernel page tables.
+ * start..end is the VA range currently unused.
+ */
+void
+Idle_PTs_release(vm_offset_t start, vm_offset_t end)
+{
+ uint32_t i;
+ uint32_t index_start;
+ uint32_t index_limit;
+ ppnum_t pn_first;
+ ppnum_t pn;
+ uint32_t cnt;
+
+ /*
+ * Align start to the next large page boundary
+ */
+ start = ((start + I386_LPGMASK) & ~I386_LPGMASK);
+
+ /*
+ * convert start into an index in KPTphys[]
+ */
+ index_start = (uint32_t)((start - KERNEL_BASE) >> PAGE_SHIFT);
+
+ /*
+ * Find the ending index in KPTphys[]
+ */
+ index_limit = (uint32_t)((end - KERNEL_BASE) >> PAGE_SHIFT);
+
+ if (index_limit > NKPT * PTE_PER_PAGE) {
+ index_limit = NKPT * PTE_PER_PAGE;
+ }
+
+ /*
+ * Make sure all the 4K page tables are empty.
+ * If not, panic a development/debug kernel.
+ * On a production kernel, since this would stop us from booting,
+ * just abort the operation.
+ */
+ for (i = index_start; i < index_limit; ++i) {
+ assert(KPTphys[i] == 0);
+ if (KPTphys[i] != 0) {
+ return;
+ }
+ }
+
+ /*
+ * Now figure out the indices into the 2nd level page tables, IdlePTD[].
+ */
+ index_start >>= PTPGSHIFT;
+ index_limit >>= PTPGSHIFT;
+ if (index_limit > NPGPTD * PTE_PER_PAGE) {
+ index_limit = NPGPTD * PTE_PER_PAGE;
+ }
+
+ if (index_limit <= index_start) {
+ return;
+ }
+
+
+ /*
+ * Now check the pages referenced from Level 2 tables.
+ * They should be contiguous, assert fail if not on development/debug.
+ * In production, just fail the removal to allow the system to boot.
+ */
+ pn_first = 0;
+ cnt = 0;
+ for (i = index_start; i < index_limit; ++i) {
+ assert(IdlePTD[i] != 0);
+ if (IdlePTD[i] == 0) {
+ return;
+ }
+
+ pn = (ppnum_t)((PG_FRAME & IdlePTD[i]) >> PTSHIFT);
+ if (cnt == 0) {
+ pn_first = pn;
+ } else {
+ assert(pn == pn_first + cnt);
+ if (pn != pn_first + cnt) {
+ return;
+ }
+ }
+ ++cnt;
+ }
+
+ /*
+ * Good to go, clear the level 2 entries and invalidate the TLB
+ */
+ for (i = index_start; i < index_limit; ++i) {
+ IdlePTD[i] = 0;
+ }
+ set_cr3_raw(get_cr3_raw());
+
+ /*
+ * Remember these PFNs to be released later in pmap_lowmem_finalize()
+ */
+ released_PT_ppn = pn_first;
+ released_PT_cnt = cnt;
+#if DEVELOPMENT || DEBUG
+ printf("Idle_PTs_release %d pages from PFN 0x%x\n", released_PT_cnt, released_PT_ppn);
+#endif
+}
+
+extern void vstart_trap_handler;
+
+#define BOOT_TRAP_VECTOR(t) \
+ [t] = { \
+ (uintptr_t) &vstart_trap_handler, \
+ KERNEL64_CS, \
+ 0, \
+ ACC_P|ACC_PL_K|ACC_INTR_GATE, \
+ 0 \
+ },
+
+/* Recursive macro to iterate 0..31 */
+#define L0(x, n) x(n)
+#define L1(x, n) L0(x,n-1) L0(x,n)
+#define L2(x, n) L1(x,n-2) L1(x,n)
+#define L3(x, n) L2(x,n-4) L2(x,n)
+#define L4(x, n) L3(x,n-8) L3(x,n)
+#define L5(x, n) L4(x,n-16) L4(x,n)
+#define FOR_0_TO_31(x) L5(x,31)
+
+/*
+ * Bootstrap IDT. Active only during early startup.
