#include <machine/machine_cpu.h>
#include <machine/machlimits.h>
+#ifdef CONFIG_MACH_APPROXIMATE_TIME
+#include <machine/commpage.h>
+#endif
+
#include <kern/kern_types.h>
#include <kern/clock.h>
#include <kern/counters.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/debug.h>
-#include <kern/lock.h>
#include <kern/macro_help.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/queue.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
+#include <kern/sfi.h>
#include <kern/syscall_subr.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/pms.h>
+#if defined(CONFIG_TELEMETRY) && defined(CONFIG_SCHED_TIMESHARE_CORE)
+#include <kern/telemetry.h>
+#endif
+
struct rt_queue rt_runq;
#define RT_RUNQ ((processor_t)-1)
decl_simple_lock_data(static,rt_lock);
-#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+#if defined(CONFIG_SCHED_FAIRSHARE_CORE)
static struct fairshare_queue fs_runq;
#define FS_RUNQ ((processor_t)-2)
decl_simple_lock_data(static,fs_lock);
-#endif
+#endif /* CONFIG_SCHED_FAIRSHARE_CORE */
#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
uint64_t max_unsafe_computation;
uint64_t sched_safe_duration;
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
uint32_t std_quantum;
uint32_t min_std_quantum;
uint32_t std_quantum_us;
uint32_t bg_quantum_us;
-#endif /* CONFIG_SCHED_TRADITIONAL */
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
uint32_t thread_depress_time;
uint32_t default_timeshare_computation;
uint32_t max_rt_quantum;
uint32_t min_rt_quantum;
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
unsigned sched_tick;
uint32_t sched_tick_interval;
+#if defined(CONFIG_TELEMETRY)
+uint32_t sched_telemetry_interval;
+#endif /* CONFIG_TELEMETRY */
uint32_t sched_pri_shift = INT8_MAX;
uint32_t sched_background_pri_shift = INT8_MAX;
uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */
-static boolean_t sched_traditional_use_pset_runqueue = FALSE;
+/* Allow foreground to decay past default to resolve inversions */
+#define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2)
+int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
/* Defaults for timer deadline profiling */
#define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <=
thread_t sched_maintenance_thread;
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
+static boolean_t sched_traditional_use_pset_runqueue = FALSE;
+
__attribute__((always_inline))
static inline run_queue_t runq_for_processor(processor_t processor)
{
/* Forwards */
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
static void load_shift_init(void);
static void preempt_pri_init(void);
-#endif /* CONFIG_SCHED_TRADITIONAL */
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
static thread_t thread_select(
thread_t thread,
- processor_t processor);
+ processor_t processor,
+ ast_t reason);
#if CONFIG_SCHED_IDLE_IN_PLACE
static thread_t thread_select_idle(
ast_t
csw_check_locked( processor_t processor,
- processor_set_t pset);
+ processor_set_t pset,
+ ast_t check_reason);
#if defined(CONFIG_SCHED_TRADITIONAL)
static boolean_t processor_queue_empty(processor_t processor);
-static boolean_t priority_is_urgent(int priority);
-
static ast_t processor_csw_check(processor_t processor);
static boolean_t processor_queue_has_priority(processor_t processor,
static uint64_t sched_traditional_processor_runq_stats_count_sum(processor_t processor);
static uint64_t sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum(processor_t processor);
-#endif
-
-#if defined(CONFIG_SCHED_TRADITIONAL)
+static int sched_traditional_processor_bound_count(processor_t processor);
-static void
-sched_traditional_init(void);
+#endif
-static void
-sched_traditional_timebase_init(void);
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
static void
sched_traditional_processor_init(processor_t processor);
sched_timer_deadline_tracking_init(void);
#if defined(CONFIG_SCHED_TRADITIONAL)
-static void
-sched_traditional_maintenance_continue(void);
-
-static uint32_t
-sched_traditional_initial_quantum_size(thread_t thread);
static sched_mode_t
sched_traditional_initial_thread_sched_mode(task_t parent_task);
-static boolean_t
-sched_traditional_supports_timeshare_mode(void);
-
static thread_t
sched_traditional_choose_thread(
- processor_t processor,
- int priority);
+ processor_t processor,
+ int priority,
+ __unused ast_t reason);
#endif
#define TLOG(a, fmt, args...) do {} while (0)
#endif
-#if DEBUG
-static
+__assert_only static
boolean_t thread_runnable(
thread_t thread);
-#endif /*DEBUG*/
-
/*
* State machine
*
*
*/
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
int8_t sched_load_shifts[NRQS];
int sched_preempt_pri[NRQBM];
-#endif
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
#if defined(CONFIG_SCHED_TRADITIONAL)
const struct sched_dispatch_table sched_traditional_dispatch = {
- sched_traditional_init,
- sched_traditional_timebase_init,
- sched_traditional_processor_init,
- sched_traditional_pset_init,
- sched_traditional_maintenance_continue,
- sched_traditional_choose_thread,
- steal_thread,
- compute_priority,
- choose_processor,
- processor_enqueue,
- processor_queue_shutdown,
- processor_queue_remove,
- processor_queue_empty,
- priority_is_urgent,
- processor_csw_check,
- processor_queue_has_priority,
- sched_traditional_initial_quantum_size,
- sched_traditional_initial_thread_sched_mode,
- sched_traditional_supports_timeshare_mode,
- can_update_priority,
- update_priority,
- lightweight_update_priority,
- sched_traditional_quantum_expire,
- should_current_thread_rechoose_processor,
- sched_traditional_processor_runq_count,
- sched_traditional_processor_runq_stats_count_sum,
- sched_traditional_fairshare_init,
- sched_traditional_fairshare_runq_count,
- sched_traditional_fairshare_runq_stats_count_sum,
- sched_traditional_fairshare_enqueue,
- sched_traditional_fairshare_dequeue,
- sched_traditional_fairshare_queue_remove,
- TRUE /* direct_dispatch_to_idle_processors */
+ .init = sched_traditional_init,
+ .timebase_init = sched_traditional_timebase_init,
+ .processor_init = sched_traditional_processor_init,
+ .pset_init = sched_traditional_pset_init,
+ .maintenance_continuation = sched_traditional_maintenance_continue,
+ .choose_thread = sched_traditional_choose_thread,
+ .steal_thread = steal_thread,
+ .compute_priority = compute_priority,
+ .choose_processor = choose_processor,
+ .processor_enqueue = processor_enqueue,
+ .processor_queue_shutdown = processor_queue_shutdown,
+ .processor_queue_remove = processor_queue_remove,
+ .processor_queue_empty = processor_queue_empty,
+ .priority_is_urgent = priority_is_urgent,
+ .processor_csw_check = processor_csw_check,
+ .processor_queue_has_priority = processor_queue_has_priority,
+ .initial_quantum_size = sched_traditional_initial_quantum_size,
+ .initial_thread_sched_mode = sched_traditional_initial_thread_sched_mode,
+ .can_update_priority = can_update_priority,
+ .update_priority = update_priority,
+ .lightweight_update_priority = lightweight_update_priority,
+ .quantum_expire = sched_traditional_quantum_expire,
+ .should_current_thread_rechoose_processor = should_current_thread_rechoose_processor,
+ .processor_runq_count = sched_traditional_processor_runq_count,
+ .processor_runq_stats_count_sum = sched_traditional_processor_runq_stats_count_sum,
+ .fairshare_init = sched_traditional_fairshare_init,
+ .fairshare_runq_count = sched_traditional_fairshare_runq_count,
+ .fairshare_runq_stats_count_sum = sched_traditional_fairshare_runq_stats_count_sum,
+ .fairshare_enqueue = sched_traditional_fairshare_enqueue,
+ .fairshare_dequeue = sched_traditional_fairshare_dequeue,
+ .fairshare_queue_remove = sched_traditional_fairshare_queue_remove,
+ .processor_bound_count = sched_traditional_processor_bound_count,
+ .thread_update_scan = thread_update_scan,
+ .direct_dispatch_to_idle_processors = TRUE,
};
const struct sched_dispatch_table sched_traditional_with_pset_runqueue_dispatch = {
- sched_traditional_with_pset_runqueue_init,
- sched_traditional_timebase_init,
- sched_traditional_processor_init,
- sched_traditional_pset_init,
- sched_traditional_maintenance_continue,
- sched_traditional_choose_thread,
- steal_thread,
- compute_priority,
- choose_processor,
- processor_enqueue,
- processor_queue_shutdown,
- processor_queue_remove,
- sched_traditional_with_pset_runqueue_processor_queue_empty,
- priority_is_urgent,
- processor_csw_check,
- processor_queue_has_priority,
- sched_traditional_initial_quantum_size,
- sched_traditional_initial_thread_sched_mode,
- sched_traditional_supports_timeshare_mode,
- can_update_priority,
- update_priority,
- lightweight_update_priority,
- sched_traditional_quantum_expire,
- should_current_thread_rechoose_processor,
- sched_traditional_processor_runq_count,
- sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum,
- sched_traditional_fairshare_init,
- sched_traditional_fairshare_runq_count,
- sched_traditional_fairshare_runq_stats_count_sum,
- sched_traditional_fairshare_enqueue,
- sched_traditional_fairshare_dequeue,
- sched_traditional_fairshare_queue_remove,
- FALSE /* direct_dispatch_to_idle_processors */
+ .init = sched_traditional_with_pset_runqueue_init,
+ .timebase_init = sched_traditional_timebase_init,
+ .processor_init = sched_traditional_processor_init,
+ .pset_init = sched_traditional_pset_init,
+ .maintenance_continuation = sched_traditional_maintenance_continue,
+ .choose_thread = sched_traditional_choose_thread,
+ .steal_thread = steal_thread,
+ .compute_priority = compute_priority,
+ .choose_processor = choose_processor,
+ .processor_enqueue = processor_enqueue,
+ .processor_queue_shutdown = processor_queue_shutdown,
+ .processor_queue_remove = processor_queue_remove,
+ .processor_queue_empty = sched_traditional_with_pset_runqueue_processor_queue_empty,
+ .priority_is_urgent = priority_is_urgent,
+ .processor_csw_check = processor_csw_check,
+ .processor_queue_has_priority = processor_queue_has_priority,
+ .initial_quantum_size = sched_traditional_initial_quantum_size,
+ .initial_thread_sched_mode = sched_traditional_initial_thread_sched_mode,
