/*
- * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/vm_param.h>
#include <kern/cpu_number.h>
#include <kern/host.h>
+#include <kern/ipc_host.h>
+#include <kern/ipc_tt.h>
+#include <kern/kalloc.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/processor.h>
#include <kern/sched.h>
#include <kern/task.h>
#include <kern/thread.h>
-#include <kern/ipc_host.h>
-#include <kern/ipc_tt.h>
+#include <kern/timer.h>
+#if KPERF
+#include <kperf/kperf.h>
+#endif /* KPERF */
#include <ipc/ipc_port.h>
-#include <kern/kalloc.h>
+
+#include <security/mac_mach_internal.h>
+
+#if defined(CONFIG_XNUPOST)
+
+#include <tests/xnupost.h>
+
+#endif /* CONFIG_XNUPOST */
/*
* Exported interface
#include <mach/mach_host_server.h>
#include <mach/processor_set_server.h>
-struct processor_set pset0;
-struct pset_node pset_node0;
-decl_simple_lock_data(static,pset_node_lock)
+struct processor_set pset0;
+struct pset_node pset_node0;
+
+static SIMPLE_LOCK_DECLARE(pset_node_lock, 0);
+LCK_GRP_DECLARE(pset_lck_grp, "pset");
+
+queue_head_t tasks;
+queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */
+queue_head_t corpse_tasks;
+int tasks_count;
+int terminated_tasks_count;
+queue_head_t threads;
+queue_head_t terminated_threads;
+int threads_count;
+int terminated_threads_count;
+LCK_GRP_DECLARE(task_lck_grp, "task");
+LCK_ATTR_DECLARE(task_lck_attr, 0, 0);
+LCK_MTX_DECLARE_ATTR(tasks_threads_lock, &task_lck_grp, &task_lck_attr);
+LCK_MTX_DECLARE_ATTR(tasks_corpse_lock, &task_lck_grp, &task_lck_attr);
+
+processor_t processor_list;
+unsigned int processor_count;
+static processor_t processor_list_tail;
+SIMPLE_LOCK_DECLARE(processor_list_lock, 0);
+
+uint32_t processor_avail_count;
+uint32_t processor_avail_count_user;
+uint32_t primary_processor_avail_count;
+uint32_t primary_processor_avail_count_user;
+
+int master_cpu = 0;
+
+struct processor PERCPU_DATA(processor);
+processor_t processor_array[MAX_SCHED_CPUS] = { 0 };
+processor_set_t pset_array[MAX_PSETS] = { 0 };
+
+static timer_call_func_t running_timer_funcs[] = {
+ [RUNNING_TIMER_QUANTUM] = thread_quantum_expire,
+ [RUNNING_TIMER_KPERF] = kperf_timer_expire,
+};
+static_assert(sizeof(running_timer_funcs) / sizeof(running_timer_funcs[0])
+ == RUNNING_TIMER_MAX, "missing running timer function");
+
+#if defined(CONFIG_XNUPOST)
+kern_return_t ipi_test(void);
+extern void arm64_ipi_test(void);
+
+kern_return_t
+ipi_test()
+{
+#if __arm64__
+ processor_t p;
+
+ for (p = processor_list; p != NULL; p = p->processor_list) {
+ thread_bind(p);
+ thread_block(THREAD_CONTINUE_NULL);
+ kprintf("Running IPI test on cpu %d\n", p->cpu_id);
+ arm64_ipi_test();
+ }
-queue_head_t tasks;
-queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */
-int tasks_count;
-int terminated_tasks_count;
-queue_head_t threads;
-int threads_count;
-decl_lck_mtx_data(,tasks_threads_lock)
+ /* unbind thread from specific cpu */
+ thread_bind(PROCESSOR_NULL);
+ thread_block(THREAD_CONTINUE_NULL);
-processor_t processor_list;
-unsigned int processor_count;
-static processor_t processor_list_tail;
-decl_simple_lock_data(,processor_list_lock)
+ T_PASS("Done running IPI tests");
+#else
+ T_PASS("Unsupported platform. Not running IPI tests");
-uint32_t processor_avail_count;
+#endif /* __arm64__ */
-processor_t master_processor;
-int master_cpu = 0;
-boolean_t sched_stats_active = FALSE;
+ return KERN_SUCCESS;
+}
+#endif /* defined(CONFIG_XNUPOST) */
-/* Forwards */
-kern_return_t processor_set_things(
- processor_set_t pset,
- mach_port_t **thing_list,
- mach_msg_type_number_t *count,
- int type);
+int sched_enable_smt = 1;
void
processor_bootstrap(void)
{
- pset_init(&pset0, &pset_node0);
pset_node0.psets = &pset0;
-
- simple_lock_init(&pset_node_lock, 0);
+ pset_init(&pset0, &pset_node0);
queue_init(&tasks);
queue_init(&terminated_tasks);
queue_init(&threads);
-
- simple_lock_init(&processor_list_lock, 0);
-
- master_processor = cpu_to_processor(master_cpu);
+ queue_init(&terminated_threads);
+ queue_init(&corpse_tasks);
processor_init(master_processor, master_cpu, &pset0);
}
*/
void
processor_init(
- processor_t processor,
- int cpu_id,
- processor_set_t pset)
+ processor_t processor,
+ int cpu_id,
+ processor_set_t pset)
{
- spl_t s;
+ spl_t s;
+
+ assert(cpu_id < MAX_SCHED_CPUS);
+ processor->cpu_id = cpu_id;
if (processor != master_processor) {
- /* Scheduler state deferred until sched_init() */
+ /* Scheduler state for master_processor initialized in sched_init() */
SCHED(processor_init)(processor);
}
processor->state = PROCESSOR_OFF_LINE;
- processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL;
+ processor->active_thread = processor->startup_thread = processor->idle_thread = THREAD_NULL;
processor->processor_set = pset;
- processor->current_pri = MINPRI;
- processor->current_thmode = TH_MODE_NONE;
- processor->cpu_id = cpu_id;
- timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor);
+ processor_state_update_idle(processor);
+ processor->starting_pri = MINPRI;
+ processor->quantum_end = UINT64_MAX;
processor->deadline = UINT64_MAX;
- processor->timeslice = 0;
- processor->processor_meta = PROCESSOR_META_NULL;
+ processor->first_timeslice = FALSE;
+ processor->processor_offlined = false;
+ processor->processor_primary = processor; /* no SMT relationship known at this point */
+ processor->processor_secondary = NULL;
+ processor->is_SMT = false;
+ processor->is_recommended = true;
processor->processor_self = IP_NULL;
- processor_data_init(processor);
processor->processor_list = NULL;
+ processor->must_idle = false;
+ processor->running_timers_active = false;
+ for (int i = 0; i < RUNNING_TIMER_MAX; i++) {
+ timer_call_setup(&processor->running_timers[i],
+ running_timer_funcs[i], processor);
+ running_timer_clear(processor, i);
+ }
+
+ timer_init(&processor->idle_state);
+ timer_init(&processor->system_state);
+ timer_init(&processor->user_state);
s = splsched();
pset_lock(pset);
- if (pset->cpu_set_count++ == 0)
+ bit_set(pset->cpu_bitmask, cpu_id);
+ bit_set(pset->recommended_bitmask, cpu_id);
+ bit_set(pset->primary_map, cpu_id);
+ bit_set(pset->cpu_state_map[PROCESSOR_OFF_LINE], cpu_id);
+ if (pset->cpu_set_count++ == 0) {
pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
- else {
+ } else {
pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low;
pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
}
pset_unlock(pset);
splx(s);
- simple_lock(&processor_list_lock);
- if (processor_list == NULL)
+ simple_lock(&processor_list_lock, LCK_GRP_NULL);
+ if (processor_list == NULL) {
processor_list = processor;
- else
+ } else {
processor_list_tail->processor_list = processor;
+ }
processor_list_tail = processor;
processor_count++;
+ processor_array[cpu_id] = processor;
simple_unlock(&processor_list_lock);
}
+bool system_is_SMT = false;
+
void
-processor_meta_init(
- processor_t processor,
- processor_t primary)
+processor_set_primary(
+ processor_t processor,
+ processor_t primary)
+{
+ assert(processor->processor_primary == primary || processor->processor_primary == processor);
+ /* Re-adjust primary point for this (possibly) secondary processor */
+ processor->processor_primary = primary;
+
+ assert(primary->processor_secondary == NULL || primary->processor_secondary == processor);
+ if (primary != processor) {
+ /* Link primary to secondary, assumes a 2-way SMT model
+ * We'll need to move to a queue if any future architecture
+ * requires otherwise.