+ * Only the trap vectors are defined since interrupts are masked.
+ * All traps point to a common handler.
+ */
+struct fake_descriptor64 master_boot_idt64[IDTSZ]
+__attribute__((section("__HIB,__desc")))
+__attribute__((aligned(PAGE_SIZE))) = {
+ FOR_0_TO_31(BOOT_TRAP_VECTOR)
+};
+
+static void
+vstart_idt_init(boolean_t master)
+{
+ x86_64_desc_register_t vstart_idt = {
+ sizeof(master_boot_idt64),
+ master_boot_idt64
+ };
+
+ if (master) {
+ fix_desc64(master_boot_idt64, 32);
+ }
+ lidt((void *)&vstart_idt);
+}
+
+extern void *collection_base_pointers[KCNumKinds];
+
+kern_return_t
+i386_slide_individual_kext(kernel_mach_header_t *mh, uintptr_t slide)
+{
+ int ret = kernel_collection_slide(mh, (const void **) (void *)collection_base_pointers);
+ if (ret != 0) {
+ printf("Sliding pageable kc was stopped\n");
+ return KERN_FAILURE;
+ }
+
+ kernel_collection_adjust_fileset_entry_addrs(mh, slide);
+ return KERN_SUCCESS;
+}
+
+kern_return_t
+i386_slide_kext_collection_mh_addrs(kernel_mach_header_t *mh, uintptr_t slide, bool adjust_mach_headers)
+{
+ int ret = kernel_collection_slide(mh, (const void **) (void *)collection_base_pointers);
+ if (ret != KERN_SUCCESS) {
+ printf("Kernel Collection slide was stopped with value %d\n", ret);
+ return KERN_FAILURE;
+ }
+
+ kernel_collection_adjust_mh_addrs(mh, slide, adjust_mach_headers,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL);
+ return KERN_SUCCESS;
}
+static void
+i386_slide_and_rebase_image(uintptr_t kstart_addr)
+{
+ extern uintptr_t kc_highest_nonlinkedit_vmaddr;
+ kernel_mach_header_t *k_mh, *kc_mh = NULL;
+ kernel_segment_command_t *seg;
+ uintptr_t slide;
+
+ k_mh = &_mh_execute_header;
+ /*
+ * If we're not booting, an MH_FILESET, we don't need to slide
+ * anything because EFI has done that for us. When booting an
+ * MH_FILESET, EFI will slide the kernel proper, but not the kexts.
+ * Below, we infer the slide by comparing the slid address of the
+ * kernel's mach-o header and the unslid vmaddr of the first segment
+ * of the mach-o (which is assumed to always point to the mach-o
+ * header).
+ */
+ if (!kernel_mach_header_is_in_fileset(k_mh)) {
+ DBG("[MH] kcgen-style KC\n");
+ return;
+ }
+
+ /*
+ * The kernel is part of a MH_FILESET kernel collection: determine slide
+ * based on first segment's mach-o vmaddr.
+ */
+ seg = (kernel_segment_command_t *)((uintptr_t)k_mh + sizeof(*k_mh));
+ assert(seg->cmd == LC_SEGMENT_KERNEL);
+ slide = (uintptr_t)k_mh - seg->vmaddr;
+ DBG("[MH] Sliding new-style KC: %llu\n", (unsigned long long)slide);
+
+ /*
+ * The kernel collection mach-o header should be the start address
+ * passed to us by EFI.
+ */
+ kc_mh = (kernel_mach_header_t *)(kstart_addr);
+ assert(kc_mh->filetype == MH_FILESET);
+
+ PE_set_kc_header(KCKindPrimary, kc_mh, slide);
+
+ /*
+ * rebase/slide all the kexts in the collection
+ * (EFI should have already rebased the kernel)
+ */
+ kernel_collection_slide(kc_mh, (const void **) (void *)collection_base_pointers);
+
+
+ /*
+ * Now adjust the vmaddr fields of all mach-o headers
+ * and symbols in this MH_FILESET
+ */
+ kernel_collection_adjust_mh_addrs(kc_mh, slide, false,
+ NULL, NULL, NULL, NULL, NULL, NULL, &kc_highest_nonlinkedit_vmaddr);
+}
/*
* vstart() is called in the natural mode (64bit for K64, 32 for K32)
- * on a set of bootstrap pagetables which use large, 2MB pages to map
+ * on a set of bootstrap pagetables which use large, 2MB pages to map
* all of physical memory in both. See idle_pt.c for details.