+ .can_update_priority = can_update_priority,
+ .update_priority = update_priority,
+ .lightweight_update_priority = lightweight_update_priority,
+ .quantum_expire = sched_traditional_quantum_expire,
+ .should_current_thread_rechoose_processor = should_current_thread_rechoose_processor,
+ .processor_runq_count = sched_traditional_processor_runq_count,
+ .processor_runq_stats_count_sum = sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum,
+ .fairshare_init = sched_traditional_fairshare_init,
+ .fairshare_runq_count = sched_traditional_fairshare_runq_count,
+ .fairshare_runq_stats_count_sum = sched_traditional_fairshare_runq_stats_count_sum,
+ .fairshare_enqueue = sched_traditional_fairshare_enqueue,
+ .fairshare_dequeue = sched_traditional_fairshare_dequeue,
+ .fairshare_queue_remove = sched_traditional_fairshare_queue_remove,
+ .processor_bound_count = sched_traditional_processor_bound_count,
+ .thread_update_scan = thread_update_scan,
+ .direct_dispatch_to_idle_processors = FALSE,
};
#endif
}
}
+
+ if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) {
+ /* No boot-args, check in device tree */
+ if (!PE_get_default("kern.sched_pri_decay_limit",
+ &sched_pri_decay_band_limit,
+ sizeof(sched_pri_decay_band_limit))) {
+ /* Allow decay all the way to normal limits */
+ sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
+ }
+ }
+
+ kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit);
+
if (strlen(sched_arg) > 0) {
if (0) {
/* Allow pattern below */
sched_current_dispatch = &sched_traditional_dispatch;
_sched_enum = sched_enum_traditional;
strlcpy(sched_string, kSchedTraditionalString, sizeof(sched_string));
- kprintf("Scheduler: Runtime selection of %s\n", kSchedTraditionalString);
} else if (0 == strcmp(sched_arg, kSchedTraditionalWithPsetRunqueueString)) {
sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
_sched_enum = sched_enum_traditional_with_pset_runqueue;
strlcpy(sched_string, kSchedTraditionalWithPsetRunqueueString, sizeof(sched_string));
- kprintf("Scheduler: Runtime selection of %s\n", kSchedTraditionalWithPsetRunqueueString);
#endif
#if defined(CONFIG_SCHED_PROTO)
} else if (0 == strcmp(sched_arg, kSchedProtoString)) {
sched_current_dispatch = &sched_proto_dispatch;
_sched_enum = sched_enum_proto;
strlcpy(sched_string, kSchedProtoString, sizeof(sched_string));
- kprintf("Scheduler: Runtime selection of %s\n", kSchedProtoString);
#endif
#if defined(CONFIG_SCHED_GRRR)
} else if (0 == strcmp(sched_arg, kSchedGRRRString)) {
sched_current_dispatch = &sched_grrr_dispatch;
_sched_enum = sched_enum_grrr;
strlcpy(sched_string, kSchedGRRRString, sizeof(sched_string));
- kprintf("Scheduler: Runtime selection of %s\n", kSchedGRRRString);
#endif
-#if defined(CONFIG_SCHED_FIXEDPRIORITY)
- } else if (0 == strcmp(sched_arg, kSchedFixedPriorityString)) {
- sched_current_dispatch = &sched_fixedpriority_dispatch;
- _sched_enum = sched_enum_fixedpriority;
- strlcpy(sched_string, kSchedFixedPriorityString, sizeof(sched_string));
- kprintf("Scheduler: Runtime selection of %s\n", kSchedFixedPriorityString);
- } else if (0 == strcmp(sched_arg, kSchedFixedPriorityWithPsetRunqueueString)) {
- sched_current_dispatch = &sched_fixedpriority_with_pset_runqueue_dispatch;
- _sched_enum = sched_enum_fixedpriority_with_pset_runqueue;
- strlcpy(sched_string, kSchedFixedPriorityWithPsetRunqueueString, sizeof(sched_string));
- kprintf("Scheduler: Runtime selection of %s\n", kSchedFixedPriorityWithPsetRunqueueString);
+#if defined(CONFIG_SCHED_MULTIQ)
+ } else if (0 == strcmp(sched_arg, kSchedMultiQString)) {
+ sched_current_dispatch = &sched_multiq_dispatch;
+ _sched_enum = sched_enum_multiq;
+ strlcpy(sched_string, kSchedMultiQString, sizeof(sched_string));
+ } else if (0 == strcmp(sched_arg, kSchedDualQString)) {
+ sched_current_dispatch = &sched_dualq_dispatch;
+ _sched_enum = sched_enum_dualq;
+ strlcpy(sched_string, kSchedDualQString, sizeof(sched_string));
#endif
} else {
+#if defined(CONFIG_SCHED_TRADITIONAL)
+ printf("Unrecognized scheduler algorithm: %s\n", sched_arg);
+ printf("Scheduler: Using instead: %s\n", kSchedTraditionalWithPsetRunqueueString);
+
+ sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
+ _sched_enum = sched_enum_traditional_with_pset_runqueue;
+ strlcpy(sched_string, kSchedTraditionalWithPsetRunqueueString, sizeof(sched_string));
+#else
panic("Unrecognized scheduler algorithm: %s", sched_arg);
+#endif
}
+ kprintf("Scheduler: Runtime selection of %s\n", sched_string);
} else {
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_MULTIQ)
+ sched_current_dispatch = &sched_multiq_dispatch;
+ _sched_enum = sched_enum_multiq;
+ strlcpy(sched_string, kSchedMultiQString, sizeof(sched_string));
+#elif defined(CONFIG_SCHED_TRADITIONAL)
sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
_sched_enum = sched_enum_traditional_with_pset_runqueue;
strlcpy(sched_string, kSchedTraditionalWithPsetRunqueueString, sizeof(sched_string));
- kprintf("Scheduler: Default of %s\n", kSchedTraditionalWithPsetRunqueueString);
#elif defined(CONFIG_SCHED_PROTO)
sched_current_dispatch = &sched_proto_dispatch;
_sched_enum = sched_enum_proto;
strlcpy(sched_string, kSchedProtoString, sizeof(sched_string));
- kprintf("Scheduler: Default of %s\n", kSchedProtoString);
#elif defined(CONFIG_SCHED_GRRR)
sched_current_dispatch = &sched_grrr_dispatch;
_sched_enum = sched_enum_grrr;
strlcpy(sched_string, kSchedGRRRString, sizeof(sched_string));
- kprintf("Scheduler: Default of %s\n", kSchedGRRRString);
-#elif defined(CONFIG_SCHED_FIXEDPRIORITY)
- sched_current_dispatch = &sched_fixedpriority_dispatch;
- _sched_enum = sched_enum_fixedpriority;
- strlcpy(sched_string, kSchedFixedPriorityString, sizeof(sched_string));
- kprintf("Scheduler: Default of %s\n", kSchedFixedPriorityString);
#else
#error No default scheduler implementation
#endif
+ kprintf("Scheduler: Default of %s\n", sched_string);
}
SCHED(init)();
sched_realtime_timebase_init();
}
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
-static void
+void
sched_traditional_init(void)
{
/*
sched_tick = 0;
}
-static void
+void
sched_traditional_timebase_init(void)
{
uint64_t abstime;
abstime >>= 1;
sched_fixed_shift = shift;
- max_unsafe_computation = max_unsafe_quanta * std_quantum;
- sched_safe_duration = 2 * max_unsafe_quanta * std_quantum;
+ max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum;
+ sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum;
- max_poll_computation = max_poll_quanta * std_quantum;
+ max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum;
thread_depress_time = 1 * std_quantum;
default_timeshare_computation = std_quantum / 2;
default_timeshare_constraint = std_quantum;
+#if defined(CONFIG_TELEMETRY)
+ /* interval for high frequency telemetry */
+ clock_interval_to_absolutetime_interval(10, NSEC_PER_MSEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ sched_telemetry_interval = (uint32_t)abstime;
+#endif
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
static void
sched_traditional_processor_init(processor_t processor)
{
#endif /* CONFIG_SCHED_TRADITIONAL */
-#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+#if defined(CONFIG_SCHED_FAIRSHARE_CORE)
void
sched_traditional_fairshare_init(void)
{
fs_runq.count = 0;
queue_init(&fs_runq.queue);
}
-#endif
+#endif /* CONFIG_SCHED_FAIRSHARE_CORE */
static void
sched_realtime_init(void)
}
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
/*
* Set up values for timeshare
setbit(i, p);
}
-#endif /* CONFIG_SCHED_TRADITIONAL */
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
/*
* Thread wait timer expiration.
{
boolean_t result = FALSE;
thread_t cthread = current_thread();
+ uint32_t new_run_count;
/*
* Set wait_result.
/*
* Update run counts.
*/
- sched_run_incr();
+ new_run_count = sched_run_incr(thread);
if (thread->sched_mode == TH_MODE_TIMESHARE) {
- sched_share_incr();
+ sched_share_incr(thread);
- if (thread->max_priority <= MAXPRI_THROTTLE)
- sched_background_incr();
+ if (thread->sched_flags & TH_SFLAG_THROTTLED)
+ sched_background_incr(thread);
}
}
else {
assert((thread->state & TH_IDLE) == 0);
#endif
+ new_run_count = sched_run_count; /* updated in thread_select_idle() */
result = TRUE;
}
* Calculate deadline for real-time threads.
*/
if (thread->sched_mode == TH_MODE_REALTIME) {
- thread->realtime.deadline = thread->realtime.constraint + mach_absolute_time();
+ uint64_t ctime;
+
+ ctime = mach_absolute_time();
+ thread->realtime.deadline = thread->realtime.constraint + ctime;
}
/*
* Clear old quantum, fail-safe computation, etc.
*/
- thread->current_quantum = 0;
+ thread->quantum_remaining = 0;
thread->computation_metered = 0;
thread->reason = AST_NONE;
thread->callout_woke_thread = FALSE;
}
- /* Event should only be triggered if thread is not already running */
- if (result == FALSE) {
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
- (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, 0, 0);
- }
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, new_run_count, 0);
DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
register wait_queue_t wq;
register int index;
- assert(event != NO_EVENT);
+ if(event == NO_EVENT)
+ panic("assert_wait() called with NO_EVENT");
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
uint64_t deadline;
spl_t s;
- assert(event != NO_EVENT);
+ if(event == NO_EVENT)
+ panic("assert_wait_timeout() called with NO_EVENT");
+
wqueue = &wait_queues[wait_hash(event)];
s = splsched();
clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop);
- assert(event != NO_EVENT);
+ if(event == NO_EVENT)
+ panic("assert_wait_timeout_with_leeway() called with NO_EVENT");
+
wqueue = &wait_queues[wait_hash(event)];
s = splsched();
wait_queue_t wqueue;
spl_t s;
- assert(event != NO_EVENT);
+ if(event == NO_EVENT)
+ panic("assert_wait_deadline_with_leeway() called with NO_EVENT");
+
wqueue = &wait_queues[wait_hash(event)];
s = splsched();
return (wresult);
}
-/*
- * thread_sleep_fast_usimple_lock:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified simple_lock is unlocked before releasing
- * the cpu and re-acquired as part of waking up.
