* Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
#include <kern/timer_queue.h>
#include <mach/vm_prot.h>
#include <vm/pmap.h>
-#include <vm/vm_kern.h> /* for kernel_map */
+#include <vm/vm_kern.h> /* for kernel_map */
#include <architecture/i386/pio.h>
#include <i386/machine_cpu.h>
#include <i386/cpuid.h>
#include <sys/kdebug.h>
#include <i386/tsc.h>
#include <i386/rtclock_protos.h>
-#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
+#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
-int rtclock_init(void);
+int rtclock_init(void);
-uint64_t tsc_rebase_abs_time = 0;
+uint64_t tsc_rebase_abs_time = 0;
-static void rtc_set_timescale(uint64_t cycles);
-static uint64_t rtc_export_speed(uint64_t cycles);
+static void rtc_set_timescale(uint64_t cycles);
+static uint64_t rtc_export_speed(uint64_t cycles);
void
rtc_timer_start(void)
* used to maintain a monotonic clock, adjusted from an outside reference as needed.
*
* The kernel maintains nanotime information recording:
- * - the ratio of tsc to nanoseconds
+ * - the ratio of tsc to nanoseconds
* with this ratio expressed as a 32-bit scale and shift
* (power of 2 divider);
* - { tsc_base, ns_base } pair of corresponding timestamps.
*
- * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
+ * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
* for the userspace nanotime routine to read.
*
* All of the routines which update the nanotime data are non-reentrant. This must
static inline void
_rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
{
- uint64_t tsc = rdtsc64();
+ uint64_t tsc = rdtsc64();
_pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
}
-static void
+void
rtc_nanotime_init(uint64_t base)
{
_rtc_nanotime_init(&pal_rtc_nanotime_info, base);
void
rtc_nanotime_init_commpage(void)
{
- spl_t s = splclock();
+ spl_t s = splclock();
rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
splx(s);
static inline uint64_t
rtc_nanotime_read(void)
{
- return _rtc_nanotime_read(&pal_rtc_nanotime_info);
+ return _rtc_nanotime_read(&pal_rtc_nanotime_info);
}
/*
void
rtc_clock_napped(uint64_t base, uint64_t tsc_base)
{
- pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
- uint64_t oldnsecs;
- uint64_t newnsecs;
- uint64_t tsc;
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
+ uint64_t oldnsecs;
+ uint64_t newnsecs;
+ uint64_t tsc;
assert(!ml_get_interrupts_enabled());
tsc = rdtsc64();
oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp);
newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp);
-
+
/*
* Only update the base values if time using the new base values
* is later than the time using the old base values.
*/
if (oldnsecs < newnsecs) {
- _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
- rtc_nanotime_set_commpage(rntp);
+ _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
+ rtc_nanotime_set_commpage(rntp);
}
}
void
rtc_clock_adjust(uint64_t tsc_base_delta)
{
- pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
-
- assert(!ml_get_interrupts_enabled());
- assert(tsc_base_delta < 100ULL); /* i.e. it's small */
- _rtc_nanotime_adjust(tsc_base_delta, rntp);
- rtc_nanotime_set_commpage(rntp);
-}
-
-void
-rtc_clock_stepping(__unused uint32_t new_frequency,
- __unused uint32_t old_frequency)
-{
- panic("rtc_clock_stepping unsupported");
-}
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
-void
-rtc_clock_stepped(__unused uint32_t new_frequency,
- __unused uint32_t old_frequency)
-{
- panic("rtc_clock_stepped unsupported");
+ assert(!ml_get_interrupts_enabled());
+ assert(tsc_base_delta < 100ULL); /* i.e. it's small */
+ _rtc_nanotime_adjust(tsc_base_delta, rntp);
+ rtc_nanotime_set_commpage(rntp);
}
/*
*/
void
rtc_sleep_wakeup(
- uint64_t base)
+ uint64_t base)
{
- /* Set fixed configuration for lapic timers */
+ /* Set fixed configuration for lapic timers */
rtc_timer->rtc_config();
/*
rtc_nanotime_init(base);
}
+void
+rtc_decrementer_configure(void)
+{
+ rtc_timer->rtc_config();
+}
/*
* rtclock_early_init() is called very early at boot to
* establish mach_absolute_time() and set it to zero.
int
rtclock_init(void)
{
- uint64_t cycles;
+ uint64_t cycles;
assert(!ml_get_interrupts_enabled());
if (cpu_number() == master_cpu) {
-
assert(tscFreq);
/*
ml_init_delay_spin_threshold(10);
}
- /* Set fixed configuration for lapic timers */
+ /* Set fixed configuration for lapic timers */
rtc_timer->rtc_config();
rtc_timer_start();
- return (1);
+ return 1;
}
-// utility routine
+// utility routine
// Code to calculate how many processor cycles are in a second...
static void
rtc_set_timescale(uint64_t cycles)
{
- pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
uint32_t shift = 0;
-
+
/* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */
-
- while ( cycles <= SLOW_TSC_THRESHOLD) {
+
+ while (cycles <= SLOW_TSC_THRESHOLD) {
shift++;
cycles <<= 1;
}
-
+
rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
rntp->shift = shift;
* mach_absolute_time(). Instead, we convert the TSC delta since boot
* to nanoseconds.
*/
- if (tsc_rebase_abs_time == 0)
+ if (tsc_rebase_abs_time == 0) {
tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds(
- rdtsc64() - tsc_at_boot, rntp);
+ rdtsc64() - tsc_at_boot, rntp);
+ }
rtc_nanotime_init(0);
}
static uint64_t
rtc_export_speed(uint64_t cyc_per_sec)
{
- pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
- uint64_t cycles;
+ pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
+ uint64_t cycles;
- if (rntp->shift != 0 )
+ if (rntp->shift != 0) {
printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift);
-
+ }
+
/* Round: */
- cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
- / UI_CPUFREQ_ROUNDING_FACTOR)
- * UI_CPUFREQ_ROUNDING_FACTOR;
+ cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR / 2))
+ / UI_CPUFREQ_ROUNDING_FACTOR)
+ * UI_CPUFREQ_ROUNDING_FACTOR;
/*
* Set current measured speed.