*
- * In K64 this identity mapping is mirrored the top and bottom 512GB
+ * In K64 this identity mapping is mirrored the top and bottom 512GB
* slots of PML4.
*
* The bootstrap processor called with argument boot_args_start pointing to
* Non-bootstrap processors are called with argument boot_args_start NULL.
* These processors switch immediately to the existing kernel page tables.
*/
+__attribute__((noreturn))
void
vstart(vm_offset_t boot_args_start)
{
- boolean_t is_boot_cpu = !(boot_args_start == 0);
- int cpu;
- uint32_t lphysfree;
+ boolean_t is_boot_cpu = !(boot_args_start == 0);
+ int cpu = 0;
+ uint32_t lphysfree;
+#if DEBUG
+ uint64_t gsbase;
+#endif
+
postcode(VSTART_ENTRY);
+ /*
+ * Set-up temporary trap handlers during page-table set-up.
+ */
+
if (is_boot_cpu) {
+ vstart_idt_init(TRUE);
+ postcode(VSTART_IDT_INIT);
+
+ /*
+ * Ensure that any %gs-relative access results in an immediate fault
+ * until gsbase is properly initialized below
+ */
+ wrmsr64(MSR_IA32_GS_BASE, EARLY_GSBASE_MAGIC);
+
/*
* Get startup parameters.
*/
kernelBootArgs = (boot_args *)boot_args_start;
lphysfree = kernelBootArgs->kaddr + kernelBootArgs->ksize;
- physfree = (void *)(uintptr_t)((lphysfree + PAGE_SIZE - 1) &~ (PAGE_SIZE - 1));
+ physfree = (void *)(uintptr_t)((lphysfree + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1));
-#if DEVELOPMENT || DEBUG
pal_serial_init();
-#endif
+
DBG("revision 0x%x\n", kernelBootArgs->Revision);
DBG("version 0x%x\n", kernelBootArgs->Version);
DBG("command line %s\n", kernelBootArgs->CommandLine);
DBG("ksize 0x%x\n", kernelBootArgs->ksize);
DBG("physfree %p\n", physfree);
DBG("bootargs: %p, &ksize: %p &kaddr: %p\n",
- kernelBootArgs,
- &kernelBootArgs->ksize,
- &kernelBootArgs->kaddr);
+ kernelBootArgs,
+ &kernelBootArgs->ksize,
+ &kernelBootArgs->kaddr);
DBG("SMBIOS mem sz 0x%llx\n", kernelBootArgs->PhysicalMemorySize);
+ DBG("KC_hdrs_vaddr %p\n", (void *)kernelBootArgs->KC_hdrs_vaddr);
+
+ if (kernelBootArgs->Version >= 2 && kernelBootArgs->Revision >= 1 &&
+ kernelBootArgs->KC_hdrs_vaddr != 0) {
+ /*
+ * slide the header addresses in all mach-o segments and sections, and
+ * perform any new-style chained-fixup sliding for kexts, as necessary.
+ * Note that efiboot has already loaded the kernel and all LC_SEGMENT_64s
+ * that correspond to the kexts present in the primary KC, into slid addresses.
+ */
+ i386_slide_and_rebase_image((uintptr_t)ml_static_ptovirt(kernelBootArgs->KC_hdrs_vaddr));
+ }
/*
* Setup boot args given the physical start address.