- *
- * This is the simple lock sleep interface for components that use a
- * faster version of simple_lock() than is provided by usimple_lock().
- */
-__private_extern__ wait_result_t
-thread_sleep_fast_usimple_lock(
- event_t event,
- simple_lock_t lock,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
-
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- simple_unlock(lock);
- res = thread_block(THREAD_CONTINUE_NULL);
- simple_lock(lock);
- }
- return res;
-}
-
-
-/*
- * thread_sleep_usimple_lock:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified usimple_lock is unlocked before releasing
- * the cpu and re-acquired as part of waking up.
- *
- * This is the simple lock sleep interface for components where
- * simple_lock() is defined in terms of usimple_lock().
- */
-wait_result_t
-thread_sleep_usimple_lock(
- event_t event,
- usimple_lock_t lock,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
-
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- usimple_unlock(lock);
- res = thread_block(THREAD_CONTINUE_NULL);
- usimple_lock(lock);
- }
- return res;
-}
-
-/*
- * thread_sleep_lock_write:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified (write) lock is unlocked before releasing
- * the cpu. The (write) lock will be re-acquired before returning.
- */
-wait_result_t
-thread_sleep_lock_write(
- event_t event,
- lock_t *lock,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
-
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- lock_write_done(lock);
- res = thread_block(THREAD_CONTINUE_NULL);
- lock_write(lock);
- }
- return res;
-}
-
/*
* thread_isoncpu:
*
* thread state to be serialized in the thread PCB.
*
* Thread locked, returns the same way. While locked, fields
- * like "state" and "runq" cannot change.
+ * like "state" cannot change. "runq" can change only from set to unset.
*/
static inline boolean_t
thread_isoncpu(thread_t thread)
return (FALSE);
/* Waiting on a runqueue, not currently running */
+ /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */
if (thread->runq != PROCESSOR_NULL)
return (FALSE);
register wait_queue_t wq;
register int index;
+ if(event == NO_EVENT)
+ panic("thread_wakeup_prim() called with NO_EVENT");
+
index = wait_hash(event);
wq = &wait_queues[index];
if (one_thread)
* thread_bind:
*
* Force the current thread to execute on the specified processor.
+ * Takes effect after the next thread_block().
*
* Returns the previous binding. PROCESSOR_NULL means
* not bound.
s = splsched();
thread_lock(self);
+ /* <rdar://problem/15102234> */
+ assert(self->sched_pri < BASEPRI_RTQUEUES);
+
prev = self->bound_processor;
self->bound_processor = processor;
return (prev);
}
+/* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT
+ * rebalancing opportunity exists when a core is (instantaneously) idle, but
+ * other SMT-capable cores may be over-committed. TODO: some possible negatives:
+ * IPI thrash if this core does not remain idle following the load balancing ASTs
+ * Idle "thrash", when IPI issue is followed by idle entry/core power down
+ * followed by a wakeup shortly thereafter.
+ */
+
+/* Invoked with pset locked, returns with pset unlocked */
+#if (DEVELOPMENT || DEBUG)
+int sched_smt_balance = 1;
+#endif
+
+static void
+sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) {
+ processor_t ast_processor = NULL;
+
+#if (DEVELOPMENT || DEBUG)
+ if (__improbable(sched_smt_balance == 0))
+ goto smt_balance_exit;
+#endif
+
+ assert(cprocessor == current_processor());
+ if (cprocessor->is_SMT == FALSE)
+ goto smt_balance_exit;
+
+ processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary;
+
+ /* Determine if both this processor and its sibling are idle,
+ * indicating an SMT rebalancing opportunity.
+ */
+ if (sib_processor->state != PROCESSOR_IDLE)
+ goto smt_balance_exit;
+
+ processor_t sprocessor;
+
+ sprocessor = (processor_t)queue_first(&cpset->active_queue);
+
+ while (!queue_end(&cpset->active_queue, (queue_entry_t)sprocessor)) {
+ if ((sprocessor->state == PROCESSOR_RUNNING) &&
+ (sprocessor->processor_primary != sprocessor) &&
+ (sprocessor->processor_primary->state == PROCESSOR_RUNNING) &&
+ (sprocessor->current_pri < BASEPRI_RTQUEUES) &&
+ ((cpset->pending_AST_cpu_mask & (1U << sprocessor->cpu_id)) == 0)) {
+ assert(sprocessor != cprocessor);
+ ast_processor = sprocessor;
+ break;
+ }
+ sprocessor = (processor_t)queue_next((queue_entry_t)sprocessor);
+ }
+
+smt_balance_exit:
+ pset_unlock(cpset);
+
+ if (ast_processor) {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0);
+ cause_ast_check(ast_processor);
+ }
+}
+
/*
* thread_select:
*
static thread_t
thread_select(
thread_t thread,
- processor_t processor)
+ processor_t processor,
+ ast_t reason)
{
processor_set_t pset = processor->processor_set;
thread_t new_thread = THREAD_NULL;
- boolean_t inactive_state;
assert(processor == current_processor());
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
pset_lock(pset);
- assert(pset->low_count);
- assert(pset->low_pri);
+ assert(processor->state != PROCESSOR_OFF_LINE);
- if (processor->processor_meta != PROCESSOR_META_NULL && processor->processor_meta->primary != processor) {
+ if (processor->processor_primary != processor) {
/*
* Should this secondary SMT processor attempt to find work? For pset runqueue systems,
* we should look for work only under the same conditions that choose_processor()
* An exception is that bound threads are dispatched to a processor without going through
* choose_processor(), so in those cases we should continue trying to dequeue work.
*/
- if (!processor->runq_bound_count && !queue_empty(&pset->idle_queue) && !rt_runq.count) {
+ if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue) && !rt_runq.count) {
goto idle;
}
}
- inactive_state = processor->state != PROCESSOR_SHUTDOWN && machine_processor_is_inactive(processor);
-
simple_lock(&rt_lock);
/*
* bound to a different processor, nor be in the wrong
* processor set.
*/
- if ( ((thread->state & ~TH_SUSP) == TH_RUN) &&
- (thread->sched_pri >= BASEPRI_RTQUEUES ||
- processor->processor_meta == PROCESSOR_META_NULL ||
- processor->processor_meta->primary == processor) &&
- (thread->bound_processor == PROCESSOR_NULL ||
- thread->bound_processor == processor) &&
- (thread->affinity_set == AFFINITY_SET_NULL ||
- thread->affinity_set->aset_pset == pset)) {
- if (thread->sched_pri >= BASEPRI_RTQUEUES &&
- first_timeslice(processor)) {
+ if (((thread->state & ~TH_SUSP) == TH_RUN) &&
+ (thread->sched_pri >= BASEPRI_RTQUEUES || processor->processor_primary == processor) &&
+ (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) &&
+ (thread->affinity_set == AFFINITY_SET_NULL || thread->affinity_set->aset_pset == pset)) {
+ if (thread->sched_pri >= BASEPRI_RTQUEUES && first_timeslice(processor)) {
if (rt_runq.count > 0) {
- register queue_t q;
+ thread_t next_rt;
- q = &rt_runq.queue;
- if (((thread_t)q->next)->realtime.deadline <
- processor->deadline) {
- if ((((thread_t)q->next)->bound_processor == PROCESSOR_NULL) || (((thread_t)q->next)->bound_processor == processor)) {
- thread = (thread_t)dequeue_head(q);
+ next_rt = (thread_t)queue_first(&rt_runq.queue);
+ if (next_rt->realtime.deadline < processor->deadline &&
+ (next_rt->bound_processor == PROCESSOR_NULL || next_rt->bound_processor == processor)) {
+ thread = (thread_t)dequeue_head(&rt_runq.queue);
thread->runq = PROCESSOR_NULL;
SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
rt_runq.count--;
- }
}
}
return (thread);
}
- if (!inactive_state && (thread->sched_mode != TH_MODE_FAIRSHARE || SCHED(fairshare_runq_count)() == 0) && (rt_runq.count == 0 || BASEPRI_RTQUEUES < thread->sched_pri) &&
- (new_thread = SCHED(choose_thread)(processor, thread->sched_mode == TH_MODE_FAIRSHARE ? MINPRI : thread->sched_pri)) == THREAD_NULL) {
+ if ((thread->sched_mode != TH_MODE_FAIRSHARE || SCHED(fairshare_runq_count)() == 0) && (rt_runq.count == 0 || BASEPRI_RTQUEUES < thread->sched_pri) && (new_thread = SCHED(choose_thread)(processor, thread->sched_mode == TH_MODE_FAIRSHARE ? MINPRI : thread->sched_pri, reason)) == THREAD_NULL) {
simple_unlock(&rt_lock);
- /* I am the highest priority runnable (non-idle) thread */
-
- pset_pri_hint(pset, processor, processor->current_pri);
-
- pset_count_hint(pset, processor, SCHED(processor_runq_count)(processor));
+ /* This thread is still the highest priority runnable (non-idle) thread */
processor->deadline = UINT64_MAX;
if (new_thread != THREAD_NULL ||
(SCHED(processor_queue_has_priority)(processor, rt_runq.count == 0 ? IDLEPRI : BASEPRI_RTQUEUES, TRUE) &&
- (new_thread = SCHED(choose_thread)(processor, MINPRI)) != THREAD_NULL)) {
+ (new_thread = SCHED(choose_thread)(processor, MINPRI, reason)) != THREAD_NULL)) {
simple_unlock(&rt_lock);
- if (!inactive_state) {
- pset_pri_hint(pset, processor, new_thread->sched_pri);
-
- pset_count_hint(pset, processor, SCHED(processor_runq_count)(processor));
- }
-
processor->deadline = UINT64_MAX;
pset_unlock(pset);
}
if (rt_runq.count > 0) {
- thread = (thread_t)dequeue_head(&rt_runq.queue);
+ thread_t next_rt = (thread_t)queue_first(&rt_runq.queue);
+
+ if (__probable((next_rt->bound_processor == NULL || (next_rt->bound_processor == processor)))) {
+ thread = (thread_t)dequeue_head(&rt_runq.queue);
- if (__probable((thread->bound_processor == NULL || (thread->bound_processor == processor)))) {
thread->runq = PROCESSOR_NULL;
SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
rt_runq.count--;
pset_unlock(pset);
return (thread);
- } else {
- enqueue_head(&rt_runq.queue, (queue_entry_t)thread);
}
}
processor->deadline = UINT64_MAX;
- /*
- * Set processor inactive based on
- * indication from the platform code.
