#include <vm/vm_object.h>
#include <vm/vm_map.h>
#include <libkern/OSMalloc.h>
+#include <sys/kdebug.h>
+
+#include <san/kasan.h>
#ifdef MACH_BSD
zone_t kalloc_zone(vm_size_t);
KALLOC_ZINFO_SALLOC(vm_size_t bytes)
{
thread_t thr = current_thread();
- task_t task;
- zinfo_usage_t zinfo;
-
ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, bytes);
-
- if (kalloc_fake_zone_index != -1 &&
- (task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
- zinfo[kalloc_fake_zone_index].alloc += bytes;
}
static void
KALLOC_ZINFO_SFREE(vm_size_t bytes)
{
thread_t thr = current_thread();
- task_t task;
- zinfo_usage_t zinfo;
-
ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, bytes);
-
- if (kalloc_fake_zone_index != -1 &&
- (task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
- zinfo[kalloc_fake_zone_index].free += bytes;
}
/*
80, \
96, \
/* 6 */ 128, \
- 160, \
+ 160, 192, \
256, \
/* 9 */ 288, \
- 512, \
- 1024, \
+ 512, 576, \
+ 1024, 1152, \
/* C */ 1280, \
2048, \
4096
"kalloc.96", \
/* 6 */ "kalloc.128", \
"kalloc.160", \
+ "kalloc.192", \
"kalloc.256", \
/* 9 */ "kalloc.288", \
"kalloc.512", \
+ "kalloc.576", \
"kalloc.1024", \
+ "kalloc.1152", \
/* C */ "kalloc.1280", \
"kalloc.2048", \
"kalloc.4096"
/* 6 */ 64, 72, 88, 112, \
128, 192, \
256, 288, 384, 440, \
-/* 9 */ 512, 768, \
+/* 9 */ 512, 576, 768, \
1024, 1152, 1536, \
- 2048, 3072, \
+ 2048, 2128, 3072, \
4096, 6144
#define K_ZONE_NAMES \
/* 6 */ "kalloc.64", "kalloc.72", "kalloc.88", "kalloc.112", \
"kalloc.128", "kalloc.192", \
"kalloc.256", "kalloc.288", "kalloc.384", "kalloc.440", \
-/* 9 */ "kalloc.512", "kalloc.768", \
+/* 9 */ "kalloc.512", "kalloc.576", "kalloc.768", \
"kalloc.1024", "kalloc.1152", "kalloc.1536", \
- "kalloc.2048", "kalloc.3072", \
+ "kalloc.2048", "kalloc.2128", "kalloc.3072", \
"kalloc.4096", "kalloc.6144"
#else
kern_return_t retval;
vm_offset_t min;
vm_size_t size, kalloc_map_size;
- register int i;
+ int i;
+ vm_map_kernel_flags_t vmk_flags;
/*
* Scale the kalloc_map_size to physical memory size: stay below
if (kalloc_map_size < KALLOC_MAP_SIZE_MIN)
kalloc_map_size = KALLOC_MAP_SIZE_MIN;
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+
retval = kmem_suballoc(kernel_map, &min, kalloc_map_size,
- FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(0),
+ FALSE,
+ (VM_FLAGS_ANYWHERE),
+ vmk_flags,
+ VM_KERN_MEMORY_KALLOC,
&kalloc_map);
if (retval != KERN_SUCCESS)
for (i = 0; i < (int)MAX_K_ZONE && (size = k_zone_size[i]) < kalloc_max; i++) {
k_zone[i] = zinit(size, size, size, k_zone_name[i]);
zone_change(k_zone[i], Z_CALLERACCT, FALSE);
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) zone_change(k_zone[i], Z_TAGS_ENABLED, TRUE);
+#endif
+ zone_change(k_zone[i], Z_KASAN_QUARANTINE, FALSE);
}
/*
return (k_zone[zindex]);
}
+static vm_size_t
+vm_map_lookup_kalloc_entry_locked(
+ vm_map_t map,
+ void *addr)
+{
+ boolean_t ret;
+ vm_map_entry_t vm_entry = NULL;
+
+ ret = vm_map_lookup_entry(map, (vm_map_offset_t)addr, &vm_entry);
+ if (!ret) {
+ panic("Attempting to lookup/free an address not allocated via kalloc! (vm_map_lookup_entry() failed map: %p, addr: %p)\n",
+ map, addr);
+ }
+ if (vm_entry->vme_start != (vm_map_offset_t)addr) {
+ panic("Attempting to lookup/free the middle of a kalloc'ed element! (map: %p, addr: %p, entry: %p)\n",
+ map, addr, vm_entry);
+ }
+ if (!vm_entry->vme_atomic) {
+ panic("Attempting to lookup/free an address not managed by kalloc! (map: %p, addr: %p, entry: %p)\n",
+ map, addr, vm_entry);
+ }
+ return (vm_entry->vme_end - vm_entry->vme_start);
+}
+
+#if KASAN_KALLOC
+/*
+ * KASAN kalloc stashes the original user-requested size away in the poisoned
+ * area. Return that directly.
