/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
*/
-
#include <kern/cpu_number.h>
-#include <kern/kalloc.h>
#include <kern/cpu_data.h>
+#include <kern/percpu.h>
+#include <mach/mach_types.h>
#include <mach/machine.h>
+#include <mach/vm_map.h>
+#include <mach/machine/vm_param.h>
#include <vm/vm_kern.h>
+#include <vm/vm_map.h>
+#include <i386/bit_routines.h>
#include <i386/mp_desc.h>
-#include <i386/lock.h>
#include <i386/misc_protos.h>
#include <i386/mp.h>
#include <i386/pmap.h>
+#include <i386/postcode.h>
+#include <i386/pmap_internal.h>
+#if CONFIG_MCA
+#include <i386/machine_check.h>
+#endif
#include <kern/misc_protos.h>
-#include <mach_kdb.h>
-
-/*
- * The i386 needs an interrupt stack to keep the PCB stack from being
- * overrun by interrupts. All interrupt stacks MUST lie at lower addresses
- * than any thread`s kernel stack.
- */
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+#include <san/kasan.h>
+
+#define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
+#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
+
+// Declare macros that will declare the externs
+#define TRAP(n, name) extern void *name ;
+#define TRAP_ERR(n, name) extern void *name ;
+#define TRAP_SPC(n, name) extern void *name ;
+#define TRAP_IST1(n, name) extern void *name ;
+#define TRAP_IST2(n, name) extern void *name ;
+#define INTERRUPT(n) extern void *_intr_ ## n ;
+#define USER_TRAP(n, name) extern void *name ;
+#define USER_TRAP_SPC(n, name) extern void *name ;
+
+// Include the table to declare the externs
+#include "../x86_64/idt_table.h"
+
+// Undef the macros, then redefine them so we can declare the table
+#undef TRAP
+#undef TRAP_ERR
+#undef TRAP_SPC
+#undef TRAP_IST1
+#undef TRAP_IST2
+#undef INTERRUPT
+#undef USER_TRAP
+#undef USER_TRAP_SPC
+
+#define TRAP(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 0, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define TRAP_ERR TRAP
+#define TRAP_SPC TRAP
+
+#define TRAP_IST1(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 1, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define TRAP_IST2(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 2, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define INTERRUPT(n) \
+ [n] = { \
+ (uintptr_t)&_intr_ ## n,\
+ KERNEL64_CS, \
+ 0, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define USER_TRAP(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 0, \
+ U_INTR_GATE, \
+ 0 \
+ },
+
+#define USER_TRAP_SPC USER_TRAP
+
+// Declare the table using the macros we just set up
+struct fake_descriptor64 master_idt64[IDTSZ]
+__attribute__ ((section("__HIB,__desc")))
+__attribute__ ((aligned(PAGE_SIZE))) = {
+#include "../x86_64/idt_table.h"
+};
/*
* First cpu`s interrupt stack.
*/
-extern char intstack[]; /* bottom */
-extern char eintstack[]; /* top */
+extern uint32_t low_intstack[]; /* bottom */
+extern uint32_t low_eintstack[]; /* top */
/*
* Per-cpu data area pointers.
- * The master cpu (cpu 0) has its data area statically allocated;
- * others are allocated dynamically and this array is updated at runtime.
*/
-cpu_data_t cpu_data_master;
-cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] &cpu_data_master };
+cpu_data_t cpshadows[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
+cpu_data_t scdatas[MAX_CPUS] __attribute__((aligned(64))) = {
+ [0].cpu_this = &scdatas[0],
+ [0].cpu_nanotime = &pal_rtc_nanotime_info,
+ [0].cpu_int_stack_top = (vm_offset_t) low_eintstack,
+ [0].cd_shadow = &cpshadows[0]
+};
+cpu_data_t *cpu_data_master = &scdatas[0];
+
+cpu_data_t *cpu_data_ptr[MAX_CPUS] = {[0] = &scdatas[0] };
+
+SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base;
-decl_simple_lock_data(,cpu_lock); /* protects real_ncpus */
-unsigned int real_ncpus = 1;
-unsigned int max_ncpus = MAX_CPUS;
+decl_simple_lock_data(, ncpus_lock); /* protects real_ncpus */
+unsigned int real_ncpus = 1;
+unsigned int max_ncpus = MAX_CPUS;
+unsigned int max_cpus_from_firmware = 0;
+
+extern void hi64_sysenter(void);
+extern void hi64_syscall(void);
+
+typedef struct {
+ struct real_descriptor pcldts[LDTSZ];
+} cldt_t;
+
+cpu_desc_table64_t scdtables[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
+cpu_fault_stack_t scfstks[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
+
+cldt_t *dyn_ldts;
/*
* Multiprocessor i386/i486 systems use a separate copy of the
* Allocate and initialize the per-processor descriptor tables.
