]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/i386/rtclock.c
xnu-6153.11.26.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
index 7cfbf2631311de3718551c617647e4a28bf33fe0..bc6fa6524b9d48e82c5213f8d69cb71d462815ab 100644 (file)
@@ -2,7 +2,7 @@
  * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- * 
+ *
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
- * 
+ *
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
- * 
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
@@ -22,7 +22,7 @@
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
+ *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
@@ -53,7 +53,7 @@
 #include <kern/timer_queue.h>
 #include <mach/vm_prot.h>
 #include <vm/pmap.h>
-#include <vm/vm_kern.h>                /* for kernel_map */
+#include <vm/vm_kern.h>         /* for kernel_map */
 #include <architecture/i386/pio.h>
 #include <i386/machine_cpu.h>
 #include <i386/cpuid.h>
 #include <sys/kdebug.h>
 #include <i386/tsc.h>
 #include <i386/rtclock_protos.h>
-#define UI_CPUFREQ_ROUNDING_FACTOR     10000000
+#define UI_CPUFREQ_ROUNDING_FACTOR      10000000
 
-int            rtclock_init(void);
+int             rtclock_init(void);
 
-uint64_t       tsc_rebase_abs_time = 0;
+uint64_t        tsc_rebase_abs_time = 0;
 
-static void    rtc_set_timescale(uint64_t cycles);
-static uint64_t        rtc_export_speed(uint64_t cycles);
+static void     rtc_set_timescale(uint64_t cycles);
+static uint64_t rtc_export_speed(uint64_t cycles);
 
 void
 rtc_timer_start(void)
@@ -115,12 +115,12 @@ _absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nan
  * used to maintain a monotonic clock, adjusted from an outside reference as needed.
  *
  * The kernel maintains nanotime information recording:
- *     - the ratio of tsc to nanoseconds
+ *      - the ratio of tsc to nanoseconds
  *       with this ratio expressed as a 32-bit scale and shift
  *       (power of 2 divider);
  *     - { tsc_base, ns_base } pair of corresponding timestamps.
  *
- * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage 
+ * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
  * for the userspace nanotime routine to read.
  *
  * All of the routines which update the nanotime data are non-reentrant.  This must
@@ -140,12 +140,12 @@ rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp)
 static inline void
 _rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
 {
-       uint64_t        tsc = rdtsc64();
+       uint64_t        tsc = rdtsc64();
 
        _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
 }
 
-static void
+void
 rtc_nanotime_init(uint64_t base)
 {
        _rtc_nanotime_init(&pal_rtc_nanotime_info, base);
@@ -162,7 +162,7 @@ rtc_nanotime_init(uint64_t base)
 void
 rtc_nanotime_init_commpage(void)
 {
-       spl_t                   s = splclock();
+       spl_t                   s = splclock();
 
        rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
        splx(s);
@@ -177,7 +177,7 @@ rtc_nanotime_init_commpage(void)
 static inline uint64_t
 rtc_nanotime_read(void)
 {
-       return  _rtc_nanotime_read(&pal_rtc_nanotime_info);
+       return _rtc_nanotime_read(&pal_rtc_nanotime_info);
 }
 
 /*
@@ -190,23 +190,23 @@ rtc_nanotime_read(void)
 void
 rtc_clock_napped(uint64_t base, uint64_t tsc_base)
 {
-       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
-       uint64_t        oldnsecs;
-       uint64_t        newnsecs;
-       uint64_t        tsc;
+       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
+       uint64_t        oldnsecs;
+       uint64_t        newnsecs;
+       uint64_t        tsc;
 
        assert(!ml_get_interrupts_enabled());
        tsc = rdtsc64();
        oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp);
        newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp);
-       
+
        /*
         * Only update the base values if time using the new base values
         * is later than the time using the old base values.
         */
        if (oldnsecs < newnsecs) {
-           _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
-           rtc_nanotime_set_commpage(rntp);
+               _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
+               rtc_nanotime_set_commpage(rntp);
        }
 }
 
@@ -219,26 +219,12 @@ rtc_clock_napped(uint64_t base, uint64_t tsc_base)
 void
 rtc_clock_adjust(uint64_t tsc_base_delta)
 {
-    pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
-
-    assert(!ml_get_interrupts_enabled());
-    assert(tsc_base_delta < 100ULL);   /* i.e. it's small */
-    _rtc_nanotime_adjust(tsc_base_delta, rntp);
-    rtc_nanotime_set_commpage(rntp);
-}
-
-void
-rtc_clock_stepping(__unused uint32_t new_frequency,
-                  __unused uint32_t old_frequency)
-{
-       panic("rtc_clock_stepping unsupported");
-}
+       pal_rtc_nanotime_t  *rntp = &pal_rtc_nanotime_info;
 