*/
- if (cycles >= 0x100000000ULL) {
- gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
- } else {
- gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
- }
- gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
+ if (cycles >= 0x100000000ULL) {
+ gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
+ } else {
+ gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
+ }
+ gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
- return(cycles);
+ return cycles;
}
void
clock_get_system_microtime(
- clock_sec_t *secs,
- clock_usec_t *microsecs)
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
- uint64_t now = rtc_nanotime_read();
+ uint64_t now = rtc_nanotime_read();
_absolutetime_to_microtime(now, secs, microsecs);
}
void
clock_get_system_nanotime(
- clock_sec_t *secs,
- clock_nsec_t *nanosecs)
+ clock_sec_t *secs,
+ clock_nsec_t *nanosecs)
{
- uint64_t now = rtc_nanotime_read();
+ uint64_t now = rtc_nanotime_read();
_absolutetime_to_nanotime(now, secs, nanosecs);
}
void
-clock_gettimeofday_set_commpage(
- uint64_t abstime,
- uint64_t epoch,
- uint64_t offset,
- clock_sec_t *secs,
- clock_usec_t *microsecs)
+clock_gettimeofday_set_commpage(uint64_t abstime, uint64_t sec, uint64_t frac, uint64_t scale, uint64_t tick_per_sec)
{
- uint64_t now = abstime + offset;
- uint32_t remain;
-
- remain = _absolutetime_to_microtime(now, secs, microsecs);
-
- *secs += (clock_sec_t)epoch;
-
- commpage_set_timestamp(abstime - remain, *secs);
+ commpage_set_timestamp(abstime, sec, frac, scale, tick_per_sec);
}
void
clock_timebase_info(
- mach_timebase_info_t info)
+ mach_timebase_info_t info)
{
info->numer = info->denom = 1;
-}
+}
/*
* Real-time clock device interrupt.
*/
void
rtclock_intr(
- x86_saved_state_t *tregs)
+ x86_saved_state_t *tregs)
{
- uint64_t rip;
- boolean_t user_mode = FALSE;
+ uint64_t rip;
+ boolean_t user_mode = FALSE;
assert(get_preemption_level() > 0);
assert(!ml_get_interrupts_enabled());
if (is_saved_state64(tregs) == TRUE) {
- x86_saved_state64_t *regs;
-
+ x86_saved_state64_t *regs;
+
regs = saved_state64(tregs);
- if (regs->isf.cs & 0x03)
+ if (regs->isf.cs & 0x03) {
user_mode = TRUE;
+ }
rip = regs->isf.rip;
} else {
- x86_saved_state32_t *regs;
+ x86_saved_state32_t *regs;
regs = saved_state32(tregs);
- if (regs->cs & 0x03)
- user_mode = TRUE;
+ if (regs->cs & 0x03) {
+ user_mode = TRUE;
+ }
rip = regs->eip;
}
/*
- * Request timer pop from the hardware
+ * Request timer pop from the hardware
*/
uint64_t
setPop(uint64_t time)
{
- uint64_t now;
- uint64_t pop;
+ uint64_t now;
+ uint64_t pop;
/* 0 and EndOfAllTime are special-cases for "clear the timer" */
- if (time == 0 || time == EndOfAllTime ) {
+ if (time == 0 || time == EndOfAllTime) {
time = EndOfAllTime;
now = 0;
pop = rtc_timer->rtc_set(0, 0);
} else {
- now = rtc_nanotime_read(); /* The time in nanoseconds */
+ now = rtc_nanotime_read(); /* The time in nanoseconds */
pop = rtc_timer->rtc_set(time, now);
}
/* Record requested and actual deadlines set */
x86_lcpu()->rtcDeadline = time;
- x86_lcpu()->rtcPop = pop;
+ x86_lcpu()->rtcPop = pop;
return pop - now;
}
void
clock_interval_to_absolutetime_interval(
- uint32_t interval,
- uint32_t scale_factor,
- uint64_t *result)
+ uint32_t interval,
+ uint32_t scale_factor,
+ uint64_t *result)
{
*result = (uint64_t)interval * scale_factor;
}
void
absolutetime_to_microtime(
- uint64_t abstime,
- clock_sec_t *secs,
- clock_usec_t *microsecs)
+ uint64_t abstime,
+ clock_sec_t *secs,
+ clock_usec_t *microsecs)
{
_absolutetime_to_microtime(abstime, secs, microsecs);
}
void
nanotime_to_absolutetime(
- clock_sec_t secs,
- clock_nsec_t nanosecs,
- uint64_t *result)
+ clock_sec_t secs,
+ clock_nsec_t nanosecs,
+ uint64_t *result)
{
*result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
}
void
absolutetime_to_nanoseconds(
- uint64_t abstime,
- uint64_t *result)
+ uint64_t abstime,
+ uint64_t *result)
{
*result = abstime;
}
void
nanoseconds_to_absolutetime(
- uint64_t nanoseconds,
- uint64_t *result)
+ uint64_t nanoseconds,
+ uint64_t *result)
{
*result = nanoseconds;
}
void
machine_delay_until(
uint64_t interval,
- uint64_t deadline)
+ uint64_t deadline)
{
(void)interval;
while (mach_absolute_time() < deadline) {
cpu_pause();
- }
+ }
}