- */
- if (inactive_state) {
- if (processor->state == PROCESSOR_RUNNING)
- remqueue((queue_entry_t)processor);
- else
- if (processor->state == PROCESSOR_IDLE)
- remqueue((queue_entry_t)processor);
-
- processor->state = PROCESSOR_INACTIVE;
-
- pset_unlock(pset);
-
- return (processor->idle_thread);
- }
-
/*
* No runnable threads, attempt to steal
* from other processors.
remqueue((queue_entry_t)processor);
processor->state = PROCESSOR_IDLE;
- if (processor->processor_meta == PROCESSOR_META_NULL || processor->processor_meta->primary == processor) {
+ if (processor->processor_primary == processor) {
enqueue_head(&pset->idle_queue, (queue_entry_t)processor);
- pset_pri_init_hint(pset, processor);
- pset_count_init_hint(pset, processor);
}
else {
- enqueue_head(&processor->processor_meta->idle_queue, (queue_entry_t)processor);
- pset_unlock(pset);
- return (processor->idle_thread);
+ enqueue_head(&pset->idle_secondary_queue, (queue_entry_t)processor);
}
}
- pset_unlock(pset);
+ /* Invoked with pset locked, returns with pset unlocked */
+ sched_SMT_balance(processor, pset);
#if CONFIG_SCHED_IDLE_IN_PLACE
/*
* Choose idle thread if fast idle is not possible.
*/
+ if (processor->processor_primary != processor)
+ return (processor->idle_thread);
+
if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES)
return (processor->idle_thread);
int urgency;
if (thread->sched_mode == TH_MODE_TIMESHARE) {
- if (thread->max_priority <= MAXPRI_THROTTLE)
- sched_background_decr();
+ if (thread->sched_flags & TH_SFLAG_THROTTLED)
+ sched_background_decr(thread);
- sched_share_decr();
+ sched_share_decr(thread);
}
- sched_run_decr();
+ sched_run_decr(thread);
thread->state |= TH_IDLE;
processor->current_pri = IDLEPRI;
processor->current_thmode = TH_MODE_NONE;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
/* Reload precise timing global policy to thread-local policy */
thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
* Switch execution timing to processor idle thread.
*/
processor->last_dispatch = mach_absolute_time();
+
+#ifdef CONFIG_MACH_APPROXIMATE_TIME
+ commpage_update_mach_approximate_time(processor->last_dispatch);
+#endif
+
thread->last_run_time = processor->last_dispatch;
thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer;
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
thread_quantum_init(thread);
- thread->last_quantum_refill_time = processor->last_dispatch;
-
- processor->quantum_end = processor->last_dispatch + thread->current_quantum;
- timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL);
+ processor->quantum_end = processor->last_dispatch + thread->quantum_remaining;
+ timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
processor->timeslice = 1;
thread->computation_epoch = processor->last_dispatch;
thread_tell_urgency(urgency, arg1, arg2, new_thread);
- sched_run_incr();
+ sched_run_incr(thread);
if (thread->sched_mode == TH_MODE_TIMESHARE) {
- sched_share_incr();
+ sched_share_incr(thread);
- if (thread->max_priority <= MAXPRI_THROTTLE)
- sched_background_incr();
+ if (thread->sched_flags & TH_SFLAG_THROTTLED)
+ sched_background_incr(thread);
}
return (new_thread);
#if defined(CONFIG_SCHED_TRADITIONAL)
static thread_t
sched_traditional_choose_thread(
- processor_t processor,
- int priority)
+ processor_t processor,
+ int priority,
+ __unused ast_t reason)
{
thread_t thread;
- thread = choose_thread(processor, runq_for_processor(processor), priority);
+ thread = choose_thread_from_runq(processor, runq_for_processor(processor), priority);
if (thread != THREAD_NULL) {
runq_consider_decr_bound_count(processor, thread);
}
#endif /* defined(CONFIG_SCHED_TRADITIONAL) */
-#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+#if defined(CONFIG_SCHED_TRADITIONAL)
/*
- * choose_thread:
+ * choose_thread_from_runq:
*
* Locate a thread to execute from the processor run queue
* and return it. Only choose a thread with greater or equal
* on failure.
*/
thread_t
-choose_thread(
+choose_thread_from_runq(
processor_t processor,
run_queue_t rq,
int priority)
return (THREAD_NULL);
}
-#endif /* defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_FIXEDPRIORITY) */
+#endif /* defined(CONFIG_SCHED_TRADITIONAL) */
/*
* Perform a context switch and start executing the new thread.
* Called at splsched.
*/
-#define funnel_release_check(thread, debug) \
-MACRO_BEGIN \
- if ((thread)->funnel_state & TH_FN_OWNED) { \
- (thread)->funnel_state = TH_FN_REFUNNEL; \
- KERNEL_DEBUG(0x603242c | DBG_FUNC_NONE, \
- (thread)->funnel_lock, (debug), 0, 0, 0); \
- funnel_unlock((thread)->funnel_lock); \
- } \
-MACRO_END
-
-#define funnel_refunnel_check(thread, debug) \
-MACRO_BEGIN \
- if ((thread)->funnel_state & TH_FN_REFUNNEL) { \
- kern_return_t result = (thread)->wait_result; \
- \
- (thread)->funnel_state = 0; \
- KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, \
- (thread)->funnel_lock, (debug), 0, 0, 0); \
- funnel_lock((thread)->funnel_lock); \
- KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, \
- (thread)->funnel_lock, (debug), 0, 0, 0); \
- (thread)->funnel_state = TH_FN_OWNED; \
- (thread)->wait_result = result; \
- } \
-MACRO_END
-
/*
* thread_invoke
*
processor_t processor;
uint64_t ctime = mach_absolute_time();
+#ifdef CONFIG_MACH_APPROXIMATE_TIME
+ commpage_update_mach_approximate_time(ctime);
+#endif
+
if (__improbable(get_preemption_level() != 0)) {
int pl = get_preemption_level();
panic("thread_invoke: preemption_level %d, possible cause: %s",
}
assert(self == current_thread());
+ assert(self->runq == PROCESSOR_NULL);
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
sched_traditional_consider_maintenance(ctime);
-#endif /* CONFIG_SCHED_TRADITIONAL */
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
/*
* Mark thread interruptible.
thread_lock(thread);
thread->state &= ~TH_UNINT;
-#if DEBUG
assert(thread_runnable(thread));
-#endif
+ assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor());
+ assert(thread->runq == PROCESSOR_NULL);
/* Reload precise timing global policy to thread-local policy */
thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
+ /* Update SFI class based on other factors */
+ thread->sfi_class = sfi_thread_classify(thread);
+
/*
* Allow time constraint threads to hang onto
* a stack.
processor->active_thread = thread;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
counter(c_thread_invoke_hits++);
- funnel_refunnel_check(thread, 2);
(void) spllo();
assert(continuation);
self->continuation = self->parameter = NULL;
- funnel_refunnel_check(self, 3);
(void) spllo();
call_continuation(continuation, parameter, self->wait_result);
processor->active_thread = thread;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
PROCESSOR_DATA(processor, current_state));
}
-
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
if (continuation) {
self->continuation = self->parameter = NULL;
- funnel_refunnel_check(self, 3);
(void) spllo();
call_continuation(continuation, parameter, self->wait_result);
remainder = processor->quantum_end -
processor->last_dispatch;
- consumed = thread->current_quantum - remainder;
+ consumed = thread->quantum_remaining - remainder;
if ((thread->reason & AST_LEDGER) == 0) {
/*
task_ledgers.cpu_time, consumed);
ledger_credit(thread->t_threadledger,
thread_ledgers.cpu_time, consumed);
+#ifdef CONFIG_BANK
+ if (thread->t_bankledger) {
+ ledger_credit(thread->t_bankledger,
+ bank_ledgers.cpu_time,
+ (consumed - thread->t_deduct_bank_ledger_time));
+
+ }
+ thread->t_deduct_bank_ledger_time =0;
+#endif
}
wake_lock(thread);
*/
if (first_timeslice(processor) &&
processor->quantum_end > processor->last_dispatch)
- thread->current_quantum = (uint32_t)remainder;
+ thread->quantum_remaining = (uint32_t)remainder;
else
- thread->current_quantum = 0;
+ thread->quantum_remaining = 0;
if (thread->sched_mode == TH_MODE_REALTIME) {
/*
* Cancel the deadline if the thread has
* consumed the entire quantum.
*/
- if (thread->current_quantum == 0) {
+ if (thread->quantum_remaining == 0) {
thread->realtime.deadline = UINT64_MAX;
- thread->reason |= AST_QUANTUM;
}
} else {
#if defined(CONFIG_SCHED_TRADITIONAL)
* remaining quantum as an expired quantum
* but include what's left next time.
*/
- if (thread->current_quantum < min_std_quantum) {
+ if (thread->quantum_remaining < min_std_quantum) {
thread->reason |= AST_QUANTUM;
- thread->current_quantum += SCHED(initial_quantum_size)(thread);
+ thread->quantum_remaining += SCHED(initial_quantum_size)(thread);
}
#endif
}
* take the remainder of the quantum.
*/
if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) {
- self->current_quantum = thread->current_quantum;
+ self->quantum_remaining = thread->quantum_remaining;
thread->reason |= AST_QUANTUM;
- thread->current_quantum = 0;
+ thread->quantum_remaining = 0;
+ } else {
+#if defined(CONFIG_SCHED_MULTIQ)
+ if (sched_groups_enabled && thread->sched_group == self->sched_group) {
+ /* TODO: Remove tracepoint */
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF) | DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread),
+ self->quantum_remaining, thread->quantum_remaining, 0);
+
+ self->quantum_remaining = thread->quantum_remaining;
+ thread->quantum_remaining = 0;
+ /* TODO: Should we set AST_QUANTUM here? */
+ }
+#endif /* defined(CONFIG_SCHED_MULTIQ) */
}
thread->computation_metered += (processor->last_dispatch - thread->computation_epoch);
thread->reason = AST_NONE;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), thread->reason, thread->state, sched_run_count, 0);
+
if (thread->wake_active) {
thread->wake_active = FALSE;
thread_unlock(thread);
* Waiting.