ml_static_ptovirt(boot_args_start);
DBG("i386_init(0x%lx) kernelBootArgs=%p\n",
(unsigned long)boot_args_start, kernelBootArgs);
+
+#if KASAN
+ kasan_reserve_memory(kernelBootArgs);
+#endif
+
PE_init_platform(FALSE, kernelBootArgs);
postcode(PE_INIT_PLATFORM_D);
Idle_PTs_init();
postcode(VSTART_IDLE_PTS_INIT);
+#if KASAN
+ /* Init kasan and map whatever was stolen from physfree */
+ kasan_init();
+ kasan_notify_stolen((uintptr_t)ml_static_ptovirt((vm_offset_t)physfree));
+#endif
+
+#if MONOTONIC
+ mt_early_init();
+#endif /* MONOTONIC */
+
first_avail = (vm_offset_t)ID_MAP_VTOP(physfree);
- cpu = 0;
cpu_data_alloc(TRUE);
+
+ cpu_desc_init(cpu_datap(0));
+ postcode(VSTART_CPU_DESC_INIT);
+ cpu_desc_load(cpu_datap(0));
+
+ postcode(VSTART_CPU_MODE_INIT);
+ cpu_syscall_init(cpu_datap(0)); /* cpu_syscall_init() will be
+ * invoked on the APs
+ * via i386_init_slave()
+ */
} else {
+ /* Slave CPUs should use the basic IDT until i386_init_slave() */
+ vstart_idt_init(FALSE);
+
/* Switch to kernel's page tables (from the Boot PTs) */
set_cr3_raw((uintptr_t)ID_MAP_VTOP(IdlePML4));
+
/* Find our logical cpu number */
- cpu = lapic_to_cpu[(LAPIC_READ(ID)>>LAPIC_ID_SHIFT) & LAPIC_ID_MASK];
- DBG("CPU: %d, GSBASE initial value: 0x%llx\n", cpu, rdmsr64(MSR_IA32_GS_BASE));
- }
-
- postcode(VSTART_CPU_DESC_INIT);
- if(is_boot_cpu)
- cpu_desc_init64(cpu_datap(cpu));
- cpu_desc_load64(cpu_datap(cpu));
- postcode(VSTART_CPU_MODE_INIT);
- if (is_boot_cpu)
- cpu_mode_init(current_cpu_datap()); /* cpu_mode_init() will be
- * invoked on the APs
- * via i386_init_slave()
- */
+ cpu = lapic_to_cpu[lapic_safe_apicid()];
+#if DEBUG
+ gsbase = rdmsr64(MSR_IA32_GS_BASE);
+#endif
+ cpu_desc_load(cpu_datap(cpu));
+#if DEBUG
+ DBG("CPU: %d, GSBASE initial value: 0x%llx\n", cpu, (unsigned long long)gsbase);
+#endif
+
+ /*
+ * Before we can discover our local APIC ID, we need to potentially
+ * initialize X2APIC, if it's enabled and firmware started us with
+ * the APIC in legacy mode.
+ */
+ lapic_init_slave();
+ }
+
+ early_boot = 0;
postcode(VSTART_EXIT);
x86_init_wrapper(is_boot_cpu ? (uintptr_t) i386_init
- : (uintptr_t) i386_init_slave,
- cpu_datap(cpu)->cpu_int_stack_top);
+ : (uintptr_t) i386_init_slave,
+ cpu_datap(cpu)->cpu_int_stack_top);
}
void
void
i386_init(void)
{
- unsigned int maxmem;
- uint64_t maxmemtouse;
- unsigned int cpus = 0;
- boolean_t fidn;
- boolean_t IA32e = TRUE;
- char namep[16];
+ unsigned int maxmem;
+ uint64_t maxmemtouse;
+ unsigned int cpus = 0;
+ boolean_t fidn;
+ boolean_t IA32e = TRUE;
postcode(I386_INIT_ENTRY);
pal_i386_init();
tsc_init();
- rtclock_early_init(); /* mach_absolute_time() now functionsl */
+ rtclock_early_init(); /* mach_absolute_time() now functional */
- kernel_debug_string_simple("i386_init");
+ kernel_debug_string_early("i386_init");
pstate_trace();