+ */
+ assert(processor->processor_secondary == NULL);
+ primary->processor_secondary = processor;
+ /* Mark both processors as SMT siblings */
+ primary->is_SMT = TRUE;
+ processor->is_SMT = TRUE;
+
+ if (!system_is_SMT) {
+ system_is_SMT = true;
+ }
+
+ processor_set_t pset = processor->processor_set;
+ spl_t s = splsched();
+ pset_lock(pset);
+ if (!pset->is_SMT) {
+ pset->is_SMT = true;
+ }
+ bit_clear(pset->primary_map, processor->cpu_id);
+ pset_unlock(pset);
+ splx(s);
+ }
+}
+
+processor_set_t
+processor_pset(
+ processor_t processor)
{
- processor_meta_t pmeta = primary->processor_meta;
+ return processor->processor_set;
+}
- if (pmeta == PROCESSOR_META_NULL) {
- pmeta = kalloc(sizeof (*pmeta));
+#if CONFIG_SCHED_EDGE
- queue_init(&pmeta->idle_queue);
+cluster_type_t
+pset_type_for_id(uint32_t cluster_id)
+{
+ return pset_array[cluster_id]->pset_type;
+}
- pmeta->primary = primary;
+/*
+ * Processor foreign threads
+ *
+ * With the Edge scheduler, each pset maintains a bitmap of processors running threads
+ * which are foreign to the pset/cluster. A thread is defined as foreign for a cluster
+ * if its of a different type than its preferred cluster type (E/P). The bitmap should
+ * be updated every time a new thread is assigned to run on a processor.
+ *
+ * This bitmap allows the Edge scheduler to quickly find CPUs running foreign threads
+ * for rebalancing.
+ */
+static void
+processor_state_update_running_foreign(processor_t processor, thread_t thread)
+{
+ cluster_type_t current_processor_type = pset_type_for_id(processor->processor_set->pset_cluster_id);
+ cluster_type_t thread_type = pset_type_for_id(sched_edge_thread_preferred_cluster(thread));
+
+ /* Update the bitmap for the pset only for unbounded non-RT threads. */
+ if ((processor->current_pri < BASEPRI_RTQUEUES) && (thread->bound_processor == PROCESSOR_NULL) && (current_processor_type != thread_type)) {
+ bit_set(processor->processor_set->cpu_running_foreign, processor->cpu_id);
+ } else {
+ bit_clear(processor->processor_set->cpu_running_foreign, processor->cpu_id);
}
+}
+#else /* CONFIG_SCHED_EDGE */
+static void
+processor_state_update_running_foreign(__unused processor_t processor, __unused thread_t thread)
+{
+}
+#endif /* CONFIG_SCHED_EDGE */
- processor->processor_meta = pmeta;
+void
+processor_state_update_idle(processor_t processor)
+{
+ processor->current_pri = IDLEPRI;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
+ processor->current_recommended_pset_type = PSET_SMP;
+#if CONFIG_THREAD_GROUPS
+ processor->current_thread_group = NULL;
+#endif
+ processor->current_perfctl_class = PERFCONTROL_CLASS_IDLE;
+ processor->current_urgency = THREAD_URGENCY_NONE;
+ processor->current_is_NO_SMT = false;
+ processor->current_is_bound = false;
+ processor->current_is_eagerpreempt = false;
+ os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], TH_BUCKET_SCHED_MAX, relaxed);
}
-processor_set_t
-processor_pset(
- processor_t processor)
+void
+processor_state_update_from_thread(processor_t processor, thread_t thread)
+{
+ processor->current_pri = thread->sched_pri;
+ processor->current_sfi_class = thread->sfi_class;
+ processor->current_recommended_pset_type = recommended_pset_type(thread);
+ processor_state_update_running_foreign(processor, thread);
+ /* Since idle and bound threads are not tracked by the edge scheduler, ignore when those threads go on-core */
+ sched_bucket_t bucket = ((thread->state & TH_IDLE) || (thread->bound_processor != PROCESSOR_NULL)) ? TH_BUCKET_SCHED_MAX : thread->th_sched_bucket;
+ os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], bucket, relaxed);
+
+#if CONFIG_THREAD_GROUPS
+ processor->current_thread_group = thread_group_get(thread);
+#endif
+ processor->current_perfctl_class = thread_get_perfcontrol_class(thread);
+ processor->current_urgency = thread_get_urgency(thread, NULL, NULL);
+ processor->current_is_NO_SMT = thread_no_smt(thread);
+ processor->current_is_bound = thread->bound_processor != PROCESSOR_NULL;
+ processor->current_is_eagerpreempt = thread_is_eager_preempt(thread);
+}
+
+void
+processor_state_update_explicit(processor_t processor, int pri, sfi_class_id_t sfi_class,
+ pset_cluster_type_t pset_type, perfcontrol_class_t perfctl_class, thread_urgency_t urgency, sched_bucket_t bucket)
{
- return (processor->processor_set);
+ processor->current_pri = pri;
+ processor->current_sfi_class = sfi_class;
+ processor->current_recommended_pset_type = pset_type;
+ processor->current_perfctl_class = perfctl_class;
+ processor->current_urgency = urgency;
+ os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], bucket, relaxed);
}
pset_node_t
processor_set_t
pset_create(
- pset_node_t node)
+ pset_node_t node)
{
- processor_set_t *prev, pset = kalloc(sizeof (*pset));
+ /* some schedulers do not support multiple psets */
+ if (SCHED(multiple_psets_enabled) == FALSE) {
+ return processor_pset(master_processor);
+ }
+
+ processor_set_t *prev, pset = zalloc_permanent_type(struct processor_set);
if (pset != PROCESSOR_SET_NULL) {
pset_init(pset, node);
- simple_lock(&pset_node_lock);
+ simple_lock(&pset_node_lock, LCK_GRP_NULL);
prev = &node->psets;
- while (*prev != PROCESSOR_SET_NULL)
+ while (*prev != PROCESSOR_SET_NULL) {
prev = &(*prev)->pset_list;
+ }
*prev = pset;
simple_unlock(&pset_node_lock);
}
- return (pset);
+ return pset;
}
+/*
+ * Find processor set with specified cluster_id.