*/
-struct fake_descriptor ldt_desc_pattern = {
- (unsigned int) 0,
- LDTSZ * sizeof(struct fake_descriptor) - 1,
- 0,
- ACC_P|ACC_PL_K|ACC_LDT
-};
-struct fake_descriptor tss_desc_pattern = {
- (unsigned int) 0,
- sizeof(struct i386_tss),
- 0,
- ACC_P|ACC_PL_K|ACC_TSS
+/*
+ * This is the expanded, 64-bit variant of the kernel LDT descriptor.
+ * When switching to 64-bit mode this replaces KERNEL_LDT entry
+ * and the following empty slot. This enables the LDT to be referenced
+ * in the uber-space remapping window on the kernel.
+ */
+struct fake_descriptor64 kernel_ldt_desc64 = {
+ .offset64 = 0,
+ .lim_or_seg = LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
+ .size_or_IST = 0,
+ .access = ACC_P | ACC_PL_K | ACC_LDT,
+ .reserved = 0
};
-struct fake_descriptor cpudata_desc_pattern = {
- (unsigned int) 0,
- sizeof(cpu_data_t)-1,
- SZ_32,
- ACC_P|ACC_PL_K|ACC_DATA_W
+/*
+ * This is the expanded, 64-bit variant of the kernel TSS descriptor.
+ * It is follows pattern of the KERNEL_LDT.
+ */
+struct fake_descriptor64 kernel_tss_desc64 = {
+ .offset64 = 0,
+ .lim_or_seg = sizeof(struct x86_64_tss) - 1,
+ .size_or_IST = 0,
+ .access = ACC_P | ACC_PL_K | ACC_TSS,
+ .reserved = 0
};
+/*
+ * Convert a descriptor from fake to real format.
+ *
+ * Fake descriptor format:
+ * bytes 0..3 base 31..0
+ * bytes 4..5 limit 15..0
+ * byte 6 access byte 2 | limit 19..16
+ * byte 7 access byte 1
+ *
+ * Real descriptor format:
+ * bytes 0..1 limit 15..0
+ * bytes 2..3 base 15..0
+ * byte 4 base 23..16
+ * byte 5 access byte 1
+ * byte 6 access byte 2 | limit 19..16
+ * byte 7 base 31..24
+ *
+ * Fake gate format:
+ * bytes 0..3 offset
+ * bytes 4..5 selector
+ * byte 6 word count << 4 (to match fake descriptor)
+ * byte 7 access byte 1
+ *
+ * Real gate format:
+ * bytes 0..1 offset 15..0
+ * bytes 2..3 selector
+ * byte 4 word count
+ * byte 5 access byte 1
+ * bytes 6..7 offset 31..16
+ */
+void
+fix_desc(void *d, int num_desc)
+{
+ uint8_t *desc = (uint8_t*) d;
+
+ do {
+ if ((desc[7] & 0x14) == 0x04) { /* gate */
+ uint32_t offset;
+ uint16_t selector;
+ uint8_t wordcount;
+ uint8_t acc;
+
+ offset = *((uint32_t*)(desc));
+ selector = *((uint32_t*)(desc + 4));
+ wordcount = desc[6] >> 4;
+ acc = desc[7];
+
+ *((uint16_t*)desc) = offset & 0xFFFF;
+ *((uint16_t*)(desc + 2)) = selector;
+ desc[4] = wordcount;
+ desc[5] = acc;
+ *((uint16_t*)(desc + 6)) = offset >> 16;
+ } else { /* descriptor */
+ uint32_t base;
+ uint16_t limit;
+ uint8_t acc1, acc2;
+
+ base = *((uint32_t*)(desc));
+ limit = *((uint16_t*)(desc + 4));
+ acc2 = desc[6];
+ acc1 = desc[7];
+
+ *((uint16_t*)(desc)) = limit;
+ *((uint16_t*)(desc + 2)) = base & 0xFFFF;
+ desc[4] = (base >> 16) & 0xFF;
+ desc[5] = acc1;
+ desc[6] = acc2;
+ desc[7] = base >> 24;
+ }
+ desc += 8;
+ } while (--num_desc);
+}
+
void
-mp_desc_init(
- cpu_data_t *cdp,
- boolean_t is_boot_cpu)
+fix_desc64(void *descp, int count)
{
- struct mp_desc_table *mpt = cdp->cpu_desc_tablep;
- cpu_desc_index_t *cdt = &cdp->cpu_desc_index;
+ struct fake_descriptor64 *fakep;
+ union {
+ struct real_gate64 gate;
+ struct real_descriptor64 desc;
+ } real;
+ int i;
+
+ fakep = (struct fake_descriptor64 *) descp;
+
+ for (i = 0; i < count; i++, fakep++) {
+ /*
+ * Construct the real decriptor locally.