*/
boolean_t should_terminate = FALSE;
+ uint32_t new_run_count;
/* Only the first call to thread_dispatch
* after explicit termination should add
thread->chosen_processor = PROCESSOR_NULL;
if (thread->sched_mode == TH_MODE_TIMESHARE) {
- if (thread->max_priority <= MAXPRI_THROTTLE)
- sched_background_decr();
+ if (thread->sched_flags & TH_SFLAG_THROTTLED)
+ sched_background_decr(thread);
+
+ sched_share_decr(thread);
+ }
+ new_run_count = sched_run_decr(thread);
- sched_share_decr();
+ if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) {
+ if (thread->reason & AST_SFI) {
+ thread->wait_sfi_begin_time = processor->last_dispatch;
+ }
}
- sched_run_decr();
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), thread->reason, thread->state, new_run_count, 0);
(*thread->sched_call)(SCHED_CALL_BLOCK, thread);
if (!(self->state & TH_IDLE)) {
uint64_t arg1, arg2;
int urgency;
+ ast_t new_ast;
+
+ thread_lock(self);
+ new_ast = sfi_thread_needs_ast(self, NULL);
+ thread_unlock(self);
+
+ if (new_ast != AST_NONE) {
+ ast_on(new_ast);
+ }
urgency = thread_get_urgency(self, &arg1, &arg2);
/*
* Get a new quantum if none remaining.
*/
- if (self->current_quantum == 0) {
+ if (self->quantum_remaining == 0) {
thread_quantum_init(self);
- self->last_quantum_refill_time = processor->last_dispatch;
}
/*
* Set up quantum timer and timeslice.
*/
- processor->quantum_end = (processor->last_dispatch + self->current_quantum);
- timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL);
+ processor->quantum_end = processor->last_dispatch + self->quantum_remaining;
+ timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
processor->timeslice = 1;
}
}
-#include <libkern/OSDebug.h>
-
-uint32_t kdebug_thread_block = 0;
-
-
/*
* thread_block_reason:
*
s = splsched();
- if (!(reason & AST_PREEMPT))
- funnel_release_check(self, 2);
-
processor = current_processor();
/* If we're explicitly yielding, force a subsequent quantum */
self->continuation = continuation;
self->parameter = parameter;
- if (__improbable(kdebug_thread_block && kdebug_enable && self->state != TH_RUN)) {
+ if (self->state & ~(TH_RUN | TH_IDLE)) {
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED,MACH_BLOCK),
reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0);
do {
thread_lock(self);
- new_thread = thread_select(self, processor);
+ new_thread = thread_select(self, processor, reason);
thread_unlock(self);
} while (!thread_invoke(self, new_thread, reason));
- funnel_refunnel_check(self, 5);
splx(s);
return (self->wait_result);
{
ast_t handoff = AST_HANDOFF;
- funnel_release_check(self, 3);
-
self->continuation = continuation;
self->parameter = parameter;
processor_t processor = current_processor();
thread_lock(self);
- new_thread = thread_select(self, processor);
+ new_thread = thread_select(self, processor, AST_NONE);
thread_unlock(self);
handoff = AST_NONE;
}
- funnel_refunnel_check(self, 6);
-
return (self->wait_result);
}
self->continuation = self->parameter = NULL;
- funnel_refunnel_check(self, 4);
-
if (thread != THREAD_NULL)
(void)spllo();
thread_quantum_init(thread_t thread)
{
if (thread->sched_mode == TH_MODE_REALTIME) {
- thread->current_quantum = thread->realtime.computation;
+ thread->quantum_remaining = thread->realtime.computation;
} else {
- thread->current_quantum = SCHED(initial_quantum_size)(thread);
+ thread->quantum_remaining = SCHED(initial_quantum_size)(thread);
}
}
-#if defined(CONFIG_SCHED_TRADITIONAL)
-static uint32_t
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
+uint32_t
sched_traditional_initial_quantum_size(thread_t thread)
{
- if ((thread == THREAD_NULL) || thread->priority > MAXPRI_THROTTLE)
+ if ((thread == THREAD_NULL) || !(thread->sched_flags & TH_SFLAG_THROTTLED))
return std_quantum;
else
return bg_quantum;
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
static sched_mode_t
sched_traditional_initial_thread_sched_mode(task_t parent_task)
{
return TH_MODE_TIMESHARE;
}
-static boolean_t
-sched_traditional_supports_timeshare_mode(void)
-{
- return TRUE;
-}
-
#endif /* CONFIG_SCHED_TRADITIONAL */
/*
queue_init(&rq->queues[i]);
}
-#if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY)
+#if defined(CONFIG_SCHED_FAIRSHARE_CORE)
int
sched_traditional_fairshare_runq_count(void)
{
}
}
-#endif /* defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_PROTO) || defined(CONFIG_SCHED_GRRR) || defined(CONFIG_SCHED_FIXEDPRIORITY) */
+#endif /* CONFIG_SCHED_FAIRSHARE_CORE */
/*
* run_queue_dequeue:
rq->highq = thread->sched_pri;
result = TRUE;
}
- }
- else
+ } else {
if (options & SCHED_TAILQ)
enqueue_tail(queue, (queue_entry_t)thread);
else
enqueue_head(queue, (queue_entry_t)thread);
-
+ }
if (SCHED(priority_is_urgent)(thread->sched_pri))
rq->urgency++;
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
SCHED(fairshare_enqueue)(thread);
+ pset_unlock(pset);
+
if (processor != current_processor())
machine_signal_idle(processor);
- pset_unlock(pset);
}
processor_set_t pset = processor->processor_set;
ast_t preempt;
+ boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE;
+
thread->chosen_processor = processor;
+ /* <rdar://problem/15102234> */
+ assert(thread->bound_processor == PROCESSOR_NULL);
+
/*
* Dispatch directly onto idle processor.
*/
processor->next_thread = thread;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = thread->realtime.deadline;
processor->state = PROCESSOR_DISPATCHING;
if (!(pset->pending_AST_cpu_mask & (1U << processor->cpu_id))) {
/* cleared on exit from main processor_idle() loop */
pset->pending_AST_cpu_mask |= (1U << processor->cpu_id);
- machine_signal_idle(processor);
+ do_signal_idle = TRUE;
}
}
-
pset_unlock(pset);
+
+ if (do_signal_idle) {
+ machine_signal_idle(processor);
+ }
return;
}
processor->next_thread = THREAD_NULL;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = thread->realtime.deadline;
processor->state = PROCESSOR_DISPATCHING;
if (processor == current_processor()) {
if (!(pset->pending_AST_cpu_mask & (1U << processor->cpu_id))) {
/* cleared on exit from main processor_idle() loop */
pset->pending_AST_cpu_mask |= (1U << processor->cpu_id);
- machine_signal_idle(processor);
+ do_signal_idle = TRUE;
}
- }
+ }
} else if (processor->state == PROCESSOR_DISPATCHING) {
if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) {
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = thread->realtime.deadline;
}
} else {
if (!(pset->pending_AST_cpu_mask & (1U << processor->cpu_id))) {
/* cleared after IPI causes csw_check() to be called */
pset->pending_AST_cpu_mask |= (1U << processor->cpu_id);
- cause_ast_check(processor);
+ do_cause_ast = TRUE;
}
}
}
}
pset_unlock(pset);
+
+ if (do_signal_idle) {
+ machine_signal_idle(processor);
+ } else if (do_cause_ast) {
+ cause_ast_check(processor);
+ }
}
-#if defined(CONFIG_SCHED_TRADITIONAL)
-static boolean_t
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
+boolean_t
priority_is_urgent(int priority)
{
return testbit(priority, sched_preempt_pri) ? TRUE : FALSE;
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
/*
* processor_enqueue:
*
ast_t preempt;
enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing;
+ boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE;
+
thread->chosen_processor = processor;
/*
processor->next_thread = thread;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
if (!(pset->pending_AST_cpu_mask & (1U << processor->cpu_id))) {
/* cleared on exit from main processor_idle() loop */
pset->pending_AST_cpu_mask |= (1U << processor->cpu_id);
- machine_signal_idle(processor);
+ do_signal_idle = TRUE;
}
pset_unlock(pset);
+ if (do_signal_idle) {
+ machine_signal_idle(processor);
+ }
+
return;
}
processor->next_thread = THREAD_NULL;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) {
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = UINT64_MAX;
}
} else if ( (processor->state == PROCESSOR_RUNNING ||
processor->next_thread = THREAD_NULL;
processor->current_pri = thread->sched_pri;
processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
break;
case eExitIdle:
if (processor == current_processor()) {
- if (csw_check_locked(processor, pset) != AST_NONE)
+ if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
ast_on(preempt);
} else {
if (!(pset->pending_AST_cpu_mask & (1U << processor->cpu_id))) {
/* cleared on exit from main processor_idle() loop */
pset->pending_AST_cpu_mask |= (1U << processor->cpu_id);
- machine_signal_idle(processor);
+ do_signal_idle = TRUE;
}
}
break;
case eInterruptRunning:
if (processor == current_processor()) {
- if (csw_check_locked(processor, pset) != AST_NONE)
+ if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
ast_on(preempt);
} else {
if (!(pset->pending_AST_cpu_mask & (1U << processor->cpu_id))) {
/* cleared after IPI causes csw_check() to be called */
pset->pending_AST_cpu_mask |= (1U << processor->cpu_id);
- cause_ast_check(processor);
+ do_cause_ast = TRUE;
}
}
break;
}
pset_unlock(pset);
+
+ if (do_signal_idle) {
+ machine_signal_idle(processor);
+ } else if (do_cause_ast) {
+ cause_ast_check(processor);
+ }
}
#if defined(CONFIG_SCHED_TRADITIONAL)
should_current_thread_rechoose_processor(processor_t processor)
{
return (processor->current_pri < BASEPRI_RTQUEUES
- && processor->processor_meta != PROCESSOR_META_NULL
- && processor->processor_meta->primary != processor);
+ && processor->processor_primary != processor);
}
static int
return runq_for_processor(processor)->count;
}
-
static uint64_t
sched_traditional_processor_runq_stats_count_sum(processor_t processor)
{
return 0ULL;
}
-#endif /* CONFIG_SCHED_TRADITIONAL */
+static int
+sched_traditional_processor_bound_count(processor_t processor)
+{
+ return processor->runq_bound_count;
+}
-#define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
+#endif /* CONFIG_SCHED_TRADITIONAL */
/*
* choose_next_pset:
thread_t thread)
{
processor_set_t nset, cset = pset;
- processor_meta_t pmeta = PROCESSOR_META_NULL;
- processor_t mprocessor;
/*
- * Prefer the hinted processor, when appropriate.