+ * Returns default_pset if not found.
+ */
+processor_set_t
+pset_find(
+ uint32_t cluster_id,
+ processor_set_t default_pset)
+{
+ simple_lock(&pset_node_lock, LCK_GRP_NULL);
+ pset_node_t node = &pset_node0;
+ processor_set_t pset = NULL;
+
+ do {
+ pset = node->psets;
+ while (pset != NULL) {
+ if (pset->pset_cluster_id == cluster_id) {
+ break;
+ }
+ pset = pset->pset_list;
+ }
+ } while (pset == NULL && (node = node->node_list) != NULL);
+ simple_unlock(&pset_node_lock);
+ if (pset == NULL) {
+ return default_pset;
+ }
+ return pset;
+}
+
+#if !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2)
+
+/*
+ * Find the first processor_set for the given pset_cluster_type.
+ * Should be removed with rdar://57340304, as it's only
+ * useful for the workaround described in rdar://57306691.
+ */
+
+processor_set_t
+pset_find_first_by_cluster_type(
+ pset_cluster_type_t pset_cluster_type)
+{
+ simple_lock(&pset_node_lock, LCK_GRP_NULL);
+ pset_node_t node = &pset_node0;
+ processor_set_t pset = NULL;
+
+ do {
+ pset = node->psets;
+ while (pset != NULL) {
+ if (pset->pset_cluster_type == pset_cluster_type) {
+ break;
+ }
+ pset = pset->pset_list;
+ }
+ } while (pset == NULL && (node = node->node_list) != NULL);
+ simple_unlock(&pset_node_lock);
+ return pset;
+}
+
+#endif /* !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2) */
+
/*
* Initialize the given processor_set structure.
*/
void
pset_init(
- processor_set_t pset,
- pset_node_t node)
+ processor_set_t pset,
+ pset_node_t node)
{
+ static uint32_t pset_count = 0;
+
if (pset != &pset0) {
- /* Scheduler state deferred until sched_init() */
+ /*
+ * Scheduler runqueue initialization for non-boot psets.
+ * This initialization for pset0 happens in sched_init().
+ */
SCHED(pset_init)(pset);
+ SCHED(rt_init)(pset);
}
- queue_init(&pset->active_queue);
- queue_init(&pset->idle_queue);
pset->online_processor_count = 0;
- pset_pri_init_hint(pset, PROCESSOR_NULL);
- pset_count_init_hint(pset, PROCESSOR_NULL);
+ pset->load_average = 0;
+ bzero(&pset->pset_load_average, sizeof(pset->pset_load_average));
+#if CONFIG_SCHED_EDGE
+ bzero(&pset->pset_execution_time, sizeof(pset->pset_execution_time));
+#endif /* CONFIG_SCHED_EDGE */
pset->cpu_set_low = pset->cpu_set_hi = 0;
pset->cpu_set_count = 0;
- pset->pending_AST_cpu_mask = 0;
+ pset->last_chosen = -1;
+ pset->cpu_bitmask = 0;
+ pset->recommended_bitmask = 0;
+ pset->primary_map = 0;
+ pset->realtime_map = 0;
+ pset->cpu_running_foreign = 0;
+
+ for (uint i = 0; i < PROCESSOR_STATE_LEN; i++) {
+ pset->cpu_state_map[i] = 0;
+ }
+ pset->pending_AST_URGENT_cpu_mask = 0;
+ pset->pending_AST_PREEMPT_cpu_mask = 0;
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ pset->pending_deferred_AST_cpu_mask = 0;
+#endif
+ pset->pending_spill_cpu_mask = 0;
pset_lock_init(pset);
pset->pset_self = IP_NULL;
pset->pset_name_self = IP_NULL;
pset->pset_list = PROCESSOR_SET_NULL;
pset->node = node;
+
+ /*
+ * The pset_cluster_type & pset_cluster_id for all psets
+ * on the platform are initialized as part of the SCHED(init).
+ * That works well for small cluster platforms; for large cluster
+ * count systems, it might be cleaner to do all the setup
+ * dynamically in SCHED(pset_init).
+ *
+ * <Edge Multi-cluster Support Needed>
+ */
+ pset->is_SMT = false;
+
+ simple_lock(&pset_node_lock, LCK_GRP_NULL);
+ pset->pset_id = pset_count++;
+ bit_set(node->pset_map, pset->pset_id);
+ simple_unlock(&pset_node_lock);
+
+ pset_array[pset->pset_id] = pset;
}
kern_return_t
processor_info_count(
- processor_flavor_t flavor,
- mach_msg_type_number_t *count)
+ processor_flavor_t flavor,
+ mach_msg_type_number_t *count)
{
switch (flavor) {
-
case PROCESSOR_BASIC_INFO:
*count = PROCESSOR_BASIC_INFO_COUNT;
break;
break;
default:
- return (cpu_info_count(flavor, count));
+ return cpu_info_count(flavor, count);
}
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
kern_return_t
processor_info(
- register processor_t processor,
- processor_flavor_t flavor,
- host_t *host,
- processor_info_t info,
- mach_msg_type_number_t *count)
+ processor_t processor,
+ processor_flavor_t flavor,
+ host_t *host,
+ processor_info_t info,
+ mach_msg_type_number_t *count)
{
- register int cpu_id, state;
- kern_return_t result;
+ int cpu_id, state;
+ kern_return_t result;
- if (processor == PROCESSOR_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (processor == PROCESSOR_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
cpu_id = processor->cpu_id;
switch (flavor) {
-
case PROCESSOR_BASIC_INFO:
{
- register processor_basic_info_t basic_info;
+ processor_basic_info_t basic_info;
- if (*count < PROCESSOR_BASIC_INFO_COUNT)
- return (KERN_FAILURE);
+ if (*count < PROCESSOR_BASIC_INFO_COUNT) {
+ return KERN_FAILURE;
+ }
basic_info = (processor_basic_info_t) info;
basic_info->cpu_type = slot_type(cpu_id);
basic_info->cpu_subtype = slot_subtype(cpu_id);
state = processor->state;
- if (state == PROCESSOR_OFF_LINE)
+ if (state == PROCESSOR_OFF_LINE
+#if defined(__x86_64__)
+ || !processor->is_recommended
+#endif
+ ) {
basic_info->running = FALSE;
- else
+ } else {
basic_info->running = TRUE;
+ }
basic_info->slot_num = cpu_id;
- if (processor == master_processor)
+ if (processor == master_processor) {
basic_info->is_master = TRUE;
- else
+ } else {
basic_info->is_master = FALSE;
+ }
*count = PROCESSOR_BASIC_INFO_COUNT;
*host = &realhost;
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
case PROCESSOR_CPU_LOAD_INFO:
{
- processor_cpu_load_info_t cpu_load_info;
- timer_t idle_state;
- uint64_t idle_time_snapshot1, idle_time_snapshot2;
- uint64_t idle_time_tstamp1, idle_time_tstamp2;
+ processor_cpu_load_info_t cpu_load_info;
+ timer_t idle_state;
+ uint64_t idle_time_snapshot1, idle_time_snapshot2;
+ uint64_t idle_time_tstamp1, idle_time_tstamp2;
/*
* We capture the accumulated idle time twice over
* data.