+ */
+
+ bzero((void *) &real, sizeof(real));
+
+ switch (fakep->access & ACC_TYPE) {
+ case 0:
+ break;
+ case ACC_CALL_GATE:
+ case ACC_INTR_GATE:
+ case ACC_TRAP_GATE:
+ real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
+ real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
+ real.gate.IST = fakep->size_or_IST & 0x7;
+ real.gate.access8 = fakep->access;
+ real.gate.offset_high16 = (uint16_t)((fakep->offset64 >> 16) & 0xFFFF);
+ real.gate.offset_top32 = (uint32_t)(fakep->offset64 >> 32);
+ break;
+ default: /* Otherwise */
+ real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
+ real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
+ real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
+ real.desc.access8 = fakep->access;
+ real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
+ real.desc.granularity4 = fakep->size_or_IST;
+ real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
+ real.desc.base_top32 = (uint32_t)(fakep->offset64 >> 32);
+ }
- if (is_boot_cpu) {
- /*
- * Master CPU uses the tables built at boot time.
- * Just set the TSS and GDT pointers.
- */
- cdt->cdi_ktss = &ktss;
-#if MACH_KDB
- cdt->cdi_dbtss = &dbtss;
-#endif /* MACH_KDB */
- cdt->cdi_gdt = gdt;
- cdt->cdi_idt = idt;
- cdt->cdi_ldt = ldt;
-
- } else {
-
- cdt->cdi_ktss = &mpt->ktss;
- cdt->cdi_gdt = mpt->gdt;
- cdt->cdi_idt = mpt->idt;
- cdt->cdi_ldt = mpt->ldt;
-
- /*
- * Copy the tables
- */
- bcopy((char *)idt,
- (char *)mpt->idt,
- sizeof(idt));
- bcopy((char *)gdt,
- (char *)mpt->gdt,
- sizeof(gdt));
- bcopy((char *)ldt,
- (char *)mpt->ldt,
- sizeof(ldt));
- bzero((char *)&mpt->ktss,
- sizeof(struct i386_tss));
-
-#if MACH_KDB
- cdt->cdi_dbtss = &dbtss;
- bcopy((char *)&dbtss,
- (char *)&mpt->dbtss,
- sizeof(struct i386_tss));
-#endif /* MACH_KDB */
-
- /*
- * Fix up the entries in the GDT to point to
- * this LDT and this TSS.
- */
- mpt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern;
- mpt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) mpt->ldt;
- fix_desc(&mpt->gdt[sel_idx(KERNEL_LDT)], 1);
-
- mpt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
- mpt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) &mpt->ktss;
- fix_desc(&mpt->gdt[sel_idx(KERNEL_TSS)], 1);
-
- mpt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
- mpt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
- fix_desc(&mpt->gdt[sel_idx(CPU_DATA_GS)], 1);
-
-#if MACH_KDB
- mpt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
- mpt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) &mpt->dbtss;
- fix_desc(&mpt->gdt[sel_idx(DEBUG_TSS)], 1);
-
- mpt->dbtss.esp0 = (int)(db_task_stack_store +
- (INTSTACK_SIZE * (cpu + 1)) - sizeof (natural_t));
- mpt->dbtss.esp = mpt->dbtss.esp0;
- mpt->dbtss.eip = (int)&db_task_start;
-#endif /* MACH_KDB */
-
- mpt->ktss.ss0 = KERNEL_DS;
- mpt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */
+ /*
+ * Now copy back over the fake structure.