+ */
+vm_size_t
+kalloc_size(void *addr)
+{
+ (void)vm_map_lookup_kalloc_entry_locked; /* silence warning */
+ return kasan_user_size((vm_offset_t)addr);
+}
+#else
+vm_size_t
+kalloc_size(
+ void *addr)
+{
+ vm_map_t map;
+ vm_size_t size;
+
+ size = zone_element_size(addr, NULL);
+ if (size) {
+ return size;
+ }
+ if (((vm_offset_t)addr >= kalloc_map_min) && ((vm_offset_t)addr < kalloc_map_max)) {
+ map = kalloc_map;
+ } else {
+ map = kernel_map;
+ }
+ vm_map_lock_read(map);
+ size = vm_map_lookup_kalloc_entry_locked(map, addr);
+ vm_map_unlock_read(map);
+ return size;
+}
+#endif
+
+vm_size_t
+kalloc_bucket_size(
+ vm_size_t size)
+{
+ zone_t z;
+ vm_map_t map;
+
+ if (size < MAX_SIZE_ZDLUT) {
+ z = get_zone_dlut(size);
+ return z->elem_size;
+ }
+
+ if (size < kalloc_max_prerounded) {
+ z = get_zone_search(size, k_zindex_start);
+ return z->elem_size;
+ }
+
+ if (size >= kalloc_kernmap_size)
+ map = kernel_map;
+ else
+ map = kalloc_map;
+
+ return vm_map_round_page(size, VM_MAP_PAGE_MASK(map));
+}
+
+#if KASAN_KALLOC
+vm_size_t
+kfree_addr(void *addr)
+{
+ vm_size_t origsz = kalloc_size(addr);
+ kfree(addr, origsz);
+ return origsz;
+}
+#else
+vm_size_t
+kfree_addr(
+ void *addr)
+{
+ vm_map_t map;
+ vm_size_t size = 0;
+ kern_return_t ret;
+ zone_t z;
+
+ size = zone_element_size(addr, &z);
+ if (size) {
+ zfree(z, addr);
+ return size;
+ }
+
+ if (((vm_offset_t)addr >= kalloc_map_min) && ((vm_offset_t)addr < kalloc_map_max)) {
+ map = kalloc_map;
+ } else {
+ map = kernel_map;
+ }
+ if ((vm_offset_t)addr < VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
+ panic("kfree on an address not in the kernel & kext address range! addr: %p\n", addr);
+ }
+
+ vm_map_lock(map);
+ size = vm_map_lookup_kalloc_entry_locked(map, addr);
+ ret = vm_map_remove_locked(map,
+ vm_map_trunc_page((vm_map_offset_t)addr,
+ VM_MAP_PAGE_MASK(map)),
+ vm_map_round_page((vm_map_offset_t)addr + size,
+ VM_MAP_PAGE_MASK(map)),
+ VM_MAP_REMOVE_KUNWIRE);
+ if (ret != KERN_SUCCESS) {
+ panic("vm_map_remove_locked() failed for kalloc vm_entry! addr: %p, map: %p ret: %d\n",
+ addr, map, ret);
+ }
+ vm_map_unlock(map);
+
+ kalloc_spin_lock();
+ kalloc_large_total -= size;
+ kalloc_large_inuse--;
+ kalloc_unlock();
+
+ KALLOC_ZINFO_SFREE(size);
+ return size;
+}
+#endif
+
void *
kalloc_canblock(
- vm_size_t size,
+ vm_size_t * psize,
boolean_t canblock,
vm_allocation_site_t * site)
{
zone_t z;
+ vm_size_t size;
+ void *addr;
+ vm_tag_t tag;
+
+ tag = VM_KERN_MEMORY_KALLOC;
+ size = *psize;
+
+#if KASAN_KALLOC
+ /* expand the allocation to accomodate redzones */
+ vm_size_t req_size = size;
+ size = kasan_alloc_resize(req_size);
+#endif
if (size < MAX_SIZE_ZDLUT)
z = get_zone_dlut(size);
* krealloc can use kmem_realloc.)