*/
- if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
- return (KERN_FAILURE);
+ if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT) {
+ return KERN_FAILURE;
+ }
cpu_load_info = (processor_cpu_load_info_t) info;
if (precise_user_kernel_time) {
cpu_load_info->cpu_ticks[CPU_STATE_USER] =
- (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval);
+ (uint32_t)(timer_grab(&processor->user_state) / hz_tick_interval);
cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
- (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval);
+ (uint32_t)(timer_grab(&processor->system_state) / hz_tick_interval);
} else {
- uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) +
- timer_grab(&PROCESSOR_DATA(processor, system_state));
+ uint64_t tval = timer_grab(&processor->user_state) +
+ timer_grab(&processor->system_state);
cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval);
cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
}
- idle_state = &PROCESSOR_DATA(processor, idle_state);
+ idle_state = &processor->idle_state;
idle_time_snapshot1 = timer_grab(idle_state);
idle_time_tstamp1 = idle_state->tstamp;
* have evidence that the timer is being updated
* concurrently, we consider its value up-to-date.
*/
- if (PROCESSOR_DATA(processor, current_state) != idle_state) {
+ if (processor->current_state != idle_state) {
cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
- (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+ (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
} else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
- (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
+ (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))) {
/* Idle timer is being updated concurrently, second stamp is good enough */
cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
- (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
+ (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
} else {
/*
* Idle timer may be very stale. Fortunately we have established
* that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
*/
idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
-
+
cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
- (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+ (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
}
cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
- *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
- *host = &realhost;
+ *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
+ *host = &realhost;
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
default:
- result = cpu_info(flavor, cpu_id, info, count);
- if (result == KERN_SUCCESS)
- *host = &realhost;
+ result = cpu_info(flavor, cpu_id, info, count);
+ if (result == KERN_SUCCESS) {
+ *host = &realhost;
+ }
- return (result);
+ return result;
}
}
kern_return_t
processor_start(
- processor_t processor)
+ processor_t processor)
{
- processor_set_t pset;
- thread_t thread;
- kern_return_t result;
- spl_t s;
+ processor_set_t pset;
+ thread_t thread;
+ kern_return_t result;
+ spl_t s;
- if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL)
- return (KERN_INVALID_ARGUMENT);
+ if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
if (processor == master_processor) {
- processor_t prev;
+ processor_t prev;
prev = thread_bind(processor);
thread_block(THREAD_CONTINUE_NULL);
thread_bind(prev);
- return (result);
+ return result;
}
+ bool scheduler_disable = false;
+
+ if ((processor->processor_primary != processor) && (sched_enable_smt == 0)) {
+ if (cpu_can_exit(processor->cpu_id)) {
+ return KERN_SUCCESS;
+ }
+ /*
+ * This secondary SMT processor must start in order to service interrupts,
+ * so instead it will be disabled at the scheduler level.
+ */
+ scheduler_disable = true;
+ }
+
+ ml_cpu_begin_state_transition(processor->cpu_id);
s = splsched();
pset = processor->processor_set;
pset_lock(pset);
if (processor->state != PROCESSOR_OFF_LINE) {
pset_unlock(pset);
splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
- return (KERN_FAILURE);
+ return KERN_FAILURE;
}
- processor->state = PROCESSOR_START;
+ pset_update_processor_state(pset, processor, PROCESSOR_START);
pset_unlock(pset);
splx(s);
if (result != KERN_SUCCESS) {
s = splsched();
pset_lock(pset);
- processor->state = PROCESSOR_OFF_LINE;
+ pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
pset_unlock(pset);
splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
- return (result);
+ return result;
}
}
* has never been started. Create a dedicated
* start up thread.
*/
- if ( processor->active_thread == THREAD_NULL &&
- processor->next_thread == THREAD_NULL ) {
- result = kernel_thread_create((thread_continue_t)processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
+ if (processor->active_thread == THREAD_NULL &&
+ processor->startup_thread == THREAD_NULL) {
+ result = kernel_thread_create(processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
if (result != KERN_SUCCESS) {
s = splsched();
pset_lock(pset);
- processor->state = PROCESSOR_OFF_LINE;
+ pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
pset_unlock(pset);
splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
- return (result);
+ return result;
}
s = splsched();
thread_lock(thread);
thread->bound_processor = processor;
- processor->next_thread = thread;
+ processor->startup_thread = thread;
thread->state = TH_RUN;
+ thread->last_made_runnable_time = mach_absolute_time();
thread_unlock(thread);
splx(s);
thread_deallocate(thread);
}
- if (processor->processor_self == IP_NULL)
+ if (processor->processor_self == IP_NULL) {
ipc_processor_init(processor);
+ }
+ ml_broadcast_cpu_event(CPU_BOOT_REQUESTED, processor->cpu_id);
result = cpu_start(processor->cpu_id);
if (result != KERN_SUCCESS) {
s = splsched();
pset_lock(pset);
- processor->state = PROCESSOR_OFF_LINE;
+ pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
pset_unlock(pset);
splx(s);
+ ml_cpu_end_state_transition(processor->cpu_id);
- return (result);
+ return result;
+ }
+ if (scheduler_disable) {
+ assert(processor->processor_primary != processor);
+ sched_processor_enable(processor, FALSE);
}
ipc_processor_enable(processor);
+ ml_cpu_end_state_transition(processor->cpu_id);
+ ml_broadcast_cpu_event(CPU_ACTIVE, processor->cpu_id);
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
+
kern_return_t
processor_exit(
- processor_t processor)
+ processor_t processor)
{
- if (processor == PROCESSOR_NULL)
- return(KERN_INVALID_ARGUMENT);
+ if (processor == PROCESSOR_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- return(processor_shutdown(processor));
+ return processor_shutdown(processor);
+}
+
+
+kern_return_t
+processor_start_from_user(
+ processor_t processor)
+{
+ kern_return_t ret;
+
+ if (processor == PROCESSOR_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ if (!cpu_can_exit(processor->cpu_id)) {
+ ret = sched_processor_enable(processor, TRUE);
+ } else {
+ ret = processor_start(processor);
+ }
+
+ return ret;
+}
+
+kern_return_t
+processor_exit_from_user(
+ processor_t processor)