+ */
+ bcopy((void *) &real, (void *) fakep, sizeof(real));
+ }
+}
+
+extern unsigned mldtsz;
+void
+cpu_desc_init(cpu_data_t *cdp)
+{
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+
+ if (cdp == cpu_data_master) {
+ /*
+ * Populate the double-mapped 'u' and base 'b' fields in the
+ * KTSS with I/G/LDT and sysenter stack data.
+ */
+ cdi->cdi_ktssu = (void *)DBLMAP(&master_ktss64);
+ cdi->cdi_ktssb = (void *)&master_ktss64;
+ cdi->cdi_sstku = (vm_offset_t) DBLMAP(&master_sstk.top);
+ cdi->cdi_sstkb = (vm_offset_t) &master_sstk.top;
+
+ cdi->cdi_gdtu.ptr = (void *)DBLMAP((uintptr_t) &master_gdt);
+ cdi->cdi_gdtb.ptr = (void *)&master_gdt;
+ cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
+ cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64);
+ cdi->cdi_ldtu = (struct real_descriptor *)DBLMAP((uintptr_t)&master_ldt[0]);
+ cdi->cdi_ldtb = &master_ldt[0];
+
+ /* Replace the expanded LDTs and TSS slots in the GDT */
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
+ kernel_ldt_desc64;
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
+ kernel_ldt_desc64;
+ kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64);
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
+ kernel_tss_desc64;
+
+ /* Fix up the expanded descriptors for 64-bit. */
+ fix_desc64((void *) &master_idt64, IDTSZ);
+ fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
+ fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1);
+ fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
+
+ /*
+ * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
+ */
+ master_ktss64.ist2 = (uintptr_t) low_eintstack;
+ master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t);
+ } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
+
+ cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
+
+ cdi->cdi_ktssu = (void *)DBLMAP(&cdt->ktss);
+ cdi->cdi_ktssb = (void *)(&cdt->ktss);
+ cdi->cdi_sstku = (vm_offset_t)DBLMAP(&cdt->sstk.top);
+ cdi->cdi_sstkb = (vm_offset_t)(&cdt->sstk.top);
+ cdi->cdi_ldtu = (void *)LDTALIAS(cdp->cpu_ldtp);
+ cdi->cdi_ldtb = (void *)(cdp->cpu_ldtp);
+
+ /*
+ * Copy the tables
+ */
+ bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
+ bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, mldtsz);
+ bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
+ cdi->cdi_gdtu.ptr = (void *)DBLMAP(cdt->gdt);
+ cdi->cdi_gdtb.ptr = (void *)(cdt->gdt);
+ /*
+ * Fix up the entries in the GDT to point to
+ * this LDT and this TSS.
+ * Note reuse of global 'kernel_ldt_desc64, which is not
+ * concurrency-safe. Higher level synchronization is expected
+ */
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
+ kernel_ldt_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
+
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
+ kernel_ldt_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
+
+ kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
+ kernel_tss_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
+
+ /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
+ uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
+ cdt->fstkp = cfstk;
+ bzero((void *) cfstk, FSTK_SZ);
+ cdt->ktss.ist2 = DBLMAP((uint64_t)cdt->fstkp + FSTK_SZ);
+ cdt->ktss.ist1 = cdt->ktss.ist2 - sizeof(x86_64_intr_stack_frame_t);
+ }
+
+ /* Require that the top of the sysenter stack is 16-byte aligned */
+ if ((cdi->cdi_sstku % 16) != 0) {
+ panic("cpu_desc_init() sysenter stack not 16-byte aligned");
+ }
+}
+void
+cpu_desc_load(cpu_data_t *cdp)
+{
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+
+ postcode(CPU_DESC_LOAD_ENTRY);
+
+ /* Stuff the kernel per-cpu data area address into the MSRs */
+ postcode(CPU_DESC_LOAD_GS_BASE);
+ wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ postcode(CPU_DESC_LOAD_KERNEL_GS_BASE);
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
+
+ /*
+ * Ensure the TSS segment's busy bit is clear. This is required
+ * for the case of reloading descriptors at wake to avoid
+ * their complete re-initialization.