#if CONFIG_MCA
#endif
master_cpu = 0;
+
+ kernel_debug_string_early("kernel_startup_bootstrap");
+ kernel_startup_bootstrap();
+
+ /*
+ * Initialize the timer callout world
+ */
+ timer_call_init();
+
cpu_init();
postcode(CPU_INIT_D);
- printf_init(); /* Init this in case we need debugger */
- panic_init(); /* Init this in case we need debugger */
-
/* setup debugging output if one has been chosen */
- kernel_debug_string_simple("PE_init_kprintf");
- PE_init_kprintf(FALSE);
+ kernel_startup_initialize_upto(STARTUP_SUB_KPRINTF);
+ kprintf("kprintf initialized\n");
- if(PE_parse_boot_argn("-show_pointers", &namep, sizeof (namep)))
- doprnt_hide_pointers = FALSE;
+ if (!PE_parse_boot_argn("diag", &dgWork.dgFlags, sizeof(dgWork.dgFlags))) {
+ dgWork.dgFlags = 0;
+ }
- kernel_debug_string_simple("kernel_early_bootstrap");
- kernel_early_bootstrap();
+ if (PE_parse_boot_argn("insn_capcnt", &insn_copyin_count, sizeof(insn_copyin_count))) {
+ /*
+ * Enforce max and min values (allowing 0 to disable copying completely)
+ * for the instruction copyin count
+ */
+ if (insn_copyin_count > x86_INSTRUCTION_STATE_MAX_INSN_BYTES ||
+ (insn_copyin_count != 0 && insn_copyin_count < 64)) {
+ insn_copyin_count = DEFAULT_INSN_COPYIN_COUNT;
+ }
+ } else {
+ insn_copyin_count = DEFAULT_INSN_COPYIN_COUNT;
+ }
- if (!PE_parse_boot_argn("diag", &dgWork.dgFlags, sizeof (dgWork.dgFlags)))
- dgWork.dgFlags = 0;
+#if DEVELOPMENT || DEBUG
+ if (!PE_parse_boot_argn("panic_clmismatch", &panic_on_cacheline_mismatch,
+ sizeof(panic_on_cacheline_mismatch))) {
+ panic_on_cacheline_mismatch = 0;
+ }
+
+ if (!PE_parse_boot_argn("panic_on_trap_procname", &panic_on_trap_procname[0],
+ sizeof(panic_on_trap_procname))) {
+ panic_on_trap_procname[0] = 0;
+ }
+
+ if (!PE_parse_boot_argn("panic_on_trap_mask", &panic_on_trap_mask,
+ sizeof(panic_on_trap_mask))) {
+ if (panic_on_trap_procname[0] != 0) {
+ panic_on_trap_mask = DEFAULT_PANIC_ON_TRAP_MASK;
+ } else {
+ panic_on_trap_mask = 0;
+ }
+ }
+#endif
+ /* But allow that to be overridden via boot-arg: */
+ if (!PE_parse_boot_argn("lbr_support", &last_branch_support_enabled,
+ sizeof(last_branch_support_enabled))) {
+ /* Disable LBR support by default due to its high context switch overhead */
+ last_branch_support_enabled = false;
+ }
serialmode = 0;
- if(PE_parse_boot_argn("serial", &serialmode, sizeof (serialmode))) {
+ if (PE_parse_boot_argn("serial", &serialmode, sizeof(serialmode))) {
/* We want a serial keyboard and/or console */
kprintf("Serial mode specified: %08X\n", serialmode);
+ int force_sync = serialmode & SERIALMODE_SYNCDRAIN;
+ if (force_sync || PE_parse_boot_argn("drain_uart_sync", &force_sync, sizeof(force_sync))) {
+ if (force_sync) {
+ serialmode |= SERIALMODE_SYNCDRAIN;
+ kprintf(
+ "WARNING: Forcing uart driver to output synchronously."