+{
+ kern_return_t ret;
+
+ if (processor == PROCESSOR_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ if (!cpu_can_exit(processor->cpu_id)) {
+ ret = sched_processor_enable(processor, FALSE);
+ } else {
+ ret = processor_shutdown(processor);
+ }
+
+ return ret;
+}
+
+kern_return_t
+enable_smt_processors(bool enable)
+{
+ if (machine_info.logical_cpu_max == machine_info.physical_cpu_max) {
+ /* Not an SMT system */
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ int ncpus = machine_info.logical_cpu_max;
+
+ for (int i = 1; i < ncpus; i++) {
+ processor_t processor = processor_array[i];
+
+ if (processor->processor_primary != processor) {
+ if (enable) {
+ processor_start_from_user(processor);
+ } else { /* Disable */
+ processor_exit_from_user(processor);
+ }
+ }
+ }
+
+#define BSD_HOST 1
+ host_basic_info_data_t hinfo;
+ mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+ kern_return_t kret = host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
+ if (kret != KERN_SUCCESS) {
+ return kret;
+ }
+
+ if (enable && (hinfo.logical_cpu != hinfo.logical_cpu_max)) {
+ return KERN_FAILURE;
+ }
+
+ if (!enable && (hinfo.logical_cpu != hinfo.physical_cpu)) {
+ return KERN_FAILURE;
+ }
+
+ return KERN_SUCCESS;
}
kern_return_t
processor_control(
- processor_t processor,
- processor_info_t info,
- mach_msg_type_number_t count)
+ processor_t processor,
+ processor_info_t info,
+ mach_msg_type_number_t count)
{
- if (processor == PROCESSOR_NULL)
- return(KERN_INVALID_ARGUMENT);
+ if (processor == PROCESSOR_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
- return(cpu_control(processor->cpu_id, info, count));
+ return cpu_control(processor->cpu_id, info, count);
}
-
+
kern_return_t
processor_set_create(
- __unused host_t host,
- __unused processor_set_t *new_set,
- __unused processor_set_t *new_name)
+ __unused host_t host,
+ __unused processor_set_t *new_set,
+ __unused processor_set_t *new_name)
{
- return(KERN_FAILURE);
+ return KERN_FAILURE;
}
kern_return_t
processor_set_destroy(
- __unused processor_set_t pset)
+ __unused processor_set_t pset)
{
- return(KERN_FAILURE);
+ return KERN_FAILURE;
}
kern_return_t
processor_get_assignment(
- processor_t processor,
- processor_set_t *pset)
+ processor_t processor,
+ processor_set_t *pset)
{
int state;
- if (processor == PROCESSOR_NULL)
- return(KERN_INVALID_ARGUMENT);
+ if (processor == PROCESSOR_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
state = processor->state;
- if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE)
- return(KERN_FAILURE);
+ if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE) {
+ return KERN_FAILURE;
+ }
*pset = &pset0;
- return(KERN_SUCCESS);
+ return KERN_SUCCESS;
}
kern_return_t
processor_set_info(
- processor_set_t pset,
- int flavor,
- host_t *host,
- processor_set_info_t info,
- mach_msg_type_number_t *count)
+ processor_set_t pset,
+ int flavor,
+ host_t *host,
+ processor_set_info_t info,
+ mach_msg_type_number_t *count)
{
- if (pset == PROCESSOR_SET_NULL)
- return(KERN_INVALID_ARGUMENT);
+ if (pset == PROCESSOR_SET_NULL) {
+ return KERN_INVALID_ARGUMENT;
+ }
if (flavor == PROCESSOR_SET_BASIC_INFO) {
- register processor_set_basic_info_t basic_info;
+ processor_set_basic_info_t basic_info;
- if (*count < PROCESSOR_SET_BASIC_INFO_COUNT)
- return(KERN_FAILURE);
+ if (*count < PROCESSOR_SET_BASIC_INFO_COUNT) {
+ return KERN_FAILURE;
+ }
basic_info = (processor_set_basic_info_t) info;
+#if defined(__x86_64__)
+ basic_info->processor_count = processor_avail_count_user;
+#else
basic_info->processor_count = processor_avail_count;
+#endif
basic_info->default_policy = POLICY_TIMESHARE;
*count = PROCESSOR_SET_BASIC_INFO_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
- register policy_timeshare_base_t ts_base;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
+ policy_timeshare_base_t ts_base;
- if (*count < POLICY_TIMESHARE_BASE_COUNT)
- return(KERN_FAILURE);
+ if (*count < POLICY_TIMESHARE_BASE_COUNT) {
+ return KERN_FAILURE;
+ }
ts_base = (policy_timeshare_base_t) info;
ts_base->base_priority = BASEPRI_DEFAULT;
*count = POLICY_TIMESHARE_BASE_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
- register policy_fifo_base_t fifo_base;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
+ policy_fifo_base_t fifo_base;
- if (*count < POLICY_FIFO_BASE_COUNT)
- return(KERN_FAILURE);
+ if (*count < POLICY_FIFO_BASE_COUNT) {
+ return KERN_FAILURE;
+ }
fifo_base = (policy_fifo_base_t) info;
fifo_base->base_priority = BASEPRI_DEFAULT;
*count = POLICY_FIFO_BASE_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
- register policy_rr_base_t rr_base;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
+ policy_rr_base_t rr_base;
- if (*count < POLICY_RR_BASE_COUNT)
- return(KERN_FAILURE);
+ if (*count < POLICY_RR_BASE_COUNT) {
+ return KERN_FAILURE;
+ }
rr_base = (policy_rr_base_t) info;
rr_base->base_priority = BASEPRI_DEFAULT;
*count = POLICY_RR_BASE_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
- register policy_timeshare_limit_t ts_limit;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
+ policy_timeshare_limit_t ts_limit;
- if (*count < POLICY_TIMESHARE_LIMIT_COUNT)
- return(KERN_FAILURE);
+ if (*count < POLICY_TIMESHARE_LIMIT_COUNT) {
+ return KERN_FAILURE;
+ }
ts_limit = (policy_timeshare_limit_t) info;
ts_limit->max_priority = MAXPRI_KERNEL;
*count = POLICY_TIMESHARE_LIMIT_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
- register policy_fifo_limit_t fifo_limit;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
+ policy_fifo_limit_t fifo_limit;
- if (*count < POLICY_FIFO_LIMIT_COUNT)
- return(KERN_FAILURE);
+ if (*count < POLICY_FIFO_LIMIT_COUNT) {
+ return KERN_FAILURE;
+ }
fifo_limit = (policy_fifo_limit_t) info;
fifo_limit->max_priority = MAXPRI_KERNEL;
*count = POLICY_FIFO_LIMIT_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_RR_LIMITS) {
- register policy_rr_limit_t rr_limit;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_RR_LIMITS) {
+ policy_rr_limit_t rr_limit;
- if (*count < POLICY_RR_LIMIT_COUNT)
- return(KERN_FAILURE);
+ if (*count < POLICY_RR_LIMIT_COUNT) {
+ return KERN_FAILURE;
+ }
rr_limit = (policy_rr_limit_t) info;
rr_limit->max_priority = MAXPRI_KERNEL;
*count = POLICY_RR_LIMIT_COUNT;
*host = &realhost;
- return(KERN_SUCCESS);
- }
- else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
- register int *enabled;
+ return KERN_SUCCESS;
+ } else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
+ int *enabled;
- if (*count < (sizeof(*enabled)/sizeof(int)))
- return(KERN_FAILURE);
+ if (*count < (sizeof(*enabled) / sizeof(int))) {
+ return KERN_FAILURE;
+ }
enabled = (int *) info;
*enabled = POLICY_TIMESHARE | POLICY_RR | POLICY_FIFO;
- *count = sizeof(*enabled)/sizeof(int);
+ *count = sizeof(*enabled) / sizeof(int);
*host = &realhost;
- return(KERN_SUCCESS);
+ return KERN_SUCCESS;
}
*host = HOST_NULL;
- return(KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
/*
* processor_set_statistics
*
- * Returns scheduling statistics for a processor set.