+ * Prefer the hinted processor, when appropriate.
*/
+ /* Fold last processor hint from secondary processor to its primary */
if (processor != PROCESSOR_NULL) {
- if (processor->processor_meta != PROCESSOR_META_NULL)
- processor = processor->processor_meta->primary;
+ processor = processor->processor_primary;
}
- mprocessor = machine_choose_processor(pset, processor);
- if (mprocessor != PROCESSOR_NULL)
- processor = mprocessor;
+ /*
+ * Only consult platform layer if pset is active, which
+ * it may not be in some cases when a multi-set system
+ * is going to sleep.
+ */
+ if (pset->online_processor_count) {
+ if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) {
+ processor_t mc_processor = machine_choose_processor(pset, processor);
+ if (mc_processor != PROCESSOR_NULL)
+ processor = mc_processor->processor_primary;
+ }
+ }
+ /*
+ * At this point, we may have a processor hint, and we may have
+ * an initial starting pset. If the hint is not in the pset, or
+ * if the hint is for a processor in an invalid state, discard
+ * the hint.
+ */
if (processor != PROCESSOR_NULL) {
- if (processor->processor_set != pset ||
- processor->state == PROCESSOR_INACTIVE ||
- processor->state == PROCESSOR_SHUTDOWN ||
- processor->state == PROCESSOR_OFF_LINE)
+ if (processor->processor_set != pset) {
processor = PROCESSOR_NULL;
- else
- if (processor->state == PROCESSOR_IDLE ||
- ((thread->sched_pri >= BASEPRI_RTQUEUES) &&
- (processor->current_pri < BASEPRI_RTQUEUES)))
- return (processor);
+ } else {
+ switch (processor->state) {
+ case PROCESSOR_START:
+ case PROCESSOR_SHUTDOWN:
+ case PROCESSOR_OFF_LINE:
+ /*
+ * Hint is for a processor that cannot support running new threads.
+ */
+ processor = PROCESSOR_NULL;
+ break;
+ case PROCESSOR_IDLE:
+ /*
+ * Hint is for an idle processor. Assume it is no worse than any other
+ * idle processor. The platform layer had an opportunity to provide
+ * the "least cost idle" processor above.
+ */
+ return (processor);
+ break;
+ case PROCESSOR_RUNNING:
+ case PROCESSOR_DISPATCHING:
+ /*
+ * Hint is for an active CPU. This fast-path allows
+ * realtime threads to preempt non-realtime threads
+ * to regain their previous executing processor.
+ */
+ if ((thread->sched_pri >= BASEPRI_RTQUEUES) &&
+ (processor->current_pri < BASEPRI_RTQUEUES))
+ return (processor);
+
+ /* Otherwise, use hint as part of search below */
+ break;
+ default:
+ processor = PROCESSOR_NULL;
+ break;
+ }
+ }
}
/*
- * Iterate through the processor sets to locate
- * an appropriate processor.
+ * Iterate through the processor sets to locate
+ * an appropriate processor. Seed results with
+ * a last-processor hint, if available, so that
+ * a search must find something strictly better
+ * to replace it.
+ *
+ * A primary/secondary pair of SMT processors are
+ * "unpaired" if the primary is busy but its
+ * corresponding secondary is idle (so the physical
+ * core has full use of its resources).
*/
+
+ integer_t lowest_priority = MAXPRI + 1;
+ integer_t lowest_unpaired_primary_priority = MAXPRI + 1;
+ integer_t lowest_count = INT_MAX;
+ uint64_t furthest_deadline = 1;
+ processor_t lp_processor = PROCESSOR_NULL;
+ processor_t lp_unpaired_primary_processor = PROCESSOR_NULL;
+ processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL;
+ processor_t lc_processor = PROCESSOR_NULL;
+ processor_t fd_processor = PROCESSOR_NULL;
+
+ if (processor != PROCESSOR_NULL) {
+ /* All other states should be enumerated above. */
+ assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING);
+
+ lowest_priority = processor->current_pri;
+ lp_processor = processor;
+
+ if (processor->current_pri >= BASEPRI_RTQUEUES) {
+ furthest_deadline = processor->deadline;
+ fd_processor = processor;
+ }
+
+ lowest_count = SCHED(processor_runq_count)(processor);
+ lc_processor = processor;
+ }
+
do {
+
/*
- * Choose an idle processor.
+ * Choose an idle processor, in pset traversal order
*/
if (!queue_empty(&cset->idle_queue))
return ((processor_t)queue_first(&cset->idle_queue));
- if (thread->sched_pri >= BASEPRI_RTQUEUES) {
- integer_t lowest_priority = MAXPRI + 1;
- integer_t lowest_unpaired = MAXPRI + 1;
- uint64_t furthest_deadline = 1;
- processor_t lp_processor = PROCESSOR_NULL;
- processor_t lp_unpaired = PROCESSOR_NULL;
- processor_t fd_processor = PROCESSOR_NULL;
-
- lp_processor = cset->low_pri;
- /* Consider hinted processor */
- if (lp_processor != PROCESSOR_NULL &&
- ((lp_processor->processor_meta == PROCESSOR_META_NULL) ||
- ((lp_processor == lp_processor->processor_meta->primary) &&
- !queue_empty(&lp_processor->processor_meta->idle_queue))) &&
- lp_processor->state != PROCESSOR_INACTIVE &&
- lp_processor->state != PROCESSOR_SHUTDOWN &&
- lp_processor->state != PROCESSOR_OFF_LINE &&
- (lp_processor->current_pri < thread->sched_pri))
- return lp_processor;
+ /*
+ * Otherwise, enumerate active and idle processors to find candidates
+ * with lower priority/etc.
+ */
- processor = (processor_t)queue_first(&cset->active_queue);
- while (!queue_end(&cset->active_queue, (queue_entry_t)processor)) {
- /* Discover the processor executing the
- * thread with the lowest priority within
- * this pset, or the one with the furthest
- * deadline
- */
- integer_t cpri = processor->current_pri;
- if (cpri < lowest_priority) {
- lowest_priority = cpri;
- lp_processor = processor;
- }
+ processor = (processor_t)queue_first(&cset->active_queue);
+ while (!queue_end(&cset->active_queue, (queue_entry_t)processor)) {
- if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) {
- furthest_deadline = processor->deadline;
- fd_processor = processor;
- }
+ integer_t cpri = processor->current_pri;
+ if (cpri < lowest_priority) {
+ lowest_priority = cpri;
+ lp_processor = processor;
+ }
+ if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) {
+ furthest_deadline = processor->deadline;
+ fd_processor = processor;
+ }
- if (processor->processor_meta != PROCESSOR_META_NULL &&
- !queue_empty(&processor->processor_meta->idle_queue)) {
- if (cpri < lowest_unpaired) {
- lowest_unpaired = cpri;
- lp_unpaired = processor;
- pmeta = processor->processor_meta;
- }
- else
- if (pmeta == PROCESSOR_META_NULL)
- pmeta = processor->processor_meta;
+ integer_t ccount = SCHED(processor_runq_count)(processor);
+ if (ccount < lowest_count) {
+ lowest_count = ccount;
+ lc_processor = processor;
+ }
+
+ processor = (processor_t)queue_next((queue_entry_t)processor);
+ }
+
+ /*
+ * For SMT configs, these idle secondary processors must have active primary. Otherwise
+ * the idle primary would have short-circuited the loop above
+ */
+ processor = (processor_t)queue_first(&cset->idle_secondary_queue);
+ while (!queue_end(&cset->idle_secondary_queue, (queue_entry_t)processor)) {
+ processor_t cprimary = processor->processor_primary;
+
+ /* If the primary processor is offline or starting up, it's not a candidate for this path */
+ if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) {
+ integer_t primary_pri = cprimary->current_pri;
+
+ if (primary_pri < lowest_unpaired_primary_priority) {
+ lowest_unpaired_primary_priority = primary_pri;
+ lp_unpaired_primary_processor = cprimary;
+ lp_unpaired_secondary_processor = processor;
}
- processor = (processor_t)queue_next((queue_entry_t)processor);
}
- if (thread->sched_pri > lowest_unpaired)
- return lp_unpaired;
+ processor = (processor_t)queue_next((queue_entry_t)processor);
+ }
+
- if (pmeta != PROCESSOR_META_NULL)
- return ((processor_t)queue_first(&pmeta->idle_queue));
- if (thread->sched_pri > lowest_priority)
+ if (thread->sched_pri >= BASEPRI_RTQUEUES) {
+
+ /*
+ * For realtime threads, the most important aspect is
+ * scheduling latency, so we attempt to assign threads
+ * to good preemption candidates (assuming an idle primary
+ * processor was not available above).
+ */
+
+ if (thread->sched_pri > lowest_unpaired_primary_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ remqueue((queue_entry_t)lp_unpaired_primary_processor);
+ enqueue_tail(&cset->active_queue, (queue_entry_t)lp_unpaired_primary_processor);
+ return lp_unpaired_primary_processor;
+ }
+ if (thread->sched_pri > lowest_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ remqueue((queue_entry_t)lp_processor);
+ enqueue_tail(&cset->active_queue, (queue_entry_t)lp_processor);
return lp_processor;
+ }
if (thread->realtime.deadline < furthest_deadline)
return fd_processor;
- processor = PROCESSOR_NULL;
- }
- else {
/*
- * Check any hinted processors in the processor set if available.
+ * If all primary and secondary CPUs are busy with realtime
+ * threads with deadlines earlier than us, move on to next
+ * pset.
*/
- if (cset->low_pri != PROCESSOR_NULL && cset->low_pri->state != PROCESSOR_INACTIVE &&
- cset->low_pri->state != PROCESSOR_SHUTDOWN && cset->low_pri->state != PROCESSOR_OFF_LINE &&
- (processor == PROCESSOR_NULL ||
- (thread->sched_pri > BASEPRI_DEFAULT && cset->low_pri->current_pri < thread->sched_pri))) {
- processor = cset->low_pri;
+ }
+ else {
+
+ if (thread->sched_pri > lowest_unpaired_primary_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ remqueue((queue_entry_t)lp_unpaired_primary_processor);
+ enqueue_tail(&cset->active_queue, (queue_entry_t)lp_unpaired_primary_processor);
+ return lp_unpaired_primary_processor;
}
- else
- if (cset->low_count != PROCESSOR_NULL && cset->low_count->state != PROCESSOR_INACTIVE &&
- cset->low_count->state != PROCESSOR_SHUTDOWN && cset->low_count->state != PROCESSOR_OFF_LINE &&
- (processor == PROCESSOR_NULL || (thread->sched_pri <= BASEPRI_DEFAULT &&
- SCHED(processor_runq_count)(cset->low_count) < SCHED(processor_runq_count)(processor)))) {
- processor = cset->low_count;
+ if (thread->sched_pri > lowest_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ remqueue((queue_entry_t)lp_processor);
+ enqueue_tail(&cset->active_queue, (queue_entry_t)lp_processor);
+ return lp_processor;
}
/*
- * Otherwise, choose an available processor in the set.