-void
-rtc_clock_stepped(__unused uint32_t new_frequency,
-                 __unused uint32_t old_frequency)
-{
-       panic("rtc_clock_stepped unsupported");
+       assert(!ml_get_interrupts_enabled());
+       assert(tsc_base_delta < 100ULL); /* i.e. it's small */
+       _rtc_nanotime_adjust(tsc_base_delta, rntp);
+       rtc_nanotime_set_commpage(rntp);
 }
 
 /*
@@ -252,9 +238,9 @@ rtc_clock_stepped(__unused uint32_t new_frequency,
  */
 void
 rtc_sleep_wakeup(
-       uint64_t                base)
+       uint64_t                base)
 {
-       /* Set fixed configuration for lapic timers */
+       /* Set fixed configuration for lapic timers */
        rtc_timer->rtc_config();
 
        /*
@@ -265,6 +251,11 @@ rtc_sleep_wakeup(
        rtc_nanotime_init(base);
 }
 
+void
+rtc_decrementer_configure(void)
+{
+       rtc_timer->rtc_config();
+}
 /*
  * rtclock_early_init() is called very early at boot to
  * establish mach_absolute_time() and set it to zero.
@@ -283,12 +274,11 @@ rtclock_early_init(void)
 int
 rtclock_init(void)
 {
-       uint64_t        cycles;
+       uint64_t        cycles;
 
        assert(!ml_get_interrupts_enabled());
 
        if (cpu_number() == master_cpu) {
-
                assert(tscFreq);
 
                /*
@@ -309,29 +299,29 @@ rtclock_init(void)
                ml_init_delay_spin_threshold(10);
        }
 
-       /* Set fixed configuration for lapic timers */
+       /* Set fixed configuration for lapic timers */
        rtc_timer->rtc_config();
        rtc_timer_start();
 
-       return (1);
+       return 1;
 }
 
-// utility routine 
+// utility routine
 // Code to calculate how many processor cycles are in a second...
 
 static void
 rtc_set_timescale(uint64_t cycles)
 {
-       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
+       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
        uint32_t    shift = 0;
-    
+
        /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */
-    
-       while ( cycles <= SLOW_TSC_THRESHOLD) {
+
+       while (cycles <= SLOW_TSC_THRESHOLD) {
                shift++;
                cycles <<= 1;
        }
-       
+
        rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
 
        rntp->shift = shift;
@@ -342,9 +332,10 @@ rtc_set_timescale(uint64_t cycles)
         * mach_absolute_time(). Instead, we convert the TSC delta since boot
         * to nanoseconds.
         */
-       if (tsc_rebase_abs_time == 0)
+       if (tsc_rebase_abs_time == 0) {
                tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds(
-                                               rdtsc64() - tsc_at_boot, rntp);
+                       rdtsc64() - tsc_at_boot, rntp);
+       }
 
        rtc_nanotime_init(0);
 }
@@ -352,104 +343,95 @@ rtc_set_timescale(uint64_t cycles)
 static uint64_t
 rtc_export_speed(uint64_t cyc_per_sec)
 {
-       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
-       uint64_t        cycles;
+       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
+       uint64_t        cycles;
 
-       if (rntp->shift != 0 )
+       if (rntp->shift != 0) {
                printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift);
-    
+       }
+
        /* Round: */
-        cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
-                       / UI_CPUFREQ_ROUNDING_FACTOR)
-                               * UI_CPUFREQ_ROUNDING_FACTOR;
+       cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR / 2))
+           / UI_CPUFREQ_ROUNDING_FACTOR)
+           * UI_CPUFREQ_ROUNDING_FACTOR;
 
        /*
         * Set current measured speed.
         */
-        if (cycles >= 0x100000000ULL) {
-            gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
-        } else {
-            gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
-        }
-        gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
+       if (cycles >= 0x100000000ULL) {
+               gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
+       } else {
+               gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
+       }
+       gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
 
        kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
-       return(cycles);
+       return cycles;
 }
 
 void
 clock_get_system_microtime(
-       clock_sec_t                     *secs,
-       clock_usec_t            *microsecs)
+       clock_sec_t                     *secs,
+       clock_usec_t            *microsecs)
 {
-       uint64_t        now = rtc_nanotime_read();
+       uint64_t        now = rtc_nanotime_read();
 
        _absolutetime_to_microtime(now, secs, microsecs);
 }
 
 void
 clock_get_system_nanotime(
-       clock_sec_t                     *secs,
-       clock_nsec_t            *nanosecs)
+       clock_sec_t                     *secs,
+       clock_nsec_t            *nanosecs)
 {
-       uint64_t        now = rtc_nanotime_read();
+       uint64_t        now = rtc_nanotime_read();
 
