/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
*
* @(#)kern_time.c 8.4 (Berkeley) 5/26/95
*/
+/*
+ * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
+ * support for mandatory and extensible security protections. This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ */
#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <kern/clock.h>
+#include <kern/task.h>
#include <kern/thread_call.h>
+#if CONFIG_MACF
+#include <security/mac_framework.h>
+#endif
#define HZ 100 /* XXX */
static void setthetime(
struct timeval *tv);
-void time_zone_slock_init(void);
-
-int gettimeofday(struct proc *p,
-#ifdef __ppc__
- struct ppc_gettimeofday_args *uap,
-#else
- struct gettimeofday_args *uap,
-#endif
- register_t *retval);
+void time_zone_slock_init(void) __attribute__((section("__TEXT, initcode")));
/*
* Time of day and interval timer support.
* here provide support for adding and subtracting timeval structures
* and decrementing interval timers, optionally reloading the interval
* timers when they expire.
- *
- * XXX Y2038 bug because of clock_get_calendar_microtime() first argument
*/
/* ARGSUSED */
int
-gettimeofday(__unused struct proc *p,
-#ifdef __ppc__
- register struct ppc_gettimeofday_args *uap,
-#else
- register struct gettimeofday_args *uap,
-#endif
- __unused register_t *retval)
+gettimeofday(
+__unused struct proc *p,
+ struct gettimeofday_args *uap,
+ register_t *retval)
{
- struct timeval atv;
int error = 0;
struct timezone ltz; /* local copy */
-/* NOTE THIS implementation is for non ppc architectures only */
-
- if (uap->tp) {
- clock_get_calendar_microtime((uint32_t *)&atv.tv_sec, &atv.tv_usec);
- if (IS_64BIT_PROCESS(p)) {
- struct user_timeval user_atv;
- user_atv.tv_sec = atv.tv_sec;
- user_atv.tv_usec = atv.tv_usec;
- /*
- * This cast is not necessary for PPC, but is
- * mostly harmless.
- */
- error = copyout(&user_atv, CAST_USER_ADDR_T(uap->tp), sizeof(struct user_timeval));
- } else {
- error = copyout(&atv, CAST_USER_ADDR_T(uap->tp), sizeof(struct timeval));
- }
- if (error)
- return(error);
- }
+ if (uap->tp)
+ clock_gettimeofday((uint32_t *)&retval[0], (uint32_t *)&retval[1]);
if (uap->tzp) {
lck_spin_lock(tz_slock);
ltz = tz;
lck_spin_unlock(tz_slock);
- error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp),
- sizeof (tz));
+
+ error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof (tz));
}
- return(error);
+ return (error);
}
/*
*/
/* ARGSUSED */
int
-settimeofday(struct proc *p, struct settimeofday_args *uap, __unused register_t *retval)
+settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused register_t *retval)
{
struct timeval atv;
struct timezone atz;
int error;
+#if CONFIG_MACF
+ error = mac_system_check_settime(kauth_cred_get());
+ if (error)
+ return (error);
+#endif
+#ifndef CONFIG_EMBEDDED
if ((error = suser(kauth_cred_get(), &p->p_acflag)))
return (error);
+#endif
/* Verify all parameters before changing time */
if (uap->tv) {
if (IS_64BIT_PROCESS(p)) {
*/
/* ARGSUSED */
int
-adjtime(struct proc *p, register struct adjtime_args *uap, __unused register_t *retval)
+adjtime(struct proc *p, struct adjtime_args *uap, __unused register_t *retval)
{
struct timeval atv;
int error;
+#if CONFIG_MACF
+ error = mac_system_check_settime(kauth_cred_get());
+ if (error)
+ return (error);
+#endif
if ((error = suser(kauth_cred_get(), &p->p_acflag)))
return (error);
if (IS_64BIT_PROCESS(p)) {
* is kept as an absolute time rather than as a delta, so that
* it is easy to keep periodic real-time signals from drifting.
*
- * Virtual time timers are processed in the hardclock() routine of
- * kern_clock.c. The real time timer is processed by a callout
- * routine. Since a callout may be delayed in real time due to
+ * The real time timer is processed by a callout routine.
+ * Since a callout may be delayed in real time due to
* other processing in the system, it is possible for the real
* time callout routine (realitexpire, given below), to be delayed
* in real time past when it is supposed to occur. It does not
* suffice, therefore, to reload the real time .it_value from the
* real time .it_interval. Rather, we compute the next time in
* absolute time when the timer should go off.