+ * Returns scheduling statistics for a processor set.
*/
-kern_return_t
+kern_return_t
processor_set_statistics(
processor_set_t pset,
int flavor,
processor_set_info_t info,
- mach_msg_type_number_t *count)
+ mach_msg_type_number_t *count)
{
- if (pset == PROCESSOR_SET_NULL || pset != &pset0)
- return (KERN_INVALID_PROCESSOR_SET);
+ if (pset == PROCESSOR_SET_NULL || pset != &pset0) {
+ return KERN_INVALID_PROCESSOR_SET;
+ }
if (flavor == PROCESSOR_SET_LOAD_INFO) {
- register processor_set_load_info_t load_info;
+ processor_set_load_info_t load_info;
- if (*count < PROCESSOR_SET_LOAD_INFO_COUNT)
- return(KERN_FAILURE);
+ if (*count < PROCESSOR_SET_LOAD_INFO_COUNT) {
+ return KERN_FAILURE;
+ }
load_info = (processor_set_load_info_t) info;
load_info->thread_count = threads_count;
*count = PROCESSOR_SET_LOAD_INFO_COUNT;
- return(KERN_SUCCESS);
+ return KERN_SUCCESS;
}
- return(KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
/*
*
* Specify max priority permitted on processor set. This affects
* newly created and assigned threads. Optionally change existing
- * ones.
+ * ones.
*/
kern_return_t
processor_set_max_priority(
- __unused processor_set_t pset,
- __unused int max_priority,
- __unused boolean_t change_threads)
+ __unused processor_set_t pset,
+ __unused int max_priority,
+ __unused boolean_t change_threads)
{
- return (KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
/*
kern_return_t
processor_set_policy_enable(
- __unused processor_set_t pset,
- __unused int policy)
+ __unused processor_set_t pset,
+ __unused int policy)
{
- return (KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
/*
*/
kern_return_t
processor_set_policy_disable(
- __unused processor_set_t pset,
- __unused int policy,
- __unused boolean_t change_threads)
+ __unused processor_set_t pset,
+ __unused int policy,
+ __unused boolean_t change_threads)
{
- return (KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
-#define THING_TASK 0
-#define THING_THREAD 1
-
/*
* processor_set_things:
*
* Common internals for processor_set_{threads,tasks}
*/
-kern_return_t
+static kern_return_t
processor_set_things(
- processor_set_t pset,
- mach_port_t **thing_list,
- mach_msg_type_number_t *count,
- int type)
+ processor_set_t pset,
+ void **thing_list,
+ mach_msg_type_number_t *count,
+ int type,
+ mach_task_flavor_t flavor)
{
- unsigned int actual; /* this many things */
- unsigned int maxthings;
unsigned int i;
+ task_t task;
+ thread_t thread;
+
+ task_t *task_list;
+ unsigned int actual_tasks;
+ vm_size_t task_size, task_size_needed;
+
+ thread_t *thread_list;
+ unsigned int actual_threads;
+ vm_size_t thread_size, thread_size_needed;
+ void *addr, *newaddr;
vm_size_t size, size_needed;
- void *addr;
- if (pset == PROCESSOR_SET_NULL || pset != &pset0)
- return (KERN_INVALID_ARGUMENT);
+ if (pset == PROCESSOR_SET_NULL || pset != &pset0) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ task_size = 0;
+ task_size_needed = 0;
+ task_list = NULL;
+ actual_tasks = 0;
- size = 0;
- addr = NULL;
+ thread_size = 0;
+ thread_size_needed = 0;
+ thread_list = NULL;
+ actual_threads = 0;
for (;;) {
lck_mtx_lock(&tasks_threads_lock);
- if (type == THING_TASK)
- maxthings = tasks_count;
- else
- maxthings = threads_count;
-
/* do we have the memory we need? */
+ if (type == PSET_THING_THREAD) {
+ thread_size_needed = threads_count * sizeof(void *);
+ }
+#if !CONFIG_MACF
+ else
+#endif
+ task_size_needed = tasks_count * sizeof(void *);
- size_needed = maxthings * sizeof (mach_port_t);
- if (size_needed <= size)
+ if (task_size_needed <= task_size &&
+ thread_size_needed <= thread_size) {
break;
+ }
/* unlock and allocate more memory */
lck_mtx_unlock(&tasks_threads_lock);
- if (size != 0)
- kfree(addr, size);
-
- assert(size_needed > 0);
- size = size_needed;
+ /* grow task array */
+ if (task_size_needed > task_size) {
+ if (task_size != 0) {
+ kfree(task_list, task_size);
+ }
- addr = kalloc(size);
- if (addr == 0)
- return (KERN_RESOURCE_SHORTAGE);
- }
+ assert(task_size_needed > 0);
+ task_size = task_size_needed;
- /* OK, have memory and the list locked */
+ task_list = (task_t *)kalloc(task_size);
+ if (task_list == NULL) {
+ if (thread_size != 0) {
+ kfree(thread_list, thread_size);
+ }
+ return KERN_RESOURCE_SHORTAGE;
+ }
+ }
- actual = 0;
- switch (type) {
+ /* grow thread array */
+ if (thread_size_needed > thread_size) {
+ if (thread_size != 0) {
+ kfree(thread_list, thread_size);
+ }
- case THING_TASK: {
- task_t task, *task_list = (task_t *)addr;
+ assert(thread_size_needed > 0);
+ thread_size = thread_size_needed;
- for (task = (task_t)queue_first(&tasks);
- !queue_end(&tasks, (queue_entry_t)task);
- task = (task_t)queue_next(&task->tasks)) {
-#if defined(SECURE_KERNEL)
- if (task != kernel_task) {
-#endif
- task_reference_internal(task);
- task_list[actual++] = task;
-#if defined(SECURE_KERNEL)
+ thread_list = (thread_t *)kalloc(thread_size);
+ if (thread_list == 0) {
+ if (task_size != 0) {
+ kfree(task_list, task_size);
+ }
+ return KERN_RESOURCE_SHORTAGE;
}
-#endif
}
-
- break;
}
- case THING_THREAD: {
- thread_t thread, *thread_list = (thread_t *)addr;
+ /* OK, have memory and the list locked */
+ /* If we need it, get the thread list */
+ if (type == PSET_THING_THREAD) {
for (thread = (thread_t)queue_first(&threads);
- !queue_end(&threads, (queue_entry_t)thread);
- thread = (thread_t)queue_next(&thread->threads)) {
+ !queue_end(&threads, (queue_entry_t)thread);
+ thread = (thread_t)queue_next(&thread->threads)) {
+#if defined(SECURE_KERNEL)
+ if (thread->task != kernel_task) {
+#endif
thread_reference_internal(thread);
- thread_list[actual++] = thread;
+ thread_list[actual_threads++] = thread;
+#if defined(SECURE_KERNEL)
+ }
+#endif
}
-
- break;
}
-
+#if !CONFIG_MACF
+ else {
+#endif
+ /* get a list of the tasks */