        _absolutetime_to_nanotime(now, secs, nanosecs);
 }
 
 void
-clock_gettimeofday_set_commpage(
-       uint64_t                                abstime,
-       uint64_t                                epoch,
-       uint64_t                                offset,
-       clock_sec_t                             *secs,
-       clock_usec_t                    *microsecs)
+clock_gettimeofday_set_commpage(uint64_t abstime, uint64_t sec, uint64_t frac, uint64_t scale, uint64_t tick_per_sec)
 {
-       uint64_t        now = abstime + offset;
-       uint32_t        remain;
-
-       remain = _absolutetime_to_microtime(now, secs, microsecs);
-
-       *secs += (clock_sec_t)epoch;
-
-       commpage_set_timestamp(abstime - remain, *secs);
+       commpage_set_timestamp(abstime, sec, frac, scale, tick_per_sec);
 }
 
 void
 clock_timebase_info(
-       mach_timebase_info_t    info)
+       mach_timebase_info_t    info)
 {
        info->numer = info->denom =  1;
-}      
+}
 
 /*
  * Real-time clock device interrupt.
  */
 void
 rtclock_intr(
-       x86_saved_state_t       *tregs)
+       x86_saved_state_t       *tregs)
 {
-        uint64_t       rip;
-       boolean_t       user_mode = FALSE;
+       uint64_t        rip;
+       boolean_t       user_mode = FALSE;
 
        assert(get_preemption_level() > 0);
        assert(!ml_get_interrupts_enabled());
 
        if (is_saved_state64(tregs) == TRUE) {
-               x86_saved_state64_t     *regs;
-                 
+               x86_saved_state64_t     *regs;
+
                regs = saved_state64(tregs);
 
-               if (regs->isf.cs & 0x03)
+               if (regs->isf.cs & 0x03) {
                        user_mode = TRUE;
+               }
                rip = regs->isf.rip;
        } else {
-               x86_saved_state32_t     *regs;
+               x86_saved_state32_t     *regs;
 
                regs = saved_state32(tregs);
 
-               if (regs->cs & 0x03)
-                       user_mode = TRUE;
+               if (regs->cs & 0x03) {
+                       user_mode = TRUE;
+               }
                rip = regs->eip;
        }
 
@@ -459,28 +441,28 @@ rtclock_intr(
 
 
 /*
- *     Request timer pop from the hardware 
+ *     Request timer pop from the hardware
  */
 
 uint64_t
 setPop(uint64_t time)
 {
-       uint64_t        now;
-       uint64_t        pop;
+       uint64_t        now;
+       uint64_t        pop;
 
        /* 0 and EndOfAllTime are special-cases for "clear the timer" */
-       if (time == 0 || time == EndOfAllTime ) {
+       if (time == 0 || time == EndOfAllTime) {
                time = EndOfAllTime;
                now = 0;
                pop = rtc_timer->rtc_set(0, 0);
        } else {
-               now = rtc_nanotime_read();      /* The time in nanoseconds */
+               now = rtc_nanotime_read();      /* The time in nanoseconds */
                pop = rtc_timer->rtc_set(time, now);
        }
 
        /* Record requested and actual deadlines set */
        x86_lcpu()->rtcDeadline = time;
-       x86_lcpu()->rtcPop      = pop;
+       x86_lcpu()->rtcPop      = pop;
 
        return pop - now;
 }
@@ -499,43 +481,43 @@ mach_approximate_time(void)
 
 void
 clock_interval_to_absolutetime_interval(
-       uint32_t                interval,
-       uint32_t                scale_factor,
-       uint64_t                *result)
+       uint32_t                interval,
+       uint32_t                scale_factor,
+       uint64_t                *result)
 {
        *result = (uint64_t)interval * scale_factor;
 }
 
 void
 absolutetime_to_microtime(
-       uint64_t                        abstime,
-       clock_sec_t                     *secs,
-       clock_usec_t            *microsecs)
+       uint64_t                        abstime,
+       clock_sec_t                     *secs,
+       clock_usec_t            *microsecs)
 {
        _absolutetime_to_microtime(abstime, secs, microsecs);
 }
 
 void
 nanotime_to_absolutetime(
-       clock_sec_t                     secs,
-       clock_nsec_t            nanosecs,
-       uint64_t                        *result)
+       clock_sec_t                     secs,
+       clock_nsec_t            nanosecs,
+       uint64_t                        *result)
 {
        *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
 }
 
 void
 absolutetime_to_nanoseconds(
-       uint64_t                abstime,
-       uint64_t                *result)
+       uint64_t                abstime,
+       uint64_t                *result)
 {
        *result = abstime;
 }
 
 void
 nanoseconds_to_absolutetime(
-       uint64_t                nanoseconds,
-       uint64_t                *result)
+       uint64_t                nanoseconds,
+       uint64_t                *result)
 {
        *result = nanoseconds;
 }
@@ -543,10 +525,10 @@ nanoseconds_to_absolutetime(
 void
 machine_delay_until(
        uint64_t interval,
-       uint64_t                deadline)
+       uint64_t                deadline)
 {
        (void)interval;
        while (mach_absolute_time() < deadline) {
                cpu_pause();
-       } 
+       }
 }