+ *
+ * Returns: 0 Success
+ * EINVAL Invalid argument
+ * copyout:EFAULT Bad address
*/
-
/* ARGSUSED */
int
-getitimer(struct proc *p, register struct getitimer_args *uap, __unused register_t *retval)
+getitimer(struct proc *p, struct getitimer_args *uap, __unused register_t *retval)
{
struct itimerval aitv;
if (uap->which > ITIMER_PROF)
return(EINVAL);
- if (uap->which == ITIMER_REAL) {
+
+ proc_spinlock(p);
+ switch (uap->which) {
+
+ case ITIMER_REAL:
/*
* If time for real time timer has passed return 0,
* else return difference between current time and
}
else
timerclear(&aitv.it_value);
+ break;
+
+ case ITIMER_VIRTUAL:
+ aitv = p->p_vtimer_user;
+ break;
+
+ case ITIMER_PROF:
+ aitv = p->p_vtimer_prof;
+ break;
}
- else
- aitv = p->p_stats->p_timer[uap->which];
+
+ proc_spinunlock(p);
if (IS_64BIT_PROCESS(p)) {
struct user_itimerval user_itv;
}
}
+/*
+ * Returns: 0 Success
+ * EINVAL Invalid argument
+ * copyin:EFAULT Bad address
+ * getitimer:EINVAL Invalid argument
+ * getitimer:EFAULT Bad address
+ */
/* ARGSUSED */
int
-setitimer(p, uap, retval)
- struct proc *p;
- register struct setitimer_args *uap;
- register_t *retval;
+setitimer(struct proc *p, struct setitimer_args *uap, register_t *retval)
{
struct itimerval aitv;
user_addr_t itvp;
return (0);
if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
return (EINVAL);
- if (uap->which == ITIMER_REAL) {
- thread_call_func_cancel((thread_call_func_t)realitexpire, (void *)p->p_pid, FALSE);
+
+ switch (uap->which) {
+
+ case ITIMER_REAL:
+ proc_spinlock(p);
if (timerisset(&aitv.it_value)) {
microuptime(&p->p_rtime);
timevaladd(&p->p_rtime, &aitv.it_value);
- thread_call_func_delayed(
- (thread_call_func_t)realitexpire, (void *)p->p_pid,
- tvtoabstime(&p->p_rtime));
+ p->p_realtimer = aitv;
+ if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
+ p->p_ractive++;
+ } else {
+ timerclear(&p->p_rtime);
+ p->p_realtimer = aitv;
+ if (thread_call_cancel(p->p_rcall))
+ p->p_ractive--;
}
+ proc_spinunlock(p);
+
+ break;
+
+
+ case ITIMER_VIRTUAL:
+ if (timerisset(&aitv.it_value))
+ task_vtimer_set(p->task, TASK_VTIMER_USER);
+ else
+ task_vtimer_clear(p->task, TASK_VTIMER_USER);
+
+ proc_spinlock(p);
+ p->p_vtimer_user = aitv;
+ proc_spinunlock(p);
+ break;
+
+ case ITIMER_PROF:
+ if (timerisset(&aitv.it_value))
+ task_vtimer_set(p->task, TASK_VTIMER_PROF);
else
- timerclear(&p->p_rtime);
+ task_vtimer_clear(p->task, TASK_VTIMER_PROF);
- p->p_realtimer = aitv;
+ proc_spinlock(p);
+ p->p_vtimer_prof = aitv;
+ proc_spinunlock(p);
+ break;
}
- else
- p->p_stats->p_timer[uap->which] = aitv;
return (0);
}
*/
void
realitexpire(
- void *pid)
+ struct proc *p)
{
- register struct proc *p;
- struct timeval now;
- boolean_t funnel_state;
-
- funnel_state = thread_funnel_set(kernel_flock, TRUE);
- p = pfind((pid_t)pid);
- if (p == NULL) {
- (void) thread_funnel_set(kernel_flock, FALSE);
+ struct proc *r;
+ struct timeval t;
+
+ r = proc_find(p->p_pid);
+
+ proc_spinlock(p);
+
+ if (--p->p_ractive > 0 || r != p) {
+ proc_spinunlock(p);
+
+ if (r != NULL)
+ proc_rele(r);
return;
}
-
+
if (!timerisset(&p->p_realtimer.it_interval)) {
timerclear(&p->p_rtime);
- psignal(p, SIGALRM);
+ proc_spinunlock(p);
- (void) thread_funnel_set(kernel_flock, FALSE);
+ psignal(p, SIGALRM);
+ proc_rele(p);
return;
}
- microuptime(&now);
+ microuptime(&t);
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