+ * If all primary processor in this pset are running a higher
+ * priority thread, move on to next pset. Only when we have
+ * exhausted this search do we fall back to other heuristics.
*/
- if (processor == PROCESSOR_NULL) {
- processor = (processor_t)dequeue_head(&cset->active_queue);
- if (processor != PROCESSOR_NULL)
- enqueue_tail(&cset->active_queue, (queue_entry_t)processor);
- }
-
- if (processor != PROCESSOR_NULL && pmeta == PROCESSOR_META_NULL) {
- if (processor->processor_meta != PROCESSOR_META_NULL &&
- !queue_empty(&processor->processor_meta->idle_queue))
- pmeta = processor->processor_meta;
- }
}
/*
- * Move onto the next processor set.
+ * Move onto the next processor set.
*/
nset = next_pset(cset);
} while (nset != pset);
/*
- * Make sure that we pick a running processor,
- * and that the correct processor set is locked.
+ * Make sure that we pick a running processor,
+ * and that the correct processor set is locked.
+ * Since we may have unlock the candidate processor's
+ * pset, it may have changed state.
+ *
+ * All primary processors are running a higher priority
+ * thread, so the only options left are enqueuing on
+ * the secondary processor that would perturb the least priority
+ * primary, or the least busy primary.
*/
do {
- if (pmeta != PROCESSOR_META_NULL) {
- if (cset != pmeta->primary->processor_set) {
- pset_unlock(cset);
-
- cset = pmeta->primary->processor_set;
- pset_lock(cset);
- }
-
- if (!queue_empty(&pmeta->idle_queue))
- return ((processor_t)queue_first(&pmeta->idle_queue));
-
- pmeta = PROCESSOR_META_NULL;
- }
-
- /*
- * If we haven't been able to choose a processor,
- * pick the boot processor and return it.
- */
- if (processor == PROCESSOR_NULL) {
- processor = master_processor;
+ /* lowest_priority is evaluated in the main loops above */
+ if (lp_unpaired_secondary_processor != PROCESSOR_NULL) {
+ processor = lp_unpaired_secondary_processor;
+ lp_unpaired_secondary_processor = PROCESSOR_NULL;
+ } else if (lc_processor != PROCESSOR_NULL) {
+ processor = lc_processor;
+ lc_processor = PROCESSOR_NULL;
+ } else {
/*
- * Check that the correct processor set is
- * returned locked.
+ * All processors are executing higher
+ * priority threads, and the lowest_count
+ * candidate was not usable
*/
- if (cset != processor->processor_set) {
- pset_unlock(cset);
-
- cset = processor->processor_set;
- pset_lock(cset);
- }
-
- return (processor);
+ processor = master_processor;
}
/*
- * Check that the processor set for the chosen
- * processor is locked.
+ * Check that the correct processor set is
+ * returned locked.
*/
if (cset != processor->processor_set) {
pset_unlock(cset);
-
cset = processor->processor_set;
pset_lock(cset);
}
/*
- * We must verify that the chosen processor is still available.
+ * We must verify that the chosen processor is still available.
+ * master_processor is an exception, since we may need to preempt
+ * a running thread on it during processor shutdown (for sleep),
+ * and that thread needs to be enqueued on its runqueue to run
+ * when the processor is restarted.
*/
- if (processor->state == PROCESSOR_INACTIVE ||
- processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)
+ if (processor != master_processor && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE))
processor = PROCESSOR_NULL;
+
} while (processor == PROCESSOR_NULL);
return (processor);
processor_t processor;
processor_set_t pset;
-#if DEBUG
assert(thread_runnable(thread));
-#endif
/*
* Update priority if needed.
if (SCHED(can_update_priority)(thread))
SCHED(update_priority)(thread);
+ thread->sfi_class = sfi_thread_classify(thread);
+
assert(thread->runq == PROCESSOR_NULL);
if (thread->bound_processor == PROCESSOR_NULL) {
/*
* Dispatch the thread on the choosen processor.
+ * TODO: This should be based on sched_mode, not sched_pri
*/
if (thread->sched_pri >= BASEPRI_RTQUEUES)
realtime_setrun(processor, thread);
* Check for a preemption point in
* the current context.
*
- * Called at splsched.
+ * Called at splsched with thread locked.
*/
ast_t
csw_check(
- processor_t processor)
+ processor_t processor,
+ ast_t check_reason)
{
processor_set_t pset = processor->processor_set;
ast_t result;
/* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */
pset->pending_AST_cpu_mask &= ~(1U << processor->cpu_id);
- result = csw_check_locked(processor, pset);
+ result = csw_check_locked(processor, pset, check_reason);
pset_unlock(pset);
/*
* Check for preemption at splsched with
- * pset locked
+ * pset and thread locked
*/
ast_t
csw_check_locked(
processor_t processor,
- processor_set_t pset __unused)
+ processor_set_t pset __unused,
+ ast_t check_reason)
{
- ast_t result = AST_NONE;
+ ast_t result;
thread_t thread = processor->active_thread;
if (first_timeslice(processor)) {
if (rt_runq.count > 0)
- return (AST_PREEMPT | AST_URGENT);
+ return (check_reason | AST_PREEMPT | AST_URGENT);
}
else {
if (rt_runq.count > 0) {
if (BASEPRI_RTQUEUES > processor->current_pri)
- return (AST_PREEMPT | AST_URGENT);
+ return (check_reason | AST_PREEMPT | AST_URGENT);
else
- return (AST_PREEMPT);
+ return (check_reason | AST_PREEMPT);
}
}
result = SCHED(processor_csw_check)(processor);
if (result != AST_NONE)
- return (result);
+ return (check_reason | result);
if (SCHED(should_current_thread_rechoose_processor)(processor))
- return (AST_PREEMPT);
+ return (check_reason | AST_PREEMPT);
- if (machine_processor_is_inactive(processor))
- return (AST_PREEMPT);
-
if (thread->state & TH_SUSP)
- return (AST_PREEMPT);
+ return (check_reason | AST_PREEMPT);
+
+ /*
+ * Current thread may not need to be preempted, but maybe needs
+ * an SFI wait?
+ */
+ result = sfi_thread_needs_ast(thread, NULL);
+ if (result != AST_NONE)
+ return (check_reason | result);
return (AST_NONE);
}
void
set_sched_pri(
thread_t thread,
- int priority)
+ int priority)
{
boolean_t removed = thread_run_queue_remove(thread);
+ int curgency, nurgency;
+ uint64_t urgency_param1, urgency_param2;
+ thread_t cthread = current_thread();
+ if (thread == cthread) {
+ curgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
+ }
+
thread->sched_pri = priority;
+
+ if (thread == cthread) {
+ nurgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
+/* set_sched_pri doesn't alter RT params. We expect direct base priority/QoS
+ * class alterations from user space to occur relatively infrequently, hence
+ * those are lazily handled. QoS classes have distinct priority bands, and QoS
+ * inheritance is expected to involve priority changes.
+ */
+ if (nurgency != curgency) {
+ thread_tell_urgency(nurgency, urgency_param1, urgency_param2, thread);
+ }
+ }
+
if (removed)
thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
else
processor->current_pri = priority;
processor->current_thmode = thread->sched_mode;
- if ((preempt = csw_check(processor)) != AST_NONE)
+ processor->current_sfi_class = thread->sfi_class = sfi_thread_classify(thread);
+ if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE)
ast_on(preempt);
}
else
#if defined(CONFIG_SCHED_TRADITIONAL)
-/* locks the runqueue itself */
-
+/*
+ * Locks the runqueue itself.
+ *
+ * Thread must be locked.
+ */
static boolean_t
processor_queue_remove(
processor_t processor,
#endif /* CONFIG_SCHED_TRADITIONAL */
+
/*
* thread_run_queue_remove:
*
- * Remove a thread from a current run queue and
+ * Remove a thread from its current run queue and
* return TRUE if successful.
*
* Thread must be locked.
+ *
+ * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the
+ * run queues because the caller locked the thread. Otherwise
+ * the thread is on a run queue, but could be chosen for dispatch
+ * and removed by another processor under a different lock, which
+ * will set thread->runq to PROCESSOR_NULL.
+ *
+ * Hence the thread select path must not rely on anything that could
+ * be changed under the thread lock after calling this function,
+ * most importantly thread->sched_pri.
*/
boolean_t
thread_run_queue_remove(
- thread_t thread)
+ thread_t thread)
{
- processor_t processor = thread->runq;
+ boolean_t removed = FALSE;
+ processor_t processor = thread->runq;
- /*
- * If processor is PROCESSOR_NULL, the thread will stay out of the
- * run queues because the caller locked the thread. Otherwise
- * the thread is on a run queue, but could be chosen for dispatch
- * and removed.
- */
- if (processor != PROCESSOR_NULL) {
- queue_t q;
+ if ((thread->state & (TH_RUN|TH_WAIT)) == TH_WAIT) {
+ /* Thread isn't runnable */
+ assert(thread->runq == PROCESSOR_NULL);
+ return FALSE;
+ }
+ if (processor == PROCESSOR_NULL) {
/*
- * The processor run queues are locked by the
- * processor set. Real-time priorities use a
- * global queue with a dedicated lock.
+ * The thread is either not on the runq,
+ * or is in the midst of being removed from the runq.
+ *
+ * runq is set to NULL under the pset lock, not the thread
+ * lock, so the thread may still be in the process of being dequeued
+ * from the runq. It will wait in invoke for the thread lock to be
+ * dropped.
*/
- if (thread->sched_mode == TH_MODE_FAIRSHARE) {
- return SCHED(fairshare_queue_remove)(thread);
- }
-
- if (thread->sched_pri < BASEPRI_RTQUEUES) {
- return SCHED(processor_queue_remove)(processor, thread);
- }
- simple_lock(&rt_lock);
- q = &rt_runq.queue;
+ return FALSE;
+ }
- if (processor == thread->runq) {
- /*
- * Thread is on a run queue and we have a lock on
- * that run queue.