+ "printf()s/IOLogs will impact kernel performance.\n"
+ "You are advised to avoid using 'drain_uart_sync' boot-arg.\n");
+ }
+ }
}
- if(serialmode & 1) {
+ if (serialmode & SERIALMODE_OUTPUT) {
+ serial_console_enabled = true;
(void)switch_to_serial_console();
- disableConsoleOutput = FALSE; /* Allow printfs to happen */
+ disableConsoleOutput = FALSE; /* Allow printfs to happen */
}
/* setup console output */
- kernel_debug_string_simple("PE_init_printf");
+ kernel_debug_string_early("PE_init_printf");
PE_init_printf(FALSE);
kprintf("version_variant = %s\n", version_variant);
kprintf("version = %s\n", version);
-
- if (!PE_parse_boot_argn("maxmem", &maxmem, sizeof (maxmem)))
+
+ if (!PE_parse_boot_argn("maxmem", &maxmem, sizeof(maxmem))) {
maxmemtouse = 0;
- else
- maxmemtouse = ((uint64_t)maxmem) * MB;
+ } else {
+ maxmemtouse = ((uint64_t)maxmem) * MB;
+ }
+
+ max_cpus_from_firmware = acpi_count_enabled_logical_processors();
- if (PE_parse_boot_argn("cpus", &cpus, sizeof (cpus))) {
- if ((0 < cpus) && (cpus < max_ncpus))
- max_ncpus = cpus;
+ if (PE_parse_boot_argn("cpus", &cpus, sizeof(cpus))) {
+ if ((0 < cpus) && (cpus < max_ncpus)) {
+ max_ncpus = cpus;
+ }
}
/*
* debug support for > 4G systems
*/
- PE_parse_boot_argn("himemory_mode", &vm_himemory_mode, sizeof (vm_himemory_mode));
- if (vm_himemory_mode != 0)
- kprintf("himemory_mode: %d\n", vm_himemory_mode);
+ PE_parse_boot_argn("himemory_mode", &vm_himemory_mode, sizeof(vm_himemory_mode));
+ if (!vm_himemory_mode) {
+ kprintf("himemory_mode disabled\n");
+ }
- if (!PE_parse_boot_argn("immediate_NMI", &fidn, sizeof (fidn)))
+ if (!PE_parse_boot_argn("immediate_NMI", &fidn, sizeof(fidn))) {
force_immediate_debugger_NMI = FALSE;
- else
+ } else {
force_immediate_debugger_NMI = fidn;
+ }
#if DEBUG
nanoseconds_to_absolutetime(URGENCY_NOTIFICATION_ASSERT_NS, &urgency_notification_assert_abstime_threshold);
&urgency_notification_assert_abstime_threshold,
sizeof(urgency_notification_assert_abstime_threshold));
- if (!(cpuid_extfeatures() & CPUID_EXTFEATURE_XD))
+ if (!(cpuid_extfeatures() & CPUID_EXTFEATURE_XD)) {
nx_enabled = 0;
+ }
- /*
+ /*
* VM initialization, after this we're using page tables...
* Thn maximum number of cpus must be set beforehand.
*/
- kernel_debug_string_simple("i386_vm_init");
+ kernel_debug_string_early("i386_vm_init");
i386_vm_init(maxmemtouse, IA32e, kernelBootArgs);
/* create the console for verbose or pretty mode */
PE_init_platform(TRUE, kernelBootArgs);
PE_create_console();
- kernel_debug_string_simple("power_management_init");
+ kernel_debug_string_early("power_management_init");
power_management_init();
+ xcpm_bootstrap();
+
+#if MONOTONIC
+ mt_cpu_up(cpu_datap(0));
+#endif /* MONOTONIC */
+
processor_bootstrap();
- thread_bootstrap();
+ thread_t thread = thread_bootstrap();
+ machine_set_current_thread(thread);
pstate_trace();
- kernel_debug_string_simple("machine_startup");
+ kernel_debug_string_early("machine_startup");
machine_startup();
pstate_trace();
}
-static void
+static void __dead2
do_init_slave(boolean_t fast_restart)
{
- void *init_param = FULL_SLAVE_INIT;
+ void *init_param = FULL_SLAVE_INIT;
postcode(I386_INIT_SLAVE);
if (!fast_restart) {
/* Ensure that caching and write-through are enabled */
- set_cr0(get_cr0() & ~(CR0_NW|CR0_CD));
-
+ set_cr0(get_cr0() & ~(CR0_NW | CR0_CD));
+
DBG("i386_init_slave() CPU%d: phys (%d) active.\n",
get_cpu_number(), get_cpu_phys_number());
-
+
assert(!ml_get_interrupts_enabled());
-
- cpu_mode_init(current_cpu_datap());
+
+ cpu_syscall_init(current_cpu_datap());
pmap_cpu_init();
-
+
#if CONFIG_MCA
mca_cpu_init();
#endif
-
+
LAPIC_INIT();
- lapic_configure();
+ /*
+ * Note that the true argument here does not necessarily mean we're
+ * here from a resume (this code path is also executed on boot).