+ */
+ gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
+
+ /* Load the GDT, LDT, IDT and TSS */
+ cdi->cdi_gdtb.size = sizeof(struct real_descriptor) * GDTSZ - 1;
+ cdi->cdi_gdtu.size = cdi->cdi_gdtb.size;
+ cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number;
+ cdi->cdi_idtu.size = cdi->cdi_idtb.size;
+
+ postcode(CPU_DESC_LOAD_GDT);
+ lgdt((uintptr_t *) &cdi->cdi_gdtu);
+ postcode(CPU_DESC_LOAD_IDT);
+ lidt((uintptr_t *) &cdi->cdi_idtu);
+ postcode(CPU_DESC_LOAD_LDT);
+ lldt(KERNEL_LDT);
+ postcode(CPU_DESC_LOAD_TSS);
+ set_tr(KERNEL_TSS);
+
+ postcode(CPU_DESC_LOAD_EXIT);
+}
+
+/*
+ * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
+ */
+void
+cpu_syscall_init(cpu_data_t *cdp)
+{
+#pragma unused(cdp)
+
+ wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
+ wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter));
+ wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku);
+ /* Enable syscall/sysret */
+ wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
+
+ /*
+ * MSRs for 64-bit syscall/sysret
+ * Note USER_CS because sysret uses this + 16 when returning to
+ * 64-bit code.
+ */
+ wrmsr64(MSR_IA32_LSTAR, DBLMAP((uintptr_t) hi64_syscall));
+ wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | (((uint64_t)KERNEL64_CS) << 32));
+ /*
+ * Emulate eflags cleared by sysenter but note that
+ * we also clear the trace trap to avoid the complications
+ * of single-stepping into a syscall. The nested task bit
+ * is also cleared to avoid a spurious "task switch"
+ * should we choose to return via an IRET.
+ */
+ wrmsr64(MSR_IA32_FMASK, EFL_DF | EFL_IF | EFL_TF | EFL_NT);
+}
+extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
+uint64_t ldt_alias_offset;
+
+__startup_func
+static void
+cpu_data_startup_init(void)
+{
+ int flags = KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_PERMANENT |
+ KMA_ZERO | KMA_KOBJECT;
+ uint32_t cpus = max_cpus_from_firmware;
+ vm_size_t size = percpu_section_size() * cpus;
+ kern_return_t kr;
+
+ percpu_base.size = percpu_section_size();
+ if (cpus == 0) {
+ panic("percpu: max_cpus_from_firmware not yet initialized");
+ }
+ if (cpus == 1) {
+ percpu_base.start = VM_MAX_KERNEL_ADDRESS;
+ return;
}
+
+ kr = kmem_alloc_flags(kernel_map, &percpu_base.start,
+ round_page(size) + 2 * PAGE_SIZE, VM_KERN_MEMORY_CPU, flags);
+ if (kr != KERN_SUCCESS) {
+ panic("percpu: kmem_alloc failed (%d)", kr);
+ }
+
+ percpu_base.start += PAGE_SIZE - percpu_section_start();
+ percpu_base.end = percpu_base.start + size - 1;
}
+STARTUP(PERCPU, STARTUP_RANK_FIRST, cpu_data_startup_init);
cpu_data_t *
cpu_data_alloc(boolean_t is_boot_cpu)
{
- int ret;
- cpu_data_t *cdp;
+ int ret;
+ cpu_data_t *cdp;
if (is_boot_cpu) {
assert(real_ncpus == 1);
- simple_lock_init(&cpu_lock, 0);
- cdp = &cpu_data_master;
+ cdp = cpu_datap(0);
if (cdp->cpu_processor == NULL) {
- cdp->cpu_processor = cpu_processor_alloc(TRUE);
- cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
- cdp->cpu_this = cdp;
- cdp->cpu_int_stack_top = (vm_offset_t) eintstack;
- mp_desc_init(cdp, TRUE);
+ simple_lock_init(&ncpus_lock, 0);
+ cdp->cpu_processor = PERCPU_GET_MASTER(processor);
}