- if (timercmp(&p->p_rtime, &now, <=)) {
- if ((p->p_rtime.tv_sec + 2) >= now.tv_sec) {
+ if (timercmp(&p->p_rtime, &t, <=)) {
+ if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
for (;;) {
timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
- if (timercmp(&p->p_rtime, &now, >))
+ if (timercmp(&p->p_rtime, &t, >))
break;
}
}
else {
p->p_rtime = p->p_realtimer.it_interval;
- timevaladd(&p->p_rtime, &now);
+ timevaladd(&p->p_rtime, &t);
}
}
- psignal(p, SIGALRM);
-
- thread_call_func_delayed((thread_call_func_t)realitexpire, pid, tvtoabstime(&p->p_rtime));
+ if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
+ p->p_ractive++;
+ proc_spinunlock(p);
- (void) thread_funnel_set(kernel_flock, FALSE);
+ psignal(p, SIGALRM);
+ proc_rele(p);
}
/*
* Check that a proposed value to load into the .it_value or
- * .it_interval part of an interval timer is acceptable, and
- * fix it to have at least minimal value (i.e. if it is less
- * than the resolution of the clock, round it up.)
+ * .it_interval part of an interval timer is acceptable.
*/
int
-itimerfix(tv)
- struct timeval *tv;
+itimerfix(
+ struct timeval *tv)
{
if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
tv->tv_usec < 0 || tv->tv_usec >= 1000000)
return (EINVAL);
- if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
- tv->tv_usec = tick;
return (0);
}
* of microseconds, which must be less than a second,
* i.e. < 1000000. If the timer expires, then reload
* it. In this case, carry over (usec - old value) to
- * reducint the value reloaded into the timer so that
+ * reduce the value reloaded into the timer so that
* the timer does not drift. This routine assumes
* that it is called in a context where the timers
* on which it is operating cannot change in value.
*/
int
-itimerdecr(itp, usec)
- register struct itimerval *itp;
- int usec;
+itimerdecr(proc_t p,
+ struct itimerval *itp, int usec)
{
+ proc_spinlock(p);
+
if (itp->it_value.tv_usec < usec) {
if (itp->it_value.tv_sec == 0) {
/* expired, and already in next interval */
}
itp->it_value.tv_usec -= usec;
usec = 0;
- if (timerisset(&itp->it_value))
+ if (timerisset(&itp->it_value)) {
+ proc_spinunlock(p);
return (1);
+ }
/* expired, exactly at end of interval */
expire:
if (timerisset(&itp->it_interval)) {
itp->it_value = itp->it_interval;
+ if (itp->it_value.tv_sec > 0) {
itp->it_value.tv_usec -= usec;
if (itp->it_value.tv_usec < 0) {
itp->it_value.tv_usec += 1000000;
itp->it_value.tv_sec--;
+ }
}
} else
itp->it_value.tv_usec = 0; /* sec is already 0 */
+ proc_spinunlock(p);
return (0);
}
microtime(
struct timeval *tvp)
{
- clock_get_calendar_microtime((uint32_t *)&tvp->tv_sec, &tvp->tv_usec);
+ clock_get_calendar_microtime((uint32_t *)&tvp->tv_sec, (uint32_t *)&tvp->tv_usec);
}
void
microuptime(
struct timeval *tvp)
{
- clock_get_system_microtime((uint32_t *)&tvp->tv_sec, &tvp->tv_usec);
+ clock_get_system_microtime((uint32_t *)&tvp->tv_sec, (uint32_t *)&tvp->tv_usec);
}
/*
{
/* allocate lock group attribute and group */
tz_slock_grp_attr = lck_grp_attr_alloc_init();
- lck_grp_attr_setstat(tz_slock_grp_attr);
tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr);
/* Allocate lock attribute */
tz_slock_attr = lck_attr_alloc_init();
- //lck_attr_setdebug(tz_slock_attr);
/* Allocate the spin lock */
tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
}
-