+ * The implementation of lapic_configure checks to see if the
+ * state variable has been initialized, as it would be before
+ * sleep. If it has not been, it's construed as an indicator of
+ * first boot.
+ */
+ lapic_configure(true);
LAPIC_DUMP();
LAPIC_CPU_MAP_DUMP();
-
+
init_fpu();
-
+
#if CONFIG_MTRR
mtrr_update_cpu();
#endif
- /* update CPU microcode */
- ucode_update_wake();
- } else
- init_param = FAST_SLAVE_INIT;
+ /* update CPU microcode and apply CPU workarounds */
+ ucode_update_wake_and_apply_cpu_was();
+
+ /* Enable LBRs on non-boot CPUs */
+ i386_lbr_init(cpuid_info(), false);
+ } else {
+ init_param = FAST_SLAVE_INIT;
+ }
#if CONFIG_VMX
/* resume VT operation */
- vmx_resume();
+ vmx_resume(FALSE);
#endif
#if CONFIG_MTRR
- if (!fast_restart)
- pat_init();
+ if (!fast_restart) {
+ pat_init();
+ }
#endif
- cpu_thread_init(); /* not strictly necessary */
+ cpu_thread_init(); /* not strictly necessary */
+
+ cpu_init(); /* Sets cpu_running which starter cpu waits for */
+
+
+#if MONOTONIC
+ mt_cpu_up(current_cpu_datap());
+#endif /* MONOTONIC */
+
+ slave_main(init_param);
- cpu_init(); /* Sets cpu_running which starter cpu waits for */
- slave_main(init_param);
-
- panic("do_init_slave() returned from slave_main()");
+ panic("do_init_slave() returned from slave_main()");
}
/*
void
i386_init_slave(void)
{
- do_init_slave(FALSE);
+ do_init_slave(FALSE);
}
/*
void
i386_init_slave_fast(void)
{
- do_init_slave(TRUE);
+ do_init_slave(TRUE);
+}
+
+
+/* TODO: Evaluate global PTEs for the double-mapped translations */
+
+uint64_t dblmap_base, dblmap_max;
+kernel_segment_command_t *hdescseg;
+
+pt_entry_t *dblmapL3;
+unsigned int dblallocs;
+uint64_t dblmap_dist;
+extern uint64_t idt64_hndl_table0[];
+
+
+void
+doublemap_init(uint8_t randL3)
+{
+ dblmapL3 = ALLOCPAGES(1); // for 512 1GiB entries
+ dblallocs++;
+
+ struct {
+ pt_entry_t entries[PTE_PER_PAGE];
+ } * dblmapL2 = ALLOCPAGES(1); // for 512 2MiB entries
+ dblallocs++;
+
+ dblmapL3[randL3] = ((uintptr_t)ID_MAP_VTOP(&dblmapL2[0]))
+ | INTEL_PTE_VALID
+ | INTEL_PTE_WRITE;
+
+ hdescseg = getsegbynamefromheader(&_mh_execute_header, "__HIB");
+
+ vm_offset_t hdescb = hdescseg->vmaddr;
+ unsigned long hdescsz = hdescseg->vmsize;
+ unsigned long hdescszr = round_page_64(hdescsz);
+ vm_offset_t hdescc = hdescb, hdesce = hdescb + hdescszr;
+
+ kernel_section_t *thdescsect = getsectbynamefromheader(&_mh_execute_header, "__HIB", "__text");
+ vm_offset_t thdescb = thdescsect->addr;
+ unsigned long thdescsz = thdescsect->size;
+ unsigned long thdescszr = round_page_64(thdescsz);
+ vm_offset_t thdesce = thdescb + thdescszr;
+
+ assert((hdescb & 0xFFF) == 0);
+ /* Mirror HIB translations into the double-mapped pagetable subtree*/