return cdp;
}
- /* Check count before making allocations */
- if (real_ncpus >= max_ncpus)
- return NULL;
+ boolean_t do_ldt_alloc = FALSE;
+ simple_lock(&ncpus_lock, LCK_GRP_NULL);
+ int cnum = real_ncpus;
+ real_ncpus++;
+ if (dyn_ldts == NULL) {
+ do_ldt_alloc = TRUE;
+ }
+ simple_unlock(&ncpus_lock);
/*
* Allocate per-cpu data:
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp, sizeof(cpu_data_t));
- if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() failed, ret=%d\n", ret);
- goto abort;
- }
+
+ cdp = &scdatas[cnum];
bzero((void*) cdp, sizeof(cpu_data_t));
cdp->cpu_this = cdp;
+ cdp->cpu_number = cnum;
+ cdp->cd_shadow = &cpshadows[cnum];
+ cdp->cpu_pcpu_base = percpu_base.start + (cnum - 1) * percpu_section_size();
+ cdp->cpu_processor = PERCPU_GET_WITH_BASE(cdp->cpu_pcpu_base, processor);
/*
* Allocate interrupt stack:
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp->cpu_int_stack_top,
- INTSTACK_SIZE);
+ ret = kmem_alloc(kernel_map,
+ (vm_offset_t *) &cdp->cpu_int_stack_top,
+ INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() int stack failed, ret=%d\n", ret);
- goto abort;
+ panic("cpu_data_alloc() int stack failed, ret=%d\n", ret);
}
bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
cdp->cpu_int_stack_top += INTSTACK_SIZE;
/*
* Allocate descriptor table:
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp->cpu_desc_tablep,
- sizeof(struct mp_desc_table));
- if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
- goto abort;
- }
- simple_lock(&cpu_lock);
- if (real_ncpus >= max_ncpus) {
- simple_unlock(&cpu_lock);
- goto abort;
+ cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[cnum];
+ /*
+ * Allocate LDT
+ */
+ if (do_ldt_alloc) {
+ boolean_t do_ldt_free = FALSE;
+ vm_offset_t sldtoffset = 0;
+ /*
+ * Allocate LDT
+ */
+ vm_offset_t ldtalloc = 0, ldtallocsz = round_page_64(MAX_CPUS * sizeof(struct real_descriptor) * LDTSZ);
+ ret = kmem_alloc(kernel_map, (vm_offset_t *) &ldtalloc, ldtallocsz, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret);
+ }
+
+ simple_lock(&ncpus_lock, LCK_GRP_NULL);
+ if (dyn_ldts == NULL) {
+ dyn_ldts = (cldt_t *)ldtalloc;
+ } else {
+ do_ldt_free = TRUE;
+ }
+ simple_unlock(&ncpus_lock);
+
+ if (do_ldt_free) {
+ kmem_free(kernel_map, ldtalloc, ldtallocsz);
+ } else {
+ /* CPU registration and startup are expected to execute
+ * serially, as invoked by the platform driver.
+ * Create trampoline alias of LDT region.
+ */
+ sldtoffset = dyn_dblmap(ldtalloc, ldtallocsz);
+ ldt_alias_offset = sldtoffset;
+ }
}
- cpu_data_ptr[real_ncpus] = cdp;
- cdp->cpu_number = real_ncpus;
- real_ncpus++;
- simple_unlock(&cpu_lock);
-
- kprintf("cpu_data_alloc(%d) 0x%x desc_table: 0x%x "
- "int_stack: 0x%x-0x%x\n",
- cdp->cpu_number, cdp, cdp->cpu_desc_tablep,
- cdp->cpu_int_stack_top - INTSTACK_SIZE, cdp->cpu_int_stack_top);
+ cdp->cpu_ldtp = &dyn_ldts[cnum].pcldts[0];
+
+#if CONFIG_MCA
+ /* Machine-check shadow register allocation. */
+ mca_cpu_alloc(cdp);
+#endif
+
+ /*
+ * Before this cpu has been assigned a real thread context,
+ * we give it a fake, unique, non-zero thread id which the locking
+ * primitives use as their lock value.