- */
- remqueue((queue_entry_t)thread);
- SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
- rt_runq.count--;
+ if (thread->sched_mode == TH_MODE_FAIRSHARE) {
+ return SCHED(fairshare_queue_remove)(thread);
+ }
+
+ if (thread->sched_pri < BASEPRI_RTQUEUES) {
+ return SCHED(processor_queue_remove)(processor, thread);
+ }
- thread->runq = PROCESSOR_NULL;
- }
- else {
- /*
- * The thread left the run queue before we could
- * lock the run queue.
- */
- assert(thread->runq == PROCESSOR_NULL);
- processor = PROCESSOR_NULL;
- }
+ simple_lock(&rt_lock);
- simple_unlock(&rt_lock);
+ if (thread->runq != PROCESSOR_NULL) {
+ /*
+ * Thread is on a run queue and we have a lock on
+ * that run queue.
+ */
+
+ assert(thread->runq == RT_RUNQ);
+
+ remqueue((queue_entry_t)thread);
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count--;
+
+ thread->runq = PROCESSOR_NULL;
+
+ removed = TRUE;
}
- return (processor != PROCESSOR_NULL);
+ simple_unlock(&rt_lock);
+
+ return (removed);
}
#if defined(CONFIG_SCHED_TRADITIONAL)
((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->priority <= MAXPRI_THROTTLE))) {
/*
* Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted
+ * TODO: Use TH_SFLAG_THROTTLED instead?
*/
*arg1 = thread->sched_pri;
*arg2 = thread->priority;
return (THREAD_URGENCY_BACKGROUND);
} else {
- *arg1 = thread->sched_pri;
- *arg2 = thread->priority;
+ /* For otherwise unclassified threads, report throughput QoS
+ * parameters
+ */
+ *arg1 = thread->effective_policy.t_through_qos;
+ *arg2 = thread->task->effective_policy.t_through_qos;
return (THREAD_URGENCY_NORMAL);
}
PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state);
while (1) {
-
if (processor->state != PROCESSOR_IDLE) /* unsafe, but worst case we loop around once */
break;
if (pset->pending_AST_cpu_mask & (1U << processor->cpu_id))
break;
- if (!SCHED(processor_queue_empty)(processor))
- break;
if (rt_runq.count)
break;
#if CONFIG_SCHED_IDLE_IN_PLACE
IDLE_KERNEL_DEBUG_CONSTANT(
MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0);
- if (processor->state == PROCESSOR_INACTIVE && !machine_processor_is_inactive(processor))
- break;
+ if (!SCHED(processor_queue_empty)(processor)) {
+ /* Secondary SMT processors respond to directed wakeups
+ * exclusively. Some platforms induce 'spurious' SMT wakeups.
+ */
+ if (processor->processor_primary == processor)
+ break;
+ }
}
timer_switch(&PROCESSOR_DATA(processor, idle_state),
if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) ||
(rt_runq.count > 0 && BASEPRI_RTQUEUES >= new_thread->sched_pri)) ) {
+ /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */
processor->current_pri = IDLEPRI;
processor->current_thmode = TH_MODE_FIXED;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
processor->deadline = UINT64_MAX;
pset_unlock(pset);
processor->state = PROCESSOR_RUNNING;
processor->current_pri = IDLEPRI;
processor->current_thmode = TH_MODE_FIXED;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
processor->deadline = UINT64_MAX;
enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
}
else
- if (state == PROCESSOR_INACTIVE) {
- processor->state = PROCESSOR_RUNNING;
- enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
- }
- else
if (state == PROCESSOR_SHUTDOWN) {
/*
* Going off-line. Force a
processor->next_thread = THREAD_NULL;
processor->current_pri = IDLEPRI;
processor->current_thmode = TH_MODE_FIXED;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
processor->deadline = UINT64_MAX;
pset_unlock(pset);
thread_block(THREAD_CONTINUE_NULL);
}
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
static volatile uint64_t sched_maintenance_deadline;
+#if defined(CONFIG_TELEMETRY)
+static volatile uint64_t sched_telemetry_deadline = 0;
+#endif
static uint64_t sched_tick_last_abstime;
static uint64_t sched_tick_delta;
uint64_t sched_tick_max_delta;
* Perform periodic bookkeeping functions about ten
* times per second.
*/
-static void
+void
sched_traditional_maintenance_continue(void)
{
- uint64_t sched_tick_ctime;
- sched_tick_ctime = mach_absolute_time();
+ uint64_t sched_tick_ctime, late_time;
+
+ sched_tick_ctime = mach_absolute_time();
if (__improbable(sched_tick_last_abstime == 0)) {
sched_tick_last_abstime = sched_tick_ctime;
+ late_time = 0;
sched_tick_delta = 1;
} else {
- sched_tick_delta = ((sched_tick_ctime) - sched_tick_last_abstime) / sched_tick_interval;
+ late_time = sched_tick_ctime - sched_tick_last_abstime;
+ sched_tick_delta = late_time / sched_tick_interval;
/* Ensure a delta of 1, since the interval could be slightly
* smaller than the sched_tick_interval due to dispatch
* latencies.
sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta);
}
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_START,
+ sched_tick_delta,
+ late_time,
+ 0,
+ 0,
+ 0);
+
/* Add a number of pseudo-ticks corresponding to the elapsed interval
* This could be greater than 1 if substantial intervals where
* all processors are idle occur, which rarely occurs in practice.
* Scan the run queues for threads which
* may need to be updated.
*/
- thread_update_scan();
+ SCHED(thread_update_scan)();
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_END,
+ sched_pri_shift,
+ sched_background_pri_shift,
+ 0,
+ 0,
+ 0);
assert_wait((event_t)sched_traditional_maintenance_continue, THREAD_UNINT);
thread_block((thread_continue_t)sched_traditional_maintenance_continue);
sched_maintenance_wakeups++;
}
}
+
+#if defined(CONFIG_TELEMETRY)
+ /*
+ * Windowed telemetry is driven by the scheduler. It should be safe
+ * to call compute_telemetry_windowed() even when windowed telemetry
+ * is disabled, but we should try to avoid doing extra work for no
+ * reason.
+ */
+ if (telemetry_window_enabled) {
+ deadline = sched_telemetry_deadline;
+
+ if (__improbable(ctime >= deadline)) {
+ ndeadline = ctime + sched_telemetry_interval;
+
+ if (__probable(__sync_bool_compare_and_swap(&sched_telemetry_deadline, deadline, ndeadline))) {
+ compute_telemetry_windowed();
+ }
+ }
+ }
+#endif /* CONFIG_TELEMETRY */
}
-#endif /* CONFIG_SCHED_TRADITIONAL */
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
void
sched_init_thread(void (*continuation)(void))
/*NOTREACHED*/
}
-#if defined(CONFIG_SCHED_TRADITIONAL)
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
/*
* thread_update_scan / runq_scan:
static thread_t thread_update_array[THREAD_UPDATE_SIZE];
static int thread_update_count = 0;
+/* Returns TRUE if thread was added, FALSE if thread_update_array is full */
+boolean_t
+thread_update_add_thread(thread_t thread)
+{
+ if (thread_update_count == THREAD_UPDATE_SIZE)
+ return (FALSE);
+
+ thread_update_array[thread_update_count++] = thread;
+ thread_reference_internal(thread);
+ return (TRUE);
+}
+
+void
+thread_update_process_threads(void)
+{
+ while (thread_update_count > 0) {
+ spl_t s;
+ thread_t thread = thread_update_array[--thread_update_count];
+ thread_update_array[thread_update_count] = THREAD_NULL;
+
+ s = splsched();
+ thread_lock(thread);
+ if (!(thread->state & (TH_WAIT)) && (SCHED(can_update_priority)(thread))) {
+ SCHED(update_priority)(thread);
+ }
+ thread_unlock(thread);
+ splx(s);
+
+ thread_deallocate(thread);
+ }
+}
+
/*
* Scan a runq for candidate threads.
*
* Returns TRUE if retry is needed.
*/
-static boolean_t
+boolean_t
runq_scan(
run_queue_t runq)
{
queue_iterate(q, thread, thread_t, links) {
if ( thread->sched_stamp != sched_tick &&
(thread->sched_mode == TH_MODE_TIMESHARE) ) {
- if (thread_update_count == THREAD_UPDATE_SIZE)
+ if (thread_update_add_thread(thread) == FALSE)
return (TRUE);
-
- thread_update_array[thread_update_count++] = thread;
- thread_reference_internal(thread);
}
count--;
return (FALSE);
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+#if defined(CONFIG_SCHED_TRADITIONAL)
+
static void
thread_update_scan(void)
{
do {
do {
+ /*
+ * TODO: in sched_traditional_use_pset_runqueue case,
+ * avoid scanning the same runq multiple times
+ */
pset = processor->processor_set;
s = splsched();
thread = processor->idle_thread;
if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) {
- if (thread_update_count == THREAD_UPDATE_SIZE) {
+ if (thread_update_add_thread(thread) == FALSE) {
restart_needed = TRUE;
break;
}
-
- thread_update_array[thread_update_count++] = thread;
- thread_reference_internal(thread);
}
} while ((processor = processor->processor_list) != NULL);
- /*
- * Ok, we now have a collection of candidates -- fix them.
- */
- while (thread_update_count > 0) {
- thread = thread_update_array[--thread_update_count];
- thread_update_array[thread_update_count] = THREAD_NULL;
-
- s = splsched();
- thread_lock(thread);
- if ( !(thread->state & (TH_WAIT)) ) {
- if (SCHED(can_update_priority)(thread))
- SCHED(update_priority)(thread);
- }
- thread_unlock(thread);
- splx(s);
-
- thread_deallocate(thread);
- }
+ /* Ok, we now have a collection of candidates -- fix them. */
+ thread_update_process_threads();
} while (restart_needed);
}
thread->sched_flags |= TH_SFLAG_EAGERPREEMPT;
if (thread == current_thread()) {
- thread_unlock(thread);
- ast = csw_check(p);
+ ast = csw_check(p, AST_NONE);
+ thread_unlock(thread);
if (ast != AST_NONE) {
(void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast);
}
return (get_preemption_level() == 0 && ml_get_interrupts_enabled());
}
-#if DEBUG
-static boolean_t
+__assert_only static boolean_t
thread_runnable(
thread_t thread)
{
return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN);
}
-#endif /* DEBUG */
static void
sched_timer_deadline_tracking_init(void) {