*/
vm_map_t alloc_map;
- void *addr;
/* kmem_alloc could block so we return if noblock */
if (!canblock) {
return(NULL);
}
+#if KASAN_KALLOC
+ /* large allocation - use guard pages instead of small redzones */
+ size = round_page(req_size + 2 * PAGE_SIZE);
+ assert(size >= MAX_SIZE_ZDLUT && size >= kalloc_max_prerounded);
+#endif
+
if (size >= kalloc_kernmap_size)
alloc_map = kernel_map;
else
alloc_map = kalloc_map;
- vm_tag_t tag;
- tag = (site ? tag = vm_tag_alloc(site) : VM_KERN_MEMORY_KALLOC);
+ if (site) tag = vm_tag_alloc(site);
- if (kmem_alloc(alloc_map, (vm_offset_t *)&addr, size, tag) != KERN_SUCCESS) {
+ if (kmem_alloc_flags(alloc_map, (vm_offset_t *)&addr, size, tag, KMA_ATOMIC) != KERN_SUCCESS) {
if (alloc_map != kernel_map) {
if (kalloc_fallback_count++ == 0) {
printf("%s: falling back to kernel_map\n", __func__);
}
- if (kmem_alloc(kernel_map, (vm_offset_t *)&addr, size, tag) != KERN_SUCCESS)
+ if (kmem_alloc_flags(kernel_map, (vm_offset_t *)&addr, size, tag, KMA_ATOMIC) != KERN_SUCCESS)
addr = NULL;
}
else
KALLOC_ZINFO_SALLOC(size);
}
+#if KASAN_KALLOC
+ /* fixup the return address to skip the redzone */
+ addr = (void *)kasan_alloc((vm_offset_t)addr, size, req_size, PAGE_SIZE);
+#else
+ *psize = round_page(size);
+#endif
return(addr);
}
#ifdef KALLOC_DEBUG
panic("%s: z %p (%s) but requested size %lu", __func__,
z, z->zone_name, (unsigned long)size);
#endif
+
assert(size <= z->elem_size);
- return zalloc_canblock(z, canblock);
+
+#if VM_MAX_TAG_ZONES
+ if (z->tags && site)
+ {
+ tag = vm_tag_alloc(site);
+ if (!canblock && !vm_allocation_zone_totals[tag]) tag = VM_KERN_MEMORY_KALLOC;
+ }
+#endif
+
+ addr = zalloc_canblock_tag(z, canblock, size, tag);
+
+#if KASAN_KALLOC
+ /* fixup the return address to skip the redzone */
+ addr = (void *)kasan_alloc((vm_offset_t)addr, z->elem_size, req_size, KASAN_GUARD_SIZE);
+
+ /* For KASan, the redzone lives in any additional space, so don't
+ * expand the allocation. */
+#else
+ *psize = z->elem_size;
+#endif
+
+ return addr;
}
void *
{
zone_t z;
+#if KASAN_KALLOC
+ /*
+ * Resize back to the real allocation size and hand off to the KASan
+ * quarantine. `data` may then point to a different allocation.
+ */
+ vm_size_t user_size = size;
+ kasan_check_free((vm_address_t)data, size, KASAN_HEAP_KALLOC);
+ data = (void *)kasan_dealloc((vm_address_t)data, &size);
+ kasan_free(&data, &size, KASAN_HEAP_KALLOC, NULL, user_size, true);
+ if (!data) {
+ return;
+ }
+#endif
+
if (size < MAX_SIZE_ZDLUT)
z = get_zone_dlut(size);
else if (size < kalloc_max_prerounded)
return;
}
kmem_free(alloc_map, (vm_offset_t)data, size);
-
kalloc_spin_lock();
kalloc_large_total -= size;
}
#endif
-void
-kalloc_fake_zone_init(int zone_index)
-{
- kalloc_fake_zone_index = zone_index;
-}
-
-void
-kalloc_fake_zone_info(int *count,
- vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, vm_size_t *alloc_size,
- uint64_t *sum_size, int *collectable, int *exhaustable, int *caller_acct)
-{
- *count = kalloc_large_inuse;
- *cur_size = kalloc_large_total;
- *max_size = kalloc_large_max;
-
- if (kalloc_large_inuse) {
- *elem_size = kalloc_large_total / kalloc_large_inuse;
- *alloc_size = kalloc_large_total / kalloc_large_inuse;
- } else {
- *elem_size = 0;
- *alloc_size = 0;
- }
- *sum_size = kalloc_large_sum;
- *collectable = 0;
- *exhaustable = 0;
- *caller_acct = 0;
-}
-
-
void
OSMalloc_init(
void)
OSMalloc_Tagrele(tag);
}
+
+uint32_t
+OSMalloc_size(
+ void *addr)
+{
+ return (uint32_t)kalloc_size(addr);
+}
+