+ for (task = (task_t)queue_first(&tasks);
+ !queue_end(&tasks, (queue_entry_t)task);
+ task = (task_t)queue_next(&task->tasks)) {
+#if defined(SECURE_KERNEL)
+ if (task != kernel_task) {
+#endif
+ task_reference_internal(task);
+ task_list[actual_tasks++] = task;
+#if defined(SECURE_KERNEL)
}
-
- lck_mtx_unlock(&tasks_threads_lock);
-
- if (actual < maxthings)
- size_needed = actual * sizeof (mach_port_t);
-
- if (actual == 0) {
- /* no things, so return null pointer and deallocate memory */
- *thing_list = NULL;
- *count = 0;
-
- if (size != 0)
- kfree(addr, size);
+#endif
}
- else {
- /* if we allocated too much, must copy */
-
- if (size_needed < size) {
- void *newaddr;
+#if !CONFIG_MACF
+}
+#endif
- newaddr = kalloc(size_needed);
- if (newaddr == 0) {
- switch (type) {
+ lck_mtx_unlock(&tasks_threads_lock);
- case THING_TASK: {
- task_t *task_list = (task_t *)addr;
+#if CONFIG_MACF
+ unsigned int j, used;
- for (i = 0; i < actual; i++)
- task_deallocate(task_list[i]);
+ /* for each task, make sure we are allowed to examine it */
+ for (i = used = 0; i < actual_tasks; i++) {
+ if (mac_task_check_expose_task(task_list[i], flavor)) {
+ task_deallocate(task_list[i]);
+ continue;
+ }
+ task_list[used++] = task_list[i];
+ }
+ actual_tasks = used;
+ task_size_needed = actual_tasks * sizeof(void *);
+
+ if (type == PSET_THING_THREAD) {
+ /* for each thread (if any), make sure it's task is in the allowed list */
+ for (i = used = 0; i < actual_threads; i++) {
+ boolean_t found_task = FALSE;
+
+ task = thread_list[i]->task;
+ for (j = 0; j < actual_tasks; j++) {
+ if (task_list[j] == task) {
+ found_task = TRUE;
break;
}
+ }
+ if (found_task) {
+ thread_list[used++] = thread_list[i];
+ } else {
+ thread_deallocate(thread_list[i]);
+ }
+ }
+ actual_threads = used;
+ thread_size_needed = actual_threads * sizeof(void *);
- case THING_THREAD: {
- thread_t *thread_list = (thread_t *)addr;
+ /* done with the task list */
+ for (i = 0; i < actual_tasks; i++) {
+ task_deallocate(task_list[i]);
+ }
+ kfree(task_list, task_size);
+ task_size = 0;
+ actual_tasks = 0;
+ task_list = NULL;
+ }
+#endif
- for (i = 0; i < actual; i++)
- thread_deallocate(thread_list[i]);
- break;
- }
+ if (type == PSET_THING_THREAD) {
+ if (actual_threads == 0) {
+ /* no threads available to return */
+ assert(task_size == 0);
+ if (thread_size != 0) {
+ kfree(thread_list, thread_size);
+ }
+ *thing_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
+ }
+ size_needed = actual_threads * sizeof(void *);
+ size = thread_size;
+ addr = thread_list;
+ } else {
+ if (actual_tasks == 0) {
+ /* no tasks available to return */
+ assert(thread_size == 0);
+ if (task_size != 0) {
+ kfree(task_list, task_size);
+ }
+ *thing_list = NULL;
+ *count = 0;
+ return KERN_SUCCESS;
+ }
+ size_needed = actual_tasks * sizeof(void *);
+ size = task_size;
+ addr = task_list;
+ }
+ /* if we allocated too much, must copy */
+ if (size_needed < size) {
+ newaddr = kalloc(size_needed);
+ if (newaddr == 0) {
+ for (i = 0; i < actual_tasks; i++) {
+ if (type == PSET_THING_THREAD) {
+ thread_deallocate(thread_list[i]);
+ } else {
+ task_deallocate(task_list[i]);
}
-
+ }
+ if (size) {
kfree(addr, size);
- return (KERN_RESOURCE_SHORTAGE);
}
-
- bcopy((void *) addr, (void *) newaddr, size_needed);
- kfree(addr, size);
- addr = newaddr;
+ return KERN_RESOURCE_SHORTAGE;
}
- *thing_list = (mach_port_t *)addr;
- *count = actual;
+ bcopy((void *) addr, (void *) newaddr, size_needed);
+ kfree(addr, size);
- /* do the conversion that Mig should handle */
+ addr = newaddr;
+ size = size_needed;
+ }
- switch (type) {
+ *thing_list = (void **)addr;
+ *count = (unsigned int)size / sizeof(void *);
- case THING_TASK: {
- task_t *task_list = (task_t *)addr;
+ return KERN_SUCCESS;
+}
- for (i = 0; i < actual; i++)
- (*thing_list)[i] = convert_task_to_port(task_list[i]);
- break;
- }
+/*
+ * processor_set_tasks:
+ *
+ * List all tasks in the processor set.
+ */
+static kern_return_t
+processor_set_tasks_internal(
+ processor_set_t pset,
+ task_array_t *task_list,
+ mach_msg_type_number_t *count,
+ mach_task_flavor_t flavor)
+{
+ kern_return_t ret;
+ mach_msg_type_number_t i;
- case THING_THREAD: {
- thread_t *thread_list = (thread_t *)addr;
+ ret = processor_set_things(pset, (void **)task_list, count, PSET_THING_TASK, flavor);
+ if (ret != KERN_SUCCESS) {
+ return ret;
+ }
- for (i = 0; i < actual; i++)
- (*thing_list)[i] = convert_thread_to_port(thread_list[i]);
- break;
+ /* do the conversion that Mig should handle */
+ switch (flavor) {
+ case TASK_FLAVOR_CONTROL:
+ for (i = 0; i < *count; i++) {
+ if ((*task_list)[i] == current_task()) {
+ /* if current_task(), return pinned port */
+ (*task_list)[i] = (task_t)convert_task_to_port_pinned((*task_list)[i]);
+ } else {
+ (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]);
+ }
}
-
+ break;
+ case TASK_FLAVOR_READ:
+ for (i = 0; i < *count; i++) {
+ (*task_list)[i] = (task_t)convert_task_read_to_port((*task_list)[i]);
}
+ break;
+ case TASK_FLAVOR_INSPECT:
+ for (i = 0; i < *count; i++) {
+ (*task_list)[i] = (task_t)convert_task_inspect_to_port((*task_list)[i]);
+ }
+ break;
+ case TASK_FLAVOR_NAME:
+ for (i = 0; i < *count; i++) {
+ (*task_list)[i] = (task_t)convert_task_name_to_port((*task_list)[i]);
+ }
+ break;
+ default:
+ return KERN_INVALID_ARGUMENT;
}
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
+kern_return_t
+processor_set_tasks(
+ processor_set_t pset,
+ task_array_t *task_list,
+ mach_msg_type_number_t *count)
+{
+ return processor_set_tasks_internal(pset, task_list, count, TASK_FLAVOR_CONTROL);
+}
/*
- * processor_set_tasks:
+ * processor_set_tasks_with_flavor:
*
- * List all tasks in the processor set.
+ * Based on flavor, return task/inspect/read port to all tasks in the processor set.