+ for (int i = 0; hdescc < hdesce; i++) {
+ struct {
+ pt_entry_t entries[PTE_PER_PAGE];
+ } * dblmapL1 = ALLOCPAGES(1);
+ dblallocs++;
+ dblmapL2[0].entries[i] = ((uintptr_t)ID_MAP_VTOP(&dblmapL1[0])) | INTEL_PTE_VALID | INTEL_PTE_WRITE | INTEL_PTE_REF;
+ int hdescn = (int) ((hdesce - hdescc) / PAGE_SIZE);
+ for (int j = 0; j < MIN(PTE_PER_PAGE, hdescn); j++) {
+ uint64_t template = INTEL_PTE_VALID;
+ if ((hdescc >= thdescb) && (hdescc < thdesce)) {
+ /* executable */
+ } else {
+ template |= INTEL_PTE_WRITE | INTEL_PTE_NX; /* Writeable, NX */
+ }
+ dblmapL1[0].entries[j] = ((uintptr_t)ID_MAP_VTOP(hdescc)) | template;
+ hdescc += PAGE_SIZE;
+ }
+ }
+
+ IdlePML4[KERNEL_DBLMAP_PML4_INDEX] = ((uintptr_t)ID_MAP_VTOP(dblmapL3)) | INTEL_PTE_VALID | INTEL_PTE_WRITE | INTEL_PTE_REF;
+
+ dblmap_base = KVADDR(KERNEL_DBLMAP_PML4_INDEX, randL3, 0, 0);
+ dblmap_max = dblmap_base + hdescszr;
+ /* Calculate the double-map distance, which accounts for the current
+ * KASLR slide
+ */
+
+ dblmap_dist = dblmap_base - hdescb;
+ idt64_hndl_table0[1] = DBLMAP(idt64_hndl_table0[1]); /* 64-bit exit trampoline */
+ idt64_hndl_table0[3] = DBLMAP(idt64_hndl_table0[3]); /* 32-bit exit trampoline */
+ idt64_hndl_table0[6] = (uint64_t)(uintptr_t)&kernel_stack_mask;
+
+ extern cpu_data_t cpshadows[], scdatas[];
+ uintptr_t cd1 = (uintptr_t) &cpshadows[0];
+ uintptr_t cd2 = (uintptr_t) &scdatas[0];
+/* Record the displacement from the kernel's per-CPU data pointer, eventually
+ * programmed into GSBASE, to the "shadows" in the doublemapped
+ * region. These are not aliases, but separate physical allocations
+ * containing data required in the doublemapped trampolines.
+ */
+ idt64_hndl_table0[2] = dblmap_dist + cd1 - cd2;
+
+ DBG("Double map base: 0x%qx\n", dblmap_base);
+ DBG("double map idlepml4[%d]: 0x%llx\n", KERNEL_DBLMAP_PML4_INDEX, IdlePML4[KERNEL_DBLMAP_PML4_INDEX]);
+ assert(LDTSZ > LDTSZ_MIN);
}
+vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
+
+#include <i386/pmap_internal.h>
+
+/* Use of this routine is expected to be synchronized by callers
+ * Creates non-executable aliases.
+ */
+vm_offset_t
+dyn_dblmap(vm_offset_t cva, vm_offset_t sz)
+{
+ vm_offset_t ava = dblmap_max;
+
+ assert((sz & PAGE_MASK) == 0);
+ assert(cva != 0);
+ pmap_alias(ava, cva, cva + sz, VM_PROT_READ | VM_PROT_WRITE, PMAP_EXPAND_OPTIONS_ALIASMAP);
+ dblmap_max += sz;
+ return ava - cva;
+}
+/* Adjust offsets interior to the bootstrap interrupt descriptor table to redirect
+ * control to the double-mapped interrupt vectors. The IDTR proper will be
+ * programmed via cpu_desc_load()
+ */
+void
+idt64_remap(void)
+{
+ for (int i = 0; i < IDTSZ; i++) {
+ master_idt64[i].offset64 = DBLMAP(master_idt64[i].offset64);
+ }
+}