+ * Note that this does not apply to the boot processor, cpu 0, which
+ * transitions to a thread context well before other processors are
+ * started.
+ */
+ cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
+ cdp->cpu_NMI_acknowledged = TRUE;
+ cdp->cpu_nanotime = &pal_rtc_nanotime_info;
+
+ kprintf("cpu_data_alloc(%d) %p desc_table: %p "
+ "ldt: %p "
+ "int_stack: 0x%lx-0x%lx\n",
+ cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
+ (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
+ cpu_data_ptr[cnum] = cdp;
return cdp;
+}
+
+boolean_t
+valid_user_data_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0) {
+ return TRUE;
+ }
+
+ if (sel.ti == SEL_LDT) {
+ return TRUE;
+ } else if (sel.index < GDTSZ) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+boolean_t
+valid_user_code_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
-abort:
- if (cdp) {
- if (cdp->cpu_desc_tablep)
- kfree((void *) cdp->cpu_desc_tablep,
- sizeof(*cdp->cpu_desc_tablep));
- if (cdp->cpu_int_stack_top)
- kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE),
- INTSTACK_SIZE);
- kfree((void *) cdp, sizeof(*cdp));
+ if (selector == 0) {
+ return FALSE;
}
- return NULL;
+
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV) {
+ return TRUE;
+ }
+ } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
+ return TRUE;
+ }
+ /* Explicitly validate the system code selectors
+ * even if not instantaneously privileged,
+ * since they are dynamically re-privileged
+ * at context switch
+ */
+ if ((selector == USER_CS) || (selector == USER64_CS)) {
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
+boolean_t
+valid_user_stack_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0) {
+ return FALSE;
+ }
+
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV) {
+ return TRUE;
+ }
+ } else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) {
+ return TRUE;
+ }
+ }
+
+ return FALSE;
}
boolean_t
valid_user_segment_selectors(uint16_t cs,
- uint16_t ss,
- uint16_t ds,
- uint16_t es,
- uint16_t fs,
- uint16_t gs)
-{
- return valid_user_code_selector(cs) &&
+ uint16_t ss,
+ uint16_t ds,
+ uint16_t es,
+ uint16_t fs,
+ uint16_t gs)
+{
+ return valid_user_code_selector(cs) &&
valid_user_stack_selector(ss) &&
- valid_user_data_selector(ds) &&
- valid_user_data_selector(es) &&
- valid_user_data_selector(fs) &&
+ valid_user_data_selector(ds) &&
+ valid_user_data_selector(es) &&
+ valid_user_data_selector(fs) &&
valid_user_data_selector(gs);
}
+/*
+ * Allocate a new interrupt stack for the boot processor from the
+ * heap rather than continue to use the statically allocated space.
+ * Also switch to a dynamically allocated cpu data area.
+ */
+void
+cpu_data_realloc(void)
+{
+ int ret;
+ vm_offset_t istk;
+ cpu_data_t *cdp;
+ boolean_t istate;
+
+ ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
+ }
+ bzero((void*) istk, INTSTACK_SIZE);
+ istk += INTSTACK_SIZE;
+
+ cdp = &scdatas[0];
+
+ /* Copy old contents into new area and make fix-ups */
+ assert(cpu_number() == 0);
+ bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t));
+ cdp->cpu_this = cdp;
+ cdp->cpu_int_stack_top = istk;
+ timer_call_queue_init(&cdp->rtclock_timer.queue);
+ cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0];
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
+
+ uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
+ cdt->fstkp = cfstk;
+ cfstk += FSTK_SZ;
+
+ /*
+ * With interrupts disabled commmit the new areas.
+ */
+ istate = ml_set_interrupts_enabled(FALSE);
+ cpu_data_ptr[0] = cdp;
+ master_ktss64.ist2 = DBLMAP((uintptr_t) cfstk);
+ master_ktss64.ist1 = DBLMAP((uintptr_t) cfstk - sizeof(x86_64_intr_stack_frame_t));
+ wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
+ (void) ml_set_interrupts_enabled(istate);
+
+ kprintf("Reallocated master cpu data: %p,"
+ " interrupt stack: %p, fault stack: %p\n",
+ (void *) cdp, (void *) istk, (void *) cfstk);
+}