*/
kern_return_t
-processor_set_tasks(
- processor_set_t pset,
- task_array_t *task_list,
- mach_msg_type_number_t *count)
+processor_set_tasks_with_flavor(
+ processor_set_t pset,
+ mach_task_flavor_t flavor,
+ task_array_t *task_list,
+ mach_msg_type_number_t *count)
{
- return(processor_set_things(pset, (mach_port_t **)task_list, count, THING_TASK));
+ switch (flavor) {
+ case TASK_FLAVOR_CONTROL:
+ case TASK_FLAVOR_READ:
+ case TASK_FLAVOR_INSPECT:
+ case TASK_FLAVOR_NAME:
+ return processor_set_tasks_internal(pset, task_list, count, flavor);
+ default:
+ return KERN_INVALID_ARGUMENT;
+ }
}
/*
#if defined(SECURE_KERNEL)
kern_return_t
processor_set_threads(
- __unused processor_set_t pset,
- __unused thread_array_t *thread_list,
- __unused mach_msg_type_number_t *count)
+ __unused processor_set_t pset,
+ __unused thread_array_t *thread_list,
+ __unused mach_msg_type_number_t *count)
{
- return KERN_FAILURE;
+ return KERN_FAILURE;
+}
+#elif !defined(XNU_TARGET_OS_OSX)
+kern_return_t
+processor_set_threads(
+ __unused processor_set_t pset,
+ __unused thread_array_t *thread_list,
+ __unused mach_msg_type_number_t *count)
+{
+ return KERN_NOT_SUPPORTED;
}
#else
kern_return_t
processor_set_threads(
- processor_set_t pset,
- thread_array_t *thread_list,
- mach_msg_type_number_t *count)
+ processor_set_t pset,
+ thread_array_t *thread_list,
+ mach_msg_type_number_t *count)
{
- return(processor_set_things(pset, (mach_port_t **)thread_list, count, THING_THREAD));
+ kern_return_t ret;
+ mach_msg_type_number_t i;
+
+ ret = processor_set_things(pset, (void **)thread_list, count, PSET_THING_THREAD, TASK_FLAVOR_CONTROL);
+ if (ret != KERN_SUCCESS) {
+ return ret;
+ }
+
+ /* do the conversion that Mig should handle */
+ for (i = 0; i < *count; i++) {
+ (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]);
+ }
+ return KERN_SUCCESS;
}
#endif
*/
kern_return_t
processor_set_policy_control(
- __unused processor_set_t pset,
- __unused int flavor,
- __unused processor_set_info_t policy_info,
- __unused mach_msg_type_number_t count,
- __unused boolean_t change)
+ __unused processor_set_t pset,
+ __unused int flavor,
+ __unused processor_set_info_t policy_info,
+ __unused mach_msg_type_number_t count,
+ __unused boolean_t change)
{
- return (KERN_INVALID_ARGUMENT);
+ return KERN_INVALID_ARGUMENT;
}
#undef pset_deallocate
void pset_deallocate(processor_set_t pset);
void
pset_deallocate(
-__unused processor_set_t pset)
+ __unused processor_set_t pset)
{
return;
}
void pset_reference(processor_set_t pset);
void
pset_reference(
-__unused processor_set_t pset)
+ __unused processor_set_t pset)
{
return;
}
+
+#if CONFIG_THREAD_GROUPS
+
+pset_cluster_type_t
+thread_group_pset_recommendation(__unused struct thread_group *tg, __unused cluster_type_t recommendation)
+{
+#if __AMP__
+ switch (recommendation) {
+ case CLUSTER_TYPE_SMP:
+ default:
+ /*
+ * In case of SMP recommendations, check if the thread
+ * group has special flags which restrict it to the E
+ * cluster.
+ */
+ if (thread_group_smp_restricted(tg)) {
+ return PSET_AMP_E;
+ }
+ return PSET_AMP_P;
+ case CLUSTER_TYPE_E:
+ return PSET_AMP_E;
+ case CLUSTER_TYPE_P:
+ return PSET_AMP_P;
+ }
+#else /* __AMP__ */
+ return PSET_SMP;
+#endif /* __AMP__ */
+}
+
+#endif
+
+pset_cluster_type_t
+recommended_pset_type(thread_t thread)
+{
+#if CONFIG_THREAD_GROUPS && __AMP__
+ if (thread == THREAD_NULL) {
+ return PSET_AMP_E;
+ }
+
+ if (thread->sched_flags & TH_SFLAG_ECORE_ONLY) {
+ return PSET_AMP_E;
+ } else if (thread->sched_flags & TH_SFLAG_PCORE_ONLY) {
+ return PSET_AMP_P;
+ }
+
+ if (thread->base_pri <= MAXPRI_THROTTLE) {
+ if (os_atomic_load(&sched_perfctl_policy_bg, relaxed) != SCHED_PERFCTL_POLICY_FOLLOW_GROUP) {
+ return PSET_AMP_E;
+ }
+ } else if (thread->base_pri <= BASEPRI_UTILITY) {
+ if (os_atomic_load(&sched_perfctl_policy_util, relaxed) != SCHED_PERFCTL_POLICY_FOLLOW_GROUP) {
+ return PSET_AMP_E;
+ }
+ }
+
+#if DEVELOPMENT || DEBUG
+ extern bool system_ecore_only;
+ extern processor_set_t pcore_set;
+ if (system_ecore_only) {
+ if (thread->task->pset_hint == pcore_set) {
+ return PSET_AMP_P;
+ }
+ return PSET_AMP_E;
+ }
+#endif
+
+ struct thread_group *tg = thread_group_get(thread);
+ cluster_type_t recommendation = thread_group_recommendation(tg);
+ switch (recommendation) {
+ case CLUSTER_TYPE_SMP:
+ default:
+ if (thread->task == kernel_task) {
+ return PSET_AMP_E;
+ }
+ return PSET_AMP_P;
+ case CLUSTER_TYPE_E:
+ return PSET_AMP_E;
+ case CLUSTER_TYPE_P:
+ return PSET_AMP_P;
+ }
+#else
+ (void)thread;
+ return PSET_SMP;
+#endif
+}
+
+#if CONFIG_THREAD_GROUPS && __AMP__
+
+void
+sched_perfcontrol_inherit_recommendation_from_tg(perfcontrol_class_t perfctl_class, boolean_t inherit)
+{
+ sched_perfctl_class_policy_t sched_policy = inherit ? SCHED_PERFCTL_POLICY_FOLLOW_GROUP : SCHED_PERFCTL_POLICY_RESTRICT_E;
+
+ KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_AMP_PERFCTL_POLICY_CHANGE) | DBG_FUNC_NONE, perfctl_class, sched_policy, 0, 0);
+
+ switch (perfctl_class) {
+ case PERFCONTROL_CLASS_UTILITY:
+ os_atomic_store(&sched_perfctl_policy_util, sched_policy, relaxed);
+ break;
+ case PERFCONTROL_CLASS_BACKGROUND:
+ os_atomic_store(&sched_perfctl_policy_bg, sched_policy, relaxed);
+ break;
+ default:
+ panic("perfctl_class invalid");
+ break;
+ }
+}
+
+#elif defined(__arm64__)
+
+/* Define a stub routine since this symbol is exported on all arm64 platforms */
+void
+sched_perfcontrol_inherit_recommendation_from_tg(__unused perfcontrol_class_t perfctl_class, __unused boolean_t inherit)
+{
+}
+
+#endif /* defined(__arm64__) */